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Lots of multilayer information, such as the spatio-temporal privacy check-in data, is accumulated in the location-based social
network (LBSN).When using the collaborative filtering algorithm for LBSN location recommendation, one of the core issues is how
to improve recommendation performance by combining the traditional algorithm with the multilayer information. The existing
approaches of collaborative filtering use only the sparse user-item rating matrix. It entails high computational complexity and
inaccurate results. A novel collaborative filtering-based location recommendation algorithm called LGP-CF, which takes spatio-
temporal privacy information into account, is proposed in this paper. By mining the users check-in behavior pattern, the dataset
is segmented semantically to reduce the data size that needs to be computed. Then the clustering algorithm is used to obtain and
narrow the set of similar users. User-location bipartite graph ismodeled using the filtered similar user set.Then LGP-CF can quickly
locate the location and trajectory of users through message propagation and aggregation over the graph.Through calculating users
similarity by spatio-temporal privacy data on the graph,we can finally calculate the rating of recommendable locations. Experiments
results on the physical clusters indicate that compared with the existing algorithms, the proposed LGP-CF algorithm can make
recommendations more accurately.

1. Introduction

With proliferation of mobile phones and location-based
services (LBS), the existing social networks are able to collect
the users geographical position in real time. LBS is combined
with the traditional social network to form the location-based
social network (LBSN). Through use of location services,
LBSN integrates the online virtual network with the offline
real world, thereby enabling users to share and obtain infor-
mation of their interest more easily. Due to this reason, LBSN
is gaining more and more favor with users. In addition to the
relationship information of the traditional social network and
the self-labelled information of the user, LBSN encompasses
the user-registered historical trajectory collected via GPS and
the labelled information of relevant locations [1]. Further-
more, the users mobile behavior patterns and trajectory show
some characteristics in terms of time frequency, geographical
distance, social relationship, and content [2–5]. For example,
friends are more likely to check in together at the same place.

The locations where the user checks in on a daily and weekly
basis also show some characteristics.

LBSN makes it possible for location recommendation.
Location or Point of Interest (POI) refers to a geographical
point that is useful or interesting to the user, such as hotel,
restaurant, museum, and supermarket. Location recommen-
dation refers to the service where the user-location check-
in record is used to predict the location that has never been
visited by the user butmight be of supreme interest to the user
and then recommend this location to the user [6].

Examples of LBSN include Foursquare, Gowalla, and
Google Latitude [7]. This type of services allows the user to
publish information on the place where they are via check-
in and share their experience. These services have attracted
a myriad of users. Statistical data indicates that Foursquare
has more than 55 million users by the end of 2014. About 600
thousands to 1 million users check in at Foursquare each day.
Over 6 billion check-in data items have been collected [6],
which involve multidimensions, including the geographical
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location (Geo) automatically collected by the users mobile
devices, temporal data, and content data [8].

The increasing number of LBSN users is accompanied
by the sharp rise in the amount of multidimensional LBSN
check-in data, making it more difficult for users to filter
the information. In this context, how to recommend custom
location more accurately by combining the abundant spatio-
temporal information of the LBSN check-in data and the
behavior tracks with the traditional recommendation algo-
rithms is an issue of great significance. Meanwhile, due to
increase in the size of check-in data, the recommendation
algorithm imposes higher demands on the backend compu-
tational ability. The traditional single-machine computation
method and the open-source Hadoop-based computation
method are more and more computationally inefficient and
resource intensive [1]. How to provide the user with real-time
location information by developing a new recommendation
algorithm that can process big data efficiently is a fresh
challenge to the social recommendation system [9]. After the
advent of the distributed parallel graph framework proposed
in recent years, the graph theories have been used by the
academia and industry to model the relationship between
social network data. Moreover, based on the efficient graph
framework, the graph algorithm is used to support machine
learning and data mining, enabling the problem to be solved
much more quickly.

Based on our previous work [10], we propose a new
collaborative filtering-based location recommendation algo-
rithm for LBSN, LGP-CF, which is based on parallel graph
calculation and clustering, using the spatio-temporal data
of LBSN. Taking the users check-in behavior patterns into
account, the proposed method segment the dataset and
obtains the set of users similar to the target user using the
clustering algorithm to reduce the range of choices for similar
users. User-location bipartite graph is established via the
check-in data. The users common trajectories in the graph
are filtered based on propagation ofmessage across the graph.
Afterwards, the trajectory data of the set of similar users that
can represent the spatio-temporal information is combined
with the point data to compute the similarity between the
target user and each of similar users. Finally, the locations
are clustered using the longitude and latitude data. The
shortest path algorithm is then used to determine the set of
recommended locations quickly and reliably. The final rating
of a location is computed using the temporal information
regarding the visit of similar users to it.

