67 research outputs found

    Development of a Low-Cost Eye Screening Tool for Early Detection of Diabetic Retinopathy using Deep Neural Network

    Get PDF
    It has been said that technology used in the lab does not directly transfer to what is done in healthcare. Research on the use of Artificial Intelligence (AI) in the diagnosis of Diabetic Retinopathy (DR) has seen tremendous growth over the last couple of years but it is also true not much of that knowledge has been transferred into practice to benefit patients in need. One reason is that it’s a new frontier with untested technologies and one that is evolving too fast. Also, the Real Healthcare situation can be very complicated presenting itself with numerous challenges starting with strict regulations to variability in populations. A solution that is implementable needs to address all these concerns including ethics, standards, and any security concerns. It is also important to note that, the current state of AI is specialized to only narrow applications and may not scale when presented with problems of varied nature. A case in point is a patient having DR may be suffering from other ailments such as Glaucoma or cataracts. DR has been a leading cause of blindness for millions of people worldwide, hard to detect when it’s treatable and therefore early eye screening is the solution. In this Capstone project, we seek to integrate Artificial Intelligence with other technologies to deliver a low-cost diagnosis to Diabetic Retinopathy at the same time trying to overcome previous impediments to the implementation of mass eye screening

    Diagnostic Accuracy of Tele-ophthalmology for Diabetic Retinopathy Assessment: A Meta-analysis and Economic Analysis

    Get PDF
    Tele-ophthalmology is a screening alternative that facilitates compliance to eye care guidelines regardless of geographic constraints, promoting adequate delivery of health services to underserved communities. We conducted a systematic review and meta-analysis to assess the diagnostic performance of tele-ophthalmology (TO) programs for the detection of diabetic retinopathy (DR), and used decision-tree modeling to explore its cost-effectiveness compared to in-person examination in a semi-urban scenario. From the 1,060 articles initially identified, 23 met inclusion criteria for data extraction. The diagnostic performance of TO for the detection of any DR and referable DR met the minimum diagnostic criteria by the Canadian Ophthalmological Society (sensitivity \u3e80%, specificity \u3e90%). Interpretation of clinical significance is limited due to significant heterogeneity. Considering a semi-urban scenario, the incremental cost per additional case of any DR detected after the introduction of pharmacy-based TO was $314.1, being more costly and more effective than in-person examination

    Artificial Intelligence Frameworks to Detect and Investigate the Pathophysiology of Spaceflight Associated Neuro-Ocular Syndrome (SANS)

    Get PDF
    Spaceflight associated neuro-ocular syndrome (SANS) is a unique phenomenon that has been observed in astronauts who have undergone long-duration spaceflight (LDSF). The syndrome is characterized by distinct imaging and clinical findings including optic disc edema, hyperopic refractive shift, posterior globe flattening, and choroidal folds. SANS serves a large barrier to planetary spaceflight such as a mission to Mars and has been noted by the National Aeronautics and Space Administration (NASA) as a high risk based on its likelihood to occur and its severity to human health and mission performance. While it is a large barrier to future spaceflight, the underlying etiology of SANS is not well understood. Current ophthalmic imaging onboard the International Space Station (ISS) has provided further insights into SANS. However, the spaceflight environment presents with unique challenges and limitations to further understand this microgravity-induced phenomenon. The advent of artificial intelligence (AI) has revolutionized the field of imaging in ophthalmology, particularly in detection and monitoring. In this manuscript, we describe the current hypothesized pathophysiology of SANS and the medical diagnostic limitations during spaceflight to further understand its pathogenesis. We then introduce and describe various AI frameworks that can be applied to ophthalmic imaging onboard the ISS to further understand SANS including supervised/unsupervised learning, generative adversarial networks, and transfer learning. We conclude by describing current research in this area to further understand SANS with the goal of enabling deeper insights into SANS and safer spaceflight for future missions

    Visual Impairment and Blindness

    Get PDF
    Blindness and vision impairment affect at least 2.2 billion people worldwide with most individuals having a preventable vision impairment. The majority of people with vision impairment are older than 50 years, however, vision loss can affect people of all ages. Reduced eyesight can have major and long-lasting effects on all aspects of life, including daily personal activities, interacting with the community, school and work opportunities, and the ability to access public services. This book provides an overview of the effects of blindness and visual impairment in the context of the most common causes of blindness in older adults as well as children, including retinal disorders, cataracts, glaucoma, and macular or corneal degeneration

