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Abstract Check-in facility in a Location Based Social Network (LBSN) enables
people to share location information as well as real life activities. Analysing these
historical series of check-ins to predict the future locations to be visited has been
very popular in the research community. However, it has been found that people
do not intend to share the privately visited locations and activities in a LBSN.
Research into extrapolating unchecked locations from historical data is limited.
Knowledge of hidden locations can have a wide range of benefits to society. It may
help the investigating agencies in identifying possible places visited by a suspect,
a marketing company in selecting potential customers for targeted marketing, for
medical representatives in identifying areas for disease prevention and contain-
ment, etc. In this paper, we propose an Associative Location Prediction Model
(ALPM), which infers privately visited unchecked locations from a published user
trajectory. The proposed ALPM explores the association between a user’s checked-
in data, the Hidden Markov Model and proximal locations around a published
check-in for predicting the unchecked or hidden locations. We evaluate ALPM on
real-world Gowalla LBSN dataset for the users residing in Beijing, China. Experi-
mental results show that the proposed model outperforms the existing state of the
art work in literature.

Keywords Location Prediction · Location Based Social Networks · Ranking ·
Similarity Measure · Trajectory Analysis

1 Introduction

The rapid advancement of technology has made possible handheld devices to ac-
complish many tasks which were previously restricted to desktop applications.
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These days mobile devices like smart phones and tablet PCs provide real time
GPS data which collects vast spatio-temporal information of user movements.
Many applications including Bikely1, Gpsshare2, Gpsxchange3, etc. have been de-
veloped to record user’s travel experiences through GPS logs, and subsequently
publish their GPS information on the internet. In 2009, this notion was further
extended into a new breed of social networking named as the Location Based So-
cial Network (LBSN). Some popular examples of LBSNs are Foursquare, Gowalla,
Brightkite, etc.

LBSN offers a facility called check-in by which a user can share spatio-temporal
information (position and time), perform various activities and maintain social re-
lationships with other users. Check-ins are performed in real time and hence the
trajectories obtained from them represent the physical movement of a user. Thus,
check-in services in LBSNs bridge gap between the online social world and the
physical world. However, it has been found that people are reluctant to share pri-
vately visited locations in their published trajectories. Revealing the unchecked
locations can help advertisers to identify users for target marketing. It can also
help investigating bodies to find traces of a suspect from the published trajectory.
The problem of location prediction has become popular in recent years [1–3].

Analysis of large spatio-temporal datasets show that check-ins tend to be more
concentrated around a few key places of interest. The semantic meaning of these
locations and their geographical positions are used as inputs to the location pre-
diction problem. Moreover, similar check-ins performed by socially linked indi-
viduals may also help in location prediction. Researchers have thus explored the
combination of social relationships and spatio-temporal data to predict locations
[4–6]. It is to be noted that the existing works as described earlier, mainly fo-
cus on the problem of next location or destination prediction by analysing the
trajectory of users. However, this paper focuses on hidden location prediction.
Privately visited locations which are not available in a user’s published trajectory
are the hidden or unchecked locations. Therefore, considering a published trajec-
tory 〈la → lb → lc → ld〉, the problem of predicting unchecked locations for any two
consecutive pair of check-ins say, 〈lb → lc〉 is termed as the hidden location pre-
diction problem. Although it utilizes historical check-in data, the target location
in our case is different from the next location or destination location prediction
problem.

In this paper, the proposed model explores a data mining technique to infer
hidden locations from the published trajectory of users. Association rule mining is
used in the proposed approach to extract how frequently consecutive check-in pairs
occur. Mining the sequence of user check-ins helps to find associations between a
pair of consecutive check-ins. We present a unified view of the interplay between as-
sociated check-ins, users with similar trajectories and the geographically proximal
locations. Experimental results show that this unsupervised learning technique is
very effective in identifying unchecked locations from users’ published trajectory.

1 www.bikely.com
2 www.gpsshare.com
3 www.gpsxchange.com
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Further, for hidden location prediction we also consider the published trajectories
as a markov model, with sequence of observed and unobserved states or locations.
For any pair of candidate check-ins, our model selects N number of hidden loca-
tions. Hence, a novel ranking technique is introduced for arranging the predicted
locations. It achieves better results when compared with other existing ranking
techniques like the Bayesian inference [15,23] and variants of collaborative filter-
ing [25,26]. The contributions of this paper are summarized as follow.

1. An algorithm is devised for identifying the consecutive location pairs which are
potential candidates for hidden location prediction.

2. Similar users are computed using a proposed similarity metric, which considers
the sequence of check-ins performed.

3. A new location prediction model for LBSNs is developed to predict the unchecked
or hidden locations from a user trajectory.

4. A novel ranking metric called Entropy Distance is proposed for ranking the
predicted hidden locations.

5. The model is evaluated on a real world dataset using standard statistical mea-
sures. Results show that our model outperforms the existing state of the art
technique.

The rest of the paper is organized as follows. In Section 2, we survey related works
on spatio-temporal data analysis, location prediction and various techniques to
identify similar users. Motivation for this work, along with the problem of identi-
fying hidden locations is given in Section 3. The architecture of the proposed As-
sociative Location Prediction Model (ALPM) with the subsequent algorithms and
explanations are provided in Section 4. In Section 5, the performance of ALPM
is evaluated using Gowalla check-in dataset on the active users of Beijing. Ex-
perimental results and related discussions are provided in this section. Section 6
includes the limitations of the current work and discussions on possible future
directions of this work. Finally, we conclude our work in Section 7.

2 Related Work

The convenience of spatio-temporal data collection technology has led to different
types of analysis on user behaviours in social networks. These can be categorized
into spatio-temporal data analysis, identifying hidden social ties, finding similar
users, location prediction, etc.

Spatio-temporal data can be obtained from moving object (e.g. taxi, bird) tra-
jectories recorded by GPS devices, social events (e.g. microblogs, posts) with loca-
tion tag and timestamps, environment monitoring (e.g. weather forecasting), etc.
[7]. Hidden social ties in online social networks refers to identifying relationships
between users, not having direct connection in the social graph [8]. The works
in [1,9] study user mobility patterns for predicting social links between users.
Contextual information such as users’ geographic movement, pattern of friendship
formation and temporal dynamics are major factors that govern mobility of a user
in a social network.
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Finding similarity between users based on location histories help one to retrieve
information with high relevance. Research on finding similar users in a social net-
work requires a clear understanding of users’ behaviour over time across various
social-activities. Approaches proposed in [5,10,11] analyse user activities in social
networks to find similar users. Li et al. propose a hierarchical graph-based simi-
larity measurement model (HGSM), which clusters the visited locations of a user
into a hierarchical graph [10]. They measure similarity as the maximum common
length of a path traversed sequentially. However, the geographic distance between
locations and the semantic meaning of popular locations are not considered. Scel-
lato et al. [5] propose two models, Geo and Social for computing similarity between
users by observing the geographic distance between checked-in locations. Lee et

al. [11] use the semantics of the location to observe intention and interest of a
user. They construct a location category hierarchy graph to represent the seman-
tics of locations. It consists of nodes representing the locations visited by a user
and category nodes representing the category of the visited locations. To identify
the similar users, first they compute the significant score of each visited location
with respect to a user. The significant score is the ratio between the number of
times a user visited a location to the total number of visits observed for that user.
Subsequently, the top-N locations with high significant score are identified and a
location category hierarchy tree is generated. Finally, the similarity score between
a pair of users is computed from the multiple propagation rate and the significant
score at each location node in the location category hierarchy graph.

