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A B S T R A C T

Spatio-temporal mobility patterns are at the core of strategic applications such as urban planning and
monitoring. Depending on the strength of spatio-temporal constraints, different mobility patterns can be
defined. While existing approaches work well in the extraction of groups of objects sharing fine-grained paths,
the huge volume of large-scale data asks for coarse-grained solutions. In this paper, we introduce Colossal
Trajectory Mining (CTM) to efficiently extract heterogeneous mobility patterns out of a multidimensional
space that, along with space and time dimensions, can consider additional trajectory features (e.g., means
of transport or activity) to characterize behavioral mobility patterns. The algorithm is natively designed in a
distributed fashion, and the experimental evaluation shows its scalability with respect to the involved features
and the cardinality of the trajectory dataset.
1. Introduction

The spreading of Internet of Things and mobile devices (Vitali,
Francia, Golfarelli, & Canavari, 2021) stimulated the rise of applica-
tions based on mobility patterns, such as urban mobility and traffic
planning (Kumar et al., 2018), and moving objects (MOs) profiling
and linking (Francia, Gallinucci, Golfarelli, & Santolini, 2020; Francia,
Golfarelli, & Rizzi, 2020) where objects moving in similar locations
can share interests or relationships. Since different applications require
identifying different mobility behaviors, researchers tailored a plethora
of specific patterns. However, the need for a unifying analytic frame-
work is well-understood and debated in the literature (Ding, Chen,
Gao, Jensen, & Bao, 2018; Kwakye, 2020). Ad-hoc implementations
require ad-hoc extract-transform-load workflows, processing, and anal-
ysis; each of these steps entails expertise to maintain and operate each
algorithm. Conversely, a holistic and unifying analysis solution is an
important step towards applications that involve massive trajectory
data (Ding et al., 2018) also enriched from heterogeneous sources.

Generally speaking, a mobility pattern captures behaviors that fre-
quently occur among MOs; each MO follows a trajectory that can be
partially or completely shared with others. Mobility patterns can be
classified by the strength of the constraints on spatial and temporal
proximity. All patterns require spatial proximity to be satisfied for a
sufficient length of the trajectories. Conversely, temporal proximity is
not always mandatory: a mobility pattern can be interesting even if
the same path has been traveled at different times. Table 1 reports four
widely studied patterns covered by our approach and shows application

∗ Corresponding author.
E-mail addresses: m.francia@unibo.it (M. Francia), enrico.gallinucci@unibo.it (E. Gallinucci), matteo.golfarelli@unibo.it (M. Golfarelli).

examples. A co-location (Bao et al., 2022) is a group of objects located
at the same points at any time (e.g., customers frequenting the same
shops on different days). Similarly, a flow (Han, Liu, & Omiecinski,
2015) is a co-location group where the path is contiguous (e.g., indi-
viduals moving through adjacent road segments). A swarm (Li, Ding,
Han, & Kays, 2010) is a group of objects moving within the same points
at the same, possibly non-consecutive, time instants (e.g., individuals
attending the same sport events each week). Similarly, a convoy (Jeung,
Yiu, Zhou, Jensen, & Shen, 2008) is a swarm group sharing (at least
some) consecutive timestamps (e.g., individuals sharing a means of
transport).

Most of the approaches in the literature focus on a specific pattern
and a few unifying approaches have been introduced. Fan, Zhang, Wu,
and Tan (2016) and Phan, Poncelet, and Teisseire (2016) target small
groups of objects sharing fine-grained paths, however, the huge volume
of large-scale data (e.g., hundreds of thousands of trajectories spanning
the entire USA) asks for coarse-grained solutions. For instance, if our
goal is to extract the groups of people flying across countries (e.g., USA
has 50 states and 328 million inhabitants) or moving across city neigh-
borhoods (e.g., Milan has 88 neighborhoods and 3 million inhabitants),
meaningful groups are the ones in the order of hundreds/thousands of
individuals. Indeed, extracting groups of 10 people given an average
domestic flight of 150 people would return

(150
10

)

= 1.2 ⋅ 1015 groups.
Large-scale datasets demand a big-data solution, since (i) it could be

impossible to load the entire dataset into main memory at once, and
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Table 1
Mobility patterns and examples of applications.

Pattern Application

Co-location (Bao et al., 2022) Frequent POI/route
Flow (Han et al., 2015) Historic traffic analysis
Swarm (Li et al., 2010) Event & Gathering
Convoy (Jeung et al., 2008) Online traffic analysis

(ii) even if the dataset could fit into memory, millions of trajectories
generate an exponential number of patterns. This is especially true for
datasets where the number of trajectories, as well as their length in
terms of points, is very large. Furthermore, Phan et al. (2016) and Fan
et al. (2016) only address spatio-temporal patterns, preventing the
possibility to characterize groups also in terms of additional features
(e.g., means of transport, activity).

We introduce a novel Colossal Trajectory Mining (CTM) approach
that generalizes many of the previous approaches while overcoming
their limitations and integration effort. The main contributions of CTM
are the following:

• it is a unifying framework for the extraction of heterogeneous
mobility patterns;

• it is suitable for applications working on datasets with a huge
number of (long) trajectories traveling across limited spatial
regions (i.e., #trajectories ≫ #regions);

• it generalizes the mobility patterns reported in Table 1 through
generic spatio-temporal constraints;

• it characterizes MOs through a tessellation including spa-
tial and temporal features as well as additional features
that enable the comprehension of semantic mobility behav-
iors (Yan, Chakraborty, Parent, Spaccapietra, & Aberer, 2013)
(e.g., characterizing mobility behaviors by means of transport or
activity)1;

• it does not require similarity computation between trajectories,
preventing the design of burdensome metrics;

• it is implemented following the big-data paradigm, enabling
high scalability in terms of both input trajectories and extracted
patterns.

e emphasize that the terms ‘‘colossal (trajectory) mining’’ and ‘‘big
data’’ have different meanings. Colossal (Pan, Cong, Tung, Yang, &
Zaki, 2003) is an application of mining techniques to datasets having
the number of dimensions (columns) sensibly higher than the number
of instances (rows)2; colossal mining can require big data techniques,
where big data refers to datasets (that produce results) that are too
large to be dealt with by centralized data-processing applications.

The remainder of the paper is organized as follows. In Section 2, we
position and compare our approach with respect to the related litera-
ture. In Section 3, we briefly describe CTM and motivate its adoption.
Then, we formalize the theoretical foundations of our approach in Sec-
tion 4, and we provide its implementation in Section 5. In Section 6, we
assess the effectiveness and efficiency of CTM by leveraging both real-
world and synthetic case studies. Finally, we summarize our approach
and future research directions in Section 7.

2. Related work

CTM intersects frequent itemset mining and clustering.

1 Note that the tessellation is given as input and the tuning of its granularity
s out of the scope of the paper (see Section 2); we introduce an algorithm to
ine co-movement patterns out of any (possibly semantic) tessellation.
2 This happens, for example, in biological datasets such as gene expression

atasets that may contain 105 columns but only 103 rows (Pan et al., 2003).
2

Frequent Itemset Mining uncovers co-occurrences among the
tems in a transaction dataset (Agrawal & Srikant, 1994). FIM has
een also applied to trajectory data to find routes (Fu, Tian, Xu, &
hou, 2017; Qiu & Pi, 2016) or regions (Zheng et al., 2018) frequently
rafficked by MOs. This is an orthogonal problem to extracting groups
f objects moving together (e.g., a trajectory might support multiple
outes and a route might be supported by dissimilar trajectories).

Colossal itemset mining is a branch of FIM that computes FI in
ighly-dimensional datasets; for instance, a dataset with 30 trans-
ctions/rows/instances each with 107 items/columns (Apiletti et al.,

2017). Previous colossal itemset mining algorithms, such as Carpen-
ter (Pan et al., 2003), generate frequent closed itemsets in a depth-first
fashion. In a centralized architecture, Carpenter exploits an in-memory
accumulator in which all patterns are stored; this cannot scale to data
that do not fit into main memory: even if the transaction dataset can
fit into main memory in a single machine, the exponential number
of co-movement patterns might not. Apiletti et al. (2017) distribute
the branches of the depth-first exploration over distributed executors.
However, (i) this results in highly unbalanced partitions, (ii) a cen-
tralization mechanism must be iteratively applied to discard redundant
branches (i.e., patterns are redundantly generated), and (iii) shuffling
all the patterns is a data-intensive operation. While other algorithms
for colossal itemset mining have been recently proposed (Pan et al.,
2003; Vanahalli & Patil, 2019; Zaki & Zulkurnain, 2018), none address
the extraction of constrained co-movement patterns.

Clustering groups trajectories such that intra-group similarity
is maximized and inter-group similarity is minimized. Clustering
techniques are characterized by the rationale and the similarity metric.

As to the rationale, flow-based clustering can group trajectories with
very limited overlapping (Han, Liu, & Omiecinski, 2012; Han et al.,
2015); for instance, after a map-matching phase (Francia, Gallinucci,
& Vitali, 2019), cars traveling different segments of the same road
determine a flow along the road. Partitioning clustering groups whole
trajectories (Han, Liu, & Omiecinski, 2017; Kumar et al., 2018; Wang,
Bao, Culpepper, Sellis, & Qin, 2019) and does not preserve inter-cluster
patterns (e.g., common sub-trajectories). Indeed, while a trajectory is
grouped with similar ones, still it can share interesting paths with
trajectories from other clusters. Overlapping clustering (Ailin, Zhong,
& Dechao, 2019; Lee, Han, & Whang, 2007; Tampakis, Pelekis, Doulk-
eridis, & Theodoridis, 2019) splits trajectories into sub-trajectories and
groups them. However, even if at a smaller scale, this leads to the loss
of so-called rare patterns, namely meaningful spatial events occurring
with a low frequency (Koh & Ravana, 2016). As a consequence, all these
rationales are limited since they do not preserve groups sharing a few
points (which can be strategic).

As to the similarity definition, the higher the expressiveness, the
higher the computational complexity. The Euclidean distance (Van de
Geer, 1995) has linear complexity in trajectory length but requires
equally-long trajectories and does not detect time shifts. DTW (Rak-
thanmanon et al., 2012) overcomes these limitations and is robust to
missing points but at the cost of quadratic complexity. Further distance
functions are Hausdorff (Sim, Kwon, & Park, 1999) (the greatest of
all the distances from a point in one trajectory to the closest point
in the other trajectory), LCSS (Vlachos, Gunopulos, & Kollios, 2002;
similarity is expressed in terms of the longest common subsequence of
two trajectories), Frechet (Agarwal et al., 2018; the smallest of the max-
imum pairwise distances), and road based (da Silva, Lettich, de Macêdo,
Zeitouni, & Casanova, 2020; the minimum number of network paths
between two trajectories in a certain time window). Different distance
functions produce different clusterings; (Vlachos et al., 2002) compare
LCSS, Euclidean, and DTW. However, these spatio-temporal distances
cannot be directly adopted in our approach for the following reasons:

• they do not consider further geometric (e.g., speed or direction)
or semantic (e.g., point types or means of transport) features;

• they cannot be applied at different aggregation levels (e.g., neigh-

borhoods and cities);
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Table 2
Comparing co-movement patterns approaches by supported features and pattern types and distributed implementation.

Features Co-location Flow Convoy Swarm Distributed Contributions

Any ✓ ✓ ✓ ✓ ✓ CTM
Space – ✓ – – – da Silva et al. (2020), Yang, Wang, Wang, and Zhou (2022), Tritsarolis, Theodoropoulos, and Theodoridis (2021)
Space ✓ – – – – Lv, Chen, Chen, Zeng, and Cao (2019), Tran, Wang, and Zhou (2021)
Space ✓ – – – ✓ Fonseca-Galindo, de Castro Surita, Neto, de Castro, and Lemos (2022)
Space, Time – – – ✓ – Lee et al. (2007), Li et al. (2010), Han et al. (2017), Ailin et al. (2019), Li, Wang, Chen, and Chen (2023)
Space, Time – – – ✓ ✓ Hu, Kang, Luo, and Zhao (2015), Tampakis et al. (2019)
Space, Time – – ✓ – – Aung and Tan (2010), Orakzai et al. (2019), Liu et al. (2021)
Space, Time – – ✓ – ✓ Orakzai et al. (2021), Tritsarolis et al. (2022)
Space, Time – – ✓ ✓ – Li, Bailey, and Kulik (2015), Phan et al. (2016), Helmi and Banaei-Kashani (2020)
Space, Time – – ✓ ✓ ✓ Fan et al. (2016)
Space, Time – ✓ – – – Han et al. (2015), Kumar et al. (2018), Wang et al. (2019)
Fig. 1. Administrative spatial tessellations of Milan.
• they cannot be applied to all co-movement patterns (e.g., LCSS,
which returns as similar trajectories sharing a contiguous path, is
not suitable for the co-location pattern where path adjacency is
not required).

