70 research outputs found

    Knowledge Representation in Engineering 4.0

    Get PDF
    This dissertation was developed in the context of the BMBF and EU/ECSEL funded projects GENIAL! and Arrowhead Tools. In these projects the chair examines methods of specifications and cooperations in the automotive value chain from OEM-Tier1-Tier2. Goal of the projects is to improve communication and collaborative planning, especially in early development stages. Besides SysML, the use of agreed vocabularies and on- tologies for modeling requirements, overall context, variants, and many other items, is targeted. This thesis proposes a web database, where data from the collaborative requirements elicitation is combined with an ontology-based approach that uses reasoning capabilities. For this purpose, state-of-the-art ontologies have been investigated and integrated that entail domains like hardware/software, roadmapping, IoT, context, innovation and oth- ers. New ontologies have been designed like a HW / SW allocation ontology and a domain-specific "eFuse ontology" as well as some prototypes. The result is a modular ontology suite and the GENIAL! Basic Ontology that allows us to model automotive and microelectronic functions, components, properties and dependencies based on the ISO26262 standard among these elements. Furthermore, context knowledge that influences design decisions such as future trends in legislation, society, environment, etc. is included. These knowledge bases are integrated in a novel tool that allows for collabo- rative innovation planning and requirements communication along the automotive value chain. To start off the work of the project, an architecture and prototype tool was developed. Designing ontologies and knowing how to use them proved to be a non-trivial task, requiring a lot of context and background knowledge. Some of this background knowledge has been selected for presentation and was utilized either in designing models or for later immersion. Examples are basic foundations like design guidelines for ontologies, ontology categories and a continuum of expressiveness of languages and advanced content like multi-level theory, foundational ontologies and reasoning. Finally, at the end, we demonstrate the overall framework, and show the ontology with reasoning, database and APPEL/SysMD (AGILA ProPErty and Dependency Descrip- tion Language / System MarkDown) and constraints of the hardware / software knowledge base. There, by example, we explore and solve roadmap constraints that are coupled with a car model through a constraint solver.Diese Dissertation wurde im Kontext des von BMBF und EU / ECSEL gefördertem Projektes GENIAL! und Arrowhead Tools entwickelt. In diesen Projekten untersucht der Lehrstuhl Methoden zur Spezifikationen und Kooperation in der Automotive Wertschöp- fungskette, von OEM zu Tier1 und Tier2. Ziel der Arbeit ist es die Kommunikation und gemeinsame Planung, speziell in den frĂŒhen Entwicklungsphasen zu verbessern. Neben SysML ist die Benutzung von vereinbarten Vokabularen und Ontologien in der Modellierung von Requirements, des Gesamtkontextes, Varianten und vielen anderen Elementen angezielt. Ontologien sind dabei eine Möglichkeit, um das Vermeiden von MissverstĂ€ndnissen und Fehlplanungen zu unterstĂŒtzen. Dieser Ansatz schlĂ€gt eine Web- datenbank vor, wobei Ontologien das Teilen von Wissen und das logische Schlussfolgern von implizitem Wissen und Regeln unterstĂŒtzen. Diese Arbeit beschreibt Ontologien fĂŒr die DomĂ€ne des Engineering 4.0, oder spezifischer, fĂŒr die DomĂ€ne, die fĂŒr das deutsche Projekt GENIAL! benötigt wurde. Dies betrifft DomĂ€nen, wie Hardware und Software, Roadmapping, Kontext, Innovation, IoT und andere. Neue Ontologien wurden entworfen, wie beispielsweise die Hardware-Software Allokations-Ontologie und eine domĂ€nen-spezifische "eFuse Ontologie". Das Ergebnis war eine modulare Ontologie-Bibliothek mit der GENIAL! Basic Ontology, die es erlaubt, automotive und mikroelektronische Komponenten, Funktionen, Eigenschaften und deren AbhĂ€ngigkeiten basierend auf dem ISO26262 Standard zu entwerfen. Des weiteren ist Kontextwissen, welches Entwurfsentscheidungen beinflusst, inkludiert. Diese Wissensbasen sind in einem neuartigen Tool integriert, dass es ermöglicht, Roadmapwissen und Anforderungen durch die Automobil- Wertschöpfungskette hinweg auszutauschen. On tologien zu entwerfen und zu wissen, wie man diese benutzt, war dabei keine triviale Aufgabe und benötigte viel Hintergrund- und Kontextwissen. AusgewĂ€hlte Grundlagen hierfĂŒr sind Richtlinien, wie man Ontologien entwirft, Ontologiekategorien, sowie das Spektrum an Sprachen und Formen von Wissensrepresentationen. Des weiteren sind fort- geschrittene Methoden erlĂ€utert, z.B wie man mit Ontologien Schlußfolgerungen trifft. Am Schluss wird das Overall Framework demonstriert, und die Ontologie mit Reason- ing, Datenbank und APPEL/SysMD (AGILA ProPErty and Dependency Description Language / System MarkDown) und Constraints der Hardware / Software Wissensbasis gezeigt. Dabei werden exemplarisch Roadmap Constraints mit dem Automodell verbunden und durch den Constraint Solver gelöst und exploriert

