1,003 research outputs found

    Trajectory-User Linking via Hierarchical Spatio-Temporal Attention Networks

    Full text link
    Trajectory-User Linking (TUL) is crucial for human mobility modeling by linking diferent trajectories to users with the exploration of complex mobility patterns. Existing works mainly rely on the recurrent neural framework to encode the temporal dependencies in trajectories, have fall short in capturing spatial-temporal global context for TUL prediction. To ill this gap, this work presents a new hierarchical spatio-temporal attention neural network, called AttnTUL, to jointly encode the local trajectory transitional patterns and global spatial dependencies for TUL. Speciically, our irst model component is built over the graph neural architecture to preserve the local and global context and enhance the representation paradigm of geographical regions and user trajectories. Additionally, a hierarchically structured attention network is designed to simultaneously encode the intra-trajectory and inter-trajectory dependencies, with the integration of the temporal attention mechanism and global elastic attentional encoder. Extensive experiments demonstrate the superiority of our AttnTUL method as compared to state-of-the-art baselines on various trajectory datasets. The source code of our model is available at https://github.com/Onedean/AttnTUL.Comment: 22 pages, 8 figures, accepted by ACM Trans. Knowl. Discov. Data Journal (TKDD

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    Colossal Trajectory Mining: A unifying approach to mine behavioral mobility patterns

    Get PDF
    Spatio-temporal mobility patterns are at the core of strategic applications such as urban planning and monitoring. Depending on the strength of spatio-temporal constraints, different mobility patterns can be defined. While existing approaches work well in the extraction of groups of objects sharing fine-grained paths, the huge volume of large-scale data asks for coarse-grained solutions. In this paper, we introduce Colossal Trajectory Mining (CTM) to efficiently extract heterogeneous mobility patterns out of a multidimensional space that, along with space and time dimensions, can consider additional trajectory features (e.g., means of transport or activity) to characterize behavioral mobility patterns. The algorithm is natively designed in a distributed fashion, and the experimental evaluation shows its scalability with respect to the involved features and the cardinality of the trajectory dataset

    DP-LTOD: Differential Privacy Latent Trajectory Community Discovering Services over Location-Based Social Networks

    Full text link
    IEEE Community detection for Location-based Social Networks (LBSNs) has been received great attention mainly in the field of large-scale Wireless Communication Networks. In this paper, we present a Differential Privacy Latent Trajectory cOmmunity Discovering (DP-LTOD) scheme, which obfuscates original trajectory sequences into differential privacy-guaranteed trajectory sequences for trajectory privacy-preserving, and discovers latent trajectory communities through clustering the uploaded trajectory sequences. Different with traditional trajectory privacy-preserving methods, we first partition original trajectory sequence into different segments. Then, the suitable locations and segments are selected to constitute obfuscated trajectory sequence. Specifically, we formulate the trajectory obfuscation problem to select an optimal trajectory sequence which has the smallest difference with original trajectory sequence. In order to prevent privacy leakage, we add Laplace noise and exponential noise to the outputs during the stages of location obfuscation matrix generation and trajectory sequence function generation, respectively. Through formal privacy analysis,we prove that DP-LTOD scheme can guarantee \epsilon-differential private. Moreover, we develop a trajectory clustering algorithm to classify the trajectories into different kinds of clusters according to semantic distance and geographical distance. Extensive experiments on two real-world datasets illustrate that our DP-LTOD scheme can not only discover latent trajectory communities, but also protect user privacy from leaking

    Hidden location prediction using check-in patterns in location based social networks

    Get PDF
    Check-in facility in a Location Based Social Network (LBSN) enables people to share location information as well as real life activities. Analysing these historical series of check-ins to predict the future locations to be visited has been very popular in the research community. However, it has been found that people do not intend to share the privately visited locations and activities in a LBSN. Research into extrapolating unchecked locations from historical data is limited. Knowledge of hidden locations can have a wide range of benefits to society. It may help the investigating agencies in identifying possible places visited by a suspect, a marketing company in selecting potential customers for targeted marketing, for medical representatives in identifying areas for disease prevention and containment, etc. In this paper, we propose an Associative Location Prediction Model (ALPM), which infers privately visited unchecked locations from a published user trajectory. The proposed ALPM explores the association between a user's checked-in data, the Hidden Markov Model and proximal locations around a published check-in for predicting the unchecked or hidden locations. We evaluate ALPM on real-world Gowalla LBSN dataset for the users residing in Beijing, China. Experimental results show that the proposed model outperforms the existing state of the art work in literature

    Reliable Collaborative Filtering on Spatio-Temporal Privacy Data

    Get PDF
    Lots of multilayer information, such as the spatio-temporal privacy check-in data, is accumulated in the location-based social network (LBSN). When using the collaborative filtering algorithm for LBSN location recommendation, one of the core issues is how to improve recommendation performance by combining the traditional algorithm with the multilayer information. The existing approaches of collaborative filtering use only the sparse user-item rating matrix. It entails high computational complexity and inaccurate results. A novel collaborative filtering-based location recommendation algorithm called LGP-CF, which takes spatio-temporal privacy information into account, is proposed in this paper. By mining the users check-in behavior pattern, the dataset is segmented semantically to reduce the data size that needs to be computed. Then the clustering algorithm is used to obtain and narrow the set of similar users. User-location bipartite graph is modeled using the filtered similar user set. Then LGP-CF can quickly locate the location and trajectory of users through message propagation and aggregation over the graph. Through calculating users similarity by spatio-temporal privacy data on the graph, we can finally calculate the rating of recommendable locations. Experiments results on the physical clusters indicate that compared with the existing algorithms, the proposed LGP-CF algorithm can make recommendations more accurately
    • …
    corecore