Since ‘‘classic’’ clustering algorithms do not enforce a definition
f co-movement patterns (e.g., cardinality, time span, cohesion, spa-
ial and/or temporal contiguity), flock (Gudmundsson & van Kreveld,
006), convoy (Jeung et al., 2008), and swarm (Aung & Tan, 2010)
atterns have been formalized. Since swarm (Aung & Tan, 2010) groups
bjects moving in spatial proximity for a given amount of possibly-non-
ontiguous time, classical clustering algorithms can be referred to as
warms if no minimal duration is enforced.
Distinguishing features of CTM. Since MOs outnumber the regions

f interest, CTM is a novel perspective in the analysis of mobility pat-
erns. The research on co-movement patterns is active; recent relevant
apers work toward improving the mining efficiency through spatial
ierarchical constraints (Helmi & Banaei-Kashani, 2020) or by provid-
ng pattern-specific strategies; for instance filtering convoys in either

centralized (Aung & Tan, 2010; Liu et al., 2021; Orakzai, Calders,
Pedersen, 2019) or distributed (Orakzai, Pedersen, & Calders, 2021;

ritsarolis, Chondrodima, Tampakis, Pikrakis, & Theodoridis, 2022)
ashion. Our goal is providing a unifying framework for pattern analy-
is. The need for a unifying framework is well-understood and debated
n literature (Ding et al., 2018; Kwakye, 2020). Phan et al. (2016)
nd Fan et al. (2016) are close contributions to CTM and both ex-
ract spatio-temporal mobility patterns by discretizing time in bins,
lustering MOs in every bin, and merging clusters across bins.

Table 2 summarizes the comparison; the strengths of CTM are the
ollowing.

1. Transparently and homogeneously supporting semantic features
to characterize behavioral mobility patterns (e.g., neighbor-
hood and municipalities, means of transport, holiday or work
day; Figs. 1(a) and 1(b)). Geometric-only (e.g., spatio-temporal)
tessellations are supported but they are only one of the pos-
sible tessellation types. This makes CTM extensible in the
characterization of behavioral mobility patterns.
3

2. Extracting spatial, spatio-temporal, and semantic patterns –
whereas Fan et al. (2016) and Phan et al. (2016) require an ab-
solute temporal dimension – by applying constraint and pruning
strategies that allow to return several pattern types as well as to
reduce the algorithmic search space.

3. Providing a native distributed solution to the problem that can
scale up to real-world datasets and a lossless compression of the
output patterns by leveraging frequent closed itemsets.

While CTM could be associated with grid-based clustering, automat-
ically finding the best grid for a specific dataset/problem/co-movement
pattern is out of the scope of the paper. To ease the computation
of similarity, grid-based clustering uses a grid to build the clusters
out of adjacent densely-populated cells. Setting the resolution grid is
difficult (Jin et al., 2022; Parsons et al., 2004), especially in multi-
dimensional datasets with heterogeneous densities across dimensions.
In this case, even adaptive grids (Lu, Sun, Xu, & Liu, 2005) are not
a solution since they raise the following dataset- and problem-specific
issues.

• Dataset-specific: computing the ‘‘best’’ tessellation requires to
define what are the ‘‘best’’ co-movement patterns. Internal
metrics measure how distinguishable clusters are without the
need for external knowledge. For instance, the silhouette in-
dex measures whether crisp partitioning clusters are compact
and well-separated (Zhu, Ma, & Zhao, 2010). However, co-
movement patterns can be overlapping since trajectories can
contribute to multiple groups of MOs. External metrics require
labels to find the ‘‘best’’ co-movement patterns out of the given
dataset/tessellation (e.g., the ‘‘purity’’ of clusters through en-
tropy); this type of supervised evaluation is usually leveraged to
compare different grid-based algorithms (Parsons et al., 2004).
Besides the metrics, defining the ‘‘best’’ co-movement patterns
also depends on the dataset heterogeneity; e.g., taxis in Yuan
et al. (2010) produce homogeneous and precise trajectories, while
Movebank (Kranstauber et al., 2011) collects data from thousands
of studies.
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• Problem-specific: co-movement patterns depend on (i) the goal of
the analysis (e.g., monitoring co-movement patterns at single user
levels at the scale of meters, or aggregated network data at the
scale of kilometers); and (ii) the type of moving objects (e.g., to
retrieve a convoy of 5 people moving in the same car a cell of
6 square meters could be enough, but this is not true to detect
convoys of cars or trucks spanning hundreds of meters — for
instance in a highway).

3. Approach overview

Modeling mobility pattern mining as a colossal frequent itemset
problem is a novel research direction. The goal of Frequent Itemset
Mining (Agrawal & Srikant, 1994), historically used for market-basket
analysis, is to extract items (e.g., products) that often appear together
in a dataset of transactions (e.g., receipts of product sales). Similar to
the sales problem, FIM retrieves sets of trajectories (i.e., items) moving
together in the same places (i.e., transactions). Colossal refers to the
scenario in which the number of traveled places is sensibly lower than
the number of trajectories (Pan et al., 2003).

Our approach is based on the following steps (Fig. 2).

3.1. Abstracting trajectories

Raw trajectories are initially mapped to a multidimensional tessel-
lation, a composition of multidimensional tiles (from now on, simply
tiles) of any shape – with no overlaps and no gaps – that cover a
multidimensional space; the tessellation is not necessarily a regular
grid. Each dimension of the tessellation corresponds to a feature de-
scribing the raw trajectory points: common features are space and
time, but additional features can be added to specialize each trajectory
point (e.g., whether an individual is moving by car or by bicycle).
This allows grouping trajectories on semantic and behavioral concepts
(e.g., to capture groups of individuals moving across city neighbor-
hoods with different means of transport). Mapping raw trajectories into
the tessellation brings the following benefits.

• The tessellation granularity defines the level of the analysis; for
instance, CTM transparently allows the extraction of patterns at
neighborhood/city/country scales (Fig. 1).

• The tessellation automatically compresses trajectories since a tra-
jectory moves through a tile if at least one of its points belongs to
the tile (i.e., there is no need to store consecutive points from
the same tile more than once). This makes the computational
complexity more related to the scale of tessellation rather than to
the trajectories length. For this reason, CTM is particularly suited
for applications working on a huge number of, potentially long,
trajectories and a coarse tessellation.

• The tessellation implicitly defines similarity: the more tiles two
4

trajectories share, the higher their similarity.
Fig. 3. Trajectories moving through a tessellation.

3.2. Creating transactions

To each tile corresponds a transaction including the trajectories
(i.e., items) moving through it.

Example 1 (Trajectory and Transaction). With reference to Fig. 3, where
a regular tessellation is used for simplicity, 𝑇𝑏, 𝑇𝑔 , and 𝑇𝑟 are trajectories
while 𝑄𝐴1 and 𝑄𝐵2 are transactions that correspond to tiles A1 and B2.

𝑇𝑏 = (𝐴1, 𝐵1, 𝐶1, 𝐷1, 𝐶1), 𝑇𝑔 = (𝐴1, 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐴4),

𝑇𝑟 = (𝐴1, 𝐵1, 𝐵2, 𝐵3, 𝐷3), 𝑄𝐴1 = {𝑇𝑏, 𝑇𝑔 , 𝑇𝑟}, 𝑄𝐵2 = {𝑇𝑔 , 𝑇𝑟}

Mapping 𝑇𝑔 into the tessellation allows its compression since consec-
utive points in tiles 𝐵2 and 𝐵3 are only stored once. The tessellation
defines the granularity and the semantics of the analysis. If – for in-
stance – the user is also interested in distinguishing malls or restaurants
or means of transport, space and time features alone are not enough.
Additional features (e.g., placeType or transport) must be added to the
tessellation. This is the strength of our approach: to consider custom
features transparently. Indeed, tiles enable an extensible and transpar-
ent management of space, time, and additional features. For instance, in
a 2D setting (where only space – latitude and longitude – is considered),
tiles 𝐴1 and 𝐴2 could represent the following bins/partitions

1 = (𝑙𝑎𝑡 = 44.123, 𝑙𝑜𝑛 = 12.123)

𝐵2 = (𝑙𝑎𝑡 = 44.124, 𝑙𝑜𝑛 = 12.124)

while in a 4D setting (space, time, and means of transport) 𝐴1, 𝐴2 could
be

𝐴1 = (𝑙𝑎𝑡 = 44.123, 𝑙𝑜𝑛 = 12.123, 𝑡 = 2022∕08∕04 10 ∶ 55 ∶ 00, 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 𝑤𝑎𝑙𝑘)

𝐵2 = (𝑙𝑎𝑡 = 44.124, 𝑙𝑜𝑛 = 12.124, 𝑡 = 2022∕08∕04 10 ∶ 56 ∶ 00, 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 𝑏𝑢𝑠)

While this modeling naturally allows the extraction of groups of
rajectories moving in defined spatial regions, some might find more
atural to do a ‘‘transposed’’ modeling using tiles as items and trajec-
ories as transactions. In this case, the output would be the groups of
laces visited together rather than the group of trajectories traveling
ogether.

Modeling trajectories as items and tiles as transactions makes our
requent itemset approach a colossal one since the number of tiles

(i.e., transactions) is typically in the order of magnitudes smaller than
the number of trajectories (i.e., items). This is a fair assumption to
make: for instance, Milan has 88 neighborhoods with over 3 ⋅ 106
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inhabitants (i.e., potential MOs). Obviously, our assumption is no more
true when a very fine tessellation is adopted. For example, the Milan
metropolitan area spans about 1500 km2, corresponding to 1.5 ⋅ 105
niform tiles with side 100 m and 1.5 ⋅ 107 uniform tiles with side 10 m.

.3. Mining co-movement patterns

Once a transaction dataset is created, the colossal itemset mining
lgorithm retrieves the sets of trajectories satisfying minimum cardi-
ality (i.e., the number of trajectories), minimum support (i.e., the
ength of the shared path), and spatio-temporal constraints. Different
obility patterns can be obtained by specializing such constraints (as

ater shown).
Note that approaching this problem as a colossal itemset mining

ather than a typical clustering one (see Section 2):

• avoids the computation of similarities that would make computa-
tional complexity explode for large datasets;

• exploits monotonicity properties (e.g., as the generation process
proceeds, the cardinality of trajectory groups decreases while
the length of the path shared by trajectories in the same group
increases) to filter out invalid co-movement patterns without
generating them (filtering strategies are detailed in Section 5.2).