    A process model in platform independent and neutral formal representation for design engineering automation

    Get PDF
    An engineering design process as part of product development (PD) needs to satisfy ever-changing customer demands by striking a balance between time, cost and quality. In order to achieve a faster lead-time, improved quality and reduced PD costs for increased profits, automation methods have been developed with the help of virtual engineering. There are various methods of achieving Design Engineering Automation (DEA) with Computer-Aided (CAx) tools such as CAD/CAE/CAM, Product Lifecycle Management (PLM) and Knowledge Based Engineering (KBE). For example, Computer Aided Design (CAD) tools enable Geometry Automation (GA), PLM systems allow for sharing and exchange of product knowledge throughout the PD lifecycle. Traditional automation methods are specific to individual products and are hard-coded and bound by the proprietary tool format. Also, existing CAx tools and PLM systems offer bespoke islands of automation as compared to KBE. KBE as a design method incorporates complete design intent by including re-usable geometric, non-geometric product knowledge as well as engineering process knowledge for DEA including various processes such as mechanical design, analysis and manufacturing. It has been recognised, through an extensive literature review, that a research gap exists in the form of a generic and structured method of knowledge modelling, both informal and formal modelling, of mechanical design process with manufacturing knowledge (DFM/DFA) as part of model based systems engineering (MBSE) for DEA with a KBE approach. There is a lack of a structured technique for knowledge modelling, which can provide a standardised method to use platform independent and neutral formal standards for DEA with generative modelling for mechanical product design process and DFM with preserved semantics. The neutral formal representation through computer or machine understandable format provides open standard usage. This thesis provides a contribution to knowledge by addressing this gap in two-steps: ‱ In the first step, a coherent process model, GPM-DEA is developed as part of MBSE which can be used for modelling of mechanical design with manufacturing knowledge utilising hybrid approach, based on strengths of existing modelling standards such as IDEF0, UML, SysML and addition of constructs as per author’s Metamodel. The structured process model is highly granular with complex interdependencies such as activities, object, function, rule association and includes the effect of the process model on the product at both component and geometric attributes. ‱ In the second step, a method is provided to map the schema of the process model to equivalent platform independent and neutral formal standards using OWL/SWRL ontology for system development using ProtĂ©gĂ© tool, enabling machine interpretability with semantic clarity for DEA with generative modelling by building queries and reasoning on set of generic SWRL functions developed by the author. Model development has been performed with the aid of literature analysis and pilot use-cases. Experimental verification with test use-cases has confirmed the reasoning and querying capability on formal axioms in generating accurate results. Some of the other key strengths are that knowledgebase is generic, scalable and extensible, hence provides re-usability and wider design space exploration. The generative modelling capability allows the model to generate activities and objects based on functional requirements of the mechanical design process with DFM/DFA and rules based on logic. With the help of application programming interface, a platform specific DEA system such as a KBE tool or a CAD tool enabling GA and a web page incorporating engineering knowledge for decision support can consume relevant part of the knowledgebase

