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Learning Midlevel Image Features for Natural Scene
and Texture Classification

Hervé Le Borgne, Member, IEEE, Anne Guérin-Dugué, and Noel E. O’Connor, Member, IEEE

Abstract—This paper deals with coding of natural scenes in
order to extract semantic information. We present a new scheme
to project natural scenes onto a basis in which each dimension
encodes statistically independent information. Basis extraction
is performed by independent component analysis (ICA) applied
to image patches culled from natural scenes. The study of the
resulting coding units (coding filters) extracted from well-chosen
categories of images shows that they adapt and respond selectively
to discriminant features in natural scenes. Given this basis, we
define global and local image signatures relying on the maximal
activity of filters on the input image. Locally, the construction of
the signature takes into account the spatial distribution of the
maximal responses within the image. We propose a criterion to
reduce the size of the space of representation for faster compu-
tation. The proposed approach is tested in the context of texture
classification (111 classes), as well as natural scenes classification
(11 categories, 2037 images). Using a common protocol, the other
commonly used descriptors have at most 47.7% accuracy on
average while our method obtains performances of up to 63.8%.
We show that this advantage does not depend on the size of the
signature and demonstrate the efficiency of the proposed criterion
to select ICA filters and reduce the dimension.

Index Terms—Independent component analysis (ICA), Gabor
approximation, natural scene analysis, sparse coding.

1. INTRODUCTION

HE EFFICIENT access and retrieval of visual information

from large databases has emerged as a crucial field of re-
search given the increasing number of digital visual documents
available, for instance on the Web or in personal and profes-
sional picture collections. It has led to the emergence of a new
discipline entitled content-based retrieval (CBR), often termed
content-based image retrieval, content-based video retrieval and
more generally content-based multimedia retrieval (note that al-
though we focus on the visual aspect of the problem in this
paper, we choose to use the neutral denomination for the sake
of simplicity). CBR borrows tools and algorithms from related
fields, such as pattern recognition, data mining, computer vision
and cognitive sciences. One of the key issues to be addressed in
CBR is the semantic gap—the difference between an image as

Manuscript received July 14, 2006; revised October 26, 2006. This work was
supported in part by the European Commission under Contract FP6-001765 ace-
Media. This paper was recommended by Guest Editor E. Izquierdo.

H. Le Borgne is with the Commissariat a I’Energie Atomique (CEA-LIST),
Paris 92265, France (e-mail: herve.le-borgne @cea.fr).

N. E. O’Connor is with the Centre for Digital Video Processing, Dublin City
University, Dublin 6, Ireland (e-mail: connorn@eeng.dcu.ie).

A. Guérin Dugué is with the Laboratory of Images and Signals, Grenoble
75000, France (e-mail: anne.guerin @lis.inpg.fr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2007.890635

a mental representation of the visual perception of a human, and
a digital image considered as a set of pixels by a computer.

The first step of any CBR system consists of extracting
knowledge from the media i.e., the task of feature extraction.
Nowadays, it is usual to distinguish between low-level and
high-level features. The former refer to primitive features such
as color, texture, shape and motion that are derived from the raw
pixel values but that do not refer to any external knowledge [1].
A major contribution to the definition of these kinds of descrip-
tors was realized during the development of the ISO/MPEG-7
standard. We refer to [2] for a comprehensive presentation
of the standard and the corresponding descriptors. High level
features, also known as semantic features, on the other hand,
generally require human annotation of images (or regions
resulting from a segmentation thereof). From this high level ex-
pertise, systems can be built to infer automatic annotations for
a larger number of images. This class of approaches includes
automatic keyword association to images based on converting
keyword annotations to a vector containing their frequencies
[3] or ing the joint distribution of images (or regions) and
keywords [4]. One can also annotate a test image by comparing
it to a learning database and selecting the keywords that are the
closest according to a learning framework. In this vein, [5] used
a statistical approach and [6] defined an approximative linear
discriminant analysis to match words and pictures. Reference
[7] used a monotonic tree to cluster low-level features and map
these last to some keywords to annotate automatically the im-
ages. Other approaches consist of including low-level features
into an object-oriented database [8], mapping low-level features
to high level features using a factor graph framework [9] or
enriching an ad hoc ontology with low-level features [10].

Within the knowledge discovery community, it is becoming
clear that both low- and high-level features must be integrated in
a common framework, although the practicalities of how this is
achieved vary significantly from one work to another. However,
it is more or less accepted that low-level features do not carry
any semantic information and that they are useful only to enrich
a manual annotation.

In this paper, we argue that one way to bridge the semantic
gap is to define and use low-level features that actually carry,
if not semantic knowledge, at least some sense of what is
depicted in an image. This behooves us to carefully consider
the definition of these features, in particular the fact that they
do not refer to any external knowledge of the image database.
‘We propose two contributions in this paper that directly address
this issue. First, we propose to learn the features directly from
data. Second, in order to relate knowledge extraction to human
expertise, we propose to drive this feature extraction process
on the basis of accepted principles of visual perception. The
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LE BORGNE et al.: LEARNING MIDLEVEL IMAGE FEATURES FOR NATURAL SCENE AND TEXTURE CLASSIFICATION 287

main contribution of this work is the study of the capacity of
independent component analysis (ICA) filters to adapt to the
discriminative features of images as well as the proposal of a
new type of representation of images using these filters to take
advantage of this property. To characterize the discrimination
power of ICA filters, we use a model based on a Gabor
representation, allowing a description with four parameters. The
study of the relationships between couples of parameters shows
that the ICA filters adapt to the statistics of the image categories.
Building upon this, we proposed an image signatures that exploits
the discrimination properties emphasized in the former point.
Using a support vector classifier, we show that the proposed
signature leads to an efficient classification framework that
outperforms approaches using other state of the art descriptors.