The contribution of this paper can be summarized as
follows:(1)Thegraph theory is used tomodel the spatio-temporal
information and the user trajectory information of LBSN,
facilitating rapid location of users and check-in locations in
the graph.(2) Calculation of user and location similarity is opti-
mized after combining with the spatio-temporal privacy
information of LBSN and taking the point and trajectory data
into account.(3) In addition to the point and trajectory of data, we also
consider the regional data to cluster users and locations and
reduce the size of data that needs to be computed.

The rest of this paper is organized as follows. Section 2
discusses related work. In Section 3, LBSN data analysis is
presented; then data representation and modeling are given.
Based on the data model, this paper proposes users simi-
larity calculation using point, trajectory, and regional data
information in Section 4. Section 5 is the proposed algorithm
and its parallel design and implementation, followed by the
experiment and evaluation results in Section 6. Conclusion is
finally given in Section 7.

2. Related Works

Generally, user check-in location involved in LBSN recom-
mendation can be classified into the following categories [11].

(1) Point Data. It is the most common type of user check-in
location. It is characterized by fixed longitude and latitude of
the geographical location corresponding to the point data.
This type of data is usually used to compute the physical
distance between users and measure the interuser similarity.
Many point data-based recommendation methods have been
proposed for LBSN [12–14].

(2) Trajectory Data. With proliferation of smart phones capa-
ble of localization, the mobile trajectory that the user follows
during a time period can be recorded and then used by the
academia and industry to study the users continuous behav-
ior. Many trajectory data-based algorithms have been pro-
posed to recommend routes for navigation and tour [15–17].

(3) Regional Data. The geographical locations can be divided
into different regions according to predefined criterion. Data
analysis and feature extraction are performed on each of the
regions to facilitate user recommendation. Alternatively, the
clustering methods can be used to cluster the collected data
and produce regional data before recommendation.

The above analysis of user mobility behavior performed
using various types of data indicates that user mobility is
usually constrained by geographical space and social relation-
ship. Lian et al. [2] and Liu et al. [4] reported that the user is
more inclined to move within a geographical space nearby
rather than go to a distant place during a time period. The
results obtained by mining and analyzing the Brightkite and
Gowalla check-in data indicate that 20% of the continuous
check-in behaviors happen within a radius of 1 km, 60%
happenwithin a radius of 1 km to 10 km, and only 20%happen
beyond a range of 10 km. Zhang and Wang [18] revealed that
the geographical location and time of check-in behavior are
very periodic formost users. According to thework by Lian et
al. in [2], the range of user mobility is centered on two points,
that is, home and work place, which means that the user
seldom moves to a place beyond a range of the two centers.
In [19], Aamir jointly considered user mobility trajectory,
regional data, social popularity, and custom location recom-
mendation. A tree-based layered classification model based
on the trajectory data was established. The regional data was
clustered in each layer. The popularity of a location during a
time period was computed using the ratio of users who have
checked in at the location to all users of the same class.
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Table 1: Example of check-in data of Gowalla dataset.

User ID Check-in time Altitude Longitude Location ID
0 2010-10-19T23:55:27Z 30.2359091167 −97.7951395833 22847
0 2010-10-18T22:17:43Z 30.2691029532 −97.7493953705 420315
3353 2010-10-04T06:12:33Z 39.7478004013 −104.9992454052 1109125
4368 2010-02-21T03:11:51Z 37.7625977833 −122.4231266667 174904
29534 2010-04-01T03:42:08Z 31.10072965 −97.44364675 821666
80157 2010-05-31T13:51:11Z 48.199R39617 16.3874741445 57426

Table 2: Example of check-in data of Foursquare dataset.

User ID Check-in time Altitude Longitude Location ID
0 2011-01-01 41.727575 −88.031988 0
1 2011-01-01 51.31791 −0.588761 1
2 2011-01-01 33.767021 −84.352638 2
3 2011-01-01 40.774759 −73.982432 3
4 2011-01-01 40.77476 −73.9824 4
5 2011-01-01 26.93896 −82.0532 5

Most of the graph model-based algorithms are reliant on
clustering. After assuming that there is correlation between
users with similar preferences, the graph clustering algo-
rithm classifies the nodes according to node property and
correlation [20]. In [12], Yao et al. proposed a collaborative
location recommendation framework CLR for LBSN. In their
framework, GPS is first used to obtain user trajectory data in
a three-layer (user-location-behavior) structure. Afterwards,
a graph model is established that consists of three types of
nodes (user, location, and behavior). Finally, the proposed
algorithms are used for collaborative filtering and location
recommendation. In [21], Jin et al. proposed a model based
on link analysis and custom PageRank. The user in the
dataset is regarded as the node in the directed graph; mutual
following between users is regarded as the edge. The custom
PageRank algorithm is used to compute the rank of recom-
mendable locations for the target user during a time period.
In [22], Cui et al. proposed a new location recommendation
algorithm based on the graph model. In their method, the
vertex consists of user vertex and location vertex, while the
edge encompasses the friendly relationship between users
and the user-location check-in relationship in the historical
information. The user vertexes that have made friendship
with the target user are sorted out according to their similarity
with the target user. Afterwards, location is recommended by
sorting out the location vertexes which have been visited by
these friends but not visited by the target user.