    Technological Advances in the Diagnosis and Management of Pigmented Fundus Tumours

    Get PDF
    Choroidal naevi are the most common intraocular tumour. They can be pigmented or non-pigmented and have a predilection for the posterior uvea. The majority remain undetected and cause no harm but are increasingly found on routine community optometry examinations. Rarely does a naevus demonstrate growth or the onset of suspicious features to fulfil the criteria for a malignant melanoma. Because of this very small risk, optometrists commonly refer these patients to hospital eye units for a second opinion, triggering specialist examination and investigation, causing significant anxiety to patients and stretching medical resources. This PhD thesis introduces the MOLES acronym and scoring system that has been devised to categorise the risk of malignancy in choroidal melanocytic tumours according to Mushroom tumour shape, Orange pigment, Large tumour size, Enlarging tumour and Subretinal fluid. This is a simplified system that can be used without sophisticated imaging, and hence its main utility lies in the screening of patients with choroidal pigmented lesions in the community and general ophthalmology clinics. Under this system, lesions were categorised by a scoring system as ‘common naevus’, ‘low-risk naevus’, ‘high-risk naevus’ and ‘probable melanoma.’ According to the sum total of the scores, the MOLES system correlates well with ocular oncologists’ final diagnosis. The PhD thesis also describes a model of managing such lesions in a virtual pathway, showing that images of choroidal naevi evaluated remotely using a decision-making algorithm by masked non-medical graders or masked ophthalmologists is safe. This work prospectively validates a virtual naevus clinic model focusing on patient safety as the primary consideration. The idea of a virtual naevus clinic as a fast, one-stop, streamlined and comprehensive service is attractive for patients and healthcare systems, including an optimised patient experience with reduced delays and inconvenience from repeated visits. A safe, standardised model ensures homogeneous management of cases, appropriate and prompt return of care closer to home to community-based optometrists. This research work and strategies, such as the MOLES scoring system for triage, could empower community-based providers to deliver management of benign choroidal naevi without referral to specialist units. Based on the positive outcome of this prospective study and the MOLES studies, a ‘Virtual Naevus Clinic’ has been designed and adapted at Moorfields Eye Hospital (MEH) to prove its feasibility as a response to the COVID-19 pandemic, and with the purpose of reducing in-hospital patient journey times and increasing the capacity of the naevus clinics, while providing safe and efficient clinical care for patients. This PhD chapter describes the design, pathways, and operating procedures for the digitally enabled naevus clinics in Moorfields Eye Hospital, including what this service provides and how it will be delivered and supported. The author will share the current experience and future plan. Finally, the PhD thesis will cover a chapter that discusses the potential role of artificial intelligence (AI) in differentiating benign choroidal naevus from choroidal melanoma. The published clinical and imaging risk factors for malignant transformation of choroidal naevus will be reviewed in the context of how AI applied to existing ophthalmic imaging systems might be able to determine features on medical images in an automated way. The thesis will include current knowledge to date and describe potential benefits, limitations and key issues that could arise with this technology in the ophthalmic field. Regulatory concerns will be addressed with possible solutions on how AI could be implemented in clinical practice and embedded into existing imaging technology with the potential to improve patient care and the diagnostic process. The PhD will also explore the feasibility of developed automated deep learning models and investigate the performance of these models in diagnosing choroidal naevomelanocytic lesions based on medical imaging, including colour fundus and autofluorescence fundus photographs. This research aimed to determine the sensitivity and specificity of an automated deep learning algorithm used for binary classification to differentiate choroidal melanomas from choroidal naevi and prove that a differentiation concept utilising a machine learning algorithm is feasible

    Detection and Classification of Diabetic Retinopathy Pathologies in Fundus Images

