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1. Introduction

In the Desarguesian projective plane PG(2, g?), a unital is defined to be a set of ¢> + 1 points containing either 1 or q + 1
points from each line of PG(2, g?). Observe that each unital has a unique 1-secant at each of its points. The idea of a unital
arises from the combinatorial properties of the non-degenerate unitary polarity = of PG(2, g°). The set of absolute points
of 7 is indeed a unital, called the classical or Hermitian unital. Therefore, the projective group preserving the classical unital
is isomorphic to PGU(3, ¢) and acts on its points as PGU(3, q) in its natural 2-transitive permutation representation. Using
the classification of subgroups of PGL(3, g?), Hoffer [14] proved that a unital is classical if and only if it is preserved by a
collineation group isomorphic to PSU(3, g). Hoffer’s characterisation has been the starting point for several investigations
of unitals in terms of the structure of their automorphism group, see [3,6,4,5,8,9,11,10,12,15,16]; see also the survey
[2, Appendix B]. In PG(2, g?) with q odd, Abatangelo [ 1] proved that a Buekenhout-Metz unital with a cyclic 2-point stabiliser
of order q> — 1 is necessarily classical. In their talk at Combinatorics 2010, G. Donati e N. Durante have conjectured that
Abatangelo’s characterisation holds true for any unital in PG(2, g?). In this note, we provide a proof of this conjecture.

Our notation and terminology are standard, see [2,13]. We shall assume q > 2, since all unitals in PG(2, 4) are classical.

2. Some technical lemmas

Let M be the subgroup of PGL(3, g*) which preserves a unital U in PG(2, g?). A 2-point stabiliser of U is a subgroup of M
which fixes two distinct points of U.

Lemma 2.1. Let U be a unital in PG(2, g%) with a 2-point stabiliser G of order q* — 1. Then, G is cyclic, and there exists a projective
frame in PG(2, q%) such that G is generated by a projectivity with matrix representation

A 0 O
0 u 0],
0 0 1
where X is a primitive element of GF(q®) and j is a primitive element of GF(q).
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Proof. Let O, Y., be two distinct points of U such that the stabiliser G = Mo y,, has order g*> — 1. Choose a projective frame
in PG(2, ¢?) so that 0 = (0, 0, 1), Yo, = (0, 1, 0) and the 1-secants of U at those points are respectively £x : X, = 0 and
oo : X3 = 0. Write X, = (1,0, 0) for the common point of £x and ¢,,. Observe that G fixes the vertices of the triangle
0X~ Y. Therefore, G consists of projectivities with diagonal matrix representation. Now let h € G be a projectivity that
fixes a further point P € £x apart from O, X.. Then, h fixes £x point-wise; that is, h is a perspectivity with axis £x. Since h
also fixes Yo, the centre of h must be Y. Take any point R € £x with R # O, X.. Obviously, h preserves the line r = YoR;
hence, it also preserves r N U. Since r N U comprises g points other than R, the subgroup H generated by h has a permutation
representation of degree g in which no non-trivial permutation fixes a point. As ¢ = p" for a prime p, this implies that p
divides |H|. On the other hand, h is taken from a group of order q¢*> — 1. Thus, h must be the trivial element in G. Therefore,
G has a faithful action on £y as a 2-point stabiliser of PG(1, ¢%). This proves that G is cyclic. Furthermore, a generator g of G
has a matrix representation

A 0 O
0 un 0},
0 0 1

with A a primitive element of GF(g?). _

As G preserves the set A = U N OY,, it also induces a permutation group G on A. Since any projectivity fixing three
points of 0Y,, must fix OY,, point-wise, G is semiregular on A. Therefore, |G| divides ¢ — 1. Now let F be the subgroup of G
fixing A point-wise. Then, F is a perspectivity group with centre X, and axis £y : X; = 0. Take any point R € ¢y such that
the line r = RX is a (g + 1)-secant of U. Then, r N U is disjoint from £y. Hence, F has a permutation representation on
r N U in which no non-trivial permutation fixes a point. Thus, |F| divides q 4 1. Since |G| = q> — 1,wehave |G| < q—1
and |G| = |G||F|. This implies |G| = ¢ — 1 and |F| = q + 1. From the former condition, u must be a primitive element of
GF(q). O