3. Representation and Modeling of
Check-In Data

3.1. Check-In Dataset Analysis. Gowalla is a LBSN website
where users check in to share their current locations with
friends. It consists of 196,591 nodes and 950,327 edges. The
Gowalla dataset used in the experiment includes 6,442,890
records collected from February 2009 to October 2010.
Examples of Gowalla user check-in data are given in Table 1.
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Figure 1: The distribution curve of user check-in numbers.

Foursquare is a LBSN service which encourages mobile
phone users to check in and share their current locations
with friends. It effectively combines the traditional social
networkwithmobile Internet. Its dataset includes user check-
in data, user social data, and user residence data. Foursquare
includes 1,385,223 pieces of user check-in data. Examples of
Foursquare user check-in data are given in Table 2.

The total number of checked-in users is 107,092 in the
Gowalla dataset. The number of user check-in times is 60 in
average, 2,175 atmost, and 1 at least andmostly falls within the
range [1, 300]. The number of corresponding users decreases
with increase in the check-in times within this range. The
distribution of all user check-in times is shown in Figure 1.

The number of Gowalla user check-in locations is also
computed. It is indicated that there are 1,280,969 checked-in
locations in Gowalla. The number of location check-in times
is 5 in average, 5,811 at most, and 1 at least. The distribution
of all location check-in times is shown in Figure 2. From this
figure, it can be seen that most of the locations are seldom
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Figure 2: The distribution curve of the checked location numbers.

checked in. This means that the user check-in data is very
sparse.

Performance of the recommendation system is closely
related to data sparsity. Recommendation accuracy will be
seriously affected if the data is very sparse.Therefore, we focus
on the recommendation results of methods rather than the
absolute value of performance metrics.

3.2. Check-In Data Representation. Let 𝑢, 𝑝, and 𝑡 denote the
user, location, and check-in time, respectively. Also let 𝑈 ={𝑢1, 𝑢2, . . . , 𝑢𝑛} denote the set of users in the user-location
check-in data,𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑚}denote the set of locations,
and 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑙} denote the set of check-in time. Hence,
each of the location check-in data can be represented with
a 5-dimension vector

󳨀󳨀→𝑑𝑖𝑗𝑘 = [𝑢𝑖, 𝑝𝑗, 𝑝Lng𝑗, 𝑝Lat𝑗, 𝑡𝑘], where𝑖 ∈ [1 ⋅ ⋅ ⋅ 𝑛], 𝑗 ∈ [1 ⋅ ⋅ ⋅ 𝑚], 𝑘 ∈ [1 ⋅ ⋅ ⋅ 𝑙], 𝑡𝑘 denotes the check-
in time of the user 𝑢𝑖 at the location 𝑝𝑗, 𝑝Lng𝑗 denotes the
longitude of the location 𝑝𝑗, and 𝑝lat𝑗 denotes the latitude of
the location 𝑝𝑗. If the user 𝑢𝑖 has never visited the location 𝑝𝑗,
the vector

󳨀󳨀→𝑑𝑖𝑗𝑘 does not exist. All vectors form the set of user-
location check-in data,𝐷. The recommendation algorithm is
responsible for predicting the possibility that the user visits
the location that he has never visited before using the dataset𝐷.
3.3. Segmentation of the User Check-In Dataset. It can be
learned that the geographical location and time of check-in
behavior is very periodic for most users [18]. The range of
user mobility is usually centered on two points, that is, home
and work place, which means that the user seldom moves to
a place beyond a range of the two centers [2]. Considering
user needs for recommendation at different time periods,
experiments are performed on the Gowalla and Foursquare
datasets. Figures 3 and 4 show the ratio of the number of user
check-in times at different time periods to the total number
of check-in times in the Gowalla and Foursquare datasets,
respectively.

In this paper, the check-in data is divided according
to time periods. Demographic statistics analysis indicates
that the location visited by the user during working days is
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Figure 3: The distribution curve of user check-in number in a
different period.
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Figure 4: The distribution curve of user check-in number in a
different period.

very different from the location visited during the weekend.
Moreover, the checked in location by the user during the
working hours differs greatly from that checked in after hours.
Therefore, the dataset𝐷 is divided into three segments in this
paper.

Weekend dataset 𝐷offDay: it refers to the dataset whose
check-in time is theweekend in the user check-in dataset, and𝐷offDay = {󳨀󳨀→𝑑𝑖𝑗𝑘 | 𝑡𝑘 ∈ 𝑇offDay}, where 𝑇offDay denotes
the time set of weekend. Working hour dataset 𝐷officeTime:
it refers to the dataset whose check-in time is the working
hour in the user check-in dataset, and 𝐷officeTime = {󳨀󳨀→𝑑𝑖𝑗𝑘 |𝑡𝑘 ∈ 𝑇officeTime}, where 𝑇officeTime denotes the time set of
working hours. The time period from 8:00 a.m. to 7:00 p.m.
is defined as the working hour in the demography. Off-hour
dataset 𝐷𝑁officeTime: it refers to the dataset whose check-
in time is the off-hour of working day in the user check-in



Security and Communication Networks 5

dataset, and 𝐷𝑁officeTime = {󳨀󳨀→𝑑𝑖𝑗𝑘 | 𝑡𝑘 ∈ 𝑇𝑁officeTime},
where 𝑇𝑁officeTime denotes the set of off-hour during
working day. The time period apart from working hours
during the working day is defined as the off-hour in the
demography.