Learning features directly from data has already been used,
perhaps most notably in the definition of eigenfaces [11] to de-
tect and recognize faces. These are defined as the eigenvectors of
the scatter matrix of a set of previously normalized faces. This
approach has been further adapted and applied to other prob-
lems such as texture rendering [12] or 3-D object recognition
[13]. It is equivalent to the use of principal component analysis
(PCA) to provide a new basis of representation in which data is
uncorrelated. This strategy can be extended to a biologically in-
spired approach to image classification and retrieval. Indeed, the
formation of the human visual system has been structured by its
natural environment through evolution. It has learnt the intrinsic
structures of images of the real world and adapted to react to
the important salient features of these scenes. This adaptation
has been achieved through specific mechanisms and we argue
in this work that learning features directly from data by sim-
ulating these mechanisms leads to analogous visual detectors
well adapted to the discriminative properties of images. As a re-
sult of this strategy, the resulting descriptors carry some sense
of the image data analyzed.

In his seminal book, Maar proposed three levels to model
perception as an information-processing system [14] corre-
sponding to the level of computational theory, the level of
the algorithm, and the level of the physical implementation.
The first defines the goal of the processing and thus answers
the question: why are the considered inputs transformed into
the desired outputs? The second level considers algorithmic
principles, that is to say the coding of the inputs and the way
in which they are transformed into the outputs. The third level
checks whether the first two can actually be implemented
considering neurophysiological constraints. This last level is
not considered in our work. The first of Maar’s questions is
answered in our work by ensuring that during the first steps of
visual processing, the inputs are encoded in a nonredundant
manner [15]. Such a factorial code is ideally obtained when the
coding channels are statistically independent. To achieve this,
and thus answer the second of Maar’s questions, we use ICA
[16], [17] that provides a new basis of representation on which
the data is statistically independent.

The remainder of this paper is structured as follows. Section II
describes the theory of ICA as well as how it has been applied to
images in previous works. In Section III, we study the properties
of ICA filters extracted from data, in particular we show how
they are adapted to the discriminative features of image cate-

gories. Section IV presents the proposed method to describe and
classify natural images and textures. In Section V, experimental
results using the proposed method are presented and compared
with other state of the art techniques. Finally, discussion of the
whole work as well as concluding remarks are reported in Sec-
tion VL

II. REPRESENTATION OF IMAGES WITH
INDEPENDENT FEATURES

A. ICA

ICA is a concept that initially emerged from research in neu-
roscience forming the biological problem of motion coding [18].
It has become popular thanks to its ability to propose a so-
lution to the blind source separation (BSS) problem [19] that
corresponds to recovering independent sources given only mix-
tures of these sources (sensor observations). The adjective blind
simply refers to the fact that both the sources and the mixing
function are unknown. Thus, /N observations, as an /NV-dimen-
sional random vector X y, are assumed to be a linear mixture of
M mutually statistically independent sources Sy

Xy =ASu (1)

where A represents a linear mixture called the mixing matrix. To
achieve the separation, one must estimate the separating matrix
W that verifies:

Yy =WXy 2

where Y}, is an estimation of the M sources Sps, and the
(pseudo) inverse of matrix W is an estimation of the matrix A.
Since both sources S, and observations X 5 are unknown, this
is an atypical inverse problem for which classical identification
methods cannot be used. However, assuming statistical inde-
pendence between sources in the model (1), a class of methods
that exploit higher order statistics was derived to estimate W
and Y]u.

Assuming a linear mixture of independent sources without
noise, Comon showed that the ICA/BSS problem is solvable
(i.e., one can theoretically recover the sources or, by equiva-
lence, the mixture) when at most one Gaussian source is present
and the rank of A is equal to the number of sources (i.e., there
are as many sources as observations: M = N) [16]. Several
methods were proposed to perform such an estimation, such
as minimizing the mutual information between the components
[20], approximating with cumulants of increasing order [16], or
maximizing the output entropy of a neural network of nonlinear
units [21] (i.e., information maximization between X and 5),
which is equivalent to a maximum likelihood approach [22].

In [23], the authors remark that the sum of independent
random variables is closer to a Gaussian distribution than
any of the independent variables themselves (central limit
theorem). Hence, independence between estimates of the
sources is achieved by forcing them toward a maximum value
of non-Gaussianity. They introduced approximations of the
negentropy and derived a fixed-point iteration to estimate the
sources. It resulted in the fast-ICA algorithm that is used in our
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Fig. 1. Image (or a part of an image) is viewed as a weighting sum of basis functions (from [52]).

work. It converges at least quadratically, while other algorithms
based on a gradient descent converge linearly.