. Modeling co-movement patterns

We consider a dataset of raw trajectories, where each trajec-
ory point is labeled with a set of features. Mandatory features
re those needed to define the spatial or spatio-temporal location
e.g., latitude, longitude, and timestamp), but many other physical or
emantic features might be available (e.g., speed, day of the week, and
eighborhood).

efinition 1 (Raw Trajectory and Feature). A raw trajectory 𝑃 is a
equence of points (𝑝1,… , 𝑝

|𝑃 |) generated by a MO. The feature space
s a set of features 𝐹 = {𝑓1,… , 𝑓

|𝐹 |

} that is collected for each point; it
epresents a multidimensional space where each dimension corresponds
o a feature.

efinition 2 (Tessellation). Given a dataset of raw trajectories asso-
iated with the features 𝐹 , we call tessellation a multidimensional
artitioning 𝑆 = {𝑠1,… , 𝑠𝑚} of the feature space 𝐹 . Each tile of the
essellation is identified by an 𝑖𝑑 and is characterized by an interval/set
f values for each continuous/nominal feature in 𝐹 . For each feature
, the function 𝑑𝑖𝑠𝑡𝑓 (𝑠𝑖, 𝑠𝑗 ) computes the distance between two tiles on

he tessellation. Two tiles 𝑠𝑖, 𝑠𝑗 ∈ 𝑆 are adjacent (𝑠𝑖 ≅𝑓 𝑠𝑗) if ∀𝑠𝑧 ∈ 𝑆 it
s 𝑑𝑖𝑠𝑡𝑓 (𝑠𝑖, 𝑠𝑗 ) ≤ 𝑑𝑖𝑠𝑡𝑓 (𝑠𝑖, 𝑠𝑧) + 𝑑𝑖𝑠𝑡𝑓 (𝑠𝑧, 𝑠𝑗 ).

Note that 𝑑𝑖𝑠𝑡𝑓 () is a distance between tiles used to characterize
ifferent mobility patterns. Since in a colossal problem the number of
iles is order of magnitude lower than the number of trajectories and
rajectory points, computing distances between tiles entails a computa-
ional complexity that is by far lower than working on raw trajectories.
n our implementation, the distance function is

𝑖𝑠𝑡𝑓 (𝑠𝑖, 𝑠𝑗 ) =
{ 𝑓 is ordinal 𝑔𝑒𝑜𝑑(𝑠𝑖, 𝑠𝑗 )

𝑓 is nominal ∧ 𝑠𝑖 = 𝑠𝑗 0
𝑓 is nominal ∧ 𝑠𝑖 ≠ 𝑠𝑗 ∞

(1)

where 𝑔𝑒𝑜𝑑(𝑠𝑖, 𝑠𝑗 ) is the geodesic distance (Bouttier, Di Francesco, &
Guitter, 2003) computed on the tessellation, which is the number
of tiles along the shortest path of neighboring tiles connecting 𝑠𝑖
and 𝑠𝑗 . Although in principle any distance metric can be leveraged
(e.g., Haversine or Euclidean), using the geodesic distance simplifies
the formalization (and implementation) of co-movement patterns. As to
nominal features (e.g., monitoring urban traffic on weather conditions
such as rainy/sunny) that do not allow ordering, the distance function
allows the selection of homogeneous tiles, and in turn, searches for
co-movement patterns characterized by the same nominal values.
5

Definition 3 (Trajectory). Given a raw trajectory 𝑃 and a tessellation
𝑆, we define the trajectory 𝑇 corresponding to 𝑃 in 𝑆 as the sequence
of tiles (𝑠1,… , 𝑠

|𝑇 |) such that a tile 𝑠 is added to 𝑇 if at least a point
𝑝 ∈ 𝑃 is in 𝑠. A point 𝑝 is in tile 𝑠 if, for each feature in 𝐹 , the values of
the feature for 𝑠 contain the corresponding feature value characterizing
𝑝.

A trajectory is an abstraction of a raw trajectory at the grain defined
by the tessellation. This determines a first data compression: a single
tile instance is added to 𝑇 if consecutive points fall in that tile, thus
|𝑃 | ≥ |𝑇 |.

Definition 4 (Tile Connection). Two tiles 𝑠𝑖, 𝑠𝑗 in the tessellation 𝑆
are connected (𝑠𝑖 ↔𝑓 𝑠𝑗) if there exists a path of adjacent tiles in 𝑆
connecting them in 𝑓 .

Example 2 (Tessellation, Tile, and Trajectory). With reference to Fig. 3,
the grid is a tessellation involving the spatial feature 𝑓 𝑠𝑝 which char-
acterizes 16 tiles (i.e., cells from 𝐴1 to 𝐷4); 𝑑𝑖𝑠𝑡𝑓 𝑠𝑝 (𝐴1, 𝐴2) = 1 and
𝑑𝑖𝑠𝑡𝑓 𝑠𝑝 (𝐴1, 𝐴3) = 2; the point 𝑝 is in the tile 𝐵2 and the trajectory
𝑟 = (𝐴1, 𝐵1, 𝐵2, 𝐵3, 𝐷3) corresponds to the red raw trajectory within
he tessellation.

To enable the formalization of CTM as a colossal itemset mining
roblem, we need to introduce transactions and items. Each transac-
ion corresponds to a tile and includes the items/trajectories moving
hrough that tile.

efinition 5 (Item, Itemset, and Transaction). Given a trajectory dataset
and a tessellation 𝑆, each trajectory represents an item, and a set 𝐼

f trajectories is an itemset. We define the transaction for a tile 𝑠 ∈ 𝑆 as
the itemset containing all the trajectories having at least a point in 𝑠.
, the set of all transactions, is a transaction dataset.

The maximum number of transactions depends on the number of
tiles (i.e., || = |𝑆|). Furthermore, as transactions are sets of items,
the data is further compressed: if a tile is traversed more than once by
a trajectory, the transaction corresponding to the tile will contain the
trajectory/item only once.

As for FIM, our goal is identifying the itemsets contained in a
large number of transactions. This property is captured by the support
function.

Definition 6 (Support). Given a transaction dataset , the support
𝑠𝑢𝑝(𝐼) ⊆  of an itemset 𝐼 is the set of transactions containing 𝐼 .

Example 3 (Itemset, Transaction, and Support). With reference to Fig. 3,
𝑄𝐴1 = {𝑇𝑏, 𝑇𝑔 , 𝑇𝑟} is the transaction corresponding to the tile 𝐴1, 𝐼 =
{𝑇𝑔 , 𝑇𝑟} is an itemset, and 𝑠𝑢𝑝(𝐼) = {𝑄𝐴1, 𝑄𝐵1, 𝑄𝐵2, 𝑄𝐵3}.

Definition 7 (Frequent and Closed Itemsets). An itemset is frequent (FI)
if |𝑠𝑢𝑝(𝐼)| ≥ 𝑚𝑆𝑢𝑝, where 𝑚𝑆𝑢𝑝 is the minimum number of transactions
to consider the itemset as frequent. A frequent itemset is closed (FCI) if
there exists no superset with the same support.

FCIs provide a lossless compression of FIs (Pei, Han, & Mao,
2000) (i.e., the output is non-redundant and the complete set of
FIs is recoverable) which are exponential in the number of trajecto-
ries/items (Agrawal & Srikant, 1994). Working with FCIs rather than
FIs simplifies data analysis (Francia, Golfarelli, & Rizzi, 2020).

Definition 8 (Co-Movement Pattern). A co-movement pattern 𝐼 is an
FCI such that |𝐼| ≥ 𝑚𝐶𝑟𝑑, where 𝑚𝐶𝑟𝑑 is the minimum number of
trajectories to consider a FCI as a co-movement pattern.

By definition, a co-movement pattern has at least 𝑚𝐶𝑟𝑑 trajectories
and is at least 𝑚𝑆𝑢𝑝 tiles long. This ‘‘basic’’ co-movement pattern

can be specialized into those reported in Table 1 depending on the
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Table 3
Characterization of co-movement patterns in terms of spatial (𝑓 𝑠𝑝) and temporal (𝑓 𝑡𝑚)
eatures and shape constraints.
Pattern Feature Shape constraints

Co-loc. 𝑓 𝑠𝑝 None
Flow 𝑓 𝑠𝑝 ∃𝑆′ ⊆ 𝑠𝑢𝑝(𝐼) s.t. ∀𝑠𝑖 , 𝑠𝑗 ∈ 𝑆′ , 𝑠𝑖 ↔𝑓 𝑠𝑝 𝑠𝑗 ∧ |𝑆′

| ≥ 𝑚𝑆𝑢𝑝
Swarm 𝑓 𝑠𝑝 , 𝑓 𝑡𝑚 None
Convoy 𝑓 𝑠𝑝 , 𝑓 𝑡𝑚 ∃𝑆′ ⊆ 𝑠𝑢𝑝(𝐼) s.t. ∀𝑠𝑖 , 𝑠𝑗 ∈ 𝑆′ , 𝑠𝑖 ↔𝑓 𝑡𝑚 𝑠𝑗 ∧ |𝑆′

| ≥ 𝑚𝑆𝑢𝑝

involved features, either space (𝑓 𝑠𝑝) or space and time (𝑓 𝑡𝑚), and on
he additional shape constraints described in Table 3. Fig. 4 depicts an
xample of each pattern.

(a) Co-location (Francia, Golfarelli, & Rizzi, 2020): trajectories shar-
ing spatial points (e.g., individuals working and shopping in the
same places, even at different times). No shape constraint is
needed and the tessellation must include the space feature.

(b) Flow (Han et al., 2015): trajectories sharing contiguous spatial
points (e.g., traffic over contiguous roads). The shape constraint
ensures tile connection on the space dimension.

(c) Swarm (Li et al., 2010): trajectories sharing spatial points at
the same time (e.g., individuals being occasionally together).
No shape constraint is needed and the tessellation must include
space and time features.

(d) Convoy (Jeung et al., 2008): trajectories sharing spatial points
continuously in time (e.g., individuals moving together3). The
shape constraint ensures tile connection on the time dimension.

As summarized in Table 3, co-location and flow are defined over
spatial feature (𝑓 𝑠𝑝; i.e., they are required to happen in the same

patial tile), while swarm and convoy require both spatial (𝑓 𝑠𝑝) and
emporal (𝑓 𝑡𝑚) features (i.e., they are required to happen in the same
patio-temporal tiles). In other words, while for swarm and convoy
t is necessary to be in the same spatio-temporal tile, co-location and
low only require to be in the same spatial tile (e.g., to be in the same
ocation even if at different times).

A strong point of CTM is the capability to homogeneously manage
pace, time, and any additional semantic feature. Although the simplest
epresentation of the space and time features is a regular binning
f their absolute values, CTM allows adopting abstractions richer in
emantics as long as these determine a tessellation (i.e., a partitioning)
f space and time.

.1. Handling additional features through behavioral constraints

Co-movement patterns are described by more than space and time
eatures alone. Nominal, ordinal, and continuous features can further
haracterize behaviors that trajectories must share. Individuals could
hare means of transport and activities, or move and stand together;
or instance, groups of people can take the same means of transport
o reach the city center and go shopping in the same malls. To create
co-movement pattern, feature values must be the same in the path

hared by the MOs (e.g., to be in the same group, individuals should
hare the same means of transport).

Characterizing co-movement patterns with additional features
eans imposing additional constraints, which we call behavioral con-

traints. Note that behavioral constraints are more expressive than
iltering trajectories based on a specific feature value since they further
haracterize objects that behaves similarly while moving in space and
ime; for instance, behavioral features are highly important in the

3 While the original formalization involves individuals always moving to-
ether, this constraint has been relaxed to a sufficient amount of contiguous
emporal tiles (Fan et al., 2016). Otherwise, meaningful patterns can be lost
ue to noisy trajectories (even a single missing trajectory point).
6

t

linkage/anonymization of mobility data (Jin et al., 2023). In CTM,
behavioral constraints are transparently enforced by simply extending
the input tessellation with additional features (see Definition 3): the tile
directly models the features in the tessellation. More formally, two or
more trajectories share a tile 𝑠 if they have at least a point in 𝑠. Then,
the support of an itemset 𝐼 (i.e., a set of trajectories), includes all and
only the transactions (i.e., the tiles) shared by the trajectories.

The behavioral constraints must be computed jointly with the
spatio-temporal ones, and not before/after running CTM.

• A pre-processing strategy could apply behavioral constraints di-
rectly to the raw trajectory dataset (i.e., before applying CTM). At
this stage, only filters on single trajectories can be applied. How-
ever, behavioral constraints require the portion of space/time
shared by groups of trajectories to be known.

• A post-processing strategy could compute co-movement patterns
considering spatio-temporal features first and then discarding the
returned co-movement patterns that do not fulfill behavioral con-
straints. However, co-movement patterns are closed by definition.
If a co-movement pattern becomes unfeasible due to behavioral
constraints some of its non-closed subsets will become closed and
must be returned. Since only closed itemsets are computed and
returned, closeness and feasibility should be tested for all the
subsets; however, the cardinality of the subsets is exponential in
the pattern support. Alternatively, an approach returning non-
closed itemsets too should be adopted, but this would imply much
heavier enumeration (Lucchese, Orlando, & Perego, 2006).