Backstrom et al. [4] identify the future location of a user from published check-
ins and the locations visited by their social ties. They show that the distance
between the current location of two users play an important role in making friend-
ship. People living within shorter distances have a higher probability of social ties.
These social ties are ranked on the basis of their distance from the concerned users.
The locations visited by the close friends are finally utilised for location predic-
tion. However, temporal information is not considered in their work. Cho et al. [12]
consider temporal information of each check-in for predicting the next location to
be visited. The day-to-day movement patterns of an active user along with their
social ties are combined for analysis. Their proposed models (PMM and PSMM)
are based upon mobility of users in the social network. Their analysis reveals that
about 50% of user movements are governed by their social relationships. However,
the research does not emphasize on identification of the hidden locations between
two consecutive check-ins. Sadilek et al. [13] consider the content of messages,
patterns in social link formation and the checked-in locations for more precise
predictions. Their proposed system (FLAP) addresses the problem of link and lo-
cation prediction in a social network. However, they do not consider the timestamp
of check-ins. The Geographic-temporal-semantic-based location prediction model
(GTS-LP) proposed by Ying et al., extracts latitude and longitude information
along with the time from every check-ins to predict the probable next location of
visit for a user in LBSN [14].

Mobile phone call records are used in [31–33] for analysing human mobility
patterns. Lu et al. [33] perform next location prediction for each user by analysing
their uncertainties of movements, frequencies and temporal correlations of trajec-
tories. For each active user they predict the next location which could be visited
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on a specific day by utilising their historical data. A series of Markov chain models
of order (1 to 7) is implemented for this purpose. The transition matrix and the
frequency of visit at locations by the active users are repeatedly updated for every
iteration in the Markov chain models. Finally, for each day the locations having
high probability of transition from current location to the next location are pre-
dicted by their approach. Entropy in this work is used to measure the uncertainty
or disorder of the trajectories. The entropy value is greatly reduced if both the
spatial and temporal correlation in users’ visit sequences are considered. From the
obtained random entropy value, they stated that an individual can visit next any
one out of four predicted locations. Moreover, if the frequency and sequence order
of a trajectory are considered then this can be reduced to any one location out of
two predicted locations.

Predicting hidden or unchecked locations from a published trajectory was first
studied by Huo et al. [15]. They propose two inference modules; the hidden loca-
tion finder and the probability estimator which finds the probability of an active
user to visit a location. For any two consecutive check-ins li and li+1, the hidden
location finder identifies a set of probable hidden locations between them. An A*
algorithm is used to compute the shortest path between two consecutive check-ins.
The Point of Interests (POI) falling on the shortest path are considered as the hid-
den locations. The probability estimator module estimates the Hidden Location
Leakage Probability (HLPL) of an active user to visit each of the selected hidden
locations. They use three different inference models (Baseline inference, Collabo-
rative filtering and Hidden Markov Model) to compute the HLPL of the selected
locations. The probable locations are ranked in descending order of their HLPL.
Finally, the top-N locations from the ranked list is selected as the hidden locations
between a consecutive check-in pair. These locations are treated as private and are
provided to the active users as a privacy alert. However, our proposed work focuses
only on identifying the hidden locations between two consecutive check-in location
pairs. Throughout the paper we mention the work in [15] as HLPL. It can be noted
here that our work does not focus in providing privacy alerts to the users.

3 Motivation and Problem Statement

As discussed in the previous section, the sequential check-ins and movement of
similar users can be an effective source for location prediction. We consider a
collection of these factors to deal with the problem of hidden location prediction.
In this section, first we mention the major limitations of HLPL and also state how
they are addressed in this work. Subsequently, we discuss the problem statement
in details.

1. Associations between the checked-in locations are not considered for prediction.
In the present work, we explicitly use the association rule mining technique to
infer relationship between the published check-ins.

2. Time taken between two checked-in locations is computed only from check-ins
of existing users. For example, say an active user follows a sequence la → lb,
and there exists no other user who followed the similar sequence. In this case,
HLPL fails to predict any hidden location between la and lb. We address this
problem by calculating the standard travel time of each user from the dataset.
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3. The mobility of neighbours (similar users) is not explored for location predic-
tion. It has been observed that neighbours or similar users often influence a
user’s mobility in a social network. In this approach, we first propose a novel
measure to identify the similar users and then analyse their movements for
location prediction.

We emphasize on the identification of hidden locations between consecutive
check-in pairs in a published trajectory of an active user. The problem can be
formally stated as follows.
Let D = {S1, S2, S3, ..., Sn} be a check-in dataset of n users, where Si is a check-in
sequence of an active user i. A check-in sequence Si consists of location information
and check-in time at that location as shown below.

Si = 〈(l1, t1), (l2, t2), ..., (lm, tm)〉

To keep our discussion simple, temporal information is omitted and the checked-in
locations are arranged within a sequence in chronological order of their occurrence.
Therefore, the published check-ins of the active user i can thus be represented as
Si = 〈l1 → l2 → l3 → l4 → . . .→ lm〉. It may be noted that a location can appear
more than once in a sequence. The task of hidden location prediction is performed
in three steps in the proposed work.

1. Select check-in pairs among m − 1 consecutive check-ins as the potential can-
didates for hidden location prediction.

2. Predict a set of hidden or unchecked locations for each selected consecutive
check-in pairs.

3. Rank the predicted locations in order of their chances of occurrence.

A few interrelated problems emerge from this. Can all the check-in pairs be con-
sidered for prediction? How many such locations should be predicted for each pair
of consecutive check-ins? How do we rank those predictions? These questions are
addressed in the following sections.

4 The Proposed Model

Let Su = 〈la → lb → lc → ld → . . .→ lm〉 be the published trajectory of an active
user u. The hidden or unchecked locations between any two consecutive check-
ins (say, 〈lc → ld〉) are computed by exploring three important factors. First, the
historical sequence of movement from la till the user reaches lc is analysed. In the
next step, proximal locations of lc and ld are considered. Finally, the next course of
movement is considered from ld till the end of trajectory lm. The different modules
of the proposed Associative Location Prediction Model (ALPM) as depicted in Fig.
1 are discussed next.

1. Check-in pairs are selected from published trajectory of users as the probable
candidates for hidden location prediction. (Consecutive Location Pair Selection)

2. All pairs of associated locations are identified from trajectories of users in the
social network by using an unsupervised learning technique. (Infer Associated

Locations)
3. The Hidden Markov Model (HMM) and its standard inference algorithms are

used to identify the hidden states or locations which generates a visible se-
quence of check-in. (Hidden Markov Model)
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Fig. 1 Associative Location Prediction Model (ALPM)

4. The hidden or unchecked locations are predicted and ranked from the obtained
associated locations, the unobserved locations from HMM and the geographi-
cally proximal locations. (Location Prediction)

Each of the modules is explained in detail in the subsequent subsections.

4.1 Consecutive Location Pair Selection

Let Su be the check-in sequence of an active user u in a dataset D. If the length of
the sequence Su is m, then there exist maximum of m−1 consecutive location pairs
for hidden location prediction. Generally, hidden or unchecked locations appear
within a few consecutive check-in pairs. Therefore, identifying those check-in pairs
is considered as the first step for addressing the hidden location prediction prob-
lem. In this regard, an algorithm is devised to select only the potential candidates
from the available m− 1 pairs for hidden location prediction.

A check-in pair may be selected as a potential candidate for hidden location
prediction if there exist users who have traversed them in less time. The average
time Tavg taken to traverse the candidate location pair by the existing users is
computed from their published trajectories. Hence, a scenario may occur when
the candidate location pair is not checked-in by any existing user. In this case, the
temporal stretch between the check-ins can never be found. However, we employ
the geodesic time Tgeodesic which can still compute the temporal stretch between
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the selected check-in pair. The Tgeodesic denotes the time taken to reach the next
location from its immediate predecessor in the published trajectories. It is com-
puted using the greater circle distance dgc between the selected check-in pair and
the average speed δspeed of users in the social network. For computing δspeed, we
assume that a person checks-in to a place after he/she reaches it. Therefore, the
average speed δspeed for any user can be found from dgc between each pair of its
checked-in locations and the published time lag between them. Generally, check-ins
by LBSN users vary across regions [4]. So we consider the trajectory of each indi-
vidual user for computing the average speed. Therefore, our approach deals with
two temporal variables Tavg and Tgeodesic. The Tavg is the average time taken by
other users to traverse a selected check-in pair. Whereas, Tgeodesic is computed
using the distance between a selected check-in pair and the average speed δspeed
of every user in the social network. Henceforth, we select the maximum time be-
tween Tavg and Tgeodesic, and denote it as Tmax. If the time taken by a user u
to traverse any consecutive location pair in Su, is more than Tmax then, that lo-
cation pair is selected by our algorithm as a suitable candidate for further analysis.