Nevertheless, even if the two conditions of identification hold,
two ambiguities remain regarding the estimates. First, any per-
mutation on the index of the sources will not change their mutual
information thus, contrary to PCA for instance, the sources are
not ordered. The second ambiguity relates to the magnitude of
the sources that is known give or take a scale factor. In partic-
ular, a negative scale factor inverts the sign of the signals.

Within the last ten years, the model (1) has been widely used
in diverse areas, such as audio separation, biomedical imaging,
analysing financial data and unmixing hyperspectral data. Many
references on ICA applications can be found in [17].

B. Natural Image Representation Using ICA

The model (1) can be applied to the gray-scale values (point
luminance) of natural images. In practice, for computational
feasibility, it is applied to small image patches P(z,y). Each
image patch is considered as a linear superposition of some basis
function a;(z, y), weighted by some underlying “causes” s; (see
Fig. 1). Each patch is then represented by a particular sample of
these sources, that corresponds to their activities projected on
an internal model formed by the basis functions

n

P(z,y) = siai(x,y). 3)

=1

Estimation of this model consists of determining simultaneously
a;(z,y) (consequently w;(z,y)) and the s;, by exploiting the
statistical properties of the inputs.

Olshausen and Fields conjectured that a low-entropy coding
of natural images could be found by imposing optimal recon-
struction of inputs (minimal mean square error) under sparsity
constraints [24]. They obtained a collection of localized and ori-
ented basis functions similar to the simple cells of the visual
cortex. Similar results were obtained with other unsupervised
learning algorithms [25]. On the other hand, Nadal and Parga in
[26] showed the equivalence between the redundancy reduction
principle [15] and the infomax principle [27]. Hence, Bell and
Sejnowski used ICA [21] as the algorithm level to implement
the same conceptual level. This led to similar basis functions
to those found by Olshausen and Fields [28]. Van Hateren and
Van der Schaaf, using the FastICA algorithm, have shown that
most of the properties of these basis functions match well the

properties of the receptive fields of simple cells in the cortex of
a macaque monkey [29].

In this context, ICA provides not only an estimation of
the basis functions of the generative model (1) but also
some ICA filters W (x,y) that can be used to analyze nat-
ural images. An image I(z,y) is filtered by D; ICA filters
wi(z,y),...,wp,(x,y). It is then represented by a multidi-
mensional density Y (I(z,y))

Y(I(z,y) = Y1i(I(z,y)),.--, YD, (I(z,y)))
=I(z,y) ®wi(x,y),...,[(z,y)
®@wp,(x,y)) “4)

where ® represents the convolution product. Several degrees
of complexity were proposed to model the densities of the
responses. In [30] the authors use the mean of the density
(average energy of the global response) as a signature. They
show the validity of the approach by discriminating images of
faces, leaves and buildings, objects [31], and natural scenes
[32]. In [33], a restricted set of the responses are modeled by
Gaussian mixtures allowing invariance to partial occlusion for
object recognition. In [34], the marginal densities are estimated
by a simple histogram. The sufficiency of this representation is
demonstrated in the context of object, texture and face recog-
nition. This model was used in [35] to represent natural image
categories. In [36], several signature models are discussed and
compared to an unsupervised estimation of the densities. The
use of the Kullback-Leibler divergence to compute the distance
between densities leads to a synthetic representation scheme
for this model. For instance, using the Euclidean distance, the
average responses of ICA filters is computationally equivalent
to the Kullback—Leibler divergence between Gaussian distribu-
tions of common variance for which the means are estimated
by the average of ICA filter responses.

C. Practical Extraction of ICA Filters

Let us consider a small set of gray-level natural images. First
of all, the luminance of each image is filtered by a nonlinear
filter that simulates the processing of the retina [37]. It flattens
the spectra of the image by enhancing the higher frequencies.
Then, a collection of Ny.1, patches of size S;, x S, is extracted at
random locations within the images and stored into the columns
of matrix X in (1) or (2). The data is centred (zero mean) then
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transformed so that the components are uncorrelated and have
unit variance. This is achieved via a PCA that is also used to re-
duce the dimensionality. For this, we compute the eigensystem
of the correlation matrix of X, and the data is projected onto
the Npca first eigenvectors. This number is chosen as a com-
promise between the portion (Npca/Sy) of the variance re-
tained to encode the data and the computational cost for the ICA
estimation. Finally, N, filters are iteratively estimated by the
fast-ICA algorithm ([23] and Section II-A) using the tanh non-
linearity, and stored in the matrix W (size S]% X Nica).

III. ADAPTATION OF FILTERS TO IMAGE CATEGORIES

A. Gabor Parameterization of ICA Filters

Most of the ICA filters are localized and oriented bandpass
filters. Hence, they can be modeled as Gabor filters or wavelets
as a first approximation. Such a model is entirely determined
by four parameters that give the position and the shape of the
Gaussian envelope in the frequency domain

_ 2 2

where (Fy,0p) are the polar coordinates of the central fre-
quency, and (o, 0,,) are the standard deviations of the Gaussian
envelope. The shape factor is defined as Sy = (0., /0,). Hence,
a value Sy = 1 corresponds to an anisotropic filter. When
S¢ < 1 the filter is stretched along its main direction 6, thus
more selective in this direction. On the contrary, for Sy > 1,
the filters are selective along a direction perpendicular to 6.