The weekend dataset 𝐷offDay, working hour dataset𝐷officeTime, and off-hour dataset 𝐷𝑁officeTime are all the
subsets of the user check-in dataset𝐷: that is,𝐷 = 𝐷offDay∪𝐷officeTime ∪𝐷𝑁officeTime. Moreover, the intersection set
of any two of the three subsets is empty. Considering the
request time period by the target user, we filter a subset 𝐷󸀠
from 𝐷: that is, 𝐷󸀠 = 𝐷offDay or 𝐷󸀠 = 𝐷officeTime or𝐷󸀠 = 𝐷𝑁officeTime. Recommendation is made to the target
user by performing data mining and analysis of𝐷󸀠.
3.4. Users Clustering on Temporal Pattern and Spatial Region.
Each user either has some or no similar preferences to the
target user. Based on this observation, the selected check-in
data subset is clustered into two classes according to the target
user. The class of the target user consists of similar users.

There is correlation in two users who share similar
preferences [23]. Based on this assumption, property vector
is constructed for each member of the user set in the selected
check-in data subset. And these users are clustered according
to the property vector. The property vector involves the
number of check-in times, time pattern, and spatial region.
It can be written as󳨀→V𝑖 = ⟨𝑢𝑖, 𝑙MaxLng, 𝑙MaxLat, 𝑙NearLng, 𝐿NearLat,

𝑙DistLng, 𝐿DistLat, 𝑙MaxWeek, 𝑙MaxTime⟩ , (1)

where 𝑢𝑖 denotes the ID of current user, 𝑙MaxLng and𝑙MaxLat denote the longitude and latitude of the location𝑙Max most frequently checked in by the user 𝑢𝑖, 𝑙MaxWeek
denotes the day of a week that the user 𝑢𝑖 most often checks
in at the location 𝑙Max, and 𝑙MaxTime denotes the hour of a
day that the user 𝑢𝑖 most often checks in at the location 𝑙Max.
Describing user behavior in detail is helpful in identifying
similar users more accurately. In addition to spatio-temporal
description of the users mostly frequently registered location,
we draw inspiration from the results in [2, 4], taking user
mobility range into account. Let 𝑙NearLng and 𝑙NearLat
denote the longitude and latitude of the location that the
user has once checked in and has the shortest Euclidean
distance to 𝑙Max. Also, let 𝑙DistLng and 𝑙DistLat denote the
longitude and latitude of the location that the user has once
checked in and has the longest Euclidean distance to 𝑙Max.
After construction of the user property vector, the 𝑘-means
algorithm is used to extract users from the class of the target
user as the similar user set Sim𝑈.
3.5. GraphModeling for User-Location Data. After extracting
the similar user set Sim𝑈 through clustering, we need to filter
the user check-in data subset 𝐷󸀠 that is selected according
to the recommendation request time. If 𝑢𝑖 corresponding to
the element

󳨀󳨀→𝑑𝑖𝑗𝑘 of 𝐷󸀠 does not belong to the similar user set
Sim𝑈, the element should be deleted from 𝐷󸀠. The filtered
user check-in data subset is called𝐷󸀠1. In this paper, wemodel
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Figure 5: User-location bipartite graph.

the filtered subset𝐷󸀠1 as a user-item (location) bipartite graph.
The graph𝐺 is shown in Figure 5.While clustering the similar
users according to the regional data, we jointly consider the
impact of point data and trajectory data on recommendation
when we construct the graph model.