Example 4. Suppose we are looking for co-location patterns (i.e., in-
dividuals moving through some places without time constraints)
characterized by stop-move phases, where stop points are used to
infer the purpose of a trip and moves can provide information such
as direction and mode of transport (Wang & McArthur, 2018). Let
𝑚𝑆𝑢𝑝 = 3 and consider three individuals Alice, Charles, and Paul
sharing the same route of 3 tiles 𝐴1, 𝐵1, and 𝐶1. On the one hand,

lice and Charles stop by stores in tiles 𝐴1 and 𝐶1 and walk by 𝐵1.
n the other hand, Paul is only walking through the three tiles. Thus,
onsidering the speed feature, only {𝐴𝑙𝑖𝑐𝑒, 𝐶ℎ𝑎𝑟𝑙𝑒𝑠} should emerge as a
o-movement pattern, while {𝐴𝑙𝑖𝑐𝑒, 𝐶ℎ𝑎𝑟𝑙𝑒𝑠, 𝑃 𝑎𝑢𝑙} (which is valid only
rom the spatio-temporal point of view) should be discarded. A pre-
rocessing technique could be to discretize speed values and run an
nstance of CTM for each speed bin value; however, the pattern related
o {𝐴𝑙𝑖𝑐𝑒, 𝐶ℎ𝑎𝑟𝑙𝑒𝑠} would be lost since it involves both walking and
tops; more formally, 𝑠𝑢𝑝({𝐴𝑙𝑖𝑐𝑒, 𝐶ℎ𝑎𝑟𝑙𝑒𝑠}) = |{𝑄𝐵1}| < 𝑚𝑆𝑢𝑝 when
alking and 𝑠𝑢𝑝({𝐴𝑙𝑖𝑐𝑒, 𝐶ℎ𝑎𝑟𝑙𝑒𝑠}) = |{𝑄𝐴1, 𝑄𝐶1}| < 𝑚𝑆𝑢𝑝 when shop-
ing. Alternatively, a post-processing technique could be to run CTM
ith only spatio-temporal features, return both {𝐴𝑙𝑖𝑐𝑒, 𝐶ℎ𝑎𝑟𝑙𝑒𝑠, 𝑃 𝑎𝑢𝑙}
nd {𝐴𝑙𝑖𝑐𝑒, 𝐶ℎ𝑎𝑟𝑙𝑒𝑠}, and finally discard the former by analyz-
ng the speed feature. However, since 𝑠𝑢𝑝({𝐴𝑙𝑖𝑐𝑒, 𝐶ℎ𝑎𝑟𝑙𝑒𝑠, 𝑃 𝑎𝑢𝑙}) =
𝑢𝑝({𝐴𝑙𝑖𝑐𝑒, 𝐶ℎ𝑎𝑟𝑙𝑒𝑠}), the pattern {𝐴𝑙𝑖𝑐𝑒, 𝐶ℎ𝑎𝑟𝑙𝑒𝑠} is not closed (see
efinition 7) and cannot be returned; as result, the valid co-movement
attern {𝐴𝑙𝑖𝑐𝑒, 𝐶ℎ𝑎𝑟𝑙𝑒𝑠} is lost.

. Mining co-movement patterns

We initially remind that trajectories are mapped to items and tiles
re mapped to transactions. For the sake of clarity, henceforth we only
efer to the items and transactions.

When the number of items is much larger than the number of
ransactions, searching for frequent itemsets by enumerating all item-
ets with an Apriori-like strategy (Agrawal & Srikant, 1994) can be
nfeasible or very inefficient. In this case, it is convenient to adopt a
ow-enumeration-like strategy (Pan et al., 2003), which is enumerating
ll the possible transaction sets. Each set of transactions ̄ corresponds

o the intersection of the itemsets appearing in those transactions.
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Fig. 4. Co-movement patterns (unless specified, 𝑚𝐶𝑟𝑑 = 2).
E

Definition 9 (̄-Itemset). Given a transaction dataset , a ̄-itemset is
the largest itemset supported by all transactions ̄ ⊆ .

Each transaction corresponds to a ̄-itemset with |̄| = 1; a generic
̄ -itemset is the intersection of the itemsets in ̄.

xample 5 (̄-Itemset). With reference to Fig. 3, 𝐼 = {𝑇𝑔 , 𝑇𝑟} is a
̄ -itemset with ̄ = {𝑄𝐴1, 𝑄𝐵1, 𝑄𝐵2, 𝑄𝐵3}.

Theorem 1 (Closeness of ̄-Itemset). ̄-itemsets are all and only the closed
temsets.

See Proof 1 in Appendix.
CTM extracts co-movement patterns through a breadth-first enu-

eration of ̄-itemsets: starting from single transactions, CTM progres-
ively intersects them with further transactions. ̄-itemsets associated
ith a larger set of transactions are characterized by lower cardinalities
nd larger supports (intuitively, fewer trajectories sharing more tiles).
he enumeration process can be represented as an enumeration tree,
here each node 𝑁 corresponds to a distinct set of transactions ̄. We

all enumeration sequence the path leading from the root to a node 𝑁 .
Naively enumerating the whole tree is inefficient, we exploit several

runing mechanisms to limit the enumerated portion of the tree. We
onceive CTM as a parallel and big-data approach for co-movement pat-
ern mining, thus it exploits solutions that would be neither necessary
or optimal in a centralized implementation. Specifically, CTM:

• adopts a breadth-first enumeration approach to fully exploit task
parallelization and workload balancing;

• adopts local pruning criteria only to avoid centralized checks that
would limit parallelization;

• adopts spatio-temporal pruning criteria that have been specifi-
cally devised for trajectories-related patterns;

• broadcasts the transaction dataset  to locally compute the item-
set support. This is a reasonable assumption since following our
approach, its size is limited and can fit the central memory (see
Section 6).

We now introduce the enumeration process, the pruning techniques,
nd, finally, how we distribute the algorithm to support scalable
eneration of co-movement patterns.

.1. The enumeration process

Algorithm 1 introduces the pseudo-code of CTM which takes as
nputs the transaction dataset , the minimum cardinality 𝑚𝐶𝑟𝑑, and
7

he minimum support 𝑚𝑆𝑢𝑝. For the sake of simplicity, we assume
Algorithm 1 CTM
Require: : transactions, 𝑚𝑆𝑢𝑝: minimum support, 𝑚𝐶𝑟𝑑: minimum cardinality
nsure:  : co-movement patterns

1:  ← ∅ ⊳ Global accumulator of co-movement patterns
2:  ← ∅ ⊳ FIFO queue of ̄-itemsets
3: for each 𝑄 ∈  do ⊳ For each transaction
4: 𝑁 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒() ⊳ create an enumeration node
5: 𝑁.𝐼 ← 𝑄 ⊳ initialize the node ̄-itemset with a transaction
6: 𝑁.𝐶𝑇 ← {𝑄} ⊳ set the Covered Transactions
7: 𝑁.𝑅𝑇 ← {𝑄′

|𝑄′ ∈ , 𝑖𝑑(𝑄′) > 𝑖𝑑(𝑄)} ⊳ set the Remaining Transactions
8: .𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑁) ⊳ enqueue the node for extension
9: while || > 0 do ⊳ While an extendable node exists
10: 𝑁 ← .𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ⊳ remove it from the queue
11: ̄ ← 𝐸𝑥𝑡𝑒𝑛𝑑(𝑁,𝑚𝑆𝑢𝑝, 𝑚𝐶𝑟𝑑) ⊳ extend it
12: .𝑒𝑛𝑞𝑢𝑒𝑢𝑒(̄) ⊳ add the new nodes to the queue
13: return  ⊳ Return the co-movement patterns

 (Line 1) to be a global variable used as an accumulator of nodes
corresponding to the co-movement patterns to be returned.  (Line 2) is
a first-in-first-out (FIFO) queue that ensures breadth-first enumeration.
We use the ‘‘dot’’ notation to indicate the information in each node 𝑁 .
Each enumeration node 𝑁 is associated with a ̄-itemset 𝑁.𝐼 . Such
̄-itemset is obtained by intersecting the transactions building up the
enumeration sequence 𝑁.𝐶𝑇 (Covered Transactions), which is 𝑁.𝐶𝑇 =
̄. Let 𝑁.𝑅𝑇 (Remaining Transactions) be the transactions whose enu-
meration is expected in the 𝑁 subtree. Note that enumeration nodes
are unique: they can lead to the same itemset 𝑁.𝐼 but they will have
different 𝑁.𝐶𝑇 and 𝑁.𝑅𝑇 . Nodes that potentially contain co-movement
patterns are added to the queue (Line 8). While at least an extendable
node exists (Line 9), a node is removed from the queue (Line 10) and
extended (Line 11); the resulting nodes are appended in  (Line 12).
Finally, the nodes associated with co-movement patterns are returned
(Line 13).

Algorithm 2, applied in Algorithm 1 Line 11, shows how enumera-
tion nodes are extended. First of all, if the node corresponds to a valid
co-movement pattern (Line 1), it is added to the global accumulator
(Line 2). Then, an empty queue is initialized to store the extendable
nodes (Line 3), which are enumerated by 𝑁 if the latter can poten-
tially generate co-movement patterns (Line 4). The 𝐶ℎ𝑒𝑐𝑘() function,
which verifies validity and extensibility of a pattern, is discussed in
Section 5.2. Before enumerating new nodes, Lines 5–7 avoid useless
extension steps: transactions 𝑌 shared by all the items in the ̄-itemset
(Line 5) will generate no new ̄-itemsets since intersecting 𝑁.𝐼 with
the transactions in 𝑌 would produce 𝑁.𝐼 itself by definition. Thus,
transactions in 𝑌 should not be intersected; they can be removed from

𝑁.𝑅𝑇 and directly added into 𝑁.𝐶𝑇 . For each of the transactions



Expert Systems With Applications 238 (2024) 122055M. Francia et al.

1
1
1
1
1
1

p
n
m
I
e
b

Fig. 5. Shape and redundancy checks.
s

f
i
o
i
𝑁
c
a
f
T
n
v
t
w
𝑁
t
b
u
t

E
(
a
p
b

t
o
r
s
𝑆
p

D
n

Algorithm 2 Extend
Require: 𝑁 : enumeration node, 𝑚𝑆𝑢𝑝: support, 𝑚𝐶𝑟𝑑: cardinality
Ensure: : Extended ̄-itemsets
1: if 𝐶ℎ𝑒𝑐𝑘(𝑁, ‘‘val’’, 𝑚𝑆𝑢𝑝, 𝑚𝐶𝑟𝑑) = 𝑡𝑟𝑢𝑒 then

⊳ If 𝑁 refers to a co-movement pattern
2:  ←  ∪ {𝑁} ⊳ store it
3:  ← ∅ ⊳ Initialize a node queue
4: if 𝐶ℎ𝑒𝑐𝑘(𝑁, ‘‘ext’’, 𝑚𝑆𝑢𝑝, 𝑚𝐶𝑟𝑑) = 𝑡𝑟𝑢𝑒 then

⊳ If 𝑁 ’s subtree potentially contains co-movement patterns
5: 𝑌 ← 𝑠𝑢𝑝(𝑁.𝐼) ∩𝑁.𝑅𝑇 ⊳ Transactions shared by all items in 𝑁.𝐼
6: 𝑁.𝐶𝑇 ← 𝑁.𝐶𝑇 ∪ 𝑌 ⊳ are added to the covered set
7: 𝑁.𝑅𝑇 ← 𝑁.𝑅𝑇 ⧵ 𝑌 ⊳ and removed from those to be extended
8: 𝑅𝑇𝑛𝑒𝑥𝑡 ← 𝑁.𝑅𝑇 ⊳ Initialize 𝑅𝑇𝑛𝑒𝑥𝑡
9: for each 𝑄 ∈ 𝑁.𝑅𝑇 do ⊳ For each remaining transaction
10: 𝑁 ′ ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒() ⊳ create an enumeration node 𝑁 ′