We search for the best Gabor approximation of an ICA
filter Fica(u,v) in the frequency domain, by minimizing the
following quadratic criteria:

0[]

—0.

0.5 | max(Frca (u,v))
0.5

v Ot

<u<
<wv<
2
—G(u,v|Fy,00,0u,0,)| dudv. (6)
Normalization of the ICA filters by their maximum values
does not affect the model (2) because of the ambiguity of
their magnitude. Initial values for (Fy, 6y) are fixed such that
each value matches the maximal value of the ICA filter. Then,
minimization is performed by conjugate gradient descent,
constraining (Fy, fp) in the neighborhood of their initial values
and standard deviations between 10~% and 0.3. Other strategies
without constraints on the parameters or different normalization
of ICA filters were tried, without any qualitative change in the
results [38].

B. Coupled-Parameterization of Filters

In their seminal study [29], Van Hateren and Van der Schaaf
characterized ICA filters in order to compare their properties to
those of the receptive fields of simple cells in macaque monkey
cortices. For this, they compared the occurrences of several pa-
rameters in both cases. In this paper, we aim to characterize
ICA filters in terms of discrimination, which is best achieved
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by studying the relationship between couples of parameters. An-
other difference in our approach is the set of images from which
the filters are extracted. In [29], the images were chosen as rep-
resentative inputs of the macaque visual system, capable of in-
fluencing its evolution. They thus represented images of natural
landscapes in various situations. On the contrary, we want to
show here how ICA filters have some spectral properties that
are adapted to the discriminative characteristics of the categories
they are extracted from. For this reason, we extracted collections
of filters from categories of images that are coherent in terms of
spectral properties and visual coherency.

We extracted PCA and ICA filters from these categories ac-
cording to the method previously described (Section II-C) with
the parameters Npic, = 40000, S, = 16, Npca = 150, and
Nica = 50. The average spectrum of each category was com-
puted from Np¢ch patches (Fig. 2, column 2). We also com-
puted the average spectrum of ICA and PCA filters extracted
from them (Fig. 2, column 3 and 4). From one category to an-
other, the PCA filters have quite a similar average spectrum. On
the contrary, the ICA filters adapt differently to each collection
of images. As a consequence, PCA filters will produce similar
responses to images from one category to another. ICA filters
have a varied behaviour as a function of the image category that
will ultimately lead to a higher discrimination power. Funda-
mentally, we interpret this as being due to the relative invariance
of the natural image statistics up to the second order [39], while
their properties differentiate themselves at a higher order [40],
[41].

Each ICA filter has been modeled according to the method
described in Section III-A. It resulted in the estimation of the
central frequency and the shape factor of each filter. In Fig. 3, the
central frequency Fjy of each filter is superposed on the average
spectrum of the category in the Fourier plan, while the shape
factor Sy is plotted according to the direction f of the filter.
One can see that the shape factor is below 1 at the direction 0°
and 90° and has a higher value at other directions. This shows
how the ICA filters tend to be more selective on the vertical and
horizontal directions, which carry not only the largest part of the
energy, but also the main differences of the average spectrum
from one category to another (Fig. 2, column 2).

In summary, we showed that ICA filters adapt to the most
discriminative features of the image categories. In the following
we exploit this property to define an image signature amenable
to efficient classification of natural images.

IV. PROPOSED REPRESENTATION FOR NATURAL IMAGES

The representation of natural images proposed here (see
Algorithm 1) directly benefits from the selective adaptation of
ICA filters to the image categories of the learning database. In
this section, we assume a particular set of images considered
as a coherent visual category, which is divided into a learning
and a testing set. The images are first converted to the YCbCr
color-space that is considered here as an acceptable model
of the color-opponent mechanism used in the human retina.
This results in one achromatic channel (luminance) and two
chromatic channels, named Cb (blue—yellow opposition) and
Cr (red—green opposition). The color information is processed
separately to the luminance as explained in Section IV-B.
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Fig. 2. Some examples of image categories (a visual example in column 1;
names are given in Table I) with their average spectrum (column 2) as well the
average spectrum of ICA (column 3) and PCA (column 4) filters extracted from
them.
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A. Luminance Signature

The signature of a test image I(z, y) for the luminance com-
ponent is computed according to Algorithm 1. D, ICA filters
are extracted from the learning databases, and the convolution
of these filters with the images give D, responses R,(x,y) of
the same size as I(z,y) (only the valid part of the convolution
is kept). The map of activity A7(x,y) of the image contains the
index of the most active filter at each pixel. Because of the am-
biguity in the sign of filters extracted by ICA, this maximal ac-
tivity is computed using the absolute value. The global lumi-
nance signature is then the histogram of Ar(z,y).! This does
not take into account the spatial relationships between pixels
but makes sense for the global characterization of a scene that
is perceived holistically at first sight [43]. However, at a local
scale natural images exhibit meaningful spatial structures that

IThis has already been proposed by A. Labbi in an unpublished report [42]

Algorithm 1: Computation of the global (G) and local (L)
signatures using ICA filters on a test image (/). By default,
(s =28)

. Extract ICA filters Fy (d € [1, Dy))

: Let consider one test image I(z,y) (size S1 X S2)
: Initialize the size of the local structuring element as s
: for d € [1, Dy] do