    Get PDF
    Diabetic Retinopathy (DR) is a disease that affects up to 80% of diabetics around the world. It is the second greatest cause of blindness in the Western world, and one of the leading causes of blindness in the U.S. Many studies have demonstrated that early treatment can reduce the number of sight-threatening DR cases, mitigating the medical and economic impact of the disease. Accurate, early detection of eye disease is important because of its potential to reduce rates of blindness worldwide. Retinal photography for DR has been promoted for decades for its utility in both disease screening and clinical research studies. In recent years, several research centers have presented systems to detect pathology in retinal images. However, these approaches apply specialized algorithms to detect specific types of lesion in the retina. In order to detect multiple lesions, these systems generally implement multiple algorithms. Furthermore, some of these studies evaluate their algorithms on a single dataset, thus avoiding potential problems associated with the differences in fundus imaging devices, such as camera resolution. These methodologies primarily employ bottom-up approaches, in which the accurate segmentation of all the lesions in the retina is the basis for correct determination. A disadvantage of bottom-up approaches is that they rely on the accurate segmentation of all lesions in order to measure performance. On the other hand, top-down approaches do not depend on the segmentation of specific lesions. Thus, top-down methods can potentially detect abnormalities not explicitly used in their training phase. A disadvantage of these methods is that they cannot identify specific pathologies and require large datasets to build their training models. In this dissertation, I merged the advantages of the top-down and bottom-up approaches to detect DR with high accuracy. First, I developed an algorithm based on a top-down approach to detect abnormalities in the retina due to DR. By doing so, I was able to evaluate DR pathologies other than microaneurysms and exudates, which are the main focus of most current approaches. In addition, I demonstrated good generalization capacity of this algorithm by applying it to other eye diseases, such as age-related macular degeneration. Due to the fact that high accuracy is required for sight-threatening conditions, I developed two bottom-up approaches, since it has been proven that bottom-up approaches produce more accurate results than top-down approaches for particular structures. Consequently, I developed an algorithm to detect exudates in the macula. The presence of this pathology is considered to be a surrogate for clinical significant macular edema (CSME), a sight-threatening condition of DR. The analysis of the optic disc is usually not taken into account in DR screening systems. However, there is a pathology called neovascularization that is present in advanced stages of DR, making its detection of crucial clinical importance. In order to address this problem, I developed an algorithm to detect neovascularization in the optic disc. These algorithms are based on amplitude-modulation and frequency-modulation (AM-FM) representations, morphological image processing methods, and classification algorithms. The methods were tested on a diverse set of large databases and are considered to be the state-of the art in this field

    Comprehensive retinal image analysis: image processing and feature extraction techniques oriented to the clinical task

    Get PDF
    Medical digital imaging has become a key element of modern health care procedures. It provides a visual documentation, a permanent record for the patients, and most importantly the ability to extract information about many diseases. Ophthalmology is a field that is heavily dependent on the analysis of digital images because they can aid in establishing an early diagnosis even before the first symptoms appear. This dissertation contributes to the digital analysis of such images and the problems that arise along the imaging pipeline, a field that is commonly referred to as retinal image analysis. We have dealt with and proposed solutions to problems that arise in retinal image acquisition and longitudinal monitoring of retinal disease evolution. Specifically, non-uniform illumination, poor image quality, automated focusing, and multichannel analysis. However, there are many unavoidable situations in which images of poor quality, like blurred retinal images because of aberrations in the eye, are acquired. To address this problem we have proposed two approaches for blind deconvolution of blurred retinal images. In the first approach, we consider the blur to be space-invariant and later in the second approach we extend the work and propose a more general space-variant scheme. For the development of the algorithms we have built preprocessing solutions that have enabled the extraction of retinal features of medical relevancy, like the segmentation of the optic disc and the detection and visualization of longitudinal structural changes in the retina. Encouraging experimental results carried out on real retinal images coming from the clinical setting demonstrate the applicability of our proposed solutions

    Augmentation Of Human Skill In Microsurgery

    Get PDF
    Surgeons performing highly skilled microsurgery tasks can benefit from information and manual assistance to overcome technological and physiological limitations to make surgery safer, efficient, and more successful. Vitreoretinal surgery is particularly difficult due to inherent micro-scale and fragility of human eye anatomy. Additionally, surgeons are challenged by physiological hand tremor, poor visualization, lack of force sensing, and significant cognitive load while executing high-risk procedures inside the eye, such as epiretinal membrane peeling. This dissertation presents the architecture and the design principles for a surgical augmentation environment which is used to develop innovative functionality to address the fundamental limitations in vitreoretinal surgery. It is an inherently information driven modular system incorporating robotics, sensors, and multimedia components. The integrated nature of the system is leveraged to create intuitive and relevant human-machine interfaces and generate a particular system behavior to provide active physical assistance and present relevant sensory information to the surgeon. These include basic manipulation assistance, audio-visual and haptic feedback, intraoperative imaging and force sensing. The resulting functionality, and the proposed architecture and design methods generalize to other microsurgical procedures. The system's performance is demonstrated and evaluated using phantoms and in vivo experiments
    • …
    corecore