Lemma 2.2. In PG(2, ¢%), let #; and #, be two non-degenerate Hermitian curves which have the same tangent at a common
point P. Denote by I(P, #; N #,) the intersection multiplicity of #¢; and #, at P. Then,

1P, 3, N ) = q+ 1. (1)

Proof. Since up to projectivities there is a unique class of Hermitian curves in PG(2, %), we may assume #; to have equation
—Xf“ + X;’Xg + X2X§’ = 0. Furthermore, as the projectivity group PGU(3, q) preserving J#¢; acts transitively on the points
of #; in PG(2, ¢%), we may also suppose P = (0, 0, 1). Within this setting, the tangent r of #; at P coincides with the line
X = 0. As no term Xi with 0 < j < g occurs in the equation of J¢;, the intersection multiplicity I(P, #; N r) is equal to
q—+ 1

The equation of the other Hermitian curve #¢, might be written as

F(X1, X2, X3) = aoX3Xz + a1X§_1Gl(X1, X2) + -+ aqGy(X1, X2) =0,

where ap # 0 and deg G;(Xq,X2) =i+ 1. Since the tangent of #¢, at P has no other common point with #¢,, even over

the algebraic closure of GF(g?), no terms le with 0 < j < q can occur in the polynomials G;(Xi, X,). In other words,
I(P,#,Nr)=q+ 1.
A primitive representation of the unique branch of #; centred at P has components

x(t)=t, yt)=ct'+---,

where i is a positive integer and y(t) € GF(g?)[[t]], that is, y(t) stands for a formal power series with coefficients in GF(q?).
From I(P, #;1 N1) =q+ 1,

y(©) 4+ y(t) — 7 =0,

whence y(t) = t9*t1 4 H(t), where H(t) is a formal power series of order at least q + 2. That is, the exponent j in the leading
term ct’ of H(t) is larger than g + 1.
It is now possible to compute the intersection multiplicity I(P, #; N J¢;) using [13, Theorem 4.36]:

I(P, 36 N H;) = ord,F(t, y(t), 1) = ord; (aot ™™ + G(t)),
with G(t) € GF(g?)[[t]] of order at least g + 2. From this, the assertion follows. O

Lemma 2.3. In PG(2, ¢%), let # be a non-degenerate Hermitian curve and let € be a Hermitian cone whose centre does not lie
on J. Assume that there exist two points P; € # N C, withi = 1, 2, such that the tangent line of # at P; is a linear component
of C. Then

I(Py, #¥NC) =q+ 1. (2)
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Proof. We use the same setting as in the proof of Lemma 2.2 with P = P;. Since the action of PGU(3, q) is 2-transitive on the
points of #¢, we may also suppose that P, = (0, 1, 0). Then the centre of € is the point X,, = (1, 0, 0), and € has equation
c1X3X3 4+ cX2X3 = 0 with ¢ # 0. Therefore,

I(P, # N €) = ord, (cy(t) + cy(t)) = ord, (It + K(t))
with K(t) € GF(g?)[[t]] of order at least q + 2, whence the assertion follows. O

3. Main result

Theorem 3.1. In PG(2, q?), let U be a unital and write M for the group of projectivities which preserves U. If U has two distinct
points P, Q such that the stabiliser G = Mp ¢ has order q* — 1, then U is classical.

The main idea of the proof is to build up a projective plane of order g using, for the definition of points, non-trivial G-
orbits in the affine plane AG(2, g?) which arise from PG(2, g%) by removing the line £, : X3 = 0 with all its points. For this
purpose, take U and G as in Lemma 2.1, with ;. = A9+, and define an incidence structure IT = (£, .£) as follows.