Ry(z,y) «— FaxI(z,y)

. for (z,y) € [1,51] x [1,52] do

Aj(z,y) = argmaxq (Ra(z,y))

: Initialize G as a vector of O (length D)

. for (d € [1, D;] do

Gr(d) « Card (Ar(z,y) =d)

: Initialize L as a vector of 0 (length Dy)

12: for (z,y) € [1,51 —s+1] x [1,S2 — s+ 1] do
13 for (i,5) €[0,s —1] x [0,s —1]] do

4 a(ig) — A+ iy + 5)

15 Li(d) « L;(d) + Card (a(i,j) = d)

—_ =
=2

also carry important information [41]. To catch this information,
we use a s X s sliding window a(3, j) that counts the number of
times one filter is the most active within a local area of A;(z, ).

B. Color Signature and Normalization

For each image, the mean and standard deviation of each
color channel is computed. These four features are then merged
to the luminance signature. However, because of the large nu-
merical difference, the color part is linearly scaled. The scaling
coefficient K .. is determined by learning, using an independent
validation database.

C. Classification Scheme

Several classifiers can be used to learn the categories from
the produced features. The purpose of this work is mainly to
show the interest of learning some features directly from data
and the comparison to the state-of-the art will be conducted at
this level. As a consequence, the choice of the classifier is not
a crucial aspect of our work and we chose to demonstrate our
method using a support vector machine (SVM).

Support vector classifiers [44] are commonly used because
of several attractive features, such as simplicity of implementa-
tion, a small number of free parameters to be tuned, the ability
to deal with high-dimensional input data and good generaliza-
tion performance on many pattern recognition problems. This
last property is due to the fact that this classifier tends to mini-
mize an upper bound on the expected risk (structural risk mini-
mization), while other learning techniques such as neural net-
works usually tend to minimize the error on the training set
(empirical risk minimization). To apply a SVM to classifica-
tion in a linear separable case, one considers a set of training
samples {(x;,v:),z; € X,y; € Y}, with X the input space,
and Y £ {—1,+41} the label space. In the linear case, one
assumes the existence of a separating hyperplane between the
two classes, i.e., a function h(z) = w 'z + b parameterized by
(w,b), such that the sign of this function when applied to z;
gives its label. By fixing min; |h(z;)| = 1, the normal vector w
is fully determined such that the distance from the closest point
of the learning set to the hyperplane is 1/||w||. When training
data is not linearly separable, a more complex function can be
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Fig. 3. Column 1: Visual example of some image categories. Column 2: average spectrum of the category (black lines) and the central frequency of the ICA
filters extracted from the category (dots). Column 3: shape factor (S ) of the ICA filters according to their orientation. Five groups of orientation are considered

([0°,5°], [5°

used to describe the boundary. This is done by using a kernel
to map nonlinear data into a much higher dimensional feature
space, in which a simple classification is easier to find.

To classify several classes at the same time, we used a one-
against-one strategy. For C classes it consists of training all the
(C(C —1)/2) possible 2-classes classifiers. A given test vector
x is thus classified between 0 and C' times to each category. A
majority vote determines the winning class.

D. Feature Selection

If one set of filters is extracted for each category, the dimen-
sion of the luminance signature grows with the number of cat-
egories considered. As a consequence, it is desirable to select
the dimension (i.e., the number of features/ICA filters) to reduce
this dimension for faster computation. An optimal feature selec-
tion for supervised classification requires an exhaustive search
that is computationally intractable. A less greedy strategy is to
define a criterion to sort the filters, then retain only the N first,
considered as those leading to the best possible classification
rate.

‘We chose to derive such a criterion from the dispersal factor
that we previously presented in [45]. The idea is to consider the
most useful filters for classification as those providing the most
varied responses to a learning database. Indeed, it seems reason-
able to think that, inversely, a filter producing similar responses

,45°],[30°,60°], [45°, 85°], [85°,90°]) and the mean (& standard deviation) is displayed for each group.

to all images poorly discriminates between categories. The cri-
terion for an ICA filter F; is computed as follow. Let us consider
an image I (z,y) of size S; X S5 and its response to the filter
Ry(x,y) = Fy * I(x,y) (x is the convolution operator). Let
consider the average filter response

S1 S2

Ra(Ip) = 51152 S5 |Ra(z,y)] (7

r=1y=1

and standard deviation of the response

S1 S»

ﬁ D (|Ra(w,y)| = Ra(Tx))>-

r=1y=1

Ry(I}) =

The dispersal factor is simply the standard deviation of
R4(I},) for all images of a learning database I+,...,In,. We
define the criterion as the product of the dispersal factor and
the average of Ry(T)

C(Fa)

N 2

- Nil > Ra(li) Nll_ - (Rd(lk) - Nil Zm(n))

=1 k=1 k=1
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Fig. 4. Distribution of the classification rates using the global (left) and local (right) ICA signatures on 111 texture categories.

That can be expressed simpler as

C(Fd) = Avg(Rd(Ik)) X Std(Rd(Ik)) (8)

V. EXPERIMENTAL EVALUATION

One of the difficulties in evaluating CBR algorithms is the
lack of annotated databases. This is largely due to the depen-
dence of the ground-truth on a particular task. In other words, it
is probably impossible to definitively define a unique database
that would match the requirements of any user in any situation.
To tackle this difficulty, several strategies can be considered for
experimentation purposes, all using a manual annotation of the
images.