The user check-in data subset 𝐷󸀠1 is represented with the
graph𝐺, and𝐺 = ⟨𝑉, 𝐸⟩, where𝑉 denotes the set of vertexes,
including user vertexes and location vertexes. 𝑉 = 𝑈𝑔 ∪ 𝑃𝑔,
where 𝑈𝑔 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} denotes the user set in 𝐷󸀠1 and𝑃𝑔 = {𝑝1, 𝑝2, . . . , 𝑝𝑚}denotes the location set in𝐷󸀠1.𝐸denotes
the set of edges, including the edge between the user and
the registered location and the edge between locations. 𝐸 =𝐸V∪𝐸𝑡, ⟨𝑢𝑖, 𝑝𝑗⟩ ∈ 𝐸V denotes the check-in behavior of the user𝑢𝑖 at the location 𝑝𝑗, and each edge ⟨𝑢𝑖, 𝑝𝑗⟩ ∈ 𝐸V has a weight(ℎit, 𝑡span), where ℎit denotes the number of visits paid by the
user 𝑢𝑖 to the location 𝑝𝑗 and 𝑡span denotes the time of the
latest visit paid by the user 𝑢𝑖 to the location 𝑝𝑗. ⟨𝑝𝑘, 𝑝𝑗⟩ ∈ 𝐸𝑡
indicates a trajectory that a user checked in at the location𝑝𝑘 and then checks in at the location 𝑝𝑗. 𝐸𝑡 denotes the set of
directed edges between two locations. An edge exists between
two locations if and only if a user has once checked in at the
two locations and the time interval between the two visits is
less than a threshold, which is set to one week in this paper.
Each edge ⟨𝑝𝑘, 𝑝𝑗⟩ ∈ 𝐸𝑡 has a weight (ℎit𝐸, 𝑡span𝐸), where ℎit𝐸
denotes the number of times that the locations 𝑝𝑘 and 𝑝𝑗
are visited sequentially and the conditions are satisfied; 𝑡span𝐸
denotes the latest time that the locations 𝑝𝑘 and 𝑝𝑗 are visited
sequentially and the conditions are satisfied. The problem of
recommending location for the user 𝑢𝑖 can be described as
the problem of estimating the correlation between the target
user vertex and the location vertexes that have no link before
in the user-location bipartite graph.

From the temporal aspect of view, the graph is varying
with time. Figure 6 shows graph 𝐺 in time 𝑡1 and 𝑡2 (𝑡1 <𝑡2). In time 𝑡2, there happens a check-in between user 𝑢𝑛 and
location 𝑝𝑘. It produces an edge between them. Thus, there
is a common trajectory between user 𝑢𝑖 and 𝑢𝑛, that is, edge⟨𝑝𝑗, 𝑝𝑘⟩.

In order to obtain two users’ common locations and
repeated check-in times quickly, this paper presents amethod
named GraPA based on the message propagation and aggre-
gation on the graph to determine the common trajectory and
repeated times.
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Input: Graph 𝐺 = ⟨𝑉, 𝐸⟩
Output: Message list for each vertex in Graph 𝐺: List [(Vid, 𝐿 𝑖)](1) for each V𝑖 ∈ 𝑉 do /∗Initialization∗/(2) 𝐿 𝑖 = Vid𝑖(3) for each ⟨V𝑖, V𝑗⟩ ∈ 𝐸 do /∗Message Propagation∗/(4) 𝐿𝑗 ← 𝐿 𝑖(5) for each V𝑖 ∈ 𝑉 do /∗Message Aggregation∗/(6) for 𝑘 = 1 ⋅ ⋅ ⋅ 𝑚 do(7) if 𝑘⟨ ⟩𝑖 then(8) 𝐿 𝑖 = 𝐿 𝑖 ∪ 𝐿𝑘(9) return List [(Vid, 𝐿 𝑖)]

Algorithm 1: GraPA: message propagation and aggregation in graph.
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There are three states of vertices in a graph in GraPA
method. The first state of the vertex is nonactivated, which
is denoted as 𝑆0. The second state of the vertex is activated,
which is denoted as 𝑆1, in which the vertex is propagating the
message.The third state is denoted as 𝑆2, inwhich the vertex is
aggregating the receivedmessages. Each vertex V𝑖 of the graph
needs to maintain a message. The message of vertex V𝑖 can
be denoted as V𝐼 = (Vid𝑖, 𝐿 𝑖), Vid𝑖 is the ID of vertex V𝑖, and𝐿 𝑖 is the set of vertex ID which would arrive at the vertex V𝑖
during the message propagating. 𝐿 𝑖 is initialized as Vid𝑖 itself.
The states of all of the vertices alter among the three states
according to time slot, so as to do message propagation and
aggregation.The process of GraPA is depicted as Algorithm 1.

4. User Similarity Calculation

After the selected user check-in data subset is clustered
into the regional data, the similar user set is extracted, and
the user-location bipartite graph is constructed, we need to
compute the similarity between target user and similar users.
The point data and trajectory data in the user check-in data
are jointly taken into account while computing the similarity.

4.1. Exploiting Spatio-Temporal Point Data. Each user has
his/her preferences. The basic idea of the user-based collabo-
rative filtering algorithm is the observation that the level of

interuser similarity increases with the number of locations
registered by the two users. The difference in the number of
visits paid by the two users to the same location is taken into
account in this paper, and the higher the difference, the lower
the level of interuser similarity. Meanwhile, the check-in time
is also considered. For two users who have once checked in
at the same location, the longer the interval between their
visits to the location, the lower the level of interuser similarity.
Based on these observations, the interuser similarity can be
computed as Formula (2):

simpoint (𝑢𝑖, 𝑢𝑗)
= −∑𝑖∈(𝑃𝑢𝑖∩𝑃𝑢𝑗 ) 𝑡ℎ (log (𝑡span (𝑖) − 𝛿) (ℎdiff (𝑖) − 𝛽))󵄨󵄨󵄨󵄨󵄨󵄨𝑃𝑢𝑖 ∩ 𝑃𝑢𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 , (2)

