4,919 research outputs found

    Information Compression, Intelligence, Computing, and Mathematics

    Full text link
    This paper presents evidence for the idea that much of artificial intelligence, human perception and cognition, mainstream computing, and mathematics, may be understood as compression of information via the matching and unification of patterns. This is the basis for the "SP theory of intelligence", outlined in the paper and fully described elsewhere. Relevant evidence may be seen: in empirical support for the SP theory; in some advantages of information compression (IC) in terms of biology and engineering; in our use of shorthands and ordinary words in language; in how we merge successive views of any one thing; in visual recognition; in binocular vision; in visual adaptation; in how we learn lexical and grammatical structures in language; and in perceptual constancies. IC via the matching and unification of patterns may be seen in both computing and mathematics: in IC via equations; in the matching and unification of names; in the reduction or removal of redundancy from unary numbers; in the workings of Post's Canonical System and the transition function in the Universal Turing Machine; in the way computers retrieve information from memory; in systems like Prolog; and in the query-by-example technique for information retrieval. The chunking-with-codes technique for IC may be seen in the use of named functions to avoid repetition of computer code. The schema-plus-correction technique may be seen in functions with parameters and in the use of classes in object-oriented programming. And the run-length coding technique may be seen in multiplication, in division, and in several other devices in mathematics and computing. The SP theory resolves the apparent paradox of "decompression by compression". And computing and cognition as IC is compatible with the uses of redundancy in such things as backup copies to safeguard data and understanding speech in a noisy environment

    EGO: a personalised multimedia management tool

    Get PDF
    The problems of Content-Based Image Retrieval (CBIR) sys- tems can be attributed to the semantic gap between the low-level data representation and the high-level concepts the user associates with images, on the one hand, and the time-varying and often vague nature of the underlying information need, on the other. These problems can be addressed by improving the interaction between the user and the system. In this paper, we sketch the development of CBIR interfaces, and introduce our view on how to solve some of the problems of the studied interfaces. To address the semantic gap and long-term multifaceted information needs, we propose a "retrieval in context" system. EGO is a tool for the management of image collections, supporting the user through personalisation and adaptation. We will describe how it learns from the user's personal organisation, allowing it to recommend relevant images to the user. The recommendation algorithm is detailed, which is based on relevance feedback techniques

    Information fusion in content based image retrieval: A comprehensive overview

    Get PDF
    An ever increasing part of communication between persons involve the use of pictures, due to the cheap availability of powerful cameras on smartphones, and the cheap availability of storage space. The rising popularity of social networking applications such as Facebook, Twitter, Instagram, and of instant messaging applications, such as WhatsApp, WeChat, is the clear evidence of this phenomenon, due to the opportunity of sharing in real-time a pictorial representation of the context each individual is living in. The media rapidly exploited this phenomenon, using the same channel, either to publish their reports, or to gather additional information on an event through the community of users. While the real-time use of images is managed through metadata associated with the image (i.e., the timestamp, the geolocation, tags, etc.), their retrieval from an archive might be far from trivial, as an image bears a rich semantic content that goes beyond the description provided by its metadata. It turns out that after more than 20 years of research on Content-Based Image Retrieval (CBIR), the giant increase in the number and variety of images available in digital format is challenging the research community. It is quite easy to see that any approach aiming at facing such challenges must rely on different image representations that need to be conveniently fused in order to adapt to the subjectivity of image semantics. This paper offers a journey through the main information fusion ingredients that a recipe for the design of a CBIR system should include to meet the demanding needs of users

    Integrating Perceptual Signal Features within a Multi-facetted Conceptual Model for Automatic Image Retrieval

    No full text
    International audienceThe majority of the content-based image retrieval (CBIR) systems are restricted to the representation of signal aspects, e.g. color, texture... without explicitly considering the semantic content of images. According to these approaches a sun, for example, is represented by an orange or yellow circle, but not by the term "sun". The signal-oriented solutions are fully automatic, and thus easily usable on substantial amounts of data, but they do not fill the existing gap between the extracted low-level features and semantic descriptions. This obviously penalizes qualitative and quantitative performances in terms of recall and precision, and therefore users' satisfaction. Another class of methods, which were tested within the framework of the Fermi-GC project, consisted in modeling the content of images following a sharp process of human-assisted indexing. This approach, based on an elaborate model of representation (the conceptual graph formalism) provides satisfactory results during the retrieval phase but is not easily usable on large collections of images because of the necessary human intervention required for indexing. The contribution of this paper is twofold: in order to achieve more efficiency as far as user interaction is concerned, we propose to highlight a bond between these two classes of image retrieval systems and integrate signal and semantic features within a unified conceptual framework. Then, as opposed to state-of-the-art relevance feedback systems dealing with this integration, we propose a representation formalism supporting this integration which allows us to specify a rich query language combining both semantic and signal characterizations. We will validate our approach through quantitative (recall-precision curves) evaluations

    Learning midlevel image features for natural scene and texture classification

    Get PDF
    This paper deals with coding of natural scenes in order to extract semantic information. We present a new scheme to project natural scenes onto a basis in which each dimension encodes statistically independent information. Basis extraction is performed by independent component analysis (ICA) applied to image patches culled from natural scenes. The study of the resulting coding units (coding filters) extracted from well-chosen categories of images shows that they adapt and respond selectively to discriminant features in natural scenes. Given this basis, we define global and local image signatures relying on the maximal activity of filters on the input image. Locally, the construction of the signature takes into account the spatial distribution of the maximal responses within the image. We propose a criterion to reduce the size of the space of representation for faster computation. The proposed approach is tested in the context of texture classification (111 classes), as well as natural scenes classification (11 categories, 2037 images). Using a common protocol, the other commonly used descriptors have at most 47.7% accuracy on average while our method obtains performances of up to 63.8%. We show that this advantage does not depend on the size of the signature and demonstrate the efficiency of the proposed criterion to select ICA filters and reduce the dimensio

    A Framework of Indexation and Document Video Retrieval Based on the Conceptual Graphs

    Get PDF
    Most of the video indexing and retrieval systems suffer from the lack of a comprehensive video model capturing the image semantic richness, the conveyed signal information and the spatial relations between visual entities. To remedy such shortcomings, we present in this paper a video model integrating visual semantics, spatial and signal characterizations. It relies on an expressive representation formalism handling high-level video descriptions and a full-text query framework in an attempt to operate video indexing and retrieval beyond trivial low-level processes, semantic-based keyword annotation and retrieval frameworks
    corecore