A. Texture Classification

Texture is an important feature for image classification. We
consider here a set of 111 texture images extracted from the
Brodatz album [46]. We derive a category from each image
(size 640 x 640) by dividing it into 25 nonoverlapping images
of size 128 x 128. The 10 first images are grouped into Base;
(size 1110) and the 15 others into Bases (size 1665). ICA filters
where first extracted on Base;. We extracted ICA filters from
each of the categories according to the method previously de-
scribed (Section II-C) with the parameters Np¢ch = 2500, .S, =
16, Npca = 150, and Ni., = 25. In practice, it allows to keep
more than 95% of the variance in each case.

We run a first experiment by setting Base; as training set
and Bases as testing set. The classification scheme was the one
described in Section IV-C. We run 111 experiments with all the
images but using only N;., = 25 filters extracted from one
category. The results goes from 65.7% to 80.7% for G, and
from 65.7% to 80.2% for Li., (see Fig. 4). We compared to
the following standard MPEG-7 descriptors [2]: edge histogram
(EH), homogeneous texture (HT), as well as the combination of
both (EH+HT). We obtained a 58.4% with EH (size 80), 83.5%
HT (size 62), and 83.7% with EH+HT (size 142).

/”"\——

/V/W/L//{—ka

@

]

2
T

Classification rate
~
a
32
T

65% [

L 1 L L L L L ]
20 40 60 80 100 120 140 160 180

Feature dimension

Fig. 5. Classification rates according to the feature dimension using the global
(dark curve) and local (light) ICA signatures and EH4-HT (thin) on 111 tex-
tures categories. The ICA filters are selected according to their individual per-
formances as reported in Fig. 4. The thin curve is the average classification rate
for 20 repetitions with a random selection of EH4-HT MPEG-7 descriptors. The
thick vertical lines show the range at plus or minus one standard deviation. The
thin vertical lines show the maximal values.

We run a second experiment with the same training and
testing sets but using several groups of ICA filters. The choice
of the groups was done according to their individual per-
formance in the former experiment. In other words, we first
classified using the 25 filters extracted from the category giving
the best results, then 50 filters extracted from the categories
giving the two best results and so on. For comparison, we chose
the best MPEG-7 descriptors (EH+HT) and run twenty classi-
fications with a random selection of the dimensions, restricted
to a specific size ([25, 50, 75, 100, 125, 142]) each time. The
average and standard deviation of the twenty classification
rates were computed and the minimal and maximal values were
collected. All these results are reported on Fig. 5. It shows
that the average classification rates grow with the sizes of the
signatures. However, this growth becomes almost null (i.e., the
classification rate is stable) for feature dimensions over 100.
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Fig. 6. Confusion Matrix for G;., restricted to 125 dimensions.

Moreover, both local and global ICA signatures give better
results than MPEG-7 descriptors for all feature dimensions.

We reported in Fig. 6 the confusion matrix for the best clas-
sification rate (G, at 125 dimensions). One can see that most
of the textures are perfectly classified and that errors are due a
very restricted number of confusion. It is the case for instance
of textures 50 and 52 as well as 50 and 51 that are represented
on the first raw of Fig. 7. It is also the case for the couples of
textures (66, 67), (42, 27), and (36, 103). In most of these cases,
the confused textures are quite similar.

B. Multiclass Scene Categorization

We describe now an experiment that was conducted on the
extensively used COREL database. It consists of a collection
of small categories of images, semantically coherent, con-
taining low-resolution pictures but of good visual quality, in
the sense that the high-resolution versions can be used for
editorial purposes. We chose 11 categories in such a manner
that their annotations correspond to real visual content.2 The
sizes of the different categories are reported in Table I. We
extracted ICA filters from these categories according to the
method previously described (Section II-C) with the parameters
Nptch = 400007 SP = 167NPCA = 150 and Nica = 50.

The proposed descriptors are compared to the following stan-
dard MPEG-7 descriptors [2]: EH, HT, color layout (CL), and
scalable color (SC). We consider these descriptors separately as
well as combined together. In that last case, they are merged into
a unique vector for each image. The classification is achieved
using the same learning algorithm as for our descriptors (Sec-
tion IV-C). The support vector classifier is implemented using
the LibSVM library [47] with a polynomial kernel of degree 3.

We also compare our approach to some more recent methods
based on a scale invariant feature transform (SIFT) description
of images [48]. They are Gaussian derivatives at eight orienta-
tion planes over a 4 X 4 grid of spatial localizations. They pro-

2Some thumbnails of the different categories used in the experiment can be
consulted at http://www.eeng.dcu.ie/~hlborgne/icascene.html.
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Fig. 7. Examples of various classes of textures.

vide a local description at each salient point of the image (points
of interest) that is scale invariant. Compared to other local de-
scriptors, SIFT is the best in the context of object classifica-
tion [49]. From this description, we derive the image signatures
using the bag of keypoints (BoKPts) technique. First we con-
struct a visual vocabulary (codebook) using K-means on the
learning database. Then, for a given test image, we count the
number of keypoints associated to each element of the codebook
(i.e., closer to this element according to the euclidean distance).
This histogram is then the signature of the image, which is used
as input of the SVM [50]. Some authors proposed to use a sim-
pler binary histogram [51] but we found weaker performances
on our problem and do not report these results here.