    Enabling system artefact exchange and selection through a linked data layer

    Get PDF
    The use of different techniques and tools is a common practice to cover all stages in the systems development lifecycle, generating a very good number of system artefacts. Moreover, these artefacts are commonly encoded in different formats and can only be accessed, in most cases, through proprietary and non-standard protocols. This scenario can be considered a real nightmare for software or systems reuse. Possible solutions imply the creation of a real collaborative development environment where tools can exchange and share data, information and knowledge. In this context, the OSLC (Open Services for Lifecycle Collaboration) initiative pursues the creation of public specifications (data shapes) to exchange any artefact generated during the development lifecycle, by applying the principles of the Linked Data initiative. In this paper, the authors present a solution to provide a real multi-format system artefact reuse by means of an OSLC-based specification to share and exchange any artefact under the principles of the Linked Data initiative. Finally, two experiments are conducted to demonstrate the advantages of enabling an input/output interface based on an OSLC implementation on top of an existing commercial tool (the Knowledge Manager). Thus, it is possible to enhance the representation and retrieval capabilities of system artefacts by considering the whole underlying knowledge graph generated by the different system artefacts and their relationships. After performing 45 different queries over logical and physical models stored in Papyrus, IBM Rhapsody and Simulink, results of precision and recall are promising showing average values between 70-80%.The research leading to these results has received funding from the AMASS project (H2020-ECSEL grant agreement no 692474; Spain's MINECO ref. PCIN-2015-262) and the CRYSTAL project (ARTEMIS FP7-CRitical sYSTem engineering AcceLeration project no 332830-CRYSTAL and the Spanish Ministry of Industry)

    Benefits of Realist Ontologies to Systems Engineering

    Get PDF
    Applied ontologies have been used more and more frequently to enhance systems engineering. In this paper, we argue that adopting principles of ontological realism can increase the benefits that ontologies have already been shown to provide to the systems engineering process. Moreover, adopting Basic Formal Ontology (BFO), an ISO standard for top-level ontologies from which more domain specific ontologies are constructed, can lead to benefits in four distinct areas of systems engineering: (1) interoperability, (2) standardization, (3) testing, and (4) data exploitation. Reaping these benefits in a model-based systems engineering (MBSE) context requires utilizing an ontology’s vocabulary when modeling systems and entities within those systems. If the chosen ontology abides by the principles of ontological realism, a semantic standard capable of uniting distinct domains, using BFO as a hub, can be leveraged to promote greater interoperability among systems. As interoperability and standardization increase, so does the ability to collect data during the testing and implementation of systems. These data can then be reasoned over by computational reasoners using the logical axioms within the ontology. This, in turn, generates new data that would have been impossible or too inefficient to generate without the aid of computational reasoners

    Improving automation standards via semantic modelling: Application to ISA88

    Get PDF
    Standardization is essential for automation. Extensibility, scalability, and reusability are important features for automation software that rely in the efficient modelling of the addressed systems. The work presented here is from the ongoing development of a methodology for semi-automatic ontology construction methodology from technical documents. The main aim of this work is to systematically check the consistency of technical documents and support the improvement of technical document consistency. The formalization of conceptual models and the subsequent writing of technical standards are simultaneously analyzed, and guidelines proposed for application to future technical standards. Three paradigms are discussed for the development of domain ontologies from technical documents, starting from the current state of the art, continuing with the intermediate method presented and used in this paper, and ending with the suggested paradigm for the future. The ISA88 Standard is taken as a representative case study. Linguistic techniques from the semi-automatic ontology construction methodology is applied to the ISA88 Standard and different modelling and standardization aspects that are worth sharing with the automation community is addressed. This study discusses different paradigms for developing and sharing conceptual models for the subsequent development of automation software, along with presenting the systematic consistency checking methodPeer ReviewedPostprint (author's final draft

    Towards a method to quantitatively measure toolchain interoperability in the engineering lifecycle: A case study of digital hardware design