1: 𝑁 ′ .𝐼 ← 𝑁.𝐼 ∩𝑄 ⊳ set the ̄-itemset
2: 𝑁 ′ .𝐶𝑇 ← 𝑁.𝐶𝑇 ∪ {𝑄} ⊳ extend the Covered Transactions
3: 𝑅𝑇𝑛𝑒𝑥𝑡 ← 𝑅𝑇𝑛𝑒𝑥𝑡 ⧵ {𝑄} ⊳ reduce the Remaining Transactions
4: 𝑁 ′ .𝑅𝑇 ← 𝑅𝑇𝑛𝑒𝑥𝑡 ⊳ and assign them to 𝑁 ′

5: .𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑁 ′) ⊳ enqueue the node for extension
6: return  ⊳ Return the extended nodes

Algorithm 3 Check
Require: 𝑁 : enumeration node, 𝑡𝑦𝑝𝑒: type of check (either ‘‘val’’ for validity, or ‘‘ext’’ for

extensibility), 𝑚𝑆𝑢𝑝: support, 𝑚𝐶𝑟𝑑: cardinality
Ensure: Whether the node satisfies the constraints
1: 𝑣𝑎𝑙𝑖𝑑𝐶𝑟𝑑 ← |𝑁.𝐼| ≥ 𝑚𝐶𝑟𝑑 ⊳ Cardinality check
2: 𝑛𝑜𝑛𝑅𝑒𝑑 ← 𝑠𝑢𝑝(𝑁.𝐼) = 𝑁.𝐶𝑇 ⊳ Redundancy check
3: if 𝑡𝑦𝑝𝑒 = ‘‘val’’ then
4: 𝑣𝑎𝑙𝑖𝑑𝑆𝑢𝑝 ← 𝐼𝑠𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑(𝑁.𝐶𝑇 ,𝑚𝑆𝑢𝑝) ⊳ Support and shape check
5: else if 𝑡𝑦𝑝𝑒 = ‘‘ext’’ then
6: 𝑣𝑎𝑙𝑖𝑑𝑆𝑢𝑝 ← 𝐼𝑠𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑(𝑁.𝐶𝑇 ∪𝑁.𝑅𝑇 ,𝑚𝑆𝑢𝑝)

⊳ Support and shape check on the best hypothesis of 𝑁 ’s subtree
7: return 𝑣𝑎𝑙𝑖𝑑𝐶𝑟𝑑 ∧ 𝑛𝑜𝑛𝑅𝑒𝑑 ∧ 𝑣𝑎𝑙𝑖𝑑𝑆𝑢𝑝

that have yet to be covered (Line 9), a new node is generated by
intersecting the items in 𝑁.𝐼 with the ones in the transaction (Line
11). The transaction is then added to the covered ones (Line 12) and
consequently removed from 𝑅𝑇𝑛𝑒𝑥𝑡 (Line 13) which is assigned to the
new node as the set of remaining transactions (Line 14). Finally, the
current node is queued for extension (Line 15). When the entire set
of remaining transactions is exhausted, the extended nodes potentially
entailing co-movement patterns are returned (Line 16).

5.2. Validity check and enumeration pruning

CTM relies on three different checks to validate co-movement pat-
terns and to prune subtrees. Checks are implemented through the
𝐶ℎ𝑒𝑐𝑘() function.

Cardinality check. This check verifies whether the ̄-itemset com-
rises enough items (i.e., trajectories). The minimum cardinality is
ecessary to validate a pattern. Additionally, since it holds the anti-
onotone property, it can be used to prune 𝑁 ’s subtree as well.

n particular, an itemset’s cardinality monotonically decreases with
xtensions since itemsets related to nodes in 𝑁 ’s subtree are obtained
y intersecting 𝑁.𝐼 with additional transactions (see Algorithm 2 Line
8

11). Thus, if a ̄-itemset 𝑁.𝐼 does not fulfill the cardinality constraint,
none of its extensions will, and 𝑁 ’s subtree can be pruned.

Support and shape check. This check verifies the minimum sup-
port and the connection constraints as in Table 3. The check relies
on the 𝐼𝑠𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑(∗, 𝑚𝑆𝑢𝑝) function, which takes in input a set
of transactions ∗ and carries out different checks according to the
earched pattern type.

• Co-location and Swarm patterns do not require shape constraints
but only sufficient support (|∗

| ≥ 𝑚𝑆𝑢𝑝).
• Flow and Convoy patterns require tiles to be connected. This

can be checked by verifying if, in |∗
|, there are transactions

corresponding to two tiles connected by a path long at least 𝑚𝑆𝑢𝑝
(see Definition 4). Obviously, if such a connected pair exists, the
minimum support constraint is fulfilled too. In our context, the
tessellation fits the main memory of every single machine, thus
connected components can be found in linear time (Hopcroft &
Tarjan, 1973).

Additionally to the shape check discussed above, the 𝐼𝑠𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑()
unction also verifies the minimum support. Notice that this verification
s different, depending on whether the pattern is checked for validity
r for extensibility (Algorithm 3 Lines 4 and 6, respectively). Validity
s verified on the current pattern’s covered transactions, i.e., ∗ =
.𝐶𝑇 . To verify extensibility, we must consider that (differently from

ardinality) support and shape hold the monotonic property (as 𝐶𝑇 is
lways incremented with new transactions): if a ̄-itemset does not
ulfill the support and shape constraint, some of its extensions can.
hus, the pruning of 𝑁 ’s subtree is possible only by verifying that
one of the nodes in 𝑁 ’s subtree satisfies these constraints. An exact
erification would require to enumerating all the nodes in the subtree
o generate the corresponding ̄-itemsets (which is exactly what we
ant to avoid). We optimize this verification by considering ∗ =
.𝐶𝑇 ∪𝑁.𝑅𝑇 as a best hypothesis, i.e., an optimistic transaction layout

hat includes all the transactions in the 𝑁 ’s subtree. Even if it has not
een verified whether a corresponding ̄-itemset exists, it serves as an
pper-bound to the support and shape check, thus allowing 𝑁 ’s subtree
o be pruned if the best hypothesis does not pass the check.

xample 6. With reference to Fig. 5(a), given 𝐼.𝐶𝑇 = {𝑄𝐴1, 𝑄𝐵1}
green) and 𝐼.𝑅𝑇 = {𝑄𝐶3,… , 𝑄𝐷4} (blue), 𝐼.𝐶𝑇 ∪𝐼.𝑅𝑇 cannot produce

convoy with 𝑚𝑆𝑢𝑝 = 7 (there are no 7 adjacent tiles) but can
otentially produce a convoy with 𝑚𝑆𝑢𝑝 = 6 (there are 6 adjacent –
lue – tiles).

Redundancy check. This check avoids generating a ̄-itemset more
han once. The enumeration strategy relies on transaction lexicographic
rdering (Algorithm 1 Line 7) to perform a systematic and non-
edundant enumeration of transaction combinations. Nonetheless, the
ame ̄-itemset 𝐼 could result from two different sets of transactions
′ and 𝑆′′. We rely on the ̄-itemset redundancy definition below to
rune the enumeration tree.

efinition 10 (Non-Redundant Enumeration Node). An enumeration
ode 𝑁 is non-redundant if 𝑠𝑢𝑝(𝑁.𝐼) = 𝑁.𝐶𝑇 .
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Example 7 (Redundancy). With reference to Fig. 5(b), let 𝑁 , 𝑁 ′ and
′′ be enumeration nodes. Let 𝑁.𝐼 = {𝑇𝑔 , 𝑇𝑟} be a ̄-itemset with

𝑢𝑝(𝑁.𝐼) = {𝑄𝐴1, 𝑄𝐵1, 𝑄𝐵2, 𝑄𝐵3} (gray area). The ̄-itemset can be
enerated by intersecting 𝑁 ′.𝐼 = {𝑇𝑏, 𝑇𝑔 , 𝑇𝑟} (with 𝑁 ′.𝐶𝑇 = {𝑄𝐴1, 𝑄𝐵1}
nd 𝑁 ′.𝑅𝑇 = {𝑄𝐶1,… , 𝑄𝐷4}) with the transaction 𝑄𝐵2 = {𝑇𝑔 , 𝑇𝑟}.
lternatively, it can be obtained directly from 𝑄𝐵2, where 𝑁 ′′.𝐼 =
= {𝑇𝑔 , 𝑇𝑟} with 𝑁 ′′.𝐶𝑇 = {𝑄𝐵2, 𝑄𝐵3} (dotted area) and 𝑁 ′′.𝑅𝑇 =

𝑄𝐶2,… , 𝑄𝐷4}. 𝑁 ′′ will be discarded since redundant, i.e. 𝑁 ′′.𝐶𝑇 ⊂
𝑢𝑝(𝑁 ′′.𝐼) = 𝑠𝑢𝑝(𝑁.𝐼). Note that, even if 𝑁 ′′ refers to transaction 𝑄𝐵2,
′′.𝐶𝑇 is automatically extended to {𝑄𝐵2, 𝑄𝐵3} by Algorithm 2 Line 6.

heorem 2 (Uniqueness of Non-Redundant Enumeration Nodes). There do
ot exist two distinct non-redundant enumeration nodes 𝑁 and 𝑁 ′ such that
.𝐼 = 𝑁 ′.𝐼 .

See Proof 2 in Appendix.
Dropping redundant subtrees does not affect the enumeration

ompleteness as proved by the following theorem.

heorem 3 (Completeness of Non-Redundant Enumerations). All ̄-
temsets generated from redundant enumeration nodes are generated from
on-redundant enumeration nodes too.

See Proof 3 in Appendix.
Note that all the pruning techniques described so far rely on local

nformation only, i.e. information related to the node except for ,
hich is assumed to be distributed. In particular, the non-redundancy

heck comes at the cost of accessing  when the support has to be
omputed, with complexity 𝑂(||).

.3. Distributed implementation

CTM is independent of the underlying distributed framework. For
ur implementation we adopted Spark. A Spark application consists of
driver running the main function and demanding concurrent compu-

ations. Spark acquires resources, called executors, to run distributed
omputations on cluster nodes. Computations are organized in jobs,
.e., parallel computations consisting of multiple tasks. Tasks are work
nits sent to one executor. Spark allows to broadcast (i.e., to replicate)
ead-only shared variables and to define centralized variables on the
river program that can be updated by each executor. Spark provides
esilient distributed datasets (RDDs), collections of data items parti-
ioned across the cluster nodes that enable the distributed computation
n each partition. RDDs can be created from existing centralized col-
ections through the parallelize function. RDDs allow transformations
hat return new RDDs such as: map (transforms each data items into

new one) and flatMap (similar to map, but allows returning 0, 1
r more elements). Finally, the shuffle mechanism re-distributes data
cross partitions following a given criterion. For instance, shuffling
ata items based on their hash values creates partitions containing a
niformly distributed number of data items; see the hashing properties
n Menezes, van Oorschot, and Vanstone (1996).

Two key features that allow CTM to efficiently extract co-movement
atterns in a distributed environment are the locality of constraint
hecks and breadth-first exploration. Checks involving local informa-
ion prevent the need to introduce a single centralized bottleneck which
ould constraint the feasibility of the approach. As to breadth-first
xploration, its benefits are twofold. First, it allows the simultaneous
omputation of all the ̄-itemsets ‘‘at the same level’’ of the enumera-
ion tree; intuitively, each level of the enumerated tree is distributedly
numerated by a Spark Job (see Fig. 6), allowing a massive paral-
elization of the generation of ̄-itemsets. Second, in combination with
huffling, breadth-first exploration allows a balanced distribution of
̄ -itemsets across the executors.