Suppose, the check-in sequence Su be 〈la → lb → lc → ld〉 for an active user u.
For each of the three consecutive check-in pairs in the set, {la → lb, lb → lc, lc → ld},
we compute the geographical distance using the Haversine formula [16]. The stan-
dard distance measure such as the euclidean distance between two points is the
straight line connecting them. However, the geographical distance between two lo-
cations on earth cannot be measured by a straight line connecting them. Hence, we
consider the greater circle distance to find the distance between two locations along
the surface. The straight lines connecting two locations are converted to a geodesic
or curved lines over the sphere. The Haversine formula uses the latitude/longitude
information and radius of earth to compute the greater circle distance dgc between
any two points on earth. We also arrange the selected consecutive sub-sequences
or location pairs in order of their popularity among users. In this context, the term
popularity refers to the number of times the consecutive location pair has been
visited. Depicting this in detail we present Algorithm 1 for consecutive location
pair selection. This algorithm neither depends upon whether a location pair is
successively checked-in by any user, nor on the fact that all users are hiding a par-
ticular location within a published sequence. Next, we discuss how the association
between locations are identified from published trajectories.

4.2 Frequent Location Set and Inference Rule Generation

In this proposed approach, association rule mining [17,18] is explored to infer
the association between locations from published check-in trajectories of social
network users. To the best of our knowledge, the association between a pair of
check-ins has not been used for hidden location prediction. Though the associ-
ation rule mining is primarily used over market basket data for predicting user
activities [34], we argue that it can also provide significant information on user
mobility from published trajectory data. Applying association rules over check-in
data can effectively reflect correlation between check-ins.
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Algorithm 1: Consecutive location pair selection for user u.

Input: D: Social network dataset
Result: SSu: Consecutive location pairs for user u

1 δspeed is computed from distance and time lag between published check-ins;
2 for each location i in trajectory of u do
3 dgc = haversine(li, li+1);

4 Tgeodesic = dgc
/
δspeed;

5 for each user j in D except u do
6 if user j has checked-in at li and li+1 consecutively then
7 TSSSTU

[ ] = tli+1
− tli ;

8 end

9 end
10 Tavg = average(TSSSTU

);
11 Tmax = maximum(Tgeodesic, Tavg );
12 Tu = tli+1

− tli ;

13 if Tu ≥ Tmax then
14 SSu = SSu ∪ {(li, li+1)};
15 end

16 end
17 return SSu

Table 1 Sample check-in dataset.

UserID LocationID
u1 a → b → c → d → e → f → g → h
u2 a → f → g
u3 b → d → e → f → b → d → j
u4 a → b → d → i → k
u5 a → b → e → g → e

The popular FP-growth algorithm [18] is deployed for mining frequent patterns
of check-in locations in the proposed model. FP-growth can reduce the number
of candidate location sets and the total number of database scans required. In
the same line of FP-tree, a Frequent Location Pattern tree (FLP-tree) is gen-
erated. This prefix-like tree structure contains separate nodes for all checked-in
locations having count more than the support threshold. In addition to it, each
node also holds the number of times a location occurred in published trajectories.
Every edge in the FLP-tree represents each unique location pair or the pattern of
check-ins. We simplify this by stating an example of converting a sample check-in
dataset into the FLP-tree. Consider a LBSN check-in dataset in Table 1 with 5
users and their sequence of check-ins over 11 locations. The generated FLP-tree
shown in Fig. 2, consists of solid arrows depicting check-in sequences in published
trajectories. Locations having support less than 2 are omitted from the check-in
sequences. Dotted arrows connect and represent the locations involved in separate
trajectories.

Next, the conditional pattern base for each location is computed. It is the
collection of all possible patterns which ends with the checked-in locations. Ta-
ble 2 shows the group of patterns forming the conditional pattern base for each
location visited in the considered example. From this set of patterns, the associ-
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Fig. 2 FLP-tree with support threshold 2 from the published trajectories in Table 1.

Table 2 Generating frequent patterns or associate locations from the Conditional Pattern
Base.

LID Conditional Pattern Base Conditional FLP-tree
Frequent
Patterns

g
〈a → b → e〉, 〈a → b → d → e → f〉, (a:3), (b:2), (e:2), (d:1), (f:2) {a, b, e, f}|g

〈a → f〉
f 〈a → b → d → e〉, 〈a〉, 〈b → d → e〉 (a:2), (b:2), (d:2), (e:2) {a, b, d, e}|f

e
〈a → b〉, 〈a → b → e → g〉,

(a:3), (b:4), (e:1), (g:1), (d:2) {a, b, d}|e〈a → b → d〉, 〈b → d〉
d 〈a → b〉, 〈b〉, 〈b → d → e → f → b〉 (a:1), (b:4), (d:1), (e:1), (f:1) {b}|d
b 〈a〉, 〈∅〉, 〈b → d → e → f〉 (a:1), (b:1), (d:1), (e:1), (f:1) {∅}|b
a 〈∅〉 (∅) {∅}|a

ated locations or frequent patterns are generated along with their count in the
generated patterns. The conditional FLP-tree thus formed is depicted in Table 2.
From the conditional FLP-tree, the locations having count more than the sup-
port is selected for further analysis. Like, the associated locations for g and e are
(a,b,e,f) and (a,b,d), respectively. Similarly, we find the associated locations for
other check-ins as well. Generally, the support of a location to be considered as
frequent 1-location set, depends upon the number of times it occurred in all the
trajectories. It can be noted that if only similar trajectories are considered for
performing association rule mining, then the number of frequent patterns gener-
ated will be large and relevant. Hence, along with performing association for all
trajectories, we also perform association on trajectories of only the top-K similar
users of an active user. Identifying the similar users or neighbours has been a very
popular area of research in recent years [10,11,19].

In a LBSN, it is observed that a user’s willingness to check-in at a location is
often influenced by the published trajectories of friends and other similar users.
Thus, the associated locations that are obtained from the trajectories of similar
users can lead to more precise locations. Therefore, identification of those similar
users is an important step in the location prediction problem. Similar users may be
identified either by modeling a hierarchical location category tree [11] or by mea-
suring the similarity between them based on their checked-in location histories.
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Algorithm 2: Inferring associated locations.

Input: T : Trajectories
Result: SFP : Selected frequent location patterns

1 FL = frequent locations from T having count more than support threshold
2 FLPTree = construct FP-tree using locations in FL
3 CPB = construct conditional pattern base from FLPTree for each location
4 CFT = conditional FP-Tree for each pattern in CPB
5 repeat
6 for each CFT
7 SFP = locations on single path in CFT
8 until resulting CFT is empty or single path
9 return SFP

Many standard similarity measures including Euclidean distance, Simple matching
coefficient, Jaccard coefficient, Cosine similarity, Pearson’s correlation coefficient,
etc. may be used to identify the similar users [19]. The Jaccard coefficient in par-
ticular, has been found to be performing well as it considers the common locations
as well as the number of different locations visited by users. However, in a social
network the frequently checked-in locations drive interestingness and popularity
of a particular location. Incidentally, the cosine similarity measure considers the
frequency of occurrence of the check-ins in a trajectory. Therefore, we combine
the Jaccard and Cosine similarity measure and term it the JaCos measure. JaCos
considers both the common locations visited and the frequency of their visit for a
pair of users. Let u and v be two random users in LBSN. If Cosine and Jaccard
similarity measure are represented as Cos(u, v) and Jacc(u, v), respectively. Then
JaCos can be computed as:

JaCos(u, v) = 2 ∗ Cos(u, v) ∗ Jacc(u, v)
Cos(u, v) + Jacc(u, v)

(1)

Finally, top-K similar users of u are chosen and their trajectories for obtaining the
associated locations are taken. Details of the FLP-tree generation and frequent
pattern selection is depicted in Algorithm 2. It is applied twice on the dataset.
Once with the trajectories of all users in the social network, and then with the
trajectories of only the similar users of an active user. From a sequential data, the
hidden states can be identified using various techniques such as Hidden Markov
Model (HMM). Details of inferring hidden locations using the HMM is provided
in the next section.