where 𝑃𝑢𝑖 and 𝑃𝑢𝑗 denote the set of locations once checked
in by the target user 𝑢𝑖 and the similar user 𝑢𝑗 in the subset𝐷󸀠1, respectively; 𝑡span(𝑖)denotes the time interval between the
latest visits of the target user 𝑢𝑖 and the similar user 𝑢𝑗 to the
same location 𝑖,𝛿denotes the preset threshold of time interval
between visits in millisecond, ℎdiff(𝑖) denotes the difference
in the number of visits paid by the target user 𝑢𝑖 and the
similar user 𝑢𝑗 to the same location 𝑖, and 𝛽 is the preset
largest threshold of the difference in the number of visits.
In this paper, the interuser similarity simpoint(𝑢𝑖, 𝑢𝑗) ranges
from −1 to 1. The lower the value of 𝑡span(𝑖) and ℎdiff(𝑖), the
more closer the value of simpoint(𝑢𝑖, 𝑢𝑗) to 1. This means the
interuser similarity is higher. The higher the value of 𝑡span(𝑖)
and ℎdiff(𝑖), the more closer the value of simpoint(𝑢𝑖, 𝑢𝑗) to −1.
This means the interuser similarity is smaller. If the value of𝑡span(𝑖) is larger than the constant 𝛿 or the value of ℎdiff(𝑖) is
larger than the threshold𝛽, the data of this location belongs to
negative feedback and the interuser similarity simpoint(𝑢𝑖, 𝑢𝑗)
is less than 0.

4.2. Exploiting User Check-In Trajectories. The trajectory in
the user-location check-in data consists of a consecutive
series of locations. It also includes the check-in time of
different user locations, which is helpful in analyzing the
mobility pattern of users at different time. The trajectory
data is incorporated into the calculation of user similarity to
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improve accuracy. If many of the trajectory data of one user
is the same as the other user, it means that their mobility
pattern is very similar and the interuser similarity is very
high. Based on user trajectory data, the interuser similarity
can be computed as Formula (3):

simtraj (𝑢𝑖, 𝑢𝑗) = 𝑡ℎ( ∑
𝑚,𝑛∈(𝑃𝑢𝑖∩𝑃𝑢𝑗 )

weight (𝑚, 𝑛)) , (3)

where weight(𝑚, 𝑛) is equal to 0 or 1. When the following
three conditions are satisfied,

(i) the locations𝑚, 𝑛 ∈ (𝑃𝑢𝑖 ∩ 𝑃𝑢𝑗),
(ii) users 𝑢𝑖 and 𝑢𝑗 visit the locations𝑚 and 𝑛 in the same

sequence,
(iii) the time interval between the visits of the same user

to the two places is shorter than the threshold 𝛽, and we have
weight(𝑚, 𝑛) = 1.

Given a target user and the similar user set Sim𝑈, after the
calculation of the spatio-temporal data-based user similarity
simpoint(𝑢𝑖, 𝑢𝑗) and the trajectory data-based user similarity
simtraj(𝑢𝑖, 𝑢𝑗), the final user similarity can be computed as
Formula (4):

sim (𝑢𝑖, 𝑢𝑗) = simpoint (𝑢𝑖, 𝑢𝑗) + simtraj (𝑢𝑖, 𝑢𝑗) . (4)

4.3. Rating for Recommendable Locations. Thetraditional col-
laborative filtering algorithm is characterized by data sparsity
and operational inefficiency and does not take the selection of
recommendable locations into account. While choosing the
recommendable locations, we consider the mobility pattern
of users and cluster the longitude and latitude of the location
set 𝑃 into two classes. Afterwards, the class which has more
locations in common with the set of target user-registered
locations is identified. And the set of locations in this class
which have not been checked in by the target user is regarded
as the set of recommendable locations for the target user.
The rating of recommendable location 𝑝𝑘 for 𝑢𝑖 is then
calculated as in Formula (5). Finally, the top-𝑁 locations are
recommended to the user.

𝑟 (𝑢𝑖, 𝑝𝑘) = ∑𝑢𝑗∈Sim𝑈 sim (𝑢𝑖, 𝑢𝑗)(1 + (𝑇 − time (𝑢𝑗, 𝑝𝑘))) . (5)

5. LGP-CF Algorithm and Its Parallel Design

5.1. LGP-CF Algorithm. Based on ideas above, we propose
a new collaborative filtering-based spatio-temporal data-
incorporated location recommendation algorithm LGP-CF

for LBSN. Algorithm flowchart is shown in Figure 7. The
location check-in data of all users is divided into three dataset
segments according to the time period. Next, the dataset
corresponding to the recommendation request time of the
target user is selected. The subsequently constructed cluster
of regional data is used to obtain the set of users similar to
the target user. Then we model the filtered subset 𝐷󸀠1 as a
user-item (location) bipartite graph, over which we execute
GraPA twice in order to find users’ common locations and
common trajectory between two common locations. These
are the candidate similar users, locations, and trajectory of the
target user. Then, the similarity between target user and each
of the similar users is computed using the trajectory and point
location. The locations are clustered using the longitude and
latitude data. Finally, ratings are calculated and sorted using
the location check-in time of similar users.