Algorithm 4 describes the distributed implementation of CTM with
unctions MapQ() and MapExtend() being distributed over the ex-
cutors. In Line 1,  is broadcasted to the executors. This allows
9

Algorithm 4 CTM distributed
Require: : transactions, 𝑚𝑆𝑢𝑝: support, 𝑚𝐶𝑟𝑑: cardinality
nsure: 𝑅𝐷𝐷 : co-movement patterns

1: broadcast() ⊳ Make transactions available to executors
2: 𝑅𝐷𝐷 ← parallelize() ⊳ Create the RDD
3: 𝑅𝐷𝐷 ← 𝑅𝐷𝐷 .map(𝑀𝑎𝑝𝑄(𝑄)) ⊳ Map transactions to enumeration nodes
4: do
5: 𝑎𝑐𝑐 ← 𝑓𝑎𝑙𝑠𝑒 ⊳ Whether an extendable node exists
6: 𝑅𝐷𝐷 ← 𝑅𝐷𝐷 .shuffle(𝐻𝑎𝑠ℎ(𝑁)) ⊳ Redistribute the nodes
7: 𝑅𝐷𝐷 ← 𝑅𝐷𝐷 .flatMap(𝑀𝑎𝑝𝐸𝑥𝑡𝑒𝑛𝑑(𝑁))

⊳ Map nodes to extend them
8: while 𝑎𝑐𝑐 = 𝑡𝑟𝑢𝑒 ⊳ Loop until no node is extendable
9: return 𝑅𝐷𝐷

0: function MapQ(𝑄) ⊳ Map a transaction into an enumeration node
1: 𝑁 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒() ⊳ Create a new enumeration node

12: 𝑁.𝐼 ← 𝑄 ⊳ set the ̄-itemset
13: 𝑁.𝐶𝑇 ← {𝑄} ⊳ set Covered Transactions
14: 𝑁.𝑅𝑇 ← {𝑄′

|𝑄′ ∈ , 𝑖𝑑(𝑄′) > 𝑖𝑑(𝑄)} ⊳ set Remaining Transactions
15: 𝑁.𝑒𝑥𝑡𝑒𝑛𝑑 ← 𝑡𝑟𝑢𝑒 ⊳ mark the node for extension
16: return 𝑁 ⊳ return the node

17: function MapExtend(𝑁) ⊳ Extend an enumeration node if needed
18: if 𝑁.𝑒𝑥𝑡𝑒𝑛𝑑 = 𝑡𝑟𝑢𝑒 then ⊳ If it potentially produces valid co-mov. patterns
19:  ← 𝐸𝑥𝑡𝑒𝑛𝑑(𝑁) ⊳ extend it
20: 𝑎𝑐𝑐 ← 𝑎𝑐𝑐 ∨ ∃𝑁 ∈  𝑠.𝑡. 𝑁.𝑒𝑥𝑡𝑒𝑛𝑑 = 𝑡𝑟𝑢𝑒

⊳ check if at least an extendable node exists
21: return  ⊳ and return the new patterns
22: else ⊳ If 𝑁 already refers to a valid co-movement pattern
23: return {𝑁} ⊳ return it

each executor to locally access  in its entirety (e.g., Line 14). In
Lines 2–3, an RDD is created and transactions are mapped to ̄-
temsets. Since only one RDD can be distributed in Spark, both valid
nd potential co-movement patterns are stored in the same RDD. To
istinguish between co-movement patterns and ̄-itemsets, we intro-

duce the Boolean flag 𝑁.𝑒𝑥𝑡𝑒𝑛𝑑 which is set to 𝑓𝑎𝑙𝑠𝑒 when the node
entails a co-movement pattern (i.e., it must be returned as-is) or to
𝑡𝑟𝑢𝑒 when it entails a ̄-itemset that can potentially produce a valid co-

ovement pattern through further extensions. ̄-itemsets that cannot
ead to a co-movement pattern are discarded in Algorithm 2 Line 4.
bviously, all nodes are initially marked as extendable (Line 15). The
hile loop from Line 4 to Line 8 uniformly distributes the nodes over

he executors and extends each of them (Line 7) independently of the
thers. The loop iterates until at least a node to be extended exists
i.e., 𝑎𝑐𝑐 = 𝑡𝑟𝑢𝑒). We omit the distributed version of 𝐸𝑥𝑡𝑒𝑛𝑑() since it is

marginally affected by distribution. Intuitively, it stores all the patterns
in  and sets 𝑁.𝑒𝑥𝑡𝑒𝑛𝑑 to 𝑓𝑎𝑙𝑠𝑒 when the node entails a valid pattern
(i.e., 𝐶ℎ𝑒𝑐𝑘(𝑁, ‘‘val’’, 𝑚𝑆𝑢𝑝, 𝑚𝐶𝑟𝑑) = 𝑡𝑟𝑢𝑒) or to 𝑡𝑟𝑢𝑒 otherwise.

Example 8 (CTM in Action). Fig. 6 shows the enumeration tree for
co-location patterns in Fig. 3 with 𝑚𝐶𝑟𝑑 = 2 and 𝑚𝑆𝑢𝑝 = 2. Each
level of the tree corresponds to an RDD generated in parallel through a
job. RDDs are supposed to be composed by several partitions (dashed
rectangles) distributed to executors. Each partition includes several
nodes; the grayed ones are non-extendable. Examples of non-extendable
nodes are 𝑁2 (redundant to 𝑁1) and 𝑁3 since |𝑁3.𝐼| < 𝑚𝐶𝑟𝑑. The
first level of the tree results from mapping of transactions to nodes
carried out by MapQ() (see Algorithm 4 Line 3). Only the node 𝑁1
satisfies the 𝐶ℎ𝑒𝑐𝑘() for extensibility and is further expanded. Each of
the following levels results from extending in parallel (see Algorithm
4 Line 7) the nodes left over after pruning. Overall, two co-location
patterns (𝑁1.𝐼 = {𝑇𝑏, 𝑇𝑔 , 𝑇𝑟} and 𝑁12.𝐼 = {𝑇𝑔 , 𝑇𝑟}) are found, marked
with 𝑒𝑥𝑡𝑒𝑛𝑑 = 𝑓𝑎𝑙𝑠𝑒, retained in the RDD, and finally returned.

6. Evaluation

We show how CTM is applied to several use cases and its perfor-
mance. We first introduce the datasets (namely Milan, Oldenburg, and
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Fig. 6. Enumeration tree for co-location patterns in Fig. 3 with 𝑚𝐶𝑟𝑑 = 2 and 𝑚𝑆𝑢𝑝 = 2: each level of the enumeration tree corresponds to a distributed job.
Table 4
Dataset characteristics.

Milan Oldenburg (Brinkhoff, 2002) Hermoupolis (Pelekis, Sideridis, Tampakis, & Theodoridis, 2015)

MOs 6.0 ⋅ 106 106 4.2 ⋅ 103

Points 2.2 ⋅ 108 6.4 ⋅ 107 5 ⋅ 107

Avg traj. points 23 ± 97 65 ± 36 1.2 ⋅ 104 ± 7 ⋅ 103

Spatial span 204 km2 634 km2 628 km2

Time span 3 months 246 timestamps 1 week

Dataset type Real Synthetic Synthetic
Spatial feature Administrative boundaries Grid Grid
Temporal feature Daily time slots Minutes Minutes
Additional features – – Transportation, Activity, Speed
Hermoupolis) we use to assess the effectiveness, efficiency, and robust-
ness of our approach. As to effectiveness (Section 6.3), we (i) evaluate
how CTM has been (or can be) applied to extract co-movement patterns
in real-world (or synthetic) case studies including both geometric and
semantic features, and (ii) assess the effects of semantic features on
the co-movement patterns. As to efficiency (Section 6.4), we assess
the scalability by changing the input parameters of CTM. Finally, we
compare CTM and its robustness to related approaches in Section 6.5.
All tests run on a cluster of 10 nodes, each equipped with an 8-core
i7 CPU@3.60 GHz and 16 GB of RAM and interconnected by Gigabit
Ethernet. Our implementation is available at https://github.com/big-
unibo/ctm.

6.1. Dataset description

The datasets differ with respect to MO behaviors and involved
features. Their characteristics are summarized in Table 4. Milan is
a real trajectory dataset that contains trajectories from 6 ⋅ 106 MOs
(i.e., individuals) from the Milan metropolitan area (around 200 km2).
Trajectories are sparse in time since they represent inhabitants as well
as travelers over three months. Milan produces real-world patterns
10
(e.g., from the main train station to well-known points of inter-
est such as the dome or the stadium). Oldenburg is a synthetic
dataset (Brinkhoff, 2002); it contains trajectories from 106 MOs from
the Oldenburg area (around 600 km2). Since trajectories span for 246
timestamps, the synthetic trajectories are highly temporally overlap-
ping and condensed in a small period of time. Hence, they are expected
to produce co-movement patterns dense in space and time. Hermoupo-
lis is a synthetic dataset too (Pelekis et al., 2015); its trajectories are
annotated with additional features and come from 4.2⋅103 MOs from the
Athens area (around 600 km2); trajectories span for 1 week and have an
average length of 1.2⋅104 raw points. Additional features range from the
means of transport (e.g., bus or bicycle) to the activity undertaken by
the user (e.g., sporting, studying, relaxing), and to the speed (e.g., move
or stop).

6.2. Parameter tuning

𝑆, 𝑚𝐶𝑟𝑑, and 𝑚𝑆𝑢𝑝 are dataset- and problem-specific parameters
(see Section 2) and have been chosen to answer the following business
question: ‘‘Which computable patterns are meaningful for our analysis?’’.
To do this we rely on the following guidelines.

https://github.com/big-unibo/ctm
https://github.com/big-unibo/ctm
https://github.com/big-unibo/ctm
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Fig. 7. A real-world swarm pattern from the Milan dataset with 𝑚𝐶𝑟𝑑 = 100 and
𝑚𝑆𝑢𝑝 = 7.

1. Choose a tessellation (𝑆) according to the goal of the analysis
(e.g., looking for co-movement patterns in the Milan neigh-
borhoods). If a geometric grid is adopted, the tile granularity
depends on the level of detail of the analysis. Note that the tessel-
lation should depend on the goal rather than on the optimization
of the computation time.

2. Set the number of shared tiles (𝑚𝑆𝑢𝑝) that is relevant for the
analysis (e.g., to be considered as interesting, a co-movement
pattern must traverse at least 3 neighborhoods).

3. Set the minimum group cardinality (𝑚𝐶𝑟𝑑) that is relevant for
the analysis (e.g., if interested in car-sharing applications 𝑚𝐶𝑟𝑑
could be set between 2 and 6).

4. Verify if the combination of parameters determines meaningful
patterns in a reasonable amount of time. If not, iterate on
the parameters 𝑚𝑆𝑢𝑝 and 𝑚𝐶𝑟𝑑 until (i) results are ‘‘stable’’
(i.e., varying 𝑚𝐶𝑟𝑑 and 𝑚𝑆𝑢𝑝 causes limited changes in the
number of co-movement patterns) as prescribed by the elbow
method (Satopaa, Albrecht, Irwin, & Raghavan, 2011), and (ii)
the solution is computable in a reasonable time. While varying
the parameters, consider the following.

• Higher values of 𝑚𝐶𝑟𝑑 and 𝑚𝑆𝑢𝑝 entail a lower number
of co-movement patterns (e.g., fewer groups of MOs will
share a longer path) and, in turn, reduce the computation
time.

• The values of 𝑚𝐶𝑟𝑑 and 𝑚𝑆𝑢𝑝 should also consider the
tessellation. For instance, if trajectories are dense, a fine-
grained tessellation determines longer patterns. On the
other hand, if trajectories are sparse, a fine-grained tessel-
lation amplifies such sparsity reducing the MOs sharing the
same tiles; thus, lower values of 𝑚𝑆𝑢𝑝 or 𝑚𝐶𝑟𝑑 are needed
to increase the number of returned patterns.

Although automatizing the approach is beyond the scope of the paper,
the points above encode the principles that should drive such an
automatic solution.

6.3. Effectiveness

6.3.1. Qualitative evaluation and setup of the tessellation
Table 5 reports the outcomes for all datasets and all co-movement

pattern types. To mine co-movement patterns with CTM, it is first
necessary to identify the business question and then to properly set the
tessellation. Tessellations can be built out of diverse types of features,
features can be continuous (e.g., speed) or discrete (e.g., means of
transport), absolute (e.g., timestamp) or aggregated (e.g., hour bins),
geometric (e.g., latitude/longitude) or semantic (e.g., administrative
neighborhoods and municipalities, as in Fig. 1).
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Fig. 8. Example of a swarm pattern in the Hermoupolis dataset including space, time,
and means of transport (bus and bicycle) features.