1. Points are all non-trivial G-orbits in AG(2, ¢?).
2. Lines are ¢y, and the non-degenerate Hermitian curves of equation

Hy : =X 4 bXsXd + bIXIX, = 0, 3)
with b ranging over GF(g?)*, together with the Hermitian cones of equation
Cc : ¢IXIX3 + cXoX5 = 0, (4)

with ¢ ranging over a representative system of cosets of (GF(q), %) in (GF(g?), ).
3. Incidence is the natural inclusion.

Lemma 3.2. The incidence structure IT = (£, £) is a projective plane of order q.

Proof. In AG(2, ¢?), the group G has q? + q + 1 non-trivial orbits, namely its g orbits disjoint from £y, each of length > — 1,
and its g 4+ 1 orbits on £y, these of length g — 1. Therefore, the total number of points in & is equal to g + q + 1. By
construction of I7, the number of lines in .£ is also g + g+ 1. Incidence is well defined as G preserves £y and each Hermitian
curve and cone representing lines of .£.

Now we count the points incident with a line in I7. Each G-orbit on £y distinct from O and Y, has length ¢ — 1. Hence
there are exactly g + 1 such G-orbits; in terms of 77, the line represented by ¢y is incident with g 4+ 1 points. A Hermitian
curve #, of Eq. (3) has ¢° points in AG(2, ¢) and meets £y in a G-orbit, while it contains no points apart from O of line
lx.As ¢ — q = q(¢*> — 1), the line represented by #, is incident with q 4 1 points in #. Finally, a Hermitian cone €. of
Eq. (4) has ¢° points in AG(2, ¢%) and contains q points from £y. One of these g points is 0, the other g — 1 forming a non-
trivial G-orbit. The remaining q*> — q points of € are partitioned into q distinct G-orbits. Hence, the line represented by C.
is also incident with g + 1 points. This shows that each line in I7 is incident with exactly g + 1 points.

Therefore, it is enough to show that any two distinct lines of .£ have exactly one common point. Obviously this is true
when one of these lines is represented by ¢y. Furthermore, the point of # represented by fx is incident with each line of
£ represented by a Hermitian cone of Eq. (4). We are led to investigate the case where one of the lines of .£ is represented
by a Hermitian curve #, of Eq. (4), and the other line of £ is represented by a Hermitian curve # which is either another
Hermitian curve #; of the same type of Eq. (3), or a Hermitian cone G, of Eq. (4).

Clearly, both O and Y, are common points of #, and #¢. From Kestenband'’s classification [17], see also [2, Theorem 6.7],
F, N H cannot consist of exactly two points. Therefore, there exists another point, say P € J, N #. Since £x and £, are
1-secants of #, at the points O and Y, respectively, either P is on £y or P lies outside the fundamental triangle. In the latter
case, the G-orbit A of P has size g — 1 and represents a point in &. Assume that #, N # contains a further point Q ¢ A;
which does not belong to ¢y and denote by A, its G-orbit. Then,

|#y N | = |A1] + |42 =267 = 1) + 2 = 2¢°.
However, from Bézout’s theorem, see [13, Theorem 3.14],
[#, N H| < (q+ 1)

Therefore, Q € /¢y, and its G-orbit A3 has length ¢ — 1. Hence, #, and J¢ share q + 1 points on {£y. If ## = J; is a
Hermitian curve of Eq. (3), each of these q + 1 points is the tangency point of a common inflection tangent with multiplicity
q + 1 of the Hermitian curves #, and #. Write R, ..., Ry for these points. Then, by (1) the intersection multiplicity is
I(R;, #, N Hy) = q+ 1. This holds true also when # is a Hermitian cone C, of Eq. (4); see Lemma 2.3. Therefore, in any case,

q+1
D IR, 3,0 ) = (g + 1),

i=1
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From Bézout’s theorem, #, N # = {Ri, ..., Rg41}. Therefore, #, N H = Az U {0, Y }. This shows that if Q ¢ {y, the
lines represented by #, and #¢ have exactly one point in common. The above argument can also be adapted to prove this
assertion in the case where Q € {¢y. Therefore, any two distinct lines of .£ have exactly one common point. O