4.3 Inferring Hidden Locations Using HMM

Check-ins performed by users are generally driven by their interests, varying so-
cial trends, sentiments, etc. Predicting the mobility of a user on the basis of these
components is a challenging task. Therefore, certain sophisticated techniques are
required that can effectively identify mobility based on some hidden aspects. The
Hidden Markov Model (HMM) and its variants have long been used to analyse the
unobserved or hidden states in sequential data [20]. A standard representation of
HMM is shown in Fig. 3. A HMM consists of some visible sequence of locations
whose check-ins are influenced by some states which are predominantly hidden.
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Fig. 3 A Hidden Markov Model with set of hidden states h and set of observed checked-in
locations l.

These hidden states may be interpreted as the factors on which user mobility is
influenced. The visible observations or the checked-in locations help to compute
the probability of occurrence for every hidden states.

In Fig. 3, the observed check-ins are represented as L = {l1, l2, l3, . . . , ln} in
square blocks. Each of these sequential checked-in locations are influenced by some
unobserved or hidden factors which are represented as H = {h1, h2, h3, . . . , hm} in
circles. The probability with which the model moves between the hidden states is
termed as the transition probability of a hidden state. The probability of emitting
an observed location from a hidden state is the emission probability. The transition
probability and emission probability is represented by a and b, respectively as
follows.

aij = P (hj(t) |hi(t− 1)) (2)

bjk = P (lk
∣∣hj) (3)

Here, the transition aij is the probability of moving from any hidden location hi at
(t− 1) to another hidden location hj at time t. The emission bjk is the probability
to move from the hidden location hj to a visible state or location lk. It should be
noted here that the final goal is to identify the distribution of hidden locations
over the observed locations. From the conditional probabilities represented with
arrows, it is clear that the probability of occurrence for a hidden location at time
t depends only on the hidden location at (t− 1). The hidden location at (t− 2) or
before has no effect on its distribution. As our problem also satisfies this property,
the Hidden Markov Model can effectively be used to solve the problem of hidden
location prediction. The model at any time step t, from a hidden state emits an
observed location according to the emission distribution, and then moves to an-
other hidden state at (t+ 1) according to the transition probability. This property
can be evaluated to solve three different problems, namely the evaluation problem,
the decoding problem and the learning problem.

First, we formally define a Hidden Markov Model θ as (H,L, aij , bjk) where,
H is the set of all the hidden or unobserved factors on which the occurrence of
a checked-in location depends. The set of observed checked-in locations obtained
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from a user trajectory is represented as L. In this context, we include νT as the
sequence of check-ins of length T visited by a user. An evaluation problem helps
to identify the probability of generating a visible sequence of check-ins νT by a
given Hidden Markov Model θ. This is achieved using a technique known as the
forward algorithm. It can be stated as:

P (νT |θ) =
rmax∑
r=1

P (νT
∣∣∣hTr ) ∗ P (hTr ) (4)

where, hTr is a sequence of hidden states within the collection of all hidden state
sequences of length T . The maximum number of hidden sequences in the HMM is
rmax and P (hTr ) is the probability of occurrence for a hidden state sequence. The
term P (hTr ) can be computed as,

P (hTr ) =
T∏
t=1

P (hr(t) |hr(t− 1)) (5)

Hence, using Equation (5) we can reformulate Equation (4) as,

P (νT |θ) =
rmax∑
r=1

[
T∏
t=1

[P (ν(t) |hr(t)) ∗ P (hr(t) |hr(t− 1)) ]

]
(6)

where, ν(t) is the emitted visible check-in at time t. While computing P (νT |θ)
using the forward algorithm, a matrix containing the posterior hidden state prob-
abilities α is generated. It is the conditional probability αj(t) of being at a hidden
location hi at time t after generating the first t number of visible check-ins given
in νT . It can be formally stated as,

αj(t) = (bjk)ν(t) ∗

∑
i∈H

αi(t− 1) ∗ aij

 (7)

The hidden states at each time step having the highest probability can thus be
explored to obtain the most probable sequence of unobserved locations through
which the user has transited while generating the visible sequence of check-in νT .
This is the decoding problem and is solved using the Viterbi algorithm [21].

The learning problem or training of the model, estimates the best possible
transition aij and emission bjk probabilities which maximizes the term P (νT |θ)
from Equation (7) and (8). Next, the estimated transition probabilities âij and

emission probabilities b̂jk are computed. This can be estimated from a special case
of Expectation-Maximization (EM) algorithm called forward-backward algorithm or
the Baum-Welch algorithm [22]. The forward algorithm produces the conditional
probabilities for each hidden states in H, at each time step t and is thus represented
as α (Equation (7)). On the contrary the backward algorithm βi(t) identifies the
probability that the model θ will be in a hidden state hi at time t and will generate
the remaining sequence of νT starting from time (t+ 1) to T . Formally, it can be
represented as,

βi(t) =
∑
j∈H

βj(t+ 1) ∗ aij ∗ (bjk)ν(t+1) (8)
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For the learning problem we define γij(t) as the probability of transition from hi
at time step (t− 1) to hj at time step t for any particular visible sequence νT . It
can be represented as,

γij(t) =
αi(t− 1) ∗ aij ∗ bjk ∗ βj(t)

P (νT |θ)
(9)

The denominator in Equation (9) finds the probability with which the model θ
has generated the visible check-in sequence νT following any path (Equation (6)).
Whereas, the numerator includes only that part where a transition from hi to hj
from time step (t−1) to t is involved (Equation (2), (3), (7) and (8)). This estimated
γij(t) can henceforth be used to learn the improved values of aij and bjk. From
Equation (9), two issues can be identified which leads to the final estimation of
the learning parameters. First, the expected number of transitions from hi(t− 1)
to hj(t) at any given time in the check-in sequence νT can be computed from
T∑
t=1

γij(t). Secondly, the total number of expected transitions from a hidden state

hi to any state can be found from
T∑
t=1

∑
k∈H

γik(t) . The refined transition âij and

emission b̂jk probabilities can finally be estimated as,

âij =

T∑
t=1

γij(t)

T∑
t=1

∑
k∈H

γik(t)

(10)

b̂jk =

[
T∑
t=1

∑
f∈H

γjf (t)

]
ν(t)=νk[

T∑
t=1

∑
f∈H

γjf (t)

]
∀ν(t)

(11)

Initially, arbitrary values of aij and bjk are chosen. Using those arbitrary values we
estimate what will be the αj(t) and βi(t) using Equation (7) and (8), respectively.
The initial values of aij , bjk, αj(t) and βi(t) are used in Equation (9) to estimate
the probability of transition γij(t). Further, it is used to estimate the refined values

of âij and b̂jk.

The problem stated in this paper is addressed by first learning the refined emis-
sion and transition probabilities of the model using the Baum-Welch algorithm.
Then the decoding problem or the Viterbi algorithm is used with the trained Hid-
den Markov Model and a visible sequence. Suppose, any user u1 has a series of
check-in locations L = 〈l1, l2, l3, l4, l5, l6, l7, l8, l9, l10〉. Let the Algorithm 1 (Section
4.1) be executed over L selects the consecutive check-in pair 〈l4, l5〉 as the candidate
consecutive locations having hidden locations. The Hidden Markov Model is used
to identify the hidden or unobserved locations where u1 is expected to visit before
l5 and after l4. At first, the proposed JaCos similarity metric is used to identify the
nearest neighbours of u1. Subsequently, an arbitrary HMM is generated from the
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Algorithm 3: Location prediction.