We provide an example of the swarm patterns extracted on our
real case study: Milan. The dataset has been collected during the ur-
ban mobility analysis project ‘‘La città intorno’’ (https://lacittaintorno.
fondazionecariplo.it/) that aims to understand the mobility patterns
of inhabitants living in suburban neighborhoods. In the context of
urban planning, ‘‘La città intorno’’ focused on ranking neighborhoods
by their attractiveness in order to understand how to allocate economic
resources for requalification. The attractiveness of a neighborhood is
defined as the percentage of co-movement patterns passing through
that neighborhood. To fulfill the analysis, we initially define a tessella-
tion where the spatial feature represents the 88 neighborhoods in Milan
(Fig. 1(a)) and the temporal feature represents a relative dimension
that partitions absolute timestamps into six bins, such as night (from
0 to 3) and morning (from 8 to 11); overall |𝑆| = 88 ⋅ 6 = 528 tiles.
Then, together with domain experts, we set relevant values for 𝑚𝐶𝑟𝑑
and 𝑚𝑆𝑢𝑝. Fig. 7 depicts an example of a swarm pattern for 𝑚𝐶𝑟𝑑 = 100
and 𝑚𝑆𝑢𝑝 = 7 in which at least 100 people follow the same path around
the city center in the morning and from the city center to the central
station in the afternoon. Table 6 shows the results of our attractiveness
analysis, highlighting the need for higher requalification in ‘‘Lodi -
Corvetto’’, ‘‘Padova’’, and ‘‘Adriano’’; the most attractive neighborhoods
are the ones closest to the city center.4

We emphasize that while mapping raw trajectory points to tiles
causes a loss of (geometric) precision, no semantic information is lost
as long as the chosen tessellation is adequate for the analysis goal.
For instance, losing the precision of a single spatial point (in the
order of meters) does not affect the results when looking for groups
of trajectories moving through the neighborhoods. Table 7 shows com-
pression obtained by mapping raw trajectory points into the tessellation
to obtain the trajectory and the transaction datasets. Cardinality is
expressed as raw points, tiles, and trajectory ids depending on CTM’s
step.

6.3.2. Impact of additional features
Since Oldenburg and Hermoupolis are synthetic datasets – and

no business value can be extracted from them – we limit the spatial
feature to a uniform grid and we shape the size of tiles to get a number
of tiles that is comparable to Milan (around 90), then we consider
the time granularity of minutes for both of them. Additionally, Her-
moupolis contains the following features: means of transport, activity,
and speed (i.e., move or stop). These features provide a more precise
characterization of co-movement patterns. To highlight the effect of

4 By filtering tiles on the time bin, it is possible to characterize how
attractiveness changes during the day.

https://lacittaintorno.fondazionecariplo.it/
https://lacittaintorno.fondazionecariplo.it/
https://lacittaintorno.fondazionecariplo.it/
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Table 5
KPIs by dataset and pattern type.

Milan (𝑚𝐶𝑟𝑑 = 100, 𝑚𝑆𝑢𝑝 = 12)

Type |𝑆| Patterns Enum. Time (s) Shape check Card. check Red. check

Flow 88 9.7 ⋅ 104 2.1 ⋅ 107 31 53% 82% 30%
Co-loc. 88 2.3 ⋅ 105 2.6 ⋅ 107 44 31% 82% 31%
Convoy 528 0a 5.5 ⋅ 108 180 1% 99% 90%
Swarm 528 124 3.0 ⋅ 108 127 8.2% 98% 70%

Oldenburg (𝑚𝐶𝑟𝑑 = 500, 𝑚𝑆𝑢𝑝 = 12) Hermoupolis (𝑚𝐶𝑟𝑑 = 400, 𝑚𝑆𝑢𝑝 = 12)

Type |𝑆| Patterns Enum. Time (s) |𝑆| Patterns Enum. Time (s)

Flow 90 12 4.6 ⋅ 105 11 230 9.3 ⋅ 104 2.2 ⋅ 107 34
Co-loc. 90 42 4.6 ⋅ 105 14 230 9.3 ⋅ 104 2.4 ⋅ 107 36
Convoy 1.8 ⋅ 103 1.9 ⋅ 104 2.2 ⋅ 109 1.7 ⋅ 103 1.5 ⋅ 103 1.5 ⋅ 105 1.6 ⋅ 109 358
Swarm 1.8 ⋅ 103 6.5 ⋅ 104 2.4 ⋅ 109 1.8 ⋅ 103 1.5 ⋅ 103 1.0 ⋅ 107 2.7 ⋅ 109 1.1 ⋅ 103

a Due to the sparsity in time, no convoy pattern is returned in the Milan dataset.
(
s

Table 6
An excerpt of attractiveness for neighborhoods in Milan.

Neighborhood Attractiveness

Brera 83%
Duomo 83%
Buenos Aires - Venezia 82%
XXII Marzo 82%
Gallaratese 5%
Lodi - Corvetto 4%
Padova 3%
Adriano 1%

Table 7
Compression of the Milan dataset.

Dataset Raw Trajectory Transaction

Cardinality 2.2 ⋅ 108 2.9 ⋅ 107 3.8 ⋅ 106

Size 6 GB 1.4 GB 19 MB

additional features (e.g., transport), Fig. 8 shows a qualitative example
of a swarm composed of individuals moving together by bicycle and
then by bus in the Hermoupolis dataset. When moving by bus (blue),
eople share longer paths than by bicycle (red), and such paths are also
ore fragmented since no location can be registered in all adjacent

iles (due to the speed of the bus and the sampling rate of trajectory
ocations).

It is worth analyzing how much the patterns diverge when adding
ew features. We tested the Hermoupolis dataset with and without

its additional features (𝑚𝐶𝑟𝑑 = 400, 𝑚𝑆𝑢𝑝 = 12). We measured the
differences in the co-movement pattern compositions through Adjusted
Mutual Information (AMI) (Vinh, Epps, & Bailey, 2010). The higher
(up to 1) the AMI, the higher the number of trajectories shared by
co-movement patterns in the tessellations with and without additional
features. If the AMI is 1, no information is induced by additional fea-
tures. Table 8 reports the results, where A, S, and T stand for additional,
spatial, and temporal features. Additional features sensibly change co-
movement patterns as desired. It should be also noted that the number
of ST patterns can either increase or decrease with respect to STA
patterns. This comes from the combined effect of two phenomena
induced by the transition to a finer tessellation: on the one hand there is
a proliferation of patterns, on the other hand, patterns could be sparser
and, hence, filtered out.

6.4. Efficiency

For the sake of conciseness, we focus on (i) the swarm pattern as it
represents the scenario showing the highest computational time, and
(ii) Milan and Oldenburg datasets only since Hermoupolis returns
results highly similar to Oldenburg. To study the performance in detail,
12
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Table 8
KPIs by pattern type.

Type AMI ST patterns STA patterns

Flow 0.17 5.1 ⋅ 103 9.3 ⋅ 104

Co-loc. 0.17 5.6 ⋅ 103 9.3 ⋅ 104

Convoy 0.23 1.1 ⋅ 107 1.5 ⋅ 105

Swarm 0.23 1.1 ⋅ 107 1.0 ⋅ 107

Table 9
Parameters with default values.

Param. Description Milan Oldenburg

𝑚𝐶𝑟𝑑 Min. group cardinality 100 500
𝑚𝑆𝑢𝑝 Min. shared path (support) 12 12
|𝑆| Tessellation cardinality 528 1.8 ⋅ 103

| | Trajectories in the dataset 6.0 ⋅ 106 1.0 ⋅ 106

Exec. Computational units 10 10
RAM Available RAM per exec. 8 GB 8 GB

we change the parameters in Table 9, one at a time, and we consider
the respective default values for the remaining ones.5

The impact of pruning on the execution time is summarized in
Table 5. For Milan, the table shows the percentage of times each check
has been triggered with respect to the enumerated ̄-itemsets. While
percentages are here reported independently of each other, a failure
of one check prevents the computation of the others. In particular, the
failure of the shape or cardinality checks allows to skip the support
computation. The cardinality check is always the most effective prun-
ing, preventing the extension of 98% of ̄-itemsets for swarm patterns.
The shape check is more effective for flow patterns than for co-location
patterns; extending ̄-itemsets only within sets of connected tiles allows
further pruning.

Tables 10 and 11 show how performance changes by varying the
minimum group cardinality (i.e., 𝑚𝐶𝑟𝑑) and the minimum length of
the shared path (i.e., the support 𝑚𝑆𝑢𝑝). For all datasets the number of
retrieved patterns and the computational time increase by decreasing
the two thresholds. Decreasing 𝑚𝐶𝑟𝑑 affects CTM more than decreasing
𝑚𝑆𝑢𝑝 due the higher pruning of the cardinality check. For instance,
in Milan, halving 𝑚𝑆𝑢𝑝 increases the enumerated nodes from 3.0 ⋅ 108

to 4.7 ⋅ 108, while halving 𝑚𝐶𝑟𝑑 increases the enumerated nodes from
3.0⋅108 to 7.6⋅109. Indeed, cardinality checks sensibly affect the pruning
(Table 5).

Tables 12 and 13 show how performance changes by varying
the cardinality of both the tessellation (i.e., |𝑆|) and the trajectories
(i.e., | |) given as input to CTM. As to |𝑆|, we achieve finer tessellations

5 As to RAM allocation, we assigned each executor 8 GB out of 16 GB since
i) a Spark-related memory overhead is assigned to each executor and (ii) the
ervices responsible for cluster coordination have a non-negligible memory
ootprint.
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Table 10
Enumerated swarm patterns by increasing 𝑚𝐶𝑟𝑑.
Milan

𝑚𝐶𝑟𝑑 Enum. Time (s)

25 7.6 ⋅ 109 1.5 ⋅ 103

50 1.5 ⋅ 109 398
75 5.8 ⋅ 108 186
100 3.0 ⋅ 108 126

Oldenburg

𝑚𝐶𝑟𝑑 Enum. Time (s)

200 1.3 ⋅ 1010 6.0 ⋅ 103

300 6.6 ⋅ 109 3.7 ⋅ 103

400 3.7 ⋅ 109 2.6 ⋅ 103

500 2.4 ⋅ 109 1.8 ⋅ 103
Table 11
Enumerated swarm patterns by increasing 𝑚𝑆𝑢𝑝.
Milan

𝑚𝑆𝑢𝑝 Enum. Time (s)

6 4.7 ⋅ 108 349
8 3.2 ⋅ 108 180
10 3.2 ⋅ 108 148
12 3.0 ⋅ 108 126

Oldenburg

𝑚𝑆𝑢𝑝 Enum. Time (s)

6 2.7 ⋅ 109 2.2 ⋅ 103

8 2.4 ⋅ 109 1.8 ⋅ 103

10 2.4 ⋅ 109 1.8 ⋅ 103

12 2.4 ⋅ 109 1.8 ⋅ 103
Table 12
Performance for increasing tiles |𝑆|.
Milan

|𝑆| Enum. Time (s)

357 3.0 ⋅ 108 126
534 9.6 ⋅ 108 288
679 1.4 ⋅ 109 399
873 2.0 ⋅ 109 647

Oldenburg

|𝑆| Enum. Time (s)

1791 2.4 ⋅ 109 1.8 ⋅ 103

1838 2.5 ⋅ 109 1.9 ⋅ 103

2101 2.2 ⋅ 109 1.6 ⋅ 103

2232 2.8 ⋅ 109 2.0 ⋅ 103
Table 13
Performance for increasing trajectories | |.
Milan

| | Enum. Time (s)

1.5 ⋅ 106 1.6 ⋅ 107 10
3.0 ⋅ 106 6.2 ⋅ 107 22
6.0 ⋅ 106 3.0 ⋅ 108 126

Oldenburg

| | Enum. Time (s)

2.5 ⋅ 105 5.7 ⋅ 107 43
5.0 ⋅ 105 4.1 ⋅ 108 273
1.0 ⋅ 106 2.4 ⋅ 109 1.8 ⋅ 103
by creating finer spatial grids. To do so in the Milan dataset, we
approximate the neighborhoods with a spatial grid. For all datasets, we
start with a grid of cells with side 2 km and we incrementally reduce the
cell side by 200 m. Changing the tessellation cardinality |𝑆| affects CTM
in two ways. On the one hand, increasing the cardinality affects the
sparsity of the dataset. Having more tiles fragments trajectory groups
until only trajectories matching exact points (e.g., latitude and longi-
tude) can be grouped. On the other hand, it broadens the search space
of the algorithm. These two effects compensate each other, allowing
CTM to explore a search space in the order of thousands of tiles. As to
| |, we achieve smaller datasets by halving the number of trajectories
twice; decreasing the trajectory cardinality | | sensibly reduces the
enumerated space and the computational time: fewer trajectories are
less likely to create co-movement patterns.