We use 20 images per class for learning and the rest for testing
resulting in 220 images for learning and 1817 for testing. The
overall classification efficiency of the MPEG-7 descriptors is at
most 47.7% when edge histogram is merged with scalable color
and less in all other configurations (comprising the use of the
four MPEG-7 descriptors considered here that is not reported
in Table I). The classification rate increases to 54.0% with the
ICA luminance global signature (Gic, ) and 57.6% with the ICA
luminance local signature (Li.,). When the color information
is added, the results reach 55.6% for the global signature and
63.8% for the local signature. For individual classes, the clas-
sification results are often better with the ICA descriptors than
the MPEG-7 ones. In particular, there is a counter performance
of ICA descriptors for the class “egypt” that can be explained
by a larger visual diversity within it. In other words, this class
relates strongly to a pure semantical concept, for which the def-
inition of a visually coherent pattern is difficult. The low per-
formance for the class “castles” is explained by a large overlap
with the classes “cities” (21.3% for L;.,+color) and “churches”
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TABLE I

MPEG-7 DESCRIPTORS AND WITH THE ICA SIGNATURES (G, FOR GLOBAL, L;., FOR LOCAL)

Class name | Size | EH CL SC HT EH + | EH+ | HT + | HT + | EH + | Gica Lica Gica Lica
CL SC CL Ne CL + + +
SC color color
Cities 200 | 339 433 19.4 25.0 41.7 42.8 36.7 328 51.7 70.0 46.1 47.8 69.4
Indoor 541 438 25.7 154 21.1 39.0 48.0 242 215 434 41.1 51.1 55.3 66.6
Firework 100 | 488 85.0 73.8 72.5 96.3 96.3 73.8 73.8 95.0 475 913 56.3 88.8
Cars 200 | 45.0 272 26.1 228 494 51.1 339 24.4 522 444 50.0 50.0 56.7
Egypt 100 13.8 313 52.5 10.0 26.3 25.0 15.0 88 313 25.0 25.0 36.3 338
Flowers 400 | 41.8 24.5 30.0 305 39.5 50.8 332 329 50.3 82.9 81.6 70.5 732
Monkeys 100 17.5 25.0 23.8 238 25.0 26.3 26.3 28.7 325 40.0 40.0 70.0 62.5
Churches 96 46.1 17.1 15.8 42.1 30.3 421 434 421 342 355 40.8 421 36.8
Castles 100 113 17.5 20.0 18.8 16.3 20.0 17.5 15.0 16.3 313 50.0 20.0 275
Mountains 100 | 375 325 18.8 238 28.7 45.0 30.0 338 388 375 36.3 45.0 438
Doors 100 | 76.3 60.0 33.8 55.0 72.5 65.0 58.8 56.3 68.8 92.5 91.3 80.0 93.8
Total 2037 | 40.1 31.3 25.6 279 41.4 47.7 324 30.0 47.1 54.0 57.6 55.6 63.8
TABLE II

RESULTS OF THE MULTICLASS SCENE CATEGORIZATION COMPARED TO THE SIFT-BASED SIGNATURES. FOR EACH CATEGORY, THE TABLE REPORTS THE
CLASSIFICATION RATES WITH THE BOKPTS, USING A CODEBOOK OF SIZE Np,(BoK v, ). RESULTS WITH ICA SIGNATURES (Gica FOR GLOBAL, Lic, FOR
LOCAL) ARE REPORTED FOR COMPARISON

Class name Size BOI\—SO BO]\—IOO BD[\'QOO BoK 1000 cha L‘ica G'ivca + L cat
color color
Cities 200 [ 25.0 133 11.7 6.7 70.0 46.1 4738 69.4
Indoor 541 | 217 238 25.0 6.9 41.1 51.1 55.3 66.6
Firework 100 | 45.0 413 375 98.8 475 91.3 56.3 88.8
Cars 200 | 26.7 36.1 41.7 217 444 50.0 50.0 56.7
Egypt 100 | 425 36.3 338 28.7 25.0 25.0 36.3 338
Flowers 400 | 208 226 221 32 82.9 81.6 70.5 732
Monkeys 100 15.0 15.0 15.0 25 40.0 40.0 70.0 625
Churches 96 50.0 513 513 447 355 40.8 421 36.8
Castles 100 | 375 36.3 388 188 313 50.0 20.0 275
Mountains 100 | 20.0 13.8 175 13 375 36.3 45.0 438
Doors 100 | 42.5 41.3 38.8 25.0 92.5 91.3 80.0 93.8
Total 2037 ] 26.7 26.7 27.2 15.0 54.0 57.6 35.6 63.8

(25%). Visually speaking, they can thus be considered as sub-
classes of “man-made constructions”. The class “churches” is
also blended with the class “indoor” (39.5%). However this
is relevant since 38 images of this class are indoor views of
churches. Over the 30 images of “churches” classified as “in-
door,” 25 are actually indoor pictures. Among the five other
images (actually outdoor), three were taken at night. When the
classes are strongly visually coherent, such as for classes “fire-
work” or “doors,” the classifications with ICA signatures lead
to very good results, particularly with the local signatures.