Input: SSu: Consecutive location pairs for user u
SFP : Selected frequent location patterns
HMMP : Location probability matrix using HMM
PROX: Proximal locations of each location in SSu

Result: PREDICT : Predicted hidden locations
1 for each location pair (lp, lq) ∈ SSu do
2 if a rule lp → ls exists in SFP then
3 PREDICT = PREDICT ∪ {ls} ;
4 end

5 end
6 for each location pair (lp, lq) ∈ SSu do
7 PREDICT = PREDICT ∪ {location obtained from HMMP} ;
8 PREDICT = PREDICT ∪ {proximal locations of lp and lq from PROX} ;

9 end
10 rank top-N locations in PREDICT using Entropy Distance
11 return PREDICT

collection of check-ins of the similar users and also the series of check-ins performed
by u1 till l5. From this arbitrary model, we generate the transition aij between
unobserved locations and their probabilities to emit observed check-ins bjk, using
Equation (2) and (3), respectively. To learn the refined values of aij and bjk, we
train the model using the visible check-ins ν performed by u1 from l4 to l10. We
continue refining the transition âij and emission b̂jk probabilities using Equation
(10) and (11), respectively till they change in successive iterations. Finally, the
Viterbi algorithm is used with the refined transition and emission probabilities.
As mentioned earlier, it is used to compute the conditional probability that the
user has visited a hidden location before moving to l5 from l4. The hidden location
having highest probability is thus predicted as the unobserved location between
the selected check-in pair 〈l4, l5〉.

4.4 Predicting Unchecked Locations

In this section, we briefly describe how the consecutive location pair selection
method (Section 4.1), the FP-growth association rule mining technique (Section
4.2) and the Hidden Markov Model (Section 4.3) are combined for predicting
unchecked locations. Let SSu be the selected location pairs for a user u in a
dataset D and the selected frequent location patterns obtained from the FP-
growth algorithm be SFP . Consider SSu as {la → lb, lc → ld} and a portion of
SFP as {(la, lp), (lq, lb), (la, ls), (lc, lw)}. Our proposed unchecked location predic-
tion method checks whether the start locations of the selected pairs (like, la and lc)
exist as antecedents in each pair within SFP . If any such location rule is found in
SFP then the corresponding consequent location is extracted. The selected loca-
tion forms the predicted unchecked location between the first and second location
of a check-in pair in SSu. In the considered case, the predicted location set PL will
be (lp and ls) for check-in pair 〈la, lb〉 and (lw) for check-in pair 〈lc, ld〉. Along with
it the locations obtained after employing HMM is also added to the prediction set.
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The locations obtained from frequent check-in pairs are hereby considered as
hidden or unchecked locations. However, there may exist some candidate check-in
locations which are not involved in any frequent location set. In this case, the pro-
posed model will fail to predict the unchecked locations. However, a user always
has a very high chance of passing by the nearby places between two sequential
check-ins. Taking this scenario into consideration, we explore the proximal loca-
tions as a candidate for the hidden location prediction set. For every candidate
check-in pair obtained from Algorithm 1, we find the proximal locations and also
include them in the set of predicted locations.

Incidentally, within a selected pair of subsequent check-ins there can be multi-
ple unchecked locations. Our proposed method predicts multiple locations for each
selected check-in pair and therefore it is necessary to rank the predicted locations.
Various ranking techniques have been proposed in this regard. The standard rank-
ing techniques are based on probabilistic measures like, Bayesian inference [15,
23], Collaborative filtering [24–26], etc. Bayesian inference finds the conditional
probability of occurrence for an event, with a given prior belief that a series of
events has already occurred. Collaborative filtering is a method of filtering or pre-
dicting various events by combining the preferences of other collaborating users in
the social network. The above two standards have been widely used to measure
the probability of occurrence for various events across LBSNs. However, for rank-
ing predicted locations, popularity, diversity and proximity of locations should be
considered in a collaborative way.

In this work, we introduce a ranking technique termed as Entropy Distance. It
can rank the top-N locations from the predicted location set PL for every selected
location pair on the basis of their chances of occurrence. Entropy can be an im-
portant component to judge the effectiveness of a predicted location. Prediction of
a location is always driven by its popularity among users. Entropy is the measure
of how many different users have visited a location [12,33]. It is computed by con-
sidering the number of users observed at a location along with the rate in which
the users have visited the location. The distance of the predicted hidden location
and the published check-in is also an important factor for ranking. Therefore, we
incorporate both the entropy and distance component in the Entropy Distance
ranking technique. The objective here is to rank the most populated, diverse and
nearest locations first in the predicted list. Entropy Distance (ED) of any pre-
dicted hidden location HL for a selected consecutive check-in pair 〈l1, l2〉 can be
represented as,

EDHL =

−
∑
x∈U

P (x) log2 P (x)

Average of distance(HL, l1) and distance(HL, l2)
(12)

where, P (x) is the ratio of the number of times user x has checked-in at HL to
the number of times all users have checked-in at HL and U is the number of users
in the social network. distance(HL, l1) is the distance between locations HL and
l1. If the observed check-ins are in close proximity, then the denominator (average
distance) of ED will differ little. In such a situation, the entropy of locations will
drive their ED values. Entropy considers both the frequency of visits by users at a
location and the number of unique users who visited the location. A non-popular
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Fig. 4 Checked-in locations at Beijing.

location does not have large number of check-ins from a wide range of users. Thus
for a non-popular location the entropy is found to be less than a popular location.
Therefore, the Entropy Distance of a popular location will be higher than a non-
popular location. On the other hand, say two non-popular locations l1 and l2 exist,
where l1 is closer to both the consecutive check-in pair. The ED of l1 will be higher
than l2 as the denominator in EDl2 is larger than EDl1 . Algorithm 3 depicts the
entire approach of predicting and ranking the unchecked locations.

5 Experimental Results and Performance Analysis

We conducted a series of experiments over real-world Gowalla check-ins dataset
[12]. All the experiments were executed on an Intel-i7 processor having 12GB of
RAM and running on Microsoft Windows 8.1. We used the numerical computing
environment of Matlab 2013a. This section starts with the description of Gowalla
users’ check-in dataset followed by the evaluation method, experimental results
and analysis.

5.1 Data Preparation

Gowalla check-in data collected during Feb. 2009 to Oct. 2010 is used to perform
experiments. It consists of 6,442,892 check-ins by 107,092 users with 1,280,969
unique locations checked-in worldwide. It consists of the following properties: 1)
user identity; 2) checked-in time; 3) latitude and longitude information of each
checked-in location; 4) location identity for each unique locations checked-in (Table
3).

The selected consecutive pairs of check-ins for hidden location prediction de-
pend upon a time duration. Therefore, it is very likely that a hidden location
between the consecutive pair of check-ins will reside within a feasible distance. To
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Table 3 A sample of Gowalla check-in dataset.

uid time lat long locid
175 ‘2010-05-07T02:07:27Z’ 40.0775460263000 116.586227417000 23254

175 ‘2010-05-07T02:08:51Z’ 40.0753787039000 116.601505279500 733940

599 ‘2010-07-11T14:07:35Z’ 40.0775460263000 116.586227417000 23254

599 ‘2010-08-13T21:00:13Z’ 40.0775460263000 116.586227417000 1242911

599 ‘2010-08-17T05:30:31Z’ 40.0775460263000 116.586227417000 788460

866 ‘2010-05-21T12:58:49Z’ 39.8957944406000 116.463148833900 1147091

3449 ‘2010-08-19T02:32:29Z’ 39.9854440000000 116.473312000000 1210328

3449 ‘2010-08-19T02:35:01Z’ 39.9779231000000 116.473720333300 1056803

capture this notion, we experimented on check-ins within a confined geographical
area (city). The Gowalla dataset is preprocessed by selecting only those check-ins
performed within the geographical boundary of Beijing city, China. The selected
check-ins are plotted over a real-life geographical map as shown in Fig. 4. It is
observed that the frequency of check-ins by the users are sparsely distributed.

The check-in dataset is transformed into a sequence trajectory dataset (a sam-
ple is shown in Table 1), where each row includes all sequential check-ins performed
by a user. Fig. 5(a) shows the frequency of check-ins performed by each user of the
extracted dataset in Beijing. It is observed that the frequency of check-ins by the
users are highly skewed. So in the experiments only those users who have checked-
in at least five unique locations throughout their check-in history are selected.
Similarly, Fig. 5(b) shows how frequently the locations were visited or checked-in
by users. Less frequently visited locations will not add much knowledge to the
trajectory analysis purpose. Therefore, the dataset is further reduced by consider-
ing only those locations which have been visited by at least two users at different
timestamps. Fig. 6(a) and Fig. 6(b) shows the frequency of check-ins for each user
in the social network and the number of times the locations are visited after re-
duction, respectively. Detail description of the Beijing dataset after preprocessing
is given in Table 4.