Finally, Table 14 shows how the amount of RAM and parallelism
(i.e., the number of executors) affect CTM. As shown for all datasets,
our approach can be applied even when a small amount of RAM is
given to each executor. This is due to our implementation on Spark
RDDs, where data is split into partitions that are loaded into main
memory only when they are ready to be processed. As to the paral-
lelism, reducing the number of executors sensibly affects performance.
When CTM runs on a single executor, we move from 2 to 13 min in
Milan and from 30 min to almost 4 h in Oldenburg. The number of
executors affects time (almost) linearly, proving that CTM uniformly
distributes the workload among the executors. Note that changing RAM
and number of executors does not affect the result in terms of the
generated co-movement patterns but only the time necessary for their
extraction.

We proved that CTM can work in the order of thousands of tiles
(Table 5). However, it is unfeasible to provide fixed boundaries in
which the method can be applied since they depend on the following
factors.
13
• The distribution of trajectories. Intuitively, 104 tiles with highly
sparse trajectories can produce fewer co-movement patterns than
102 tiles with dense trajectories.

• The pruning effects of 𝑚𝑆𝑢𝑝 and 𝑚𝐶𝑟𝑑 (Table 5). Even out of a
huge number of tiles, the higher is 𝑚𝐶𝑟𝑑 the easier it becomes to
discard a-priori tiles with insufficient amounts or trajectories.

• The combination of the above: given a certain dataset, choosing
finer tessellations (i.e., tessellations with an increasing number
of tiles) affects the cardinality and support of the extracted
co-movement patterns (e.g., smaller tiles will contain fewer tra-
jectories requiring a different value of 𝑚𝐶𝑟𝑑 to extract meaningful
co-movement patterns).

6.5. Comparison

We test CTM against SPARE (Fan et al., 2016) (the only big-data
approach to the extraction of generic co-movement patterns), and PFP-
Growth (Li, Wang, Zhang, Zhang, & Chang, 2008) (a big data approach
to Frequent Itemset Mining).

Before diving into the comparison, we first list the main features
distinguishing CTM and SPARE.

• CTM allows the extraction of spatial patterns as well as pat-
terns characterized by custom features (e.g., time, speed, or age)
of which a discussion has been presented at the end of Sec-
tion 4. SPARE extracts only spatio-temporal patterns and does not
provide support to additional features.

• The temporal feature is optional in CTM and can have custom
semantics, allowing, for instance, the extraction of co-movement
patterns in weeks, holidays, or absolute hour bins. SPARE requires
a mandatory absolute temporal feature.
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Table 14
Time (s) for increasing RAM and executors.
RAM Milan Oldenburg

2 GB 131 1.8 ⋅ 103

4 GB 122 1.9 ⋅ 103

6 GB 122 1.7 ⋅ 103

8 GB 126 1.8 ⋅ 103

Executors Milan Oldenburg

1 849 1.3 ⋅ 104

3 297 4.6 ⋅ 103

6 172 2.6 ⋅ 103

10 126 1.8 ⋅ 103
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• SPARE treats the temporal and spatial features sequentially. At
first, it groups trajectory points by absolute time bins (e.g., 3
Mar 2020, 10:00:00 and 3 Mar 2020, 11:00:00), then it clusters
trajectories in each time bin, and, finally, it uses an Apriori-like
approach to create the co-movement patterns out of the clusters
from different time bins. This results in the lack of possibility to
find co-movement patterns within the same time bin. As a result,
if the time bin is coarse (e.g., morning or afternoon) a sensible
amount of co-movement patterns is lost (e.g., individuals that
move from one side of Milan to the other in a hour).

• Due to their formulation, CTM and SPARE are complementary.
CTM allows the retrieval of large groups of trajectories from a
coarse tessellation (which justifies the adoption of a bread-first
row-enumeration approach), while SPARE allows the retrieval of
smaller groups from a finer path (which justifies the adoption of
an Apriori-like enumeration). As a result, when SPARE tries to
extract huge groups of trajectories, it easily ends up in a memory
fault.

While SPARE does not consider additional features, Frequent Item-
et Mining approaches could be leveraged to compute all FIs and

then filter out only the actual co-movement patterns through a
post-processing phase.6 We leverage PFPGrowth, a well-known imple-
mentation of distributed FIM already implemented in the Spark suite,
to compute all the (potential) swarm patterns on the entire Oldenburg
dataset. In PFPGrowth the computation of FIs does not rely on Apriori
enumeration.

We tested SPARE against the whole Oldeburg, Hermoupolis, and
Milan datasets and we stopped computations longer than 104 seconds.
SPARE failed to compute due to the exponentiality of Apriori enumer-
ation. The points above explain why, by construction, it is unfeasible
to have exactly the same co-movement patterns unless the time bin
is fine-grained enough to guarantee that no trajectory has more than
one location in the same bin. With this in mind, we tried to make the
comparison as fair as possible by:

• Oldenburg: the time bin granularity is set in the order of seconds
so that no trajectory has more than one location in the same
time bin; this increased the size of the tessellation to |𝑆| = 3422.
We sampled only 2000 trajectories out of 106 (i.e., |𝑇 | = 2000);
this is necessary since SPARE follows an Apriori enumeration that
is exponential in the number of trajectories in the co-movement
patterns.

• Hermoupolis: we dropped the additional semantic features since
SPARE is limited to an absolute time dimension and we sampled
only 200 trajectories out of 4.2 ⋅ 103 (i.e., |𝑇 | = 200).

• Milan is too sparse in time to produce meaningful results at a fine
time-space granularity and with a limited amount of trajectories.

Fig. 9 depicts the comparison of the three approaches in terms of
omputational times and number of retrieved patterns (with the same
ardware and software configurations).

• CTM and SPARE retrieve the same patterns (i.e., their |𝑃 | lines
are overlapping). However, following an Apriori-like strategy,
SPARE performance highly depends on the minimum support: the
lower it is, the higher the likelihood of extracting patterns with

6 Note that any algorithm for FIM can be picked.
14
Fig. 9. Comparing CTM, SPARE, and PFPGrowth in terms of computational time (top)
and co-movement patterns (bottom).

sufficient cardinality and the wider the portion of search space to
be enumerated. This results in memory faults when 𝑚𝑆𝑢𝑝 is below
25 even in the modified Oldenburg dataset and the computation
is stopped after three hours in the modified Hermoupolis dataset
already for 𝑚𝑆𝑢𝑝 = 30 (there is no green line in the top-right
chart). Conversely, in CTM the computational time is less affected
by the minimum support.

• As to PFPGrowth, although both FIs and co-movement patterns
decrease by increasing the 𝑚𝑆𝑢𝑝 threshold (as expected, the
higher 𝑚𝑆𝑢𝑝 the lower the valid patterns), the number of FIs
to post-process remains orders of magnitude higher than the
co-movement patterns, and with lower supports their extraction
becomes orders of magnitude slower (Lucchese et al., 2006). This
makes FIM approaches strongly inefficient.

e close this section with a remark on the robustness of the algorithm.
he tests shown above for CTM on different datasets and its comparison
gainst different algorithms show that its performance is stable and is
ot the result of overfitting to a specific dataset or configuration.

. Conclusion

We introduced CTM, a big-data approach to extract spatial and
patio-temporal mobility patterns possibly enriched by additional tra-
ectory features that characterize behavioral mobility patterns. With
espect to the existing literature, CTM is general-purpose as it pro-
ides a unifying approach to extract different pattern types. CTM is
articularly suited for applications characterized by a high number of
rajectories to be analyzed on a feature space with limited cardinality
e.g., to capture the daily commuting of a citizen through different
eighborhoods, rather than analyzing her detailed path at the single
treet level). Tests show that in this context CTM is by far more
fficient and expressive than previous general-purpose approaches. As
ew research directions, we plan to: (i) introduce a definition of group

cohesion to further prune mobility patterns based on the shared tiles,

(ii) investigate how the extracted mobility patterns can be summarized
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in a more succinct representation, (iii) investigate how gridding affects
the stability of co-movement patterns, and (iv) consider a unifying
extraction of mobility patterns from streaming trajectory data in order
to apply CTM to online location-based systems.

CRediT authorship contribution statement

Matteo Francia: Conceptualization, Methodology, Software, Vali-
ation, Writing – original draft, Writing – review & editing. Enrico
allinucci: Methodology, Writing – original draft, Writing – review &
diting. Matteo Golfarelli: Conceptualization, Methodology, Writing –
riginal draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

ppendix. Proofs of theorems

roof 1 (Closeness of ̄-Itemset).We show by contradiction that (i) all ̄-
itemsets are closed, and (ii) all closed itemsets are ̄-itemsets. As to (i),
if a ̄-itemset 𝐼 is not closed, by definition there exists an itemset 𝐼 ′ ⊃ 𝐼
such that sup(𝐼 ′) = 𝑠𝑢𝑝(𝐼); in this case, items in 𝐼 ′ ⧵ 𝐼 would be shared
by all transactions in ̄, contradicting the definition of ̄-itemset. As to
(ii), if a closed itemset 𝐼 is not a ̄-itemset, there exists an item 𝑡 ∉ 𝐼
hared by all transactions in ̄, but in this case 𝑠𝑢𝑝(𝐼 ∪ {𝑡}) = 𝑠𝑢𝑝(𝐼),
ontradicting the closeness definition.

roof 2 (Uniqueness of Non-Redundant Enumeration Nodes). The proof
ollows two statements: (i) lexicographic ordering in CTM guarantees
hat enumeration sequences are unique, thus 𝑁.𝐶𝑇 ≠ 𝑁 ′.𝐶𝑇 even if
.𝐼 = 𝑁 ′.𝐼 , and (ii) every ̄-itemset 𝐼 is generated by intersecting

ransactions belonging to its support, which is 𝑁.𝐶𝑇 ⊆ 𝑠𝑢𝑝(𝐼). From
i) and (ii) follows that there exists only one enumeration such that
.𝐶𝑇 = 𝑠𝑢𝑝(𝐼).

roof 3 (Completeness of Non-Redundant Enumerations). If 𝑁 ′ is redun-
ant there must exist a non-redundant node 𝑁 , such that 𝑁.𝐼 = 𝑁 ′.𝐼
nd 𝑁.𝐶𝑇 ⊃ 𝑁 ′.𝐶𝑇 . More precisely, according to Algorithm 1 Line 7,
ransactions in 𝑁.𝐶𝑇 that are not in 𝑁 ′.𝐶𝑇 must have lower ids than
hose in 𝑁 ′.𝐶𝑇 . Formally, 𝑁.𝐶𝑇 = 𝑁 ′.𝐶𝑇 ∪ ∗ where, ∀(𝑄∗, 𝑄′) with
∗ ∈ ∗ ⊆  and 𝑄′ ∈ 𝑁 ′.𝐶𝑇 , it is 𝑖𝑑(𝑄∗) < 𝑖𝑑(𝑄′). According to

the CTM enumeration strategy 𝑁.𝑅𝑇 ⊇ 𝑁 ′.𝑅𝑇 . Thus, every extension
obtained from 𝑁 ′ will be obtained extending 𝑁 too.
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