    Get PDF
    The engineering lifecycle of cyber-physical systems is becoming more challenging than ever. Multiple engineering disciplines must be orchestrated to produce both a virtual and physical version of the system. Each engineering discipline makes use of their own methods and tools generating different types of work products that must be consistently linked together and reused throughout the lifecycle. Requirements, logical/descriptive and physical/analytical models, 3D designs, test case descriptions, product lines, ontologies, evidence argumentations, and many other work products are continuously being produced and integrated to implement the technical engineering and technical management processes established in standards such as the ISO/IEC/IEEE 15288:2015 "Systems and software engineering-System life cycle processes". Toolchains are then created as a set of collaborative tools to provide an executable version of the required technical processes. In this engineering environment, there is a need for technical interoperability enabling tools to easily exchange data and invoke operations among them under different protocols, formats, and schemas. However, this automation of tasks and lifecycle processes does not come free of charge. Although enterprise integration patterns, shared and standardized data schemas and business process management tools are being used to implement toolchains, the reality shows that in many cases, the integration of tools within a toolchain is implemented through point-to-point connectors or applying some architectural style such as a communication bus to ease data exchange and to invoke operations. In this context, the ability to measure the current and expected degree of interoperability becomes relevant: 1) to understand the implications of defining a toolchain (need of different protocols, formats, schemas and tool interconnections) and 2) to measure the effort to implement the desired toolchain. To improve the management of the engineering lifecycle, a method is defined: 1) to measure the degree of interoperability within a technical engineering process implemented with a toolchain and 2) to estimate the effort to transition from an existing toolchain to another. A case study in the field of digital hardware design comprising 6 different technical engineering processes and 7 domain engineering tools is conducted to demonstrate and validate the proposed method.The work leading to these results has received funding from the H2020-ECSEL Joint Undertaking (JU) under grant agreement No 826452-“Arrowhead Tools for Engineering of Digitalisation Solutions” and from specific national programs and/or funding authorities. Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2023)

    APPLICATIONS OF GRAPH THEORY FOR REUSE OF MODEL BASED SYSTEMS ENGINEERING DESIGN DATA

    Get PDF
    This dissertation contributes to systems engineering (SE) by introducing and demonstrating a novel graph-based design repository (GBDR) tool. GBDR enables engineers to leverage system design information from a heterogenous set of system models created using multiple model based systems engineering (MBSE) software tools as an integrated body of knowledge. Specifically, the research provides a set of approaches that allow the use of system models described in Systems Modeling Language and Lifecycle Modeling Language as an integrated body of design information. The coalesced body of system design information serves to support concept ideation and analysis within SE. The research accomplishes this by using a graph database to store system model information imported from digital artifacts created by MBSE tools and applying principles from graph theory and semantic web technologies to identify likely connections and equivalent concepts across system models, modeling languages, and metamodels. The research demonstrates that the presented tool can import, store, synthesize, search, display, distribute, and export information from multiple MBSE tools. As a practical demonstration, feasible subsystem design alternatives for a small unmanned aircraft system government reference architecture are identified from within a set of existing system models.OSD CAPECivilian, Office of the Secretary of DefenseApproved for public release. Distribution is unlimited

    From Data Modeling to Knowledge Engineering in Space System Design

    Get PDF
    The technologies currently employed for modeling complex systems, such as aircraft, spacecraft, or infrastructures, are sufficient for system description, but do not allow deriving knowledge about the modeled systems. This work provides the means to describe space systems in a way that allows automating activities such as deriving knowledge about critical parts of the system’s design, evaluation of test success, and identification of single points of failure

    A Model-based Approach for Designing Cyber-Physical Production Systems

    Get PDF
    The most recent development trend related to manufacturing is called "Industry 4.0". It proposes to transition from "blind" mechatronics systems to Cyber-Physical Production Systems (CPPSs). Such systems are capable of communicating with each other, acquiring and transmitting real-time production data. Their management and control require a structured software architecture, which is tipically referred to as the "Automation Pyramid". The design of both the software architecture and the components (i.e., the CPPSs) is a complex task, where the complexity is induced by the heterogeneity of the required functionalities. In such a context, the target of this thesis is to propose a model-based framework for the analysis and the design of production lines, compliant with the Industry 4.0 paradigm. In particular, this framework exploits the Systems Modeling Language (SysML) as a unified representation for the different viewpoints of a manufacturing system. At the components level, the structural and behavioral diagrams provided by SysML are used to produce a set of logical propositions about the system and components under design. Such an approach is specifically tailored towards constructing Assume-Guarantee contracts. By exploiting reactive synthesis techniques, contracts are used to prototype portions of components' behaviors and to verify whether implementations are consistent with the requirements. At the software level, the framework proposes a particular architecture based on the concept of "service". Such an architecture facilitates the reconfiguration of components and integrates an advanced scheduling technique, taking advantage of the production recipe SysML model. The proposed framework has been built coupled with the construction of the ICE Laboratory, a research facility consisting of a full-fledged production line. Such an approach has been adopted to construct models of the laboratory, to virtual prototype parts of the system and to manage the physical system through the proposed software architecture
    • 

    corecore