For experimentation, we deliberately hide 95%, 90%, 85%, 75%, 50% and 25%
random locations from the published trajectory of each user. In this way, we gen-
erate six different training sets having 5%, 10%, 15%, 25%, 50% and 75% of pub-
lished check-ins to evaluate and compare the proposed model (ALPM) with the
existing technique (HLPL [15]). These six check-in datasets are successively placed
as input to the models and their performance to predict the deliberately hidden
locations is evaluated. This evaluation technique helps to analyse the performance
of ALPM with both sparse and dense data. The training dataset having 5-25%
published check-ins for each user is considered as sparse, whereas 50-75% of pub-
lished check-ins for each user is considered as dense. As an output of the ALPM,
we collected top-5, 10 and 15 predicted hidden locations for each deleted check-
in in the training dataset. Finally, the performance of ALPM is evaluated using
standard metrics. The deleted locations in each dataset are henceforth used as the
ground truth for performance evaluation.
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Fig. 5 Check-in statistics of Beijing city before reduction. (a) Frequency of check-ins by each
user. (b) Frequency of check-ins at each location.
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Fig. 6 Check-in statistics of Beijing city after reduction. (a) Frequency of check-ins by each
user. (b) Frequency of check-ins at each location.

5.2 Evaluation Metrics

The proposed ALPM is executed in five different phases to justify importance of
each module as described in Section 4. To show the importance of the first mod-
ule, we evaluate ALPM with and without it. Results marked as ALPM-AS were
obtained by experimenting without the consecutive location pair selection module
(Section 4.1). The rest of the experimentation uses this module for selecting con-
secutive location pairs from user trajectory. This gives us a clear idea, why selecting
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Table 4 Detail description of working dataset.

Total Check-ins Total users Area Size(km2) Check-in interval(h)
3655 107 16807.8 65.0495

Density(user/km2) Check-in/user Check-in/POI Check-in distance(km)
0.02 15.83 3.3494 5.5698

the potential check-in pairs is essential for the hidden location prediction problem.
ALPM-FP uses only the frequent location set module (Section 4.2) for predicting
the hidden locations from a user’s trajectory. It should be noted that the HMM and
the proximal locations are not used in ALPM-FP. Further, ALPM-HMM repre-
sents the results obtained by considering only the Hidden Markov Model to predict
the hidden locations. Finally, the advantage of ranking the predictions is evalu-
ated by experimenting with and without the proposed Entropy Distance ranking
technique. ALPM and ALPM-UR are the results obtained with and without using
the ranking technique, respectively. Here we mention the parameter setting for
evaluating our proposed approach. For the current work, the support threshold is
set at 0.2 for inferring the associated locations (Algorithm 2). The top-20 similar
users are selected for each active user. The locations within 2Km of the selected
consecutive check-in pairs are considered as the proximal locations.

For performance evaluation we compute the following measures; precision, re-
call and F1-Measure. For the sake of readability, we present them below.

Precision or Positive Predictive Value is the fraction of retrieved locations that
are relevant. It can be represented as the ratio between the correct predictions to
the total number of predictions.

Precision =
#Recovered ground truths

#Predictions
(13)

Recall or Hit Rate is the fraction of relevant locations that are retrieved. It can
be represented as the ratio between the correct predictions to the total number of
correct locations.

Recall =
#Recovered ground truths

#Ground truths
(14)

For any test, there is always a trade-off between the precision and recall. There-
fore, F1-Measure is frequently used in the literature.

F1-Measure or F-Score is the weighted average of the precision and recall.

F1-Measure = 2 ∗ Precision ∗Recall
Precision+Recall

(15)

5.3 Results and Analysis

Plots in Fig. 7, Fig. 8 and Fig. 9 show the performance evaluation metric values (in
%) for each percentage of check-ins provided as input to the models. We compare
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Fig. 7 Precision of our proposed approach and the state-of-art technique in [15]. (a) Precision
of the top-5 predicted hidden locations vs the percentage of check-ins provided as input to the
models. (b) Precision of the top-10 predicted hidden locations vs the percentage of check-ins
provided as input to the models. (c) Precision of the top-15 predicted hidden locations vs the
percentage of check-ins provided as input to the models.

the proposed model ALPM with the existing work in [15]. The percentage of pub-
lished check-ins provided as input to the model is varied over the horizontal axis
on all the plots. For evaluation purpose, we increase the percentage of check-ins
provided to a model from 5% to 75%. For each hidden location (ground truth) we
also increase the number of predictions N from 5 locations to 15 locations. The
performance evaluation metric values are weighted by the total number of users in
the dataset. The metric values are computed for the predicted locations by HLPL
[15], ALPM-AS, ALPM-FP, ALPM-HMM, ALPM-UR and ALPM. The ALPM-
AS uses all the check-in pairs for finding the hidden locations. The ALPM-FP and
ALPM-HMM uses the frequent patterns and the Hidden Markov Model, respec-
tively to identify the hidden locations. The ALPM-UR combines Algorithm 1, the
frequent patterns, the Hidden Markov Model and the proximal locations to pre-
dict the hidden locations. However, predictions from ALPM-UR are not ranked.
Finally, ALPM combines all the modules included in ALPM-UR and also ranks
the predictions. Subsequent results show requirement of each of the modules men-
tioned in Fig. 1.

Fig. 7(a) shows that the precision of HLPL is higher than ALPM-AS. It can
be noted that ALPM-AS does not use the Algorithm 1 for selecting the potential
check-in pair with hidden locations. Instead, it considers all the check-in pairs as
candidates for hidden location prediction. This leads to many irrelevant location
predictions, and thus lowers the precision. The ALPM-FP uses the Algorithm 1 for
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Fig. 8 Recall of our proposed approach and the state-of-art technique in [15]. (a) Recall of
the top-5 predicted hidden locations vs the percentage of check-ins provided as input to the
models. (b) Recall of the top-10 predicted hidden locations vs the percentage of check-ins
provided as input to the models. (c) Recall of the top-15 predicted hidden locations vs the
percentage of check-ins provided as input to the models.

selecting candidate check-in pairs for hidden location prediction unlike the HLPL.
With top-5 predicted locations (N=5) we observe that for sparse data (5-25%) the
precision of ALPM-FP is at par with HLPL. However, the precision obtained from
ALPM-FP for dense data (50-75%) supersedes HLPL. The ALPM-FP only uses
the association between locations. The results marked as ALPM-HMM uses only
the predictions obtained from Hidden Markov Model and does not use the asso-
ciation between locations for location prediction. The ALPM-HMM outperforms
the existing HLPL for any number of predicted locations. The combined approach
ALPM-UR achieves better performance than the ALPM-HMM. Similar trends are
observed over various percentage of check-ins provided as input to the model. For
the ranked ALPM we observe best precision with top-5 predictions from 75% of
check-in data (Fig. 7(a)). With top-5 predictions from 75% of check-in data, we
obtain close to 12% of precision from ALPM compared to 4%, 3%, 5.5%, 6.8%
and 8.7% from HLPL, ALPM-AS, APLM-FP, ALPM-HMM and ALPM-UR, re-
spectively. Similar trends are observed with more number of predicted locations
(N=10 and 15). For a dense dataset (50-75%) with more number of predicted
locations, the precision obtained from ALPM-FP is found to outperform HLPL.
We also observe that with top-10 predictions the ALPM-HMM is superior to the
ALPM-UR for sparse dataset (Fig. 7(b)). However, better results are obtained
for ALPM-UR with increase in percentage of input check-in data. The ranked
predictions (ALPM) outperforms ALPM-UR for any percentage of check-in data.
From Fig. 7(c) it is observed that all the individual models of ALPM (ALPM-
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Fig. 9 F1-Measure of our proposed approach and the state-of-art technique in [15]. (a)
F1-Measure of the top-5 predicted hidden locations vs the percentage of check-ins provided
as input to the models. (b) F1-Measure of the top-10 predicted hidden locations vs the per-
centage of check-ins provided as input to the models. (c) F1-Measure of the top-15 predicted
hidden locations vs the percentage of check-ins provided as input to the models.