Proof of Theorem 3.1. Assume first u = A9*!. Construct a projective plane I7 as in Lemma 3.2. Since U \ {0, Y.} is the
union of G-orbits, U represents a set I" of ¢ 4+ 1 points in /1. From [7], N = 1(mod p) where N is the number of common
points of U with any Hermitian curve #,. In terms of /T, I" contains some point from every line A in .£ represented by a
Hermitian curve of Eq. (3). Actually, this holds true when the line A in £ is represented by a Hermitian cone € of Eq. (4). To
prove it, observe that € contains a line r distinct from both lines £x and £... Then r N U is not empty and contains neither O
nor Y. If P is a point in r N U, then the G-orbit of P represents a common point of I" and A. Since the line in .£ represented
by ¢y meets I, it turns out that I" contains some point from every line in .£.

Therefore, I itself is a line in .£. Note that U contains no line. In terms of PG(2, %), this yields that U coincides with a
Hermitian curve of Eq. (3). In particular, U is a classical unital.

To investigate the case . # A9*!, we still work in the above plane 7. By a straightforward computation, the projectivity
g given in Lemma 2.1 induces a non-trivial collineation on I7. Also, g preserves every Hermitian cone of Eq. (4) and the
common line £y of these Hermitian cones. In terms of /7, g is a perspectivity with centre at the point represented by .
Since g also preserves the line £y, the axis of g is £y, regarded as a line in I7. Therefore, every point of IT lying on £y is fixed
by g. Consequently, g9~ is the identity collineation. As g has order q> — 1, this yields that g¢*! preserves every Hermitian
curve of Eq. (3). Thus, u9! = (A9+1)%+1 'whence u = —A9*+!. In particular, p # 2.

Consider now the g + 1 non-trivial G-orbits in U with G = (g). For any point P € IT, let np the number of the non-trivial
G-orbits in U intersecting the set p(P) representing P in PG(2, g?). Then np = 1 when p(P) is the unique G-orbit in U which
lies on zﬁy. Otherwise, 0 < np < 2, with np = 2 if and only if p(P) is not a G-orbit but the union of two H-orbits with
H = (g%).

Let I be the multiset in I7 consisting of all points with np > 0 and define the weight vp of P to be either 1 or 2, according
asnp = 2ornp = 1.Then, ) p - vp = 2q + 2. We show that I" is a 2-fold blocking multiset of /7. For this purpose, let #
be either a Hermitian curve of Eq. (3) or a Hermitian cone of Eq. (4). Write m for the number of common points of #}, and
U, different from O and Y ; thus, the total number of common points is N = m + 2. As N = 1(mod p), we have m > 1.
Take P € # N U.If vp = 2, then the line representing # meets I" in a point with weight 2. If vp = 1, then the H-orbit of
P has size (q> — 1)/2 and lies on both # and U. Since (g — 1)/2 + 2 # 1(mod p), # and U must share a further point Q
other than O and Y. Therefore, the points P’ and Q' of IT which represent the subsets containing P and Q are distinct. This
shows that I meets the line represented by # in two distinct points. Therefore, I" is a 2-fold blocking multiset.

Since I" has at least one point with weight 2, this yields that I comprises all points of a line, each with weight 2. Hence,
U coincides with either a Hermitian curve or a Hermitian cone. On the other hand, U is definitely not a Hermitian cone. As
W # A9T1 U is neither a Hermitian curve; therefore, this case cannot actually occur. O
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