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a b s t r a c t

Let U be a unital embedded in the Desarguesian projective plane PG(2, q2). Write M for
the subgroup of PGL(3, q2) which preserves U. We show that U is classical if and only if U
has two distinct points P,Q for which the stabiliser G = MP,Q has order q2 − 1.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the Desarguesian projective plane PG(2, q2), a unital is defined to be a set of q3 + 1 points containing either 1 or q+ 1
points from each line of PG(2, q2). Observe that each unital has a unique 1-secant at each of its points. The idea of a unital
arises from the combinatorial properties of the non-degenerate unitary polarity π of PG(2, q2). The set of absolute points
of π is indeed a unital, called the classical or Hermitian unital. Therefore, the projective group preserving the classical unital
is isomorphic to PGU(3, q) and acts on its points as PGU(3, q) in its natural 2-transitive permutation representation. Using
the classification of subgroups of PGL(3, q2), Hoffer [14] proved that a unital is classical if and only if it is preserved by a
collineation group isomorphic to PSU(3, q2). Hoffer’s characterisation has been the starting point for several investigations
of unitals in terms of the structure of their automorphism group, see [3,6,4,5,8,9,11,10,12,15,16]; see also the survey
[2, Appendix B]. In PG(2, q2)with q odd, Abatangelo [1] proved that a Buekenhout–Metz unitalwith a cyclic 2-point stabiliser
of order q2 − 1 is necessarily classical. In their talk at Combinatorics 2010, G. Donati e N. Durante have conjectured that
Abatangelo’s characterisation holds true for any unital in PG(2, q2). In this note, we provide a proof of this conjecture.

Our notation and terminology are standard, see [2,13]. We shall assume q > 2, since all unitals in PG(2, 4) are classical.

2. Some technical lemmas

LetM be the subgroup of PGL(3, q2) which preserves a unital U in PG(2, q2). A 2-point stabiliser of U is a subgroup ofM
which fixes two distinct points of U.

Lemma 2.1. Let U be a unital in PG(2, q2)with a 2-point stabiliser G of order q2−1. Then, G is cyclic, and there exists a projective
frame in PG(2, q2) such that G is generated by a projectivity with matrix representation

λ 0 0
0 µ 0
0 0 1


,

where λ is a primitive element of GF(q2) and µ is a primitive element of GF(q).
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Proof. Let O, Y∞ be two distinct points of U such that the stabiliser G = MO,Y∞
has order q2 − 1. Choose a projective frame

in PG(2, q2) so that O = (0, 0, 1), Y∞ = (0, 1, 0) and the 1-secants of U at those points are respectively ℓX : X2 = 0 and
ℓ∞ : X3 = 0. Write X∞ = (1, 0, 0) for the common point of ℓX and ℓ∞. Observe that G fixes the vertices of the triangle
OX∞Y∞. Therefore, G consists of projectivities with diagonal matrix representation. Now let h ∈ G be a projectivity that
fixes a further point P ∈ ℓX apart from O, X∞. Then, h fixes ℓX point-wise; that is, h is a perspectivity with axis ℓX . Since h
also fixes Y∞, the centre of h must be Y∞. Take any point R ∈ ℓX with R ≠ O, X∞. Obviously, h preserves the line r = Y∞R;
hence, it also preserves r∩U. Since r∩U comprises q points other than R, the subgroupH generated by h has a permutation
representation of degree q in which no non-trivial permutation fixes a point. As q = pr for a prime p, this implies that p
divides |H|. On the other hand, h is taken from a group of order q2 − 1. Thus, h must be the trivial element in G. Therefore,
G has a faithful action on ℓX as a 2-point stabiliser of PG(1, q2). This proves that G is cyclic. Furthermore, a generator g of G
has a matrix representation