FP, ALPM-HMM and ALPM-UR) including the proposed model ALPM obtained
much improved results than the existing approach HLPL.

The HLPL outperforms ALPM-AS and ALPM-FP in recall measure with top-
5 predictions. However, when all the modules mentioned in Fig. 1 are combined
(ALPM), we observe a superior value for the recall measure. The predictions from
Hidden Markov Model (ALPM-HMM) outperforms HLPL for dense dataset. With
top-5 predictions from 75% of check-in data the obtained recall from ALPM-HMM
is close to 42% compared to 37% with HLPL (Fig. 8(a)). The HMM based model
ALPM-HMM is observed to achieve better result than ALPM-FP, ALPM-AS and
HLPL for all variations of input check-in data. The combined approach ALPM-
UR and ALPM retrieve more number of relevant locations, as observed from the
accompanying results for top-10 predictions (Fig. 8(b)). ALPM obtains close to
89% of recall with top-10 prediction from 75% of check-in data as compared to
48% from HLPL. With top-15 predictions, the ALPM-AS model does not perform
well with a sparse dataset, whereas it overcomes HLPL for a dense dataset. Plots
in Fig. 8(c) clearly show that our proposed approach ALPM supersedes HLPL in
the recall measure. The best recall of our approach is found to be 91.3% with 75%
of check-in data and top-15 locations predicted.
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The results obtained for F1-Measure are important due to the fact that it deals
with the trade-off between precision and recall. From Fig. 9(a), it is observed that
ALPM-AS does not perform well for less number of predictions (N=5). With top-
5 predictions, the performance of ALPM-FP and the existing HLPL are almost
at par for sparse dataset. Whereas for a dense dataset the ALPM-FP is found
to be performing better than HLPL. However, the HMM based ALPM-HMM, the
unranked predictions ALPM-UR and the ranked predictions ALPM supersedes the
existing HLPL with top-5 predictions (Fig. 9(a)). Top-10 predictions obtained from
ALPM-FP achieves better results than HLPL when 25-75% of check-ins are used.
With top-10 predictions from 5% check-in data the F1-Measure is observed to be
close to 2% and 4% for ALPM-FP and HLPL, respectively. Whereas, with top-10
predictions from 75% check-in data the F1-Measure is observed to be close to 10.4%
and 7% for ALPM-FP and HLPL, respectively (Fig. 9(b)). ALPM is again found
to achieve better performance than other models. With top-15 predictions the
proposed ALPM is found to obtain superior results than the existing HLPL (Fig.
9(c)). For the current experimental setup, our proposed model ALPM achieves
best result when top-15 locations are predicted using 75% of check-in data. Next,
we test which technique is suitable for ranking the locations obtained using ALPM.

5.4 Ranking the Predictions

Generally, the methods in the literature predict a set of locations against a single
hidden location. Therefore, there is a need for ranking the predictions. Bayes’ law
[23] and Collaborative filtering techniques [25,26] can be used for ranking the pre-
dictions. Work proposed in [15] ranks the predicted locations using the mentioned
standard metrics. For comparison the proposed approach also ranks the selected
locations using the Bayes’ law and two Collaborative filtering techniques. In addi-
tion, a new ranking metric termed as Entropy Distance (ED) is also introduced.
Next, we discuss each metric in detail.

Bayesian inference (BI) as depicted in [15,23] is based on the Bayes’ law and it
computes the conditional probability with which a user visits a location B after
reaching a location A (Equation (16)).

P (B|A) =
P (A|B) ∗ P (B)

P (A)
(16)

Collaborative filtering [25] states that if any user u1 has followed the same se-
quence of movement as user u2 for first c check-ins, then it is highly probable that
the next sequence of movement, (c + 1) for user u2 can be analysed by further
forward movement pattern of user u1. User based collaborative filtering technique
(UCF ) involves only the similar users in the network for analysis. Hence, as de-
picted in [15], if U = {u1, u2, u3, . . . , un} is the set of users and L = {l1, l2, l3, . . . , lq}
is the locations checked-in by them, then the probability of any user ui to visit a
location lj is given by,

UCFui,lj =

∑
z∈U

(SIui,uz ∗ Tuz,lj )∑
z∈U

SIui,uz

(17)
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where,
SIui,uz = cosine similarity measure between users ui and uz,

Tuz,lj =

{
1; if uz has checked in at lj
0; if uz has not checked in at lj

Friend based collaborative filtering (FCF ) [26] differs from UCF by the fact
that the similarity index SI is computed on basis of the social influence of friends
or nearest neighbours. Here, social influence is the measure of how a user’s social
group influences his/her mobility across the online social network. During experi-
mentation, to compute the social influence between a pair of users we combine the
mutual friends and the locations checked-in by them. The social influence SIui,uz

of a user ui over any other user uz is computed as,

SIui,uz = σ ∗
∣∣∣∣Fi ∩ FzFi ∪ Fz

∣∣∣∣ + (1− σ)

∣∣∣∣Li ∩ LzLi ∪ Lz

∣∣∣∣ (18)

where,
Fi, Fz = friends of ui and uz, respectively,
Li, Lz = checked-in locations for ui and uz, respectively, and
σ = the turning factor in the range [0,1].

In practice, only the similar users may not be the ultimate source of quality knowl-
edge and experience. However, the social friends often hold important information
which may guide towards location prediction. Here, we have considered the turn-
ing factor as 0.9 to give more importance to the social ties. Next, we compare
the above mentioned ranking metrics with the proposed Entropy Distance metric
(discussed in Section 4.4).

The performance of ranking techniques can be evaluated by observing the
position of each hidden location in the top-N predicted list. In our case, it is
desired that the ground truth should be ranked as the first location in the list (if
only one location is hidden). If two ranking metric G1 and G2 rank the ground
truth at positions i and j, respectively where i < j, then G1 is favoured to be a
better performing ranking metric than G2. To capture this aspect, we use variant
of a recently published ranking metric Positional Rank [30] for evaluation. Let R
be set of all hidden locations (ground truth) for a user u1. The Positional Rank of
user u1 is computed as:

Positional Ranku1 = 1− 1

|R|

∑
i∈R

[
|PRi −ORi|
|PL| , if {i ∈ R} ∩ PL 6= ∅ ; 0, otherwise

]
(19)

where, PRi is the predicted rank and ORi is the original rank of the hidden location
i in the predicted list PL. The Positional Rank of the retrieved hidden locations
for all users U is the average of the Positional Rank of retrieved hidden locations
for each user. It can be computed as:
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Positional Rank =
1

|U |
∑
i∈U

Positional Ranki (20)

Positional Rank value ranges from 0 to 1, with a value near to 1 signifying a better
ranking technique. In addition to it, we also evaluate the ranking technique using
standard metrics like Mean Reciprocal Rank (MRR) and Discounted Cumulative
Gain (DCG).