5.2. The Parallel Design of LGP-CF Algorithm. The pseudo
code of LGP-CF is presented in Algorithm 2. The input of
LGP-CF is the resilient distributed dataset (RDD) generated
using the user-location check-in dataset and the parallel
calculation framework Spark. RDD is not only an invariable
partitioned set of records, but also a programming model of
Spark. As in Hadoop, it submits the task at the two-stage of
MapReduce and brings high delay between tasks. Different
from Hadoop, Spark provides two RDD operations, that
is, transformation and action. In Spark, a program actually
constructs a directed acyclic graph (DAG) that consists
of several interdependent RDDs. Various RDD operations
are performed by submitting DAG as a task to Spark for
execution. Hence, Spark tasks do not need to wait for each
other, thereby improving the ability to process iterative data.
Note that the data associated with each iteration of Spark is
stored in the memory. This enables Spark to gain enormous
performance improvement over Hadoop [24].

Each step of LGP-CF is parallelized and the data through-
out the graph can thus be processed in a parallel manner.The
first and second steps of Algorithm 2 are detailed here.(1) In the first step, RDD needs to be converted into
(user, location, latitude, longitude, hour, weekday) before the
segmentation of the user-location check-in dataset according
to time property, where hour denotes the hour of a day in
the check-in time and weekday denotes the day of a week
in the check-in time. Next, the converted RDD should be
filtered based on the property (hour, weekday). RDD of the
user check-in data subset that corresponds to the current time
is obtained in this way.(2) In the second step, RDD of the user check-in data
subset needs to be converted to the user property RDD,
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Input: user location check-in dataset:𝐷; target user ID:TID.
Output: Recommended location list: List [𝐼id](1) Initialisation:𝐷󸀠 ← dataSetSplit (𝐷); /∗𝐷󸀠 is the subset of check-in dataset 𝐷 according to the target user’s request time.∗/(2) 𝑈󸀠 = {󳨀→V1, 󳨀→V2, . . . , 󳨀→V𝑛} ← userDataModel (𝐷󸀠); /∗Construct users property vector exploiting the regional data.∗/(3) Sim𝑈 ← 𝑘MeansFilter (𝑈󸀠); /∗Clustering similarity users as Sim𝑈 set.∗/(4) 𝐺 = ⟨𝑉, 𝐸⟩ ← graphBuild (𝐷󸀠1); /∗Model the filtered subset 𝐷󸀠1 as a user-item (location) bipartite graph.∗/(5) for 𝑖 = 0 to 1 do(6) GraPA (𝐺); /∗traverse the graph to find candidate similar users, locations and trajectory∗/(7) for each 𝑢𝑖 ∈ Sim𝑈 do(8) sim(𝑢𝑖, 𝑢TID) = simpoint + simtraj(9) 𝑃󸀠 ← 𝑘MeansLocation (𝑃); /∗Clustering location to select candidate recommendable locations.∗/(10) for each 𝑝𝑘 ∈ 𝑃󸀠 do(11) for each 𝑢𝑖 ∈ Sim𝑈 do(12) 𝑟(𝑢TID, 𝑝𝑘) = 𝑟(𝑢TID, 𝑝𝑘) + sim(𝑢𝑖, 𝑢TID)/(1 + (𝑇 − time(𝑢TID, 𝑝𝑘)))(13) List[𝐼id] ← sortByRating (𝑟𝑝𝑖, 𝑟𝑝𝑗, . . . , 𝑟𝑝𝑘); /∗Top-N recommendation.∗/(14) return List[𝐼id]

Algorithm 2: LGP-CF in LBSN.

that is, (𝑢𝑖, 𝑙MaxLng, 𝑙MaxLat, 𝑙NearLng, 𝑙NearLat, 𝑙DistLng,𝑙DistLat, 𝑙MaxWeek, 𝑙MaxDay), in order to construct the set
of user properties. While constructing user property RDD,
we need to first map the user check-in data subset RDD
into ((user, location, longitude, latitude), 1) and name it user
check-in RDD. Next, we compute the number of times that
the user checked in at each of the registered locations through
the key-based value processing operation reduceByKey. The
combineByKey and mapping operations are performed to
determine the location with the largest number of check-in
times and themost registered location RDD (user, (𝑙MaxLng,𝑙MaxLat)). Afterwards, the mapping operation is done to
convert the user check-in RDD into (user, longitude, lat-
itude). Join and mapping operations are performed on it
and the most registered location RDD, computing RDD of
the distance between user check-in location and the most
registered location. According to the distance property, we
choose RDD of the location closest to the most registered
location (user, 𝑙NearLng, 𝑙NearLat) and RDD of the location
furthest from the most registered location (user, 𝑙DistLng,𝑙DistLat). Similarly, the mapping operation, key-based value
processing reduceByKey operation, and the clustering com-
bineByKey operation are performed to determine RDDof the
most frequent check-in hour in a day and RDD of the most
frequent check-in day of aweek. Finally, the join andmapping
operations are performed to connect the most registered
location RDD, RDD of the location closest to the most
registered location, RDD of the location furthest from the
most registered location, RDD of the most frequent check-in
hour in a day, and RDD of the most frequent check-in day of
a week. In this way, we finally obtain the user property RDD.

