Reliable Collaborative Filtering on Spatio-Temporal Privacy Data

Abstract

Lots of multilayer information, such as the spatio-temporal privacy check-in data, is accumulated in the location-based social network (LBSN). When using the collaborative filtering algorithm for LBSN location recommendation, one of the core issues is how to improve recommendation performance by combining the traditional algorithm with the multilayer information. The existing approaches of collaborative filtering use only the sparse user-item rating matrix. It entails high computational complexity and inaccurate results. A novel collaborative filtering-based location recommendation algorithm called LGP-CF, which takes spatio-temporal privacy information into account, is proposed in this paper. By mining the users check-in behavior pattern, the dataset is segmented semantically to reduce the data size that needs to be computed. Then the clustering algorithm is used to obtain and narrow the set of similar users. User-location bipartite graph is modeled using the filtered similar user set. Then LGP-CF can quickly locate the location and trajectory of users through message propagation and aggregation over the graph. Through calculating users similarity by spatio-temporal privacy data on the graph, we can finally calculate the rating of recommendable locations. Experiments results on the physical clusters indicate that compared with the existing algorithms, the proposed LGP-CF algorithm can make recommendations more accurately

    Similar works