Mean Reciprocal Rank (MRR) is a commonly used evaluation metric in in-
formation retrieval [27,28]. For a given prediction list, it observes how early the
relevant documents are ranked. In our case, let R be the set of all hidden locations
(ground truth) for a user u1. The MRR for user u1 is the reciprocal of the predicted
ranks of the relevant hidden locations, averaged over R. It can be represented as:

MRRu1 =
1

|R|

∑
i∈R

[
1

ri
, if {i ∈ R} ∩ PL 6= ∅ ; 0, otherwise

]
(21)

where, ri is the predicted rank of the relevant hidden location i in the predicted
list PL. The MRR of the retrieved hidden locations for all users U is the average
of the MRR of retrieved hidden locations for each user. It can be computed as:

MRR =
1

|U |
∑
i∈U

MRRi (22)

Discounted Cumulative Gain (DCG) can also be used to evaluate a ranking
technique [28,29]. It uses a graded relevance scale for each ranked elements, to
compute its measure of usefulness in the predicted list. Like the MRR metric, it
also assumes that a relevant element should appear before an irrelevant element in
the predicted list. In our case, relevance of the ranked predicted hidden locations
is binary, i.e. relevance is {0,1}. If the hidden location (ground truth) exists in the
predicted list then its relevance is 1 else the relevance is 0. Therefore, the DCG for
a user u1 with R number of hidden locations (ground truth) can be reformulated
as:

DCGu1 =
1

|R|

∑
i∈R

[
2relevance − 1

log2(ri + 1)
, if {i ∈ R} ∩ PL 6= ∅ , relevance = 1; 0, otherwise

]

(23)
where, ri is the predicted rank of the relevant hidden location i in the predicted
list PL. The DCG of the retrieved hidden locations for all users U is the average
of the DCG of retrieved hidden locations for each user. It can be computed as:

DCG =
1

|U |
∑
i∈U

DCGi (24)

We compute the Positional Rank, MRR and DCG of all the retrieved hidden
locations from ALPM by varying the percentage of check-ins available in trajec-
tory of each user and also the number of locations predicted N from 5 to 15. Fig.
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Fig. 10 Positional Rank of our proposed ranking technique and the existing techniques for
ALPM. (a) Positional Rank of the top-5 predicted hidden locations vs the percentage of check-
ins provided as input to ALPM. (b) Positional Rank of the top-10 predicted hidden locations
vs the percentage of check-ins provided as input to ALPM. (c) Positional Rank of the top-15
predicted hidden locations vs the percentage of check-ins provided as input to ALPM.

10 shows the Positional Rank obtained by applying the proposed ranking met-
ric Entropy Distance and other standard metrics in ALPM. It is observed that
the ranking using Bayesian inference has comparatively less effect on the number
of check-ins input to the ALPM. Collaborative filtering techniques of user based
and friend based mostly depend upon the nearest neighbours and the social ties,
respectively. We observe better Positional Rank for both the methods, as the per-
centage of input check-in data (5 to 75%) and the number of predicted locations
(5 to 15) increases. However, our proposed metric ED outperforms the existing
ranking metrics. Best result for Positional Rank using ED is obtained when top-15
locations are predicted. The value of Positional Rank with top-15 predicted loca-
tions (N=15) at 5% and 75% of input check-in data is close to 70% and 93%,
respectively compared to 58% and 85%, respectively for the UCF metric (Fig.
10(c)).

The results for MRR show that ranking the predictions from ALPM using BI
produces better result than FCF and UCF with sparse data (Fig. 11). However,
for the proposed model ALPM, the FCF ranking technique achieves better result
than BI with top-15 locations predicted and having 75% of input check-in data.
The MRR with top-15 locations having 75% of input check-in data, rises close to
36% compared to 34% for BI (Fig. 11(c)). In the same line, UCF outperforms BI
for a dense dataset. This is inline with the fact that collaborative filtering depends
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Fig. 11 MRR of our proposed ranking technique and the existing techniques for ALPM. (a)
MRR of the top-5 predicted hidden locations vs the percentage of check-ins provided as input
to ALPM. (b) MRR of the top-10 predicted hidden locations vs the percentage of check-
ins provided as input to ALPM. (c) MRR of the top-15 predicted hidden locations vs the
percentage of check-ins provided as input to ALPM.

upon activities of related users. Hence, with the increase of check-in data the
performance of collaborative filtering also excels. However, the MRR results show
that the proposed ED metric outperforms the collaborative filtering techniques
and the Bayesian inference (Fig. 11).

Results with another evaluation metric DCG shows that the proposed ranking
metric ED outperforms BI and the collaborative filtering techniques (Fig. 12).
The ED achieves a higher DCG with any percentage of input check-in data when
compared with the other ranking metrics. Among the existing metrics, only the
UCF was found to obtain nearly comparable values with ED in DCG. With top-
15 predicted locations from 75% of check-in data, ED obtains close to 74% in
DCG compared to 62% of UCF (Fig. 12(c)). Thus, the ED metric is found to
be superior than the existing metrics in terms of ranking the predictions for our
proposed approach ALPM.

6 Discussions and Extensions

In this section, we discuss the limitations of our work and possible future direc-
tions of this work.

A location based social network (LBSN) does not provide a check-out facility.
Therefore, while computing the time delay between any two consecutive check-ins
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Fig. 12 DCG of our proposed ranking technique and the existing techniques for ALPM.
(a) DCG of the top-5 predicted hidden locations vs the percentage of check-ins provided as
input to ALPM. (b) DCG of the top-10 predicted hidden locations vs the percentage of check-
ins provided as input to ALPM. (c) DCG of the top-15 predicted hidden locations vs the
percentage of check-ins provided as input to ALPM.

〈li, li+1〉 in Algorithm 1 (Section 4.1), we cannot separate the time spent by a user
at li and the time taken by her to move from li to li+1. However, the time spent by
an active user at a location is very important in context of selecting the potential
consecutive check-in pairs having hidden locations. To learn the time spent by an
active user at a location, we can proceed in the following direction.

Popular POIs and business houses maintain their own social network pages
(Facebook, Twitter, Yelp, Foursquare) and official websites for their own benefit.
These websites provide information such as detailed description of places, daily
offers, reviews, ratings, opening and closing hours, show durations, average time
spent by visitors, etc. This information can be utilized for estimating the check-
out time. POIs such as museums, theatres, etc. have fixed show durations from
which one can easily estimate the check-out time of a visitor. Other POIs such as
restaurants, parks, etc. do not specifically have any fixed stay durations. However,
it is observed that users often post review at POIs that include the time duration
for which they stayed at a location. Therefore, exploring the user reviews using
text mining algorithms can help to extract the time for which visitors generally
stay at locations. In absence of such information at any particular location, we
can classify the location into a category such as restaurant, theatre, museum, etc.
and use the average check-out time of the category computed using the previous
method.
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Related to the user check-in data, there can be another interesting scenario.
The user check-in data obtained from a LBSN can be obfuscated from a fine
granular (raw) locations to coarse granular locations (region) due to privacy issues.
In the current work, we considered location with fine granularity i.e. raw check-ins
with specific latitude and longitude, and hence it cannot handle such a scenario. If
granularity of a location is changed from fine to coarse, then multiple fine granular
check-ins which are close to each other will be combined to form a single region.
A fine granular check-in is selected as a representative point for such a region.
These representative locations are considered as the coarse granular check-ins of
an active user. To deal with such obfuscated user check-in data, one can incorporate
the following two modifications in the proposed model.

1. Conversion of fine check-ins to coarse check-ins: The grouping of fine check-
ins into coarse check-ins needs to be bounded by a distance and time threshold.
We can adopt a strategy as described in [30] for such conversion. The coarse
granular user check-in data is subsequently fed to the four modules of the
proposed hidden location prediction model (ALPM).

2. Entropy Distance: The entropy computation of a coarse granular location can
be performed as the ratio of the number of times an active user has checked-in
at the member locations of the region to the number of times all users have
checked-in at the region.

In addition to the above scenarios, data privacy is another important issue
which is closely related to our work. It has been observed that the LBSNs tend to
apply various location privacy preserving techniques before publishing their data.
Popular privacy preserving techniques like location obfuscation [35,36] and spatial
cloaking [37,38] can be adopted by LBSNs to preserve location privacy. An impor-
tant extension of this work would be to develop such a location prediction model
which can perform well even if the available data is obfuscated or anonymized.
The current approach by applying the above mentioned two changes can handle
obfuscated check-in data. The spatial cloaking techniques use k-anonymity which
ensures that at each location their exist atleast k number of users, so as to prevent
re-identification of an individual. However, the proposed approach cannot han-
dle public data which is anonymized using spatial cloaking techniques. Further
research in this direction is believed to be a challenging task.

7 Conclusions

Users in LBSN deliberately hide visited locations. However, revealing unchecked
location is an important part in many application domains. In this paper, we
presented an approach which explores the association between location pairs, the
unobserved locations using HMM and the proximal locations of each check-in for
finding the hidden locations. Experimental results show that the proposed model
outperforms the existing state of art technique in literature for an extracted LBSN
check-in dataset of Beijing city, China. The proposed work can assist the GPS
navigation system in cars for directing nearby POIs which are passed by, assist
traffic modeling in populated areas, enhance various recommendation systems and
others.
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