λ 0 0
0 µ 0
0 0 1


,

with λ a primitive element of GF(q2).
As G preserves the set ∆ = U ∩ OY∞, it also induces a permutation group Ḡ on ∆. Since any projectivity fixing three

points of OY∞ must fix OY∞ point-wise, Ḡ is semiregular on ∆. Therefore, |Ḡ| divides q − 1. Now let F be the subgroup of G
fixing ∆ point-wise. Then, F is a perspectivity group with centre X∞ and axis ℓY : X1 = 0. Take any point R ∈ ℓY such that
the line r = RX∞ is a (q + 1)-secant of U. Then, r ∩ U is disjoint from ℓY . Hence, F has a permutation representation on
r ∩ U in which no non-trivial permutation fixes a point. Thus, |F | divides q + 1. Since |G| = q2 − 1, we have |Ḡ| ≤ q − 1
and |G| = |Ḡ||F |. This implies |Ḡ| = q − 1 and |F | = q + 1. From the former condition, µ must be a primitive element of
GF(q). �

Lemma 2.2. In PG(2, q2), let H1 and H2 be two non-degenerate Hermitian curves which have the same tangent at a common
point P. Denote by I(P, H1 ∩ H2) the intersection multiplicity of H1 and H2 at P. Then,

I(P, H1 ∩ H2) = q + 1. (1)

Proof. Since up to projectivities there is a unique class of Hermitian curves in PG(2, q2), wemay assumeH1 to have equation
−Xq+1

1 + Xq
2X3 + X2X

q
3 = 0. Furthermore, as the projectivity group PGU(3, q) preserving H1 acts transitively on the points

of H1 in PG(2, q2), we may also suppose P = (0, 0, 1). Within this setting, the tangent r of H1 at P coincides with the line
X2 = 0. As no term X j

1 with 0 < j ≤ q occurs in the equation of H1, the intersection multiplicity I(P, H1 ∩ r) is equal to
q + 1.

The equation of the other Hermitian curve H2 might be written as

F(X1, X2, X3) = a0X
q
3X2 + a1X

q−1
3 G1(X1, X2) + · · · + aqGq(X1, X2) = 0,

where a0 ≠ 0 and deg Gi(X1, X2) = i + 1. Since the tangent of H2 at P has no other common point with H2, even over
the algebraic closure of GF(q2), no terms X j

1 with 0 < j ≤ q can occur in the polynomials Gi(X1, X2). In other words,
I(P, H2 ∩ r) = q + 1.

A primitive representation of the unique branch of H1 centred at P has components

x(t) = t, y(t) = ct i + · · · ,

where i is a positive integer and y(t) ∈ GF(q2)[[t]], that is, y(t) stands for a formal power series with coefficients in GF(q2).
From I(P, H1 ∩ r) = q + 1,

y(t)q + y(t) − tq+1
= 0,

whence y(t) = tq+1
+H(t), where H(t) is a formal power series of order at least q+ 2. That is, the exponent j in the leading

term ct j of H(t) is larger than q + 1.
It is now possible to compute the intersection multiplicity I(P, H1 ∩ H2) using [13, Theorem 4.36]:

I(P, H1 ∩ H2) = ordtF(t, y(t), 1) = ordt(a0tq+1
+ G(t)),

with G(t) ∈ GF(q2)[[t]] of order at least q + 2. From this, the assertion follows. �

Lemma 2.3. In PG(2, q2), let H be a non-degenerate Hermitian curve and let C be a Hermitian cone whose centre does not lie
on H . Assume that there exist two points Pi ∈ H ∩ C, with i = 1, 2, such that the tangent line of H at Pi is a linear component
of C. Then

I(P1, H ∩ C) = q + 1. (2)
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Proof. Weuse the same setting as in the proof of Lemma 2.2 with P = P1. Since the action of PGU(3, q) is 2-transitive on the
points of H , we may also suppose that P2 = (0, 1, 0). Then the centre of C is the point X∞ = (1, 0, 0), and C has equation
cqXq

2X3 + cX2X
q
3 = 0 with c ≠ 0. Therefore,

I(P, H ∩ C) = ordt(cqy(t)q + cy(t)) = ordt(cqtq+1
+ K(t))

with K(t) ∈ GF(q2)[[t]] of order at least q + 2, whence the assertion follows. �

3. Main result

Theorem 3.1. In PG(2, q2), let U be a unital and write M for the group of projectivities which preserves U. If U has two distinct
points P,Q such that the stabiliser G = MP,Q has order q2 − 1, then U is classical.