Each step of the Spark-based recommendation algorithm
is parallelized and the calculation result of each step is stored
in the buffer. After all tasks associated with the current step
are completed, the buffered calculation result will be passed to
the next step, resulting in fewer access to the disk, higher job
execution efficiency, and improved algorithm performance.

6. Experiments and Evaluation

Experiment is conducted in this section to evaluate the
recommendation performance of the proposed algorithm.
Large-scale LBSN datasets from Gowalla and Foursquare
are adopted in the experiment to evaluate algorithm perfor-
mance. As in Section 3, the distribution of the number of user
check-in times and the number of user check-in locations has
been analyzed. And impact of different dataset segmentation
on the recommendation results was discussed. In this section,
LGP-CF is implemented and compared with other methods
in the real-world physical cluster environment.

6.1. Experimental Environment. We use 6 servers in the
experiment to build a cloud cluster. The Server OS is 64-bit
Ubuntu14.04, cluster management platform is Spark1.1.0, and
each server node includes a 4-core CPU and 8GB memory.
One server is configured as master and the other five as
slave nodes. LGP-CF and other compared algorithms are
implemented in a parallel manner in Spark.

6.2. Evaluation Results. Dataset segmentation of different
time periods is used to evaluate the performance of the
proposed algorithm in the experiment. Performance metrics
include the predicted root-mean-square error (RMSE), pre-
cision, and recall.

Figures 8 and 9 compare precision and recall of LGP-CF
on datasets of different time periods. From the two figures,
it can be seen that the user check-in time concentrates in
working days (after hours). Accuracy and recall of LGP-CF
are very desirable. But algorithmperformance ismediocre for
time periods with a small number of user check-in times.

Based on this observation, we choose to compare LGP-CF
with other algorithms on after-hour periods of working days.
Because LGP-CF incorporates the spatio-temporal informa-
tion, the traditional collaborative filtering algorithm L-CF is
selected as a baseline algorithm for comparison.The aim is to
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study the impact of incorporated spatio-temporal informa-
tion on recommendation results. Afterwards, the time-based
collaborative filtering algorithm TBCF is chosen to study the
impact of combining temporal and spatial information on
recommendation results. Finally, the LCR algorithm based
on clustering of regional similarity is chosen to study the
impact of combining spatio-temporal information with the
clustering method on recommendation results.

Figures 10 and 11 show the comparison of all algorithms
on the Gowalla and Foursquare datasets.

The comparison in Figures 10 and 11 indicates that LGP-
CF is superior to L-CF in terms of precision and recall.
This proves that LGP-CF achieves enormous performance
gain in precision and recall, compared with the traditional
collaborative filtering-based location recommendation algo-
rithm for LBSN.While maintaining recall, LGP-CF produces
higher accuracy than TBCF, because it incorporates both
spatial and temporal information into recommendation,
while TBCF only exploits the temporal information in its
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recommendation. Meanwhile, comparison between LGP-CF
with LCR also indicates that combining spatio-temporal
information with the clustering method enables LGP-CF to
achieve improvements in precision and recall.

7. Conclusions

In addition to processing a large amount of data, existing
LBSN location recommendation algorithms are used to meet
various user needs. However, most of these methods are
not accurate and efficient enough to make high-quality
recommendation. In this paper, a new collaborative filtering-
based spatio-temporal data-incorporated recommendation
algorithm LGP-CF is proposed. User-location check-in data
is divided according to time periods. The dataset that corre-
sponds to user recommendation request time is then selected
to reduce the amount of data that needs to be computed.
Regional data associated with user mobility ranges is used to
cluster users, obtain the set of similar users, and narrow the
scope of choices of similar users. The selected user-location
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check-in data subsets are modeled using the user-location
bipartite graph.Therefore, the common visiting locations and
the number of visits can be determined for two users by
retrieving location edges in the directed graph. Afterwards,
the trajectory data and point data corresponding to the set
of similar users are used to compute the similarity between
the target user and each of the similar users. The locations
are then clustered using longitude and latitude data in order
to obtain the set of recommendable locations accurately and
reliably. Finally, the rating of a location is computed using the
time of visits paid by similar users to it. Recommendation
accuracy is improved in this way. Experiments on the real-
world physical cluster are performed to compare with other
LBSN recommendation algorithms. Results demonstrate
superiority of LGP-CF in terms of precision and recall.
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