The main idea of the proof is to build up a projective plane of order q using, for the definition of points, non-trivial G-
orbits in the affine plane AG(2, q2) which arise from PG(2, q2) by removing the line ℓ∞ : X3 = 0 with all its points. For this
purpose, take U and G as in Lemma 2.1, with µ = λq+1, and define an incidence structure Π = (P , L) as follows.

1. Points are all non-trivial G-orbits in AG(2, q2).
2. Lines are ℓY , and the non-degenerate Hermitian curves of equation

Hb : −Xq+1
1 + bX3X

q
2 + bqXq

3X2 = 0, (3)

with b ranging over GF(q2)∗, together with the Hermitian cones of equation

Cc : cqXq
2X3 + cX2X

q
3 = 0, (4)

with c ranging over a representative system of cosets of (GF(q), ∗) in (GF(q2), ∗).
3. Incidence is the natural inclusion.

Lemma 3.2. The incidence structure Π = (P , L) is a projective plane of order q.

Proof. In AG(2, q2), the group G has q2 + q+1 non-trivial orbits, namely its q2 orbits disjoint from ℓY , each of length q2 −1,
and its q + 1 orbits on ℓY , these of length q − 1. Therefore, the total number of points in P is equal to q2 + q + 1. By
construction ofΠ , the number of lines inL is also q2 +q+1. Incidence is well defined as G preserves ℓY and each Hermitian
curve and cone representing lines of L.

Now we count the points incident with a line in Π . Each G-orbit on ℓY distinct from O and Y∞ has length q − 1. Hence
there are exactly q + 1 such G-orbits; in terms of Π , the line represented by ℓY is incident with q + 1 points. A Hermitian
curve Hb of Eq. (3) has q3 points in AG(2, q2) and meets ℓY in a G-orbit, while it contains no points apart from O of line
ℓX . As q3 − q = q(q2 − 1), the line represented by Hb is incident with q + 1 points in P . Finally, a Hermitian cone Cc of
Eq. (4) has q3 points in AG(2, q2) and contains q points from ℓY . One of these q points is O, the other q − 1 forming a non-
trivial G-orbit. The remaining q3 − q points of Cc are partitioned into q distinct G-orbits. Hence, the line represented by Cc
is also incident with q + 1 points. This shows that each line in Π is incident with exactly q + 1 points.

Therefore, it is enough to show that any two distinct lines of L have exactly one common point. Obviously this is true
when one of these lines is represented by ℓY . Furthermore, the point of P represented by ℓX is incident with each line of
L represented by a Hermitian cone of Eq. (4). We are led to investigate the case where one of the lines of L is represented
by a Hermitian curve Hb of Eq. (4), and the other line of L is represented by a Hermitian curve H which is either another
Hermitian curve Hd of the same type of Eq. (3), or a Hermitian cone Cc of Eq. (4).

Clearly, both O and Y∞ are common points of Hb and H . From Kestenband’s classification [17], see also [2, Theorem 6.7],
Hb ∩ H cannot consist of exactly two points. Therefore, there exists another point, say P ∈ Hb ∩ H . Since ℓX and ℓ∞ are
1-secants of Hb at the points O and Y∞, respectively, either P is on ℓY or P lies outside the fundamental triangle. In the latter
case, the G-orbit ∆1 of P has size q2 − 1 and represents a point in P . Assume that Hb ∩ H contains a further point Q ∉ ∆1
which does not belong to ℓY and denote by ∆2 its G-orbit. Then,

|Hb ∩ H | ≥ |∆1| + |∆2| = 2(q2 − 1) + 2 = 2q2.

However, from Bézout’s theorem, see [13, Theorem 3.14],

|Hb ∩ H | ≤ (q + 1)2.

Therefore, Q ∈ ℓY , and its G-orbit ∆3 has length q − 1. Hence, Hb and H share q + 1 points on ℓY . If H = Hd is a
Hermitian curve of Eq. (3), each of these q+ 1 points is the tangency point of a common inflection tangent with multiplicity
q + 1 of the Hermitian curves Hb and H . Write R1, . . . , Rq+1 for these points. Then, by (1) the intersection multiplicity is
I(Ri, Hb ∩Hd) = q+1. This holds true also when H is a Hermitian cone Cc of Eq. (4); see Lemma 2.3. Therefore, in any case,

q+1−
i=1

I(Ri, Hb ∩ H) = (q + 1)2.
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From Bézout’s theorem, Hb ∩ H = {R1, . . . , Rq+1}. Therefore, Hb ∩ H = ∆3 ∪ {O, Y∞}. This shows that if Q ∉ ℓY , the
lines represented by Hb and H have exactly one point in common. The above argument can also be adapted to prove this
assertion in the case where Q ∈ ℓY . Therefore, any two distinct lines of L have exactly one common point. �

Proof of Theorem 3.1. Assume first µ = λq+1. Construct a projective plane Π as in Lemma 3.2. Since U \ {O, Y∞} is the
union of G-orbits, U represents a set Γ of q + 1 points in Π . From [7], N ≡ 1(mod p) where N is the number of common
points of U with any Hermitian curve Hb. In terms of Π, Γ contains some point from every line Λ in L represented by a
Hermitian curve of Eq. (3). Actually, this holds true when the line Λ in L is represented by a Hermitian cone C of Eq. (4). To
prove it, observe that C contains a line r distinct from both lines ℓX and ℓ∞. Then r ∩ U is not empty and contains neither O
nor Y∞. If P is a point in r ∩ U, then the G-orbit of P represents a common point of Γ and Λ. Since the line in L represented
by ℓY meets Γ , it turns out that Γ contains some point from every line in L.

Therefore, Γ itself is a line in L. Note that U contains no line. In terms of PG(2, q2), this yields that U coincides with a
Hermitian curve of Eq. (3). In particular, U is a classical unital.

To investigate the case µ ≠ λq+1, we still work in the above plane Π . By a straightforward computation, the projectivity
g given in Lemma 2.1 induces a non-trivial collineation on Π . Also, g preserves every Hermitian cone of Eq. (4) and the
common line ℓX of these Hermitian cones. In terms of Π , ḡ is a perspectivity with centre at the point represented by ℓX .
Since g also preserves the line ℓY , the axis of ḡ is ℓY , regarded as a line in Π . Therefore, every point of Π lying on ℓY is fixed
by g . Consequently, ḡq−1 is the identity collineation. As g has order q2 − 1, this yields that gq+1 preserves every Hermitian
curve of Eq. (3). Thus, µq+1

= (λq+1)q+1, whence µ = −λq+1. In particular, p ≠ 2.
Consider now the q+ 1 non-trivial G-orbits in U with G = ⟨g⟩. For any point P ∈ Π , let nP the number of the non-trivial

G-orbits inU intersecting the set ρ(P) representing P in PG(2, q2). Then nP = 1when ρ(P) is the unique G-orbit inUwhich
lies on ℓY . Otherwise, 0 ≤ nP ≤ 2, with nP = 2 if and only if ρ(P) is not a G-orbit but the union of two H-orbits with
H = ⟨g2

⟩.
Let Γ be themultiset inΠ consisting of all points with nP > 0 and define the weight νP of P to be either 1 or 2, according

as nP = 2 or nP = 1. Then,
∑

P∈Γ νP = 2q + 2. We show that Γ is a 2-fold blocking multiset of Π . For this purpose, let H
be either a Hermitian curve of Eq. (3) or a Hermitian cone of Eq. (4). Write m for the number of common points of Hb and
U, different from O and Y∞; thus, the total number of common points is N = m + 2. As N ≡ 1(mod p), we have m ≥ 1.
Take P ∈ H ∩ U. If νP = 2, then the line representing H meets Γ in a point with weight 2. If νP = 1, then the H-orbit of
P has size (q2 − 1)/2 and lies on both H and U. Since (q2 − 1)/2 + 2 ≢ 1(mod p), H and U must share a further point Q
other than O and Y∞. Therefore, the points P ′ and Q ′ of Π which represent the subsets containing P and Q are distinct. This
shows that Γ meets the line represented by H in two distinct points. Therefore, Γ is a 2-fold blocking multiset.

Since Γ has at least one point with weight 2, this yields that Γ comprises all points of a line, each with weight 2. Hence,
U coincides with either a Hermitian curve or a Hermitian cone. On the other hand, U is definitely not a Hermitian cone. As
µ ≠ λq+1, U is neither a Hermitian curve; therefore, this case cannot actually occur. �
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