The comparison with the BoKPts approach (Table II) shows
a weak performance for the BoKPts signature. We tested this
feature with different sizes of codebook and obtained at most
26.7% on average, while we can reach twice this score with
the ICA signatures. Several reasons can explain this. One could
think this feature is not adapted to the type of image that is clas-
sified here, since a large part of the work using these feature fo-
cussed on object classification (for instance [S1]). More likely,
the weak performance is due to the small size of the learning
database. We used 20 images per category to match the experi-
mental protocol used in the former experiments. Although such
a size is sufficient to classify the images using MPEG-7 de-
scriptors or our method, it is not the case for BoKPts. This lack
of learning data is particularly noticeable when the size of the
codebook is large (1000). In that case, there is a high confusion
of all images with the class firework. Indeed the images of this

class contain less keypoints than the other on average. As a con-
sequence, the signatures of all images are more likely similar to
those of this class. Consequently, our method has the advantage
to require a much smaller learning database than the BoKPts
and perform better in that case.

C. Influence of the Signature Size

One could think these better results for ICA signatures may be
simply due to the higher number of descriptors used, although
this is not a guarantee of quality as a rule of thumb. For in-
stance, adding homogeneous texture to the three other MPEG-7
descriptors usually lowers the results. However, since 50 filters
were computed on each category, the size of the ICA signatures
is 750 (754 for color) while the MPEG-7 signature size is at
most 235. To test the influence of this difference, we conducted
the following experiment. For all four possible ICA signatures,
a random selection of filter was achieved then restricted to a
given signature size. For color signatures, four of these dimen-
sions were replaced by the color descriptions. We then froze 20
images per class for learning and the rest for testing resulting in
220 images for learning and 1817 for testing. Then twenty clas-
sification iterations were run using different feature dimensions
([25, 50, 100, 150, 200, 300, 400, 500, 600, 700, 750]) each
time. The average and standard deviation of the twenty clas-
sification rates were computed and the minimal and maximal
values were collected. All these results are reported on Fig. 8. It
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Fig. 8. Classification results for the four ICA signatures at different sizes. The thin curve is the average classification rate for 20 repetitions with a random selection
of ICA filters. The thick vertical lines show the range at plus or minus one standard deviation. The thin vertical lines show the maximal and minimal values. The

thin and dashed curve is the same for the best MPEG-7 classification (EH+SC).

shows that for all the ICA signatures, the average classification
rates grows with the size of the signature. However, this growth
is very slow and almost null (i.e., the classification rate is
stable) for feature dimension more than 200. Moreover, better
results can be obtained with fewer dimensions than the maximal
one. Even with 25 filters, the results are similar to, or better
than, the best combination of MPEG-7 descriptors. Finally, the
minimal classification rates for the local ICA signatures are
similar (47.4% for L;., and 48.2% for L;.,+color) to this best
MPEG-7 combination.

D. Filter Selection

Using the same experimental protocol we evaluated the ef-
ficiency of our criterion ( to select filters. This last was com-
puted on the learning database according to (8). As shown on
Fig. 9, the obtained classification rate (thick curve) is most of
the time better than the average random selection (and always
better than the results obtained with the MPEG-7 descriptors).
For comparison, we also plotted the results obtained using the
dispersal factor (dotted curve) that are quite similar. None of
them are “optimal” but both give good classification results, in
particular for smaller dimension. Indeed, using our criterion ¢,
the best classification rates are often reached around 100 dimen-
sions. Beyond this point, it seems that additive filters tend to
alter the results, although maintained at a good level.

VI. CONCLUSION

We presented a method to learn midlevel features directly
from image categories. We used a strategy inspired from visual
perception principles postulating that the goal of a vision system
is to reduce the information redundancy between the input im-
ages and the coded output. To obtain such a code, we used ICA.
We showed that taking into account the higher order statistics
allows a better adaptation of descriptors to images categories
(in comparison with descriptors extracted by PCA that describe
them up to the second order statistics). We proposed an algo-
rithm to compute global and local signatures of images using
ICA filter collections. They fully take advantage of the proper-
ties of adaptation of the filters to the categories, since their defi-
nitions rely on the maximal activities of filters applied to natural
images and textures. We defined a criterion to select the ICA fil-
ters and thus to reduce the dimension of the problem. Combined
with a support vector classifier, the proposed signatures lead to
an efficient classification framework that outperforms the state
of the art descriptors in texture and natural scene classification.
We showed this advantage does not depend on the size of the
signatures and demonstrated the efficiency of the proposed cri-
terion to select ICA filters. Most of the time, the confusion is
due to a very close visual content between the categories.

Since the descriptors are extracted from images, they char-
acterize strongly their visual content. This will lead in future
work to their use for giving large image databases a visually
coherent organization. Dealing with such very large databases
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Fig. 9. Classification results for the four ICA signatures at different sizes for several methods of filter selection. The dashed curve is the average classification rate
for 20 repetitions with a random selection of ICA filters (same as the thin curve on Fig. 8). The dotted curve is the classification rate when the filters are selected
according to their dispersal factor and the thick curve is the classification rate when the filters are selected according to criterion ¢ (8).

(10° or more images) will require an efficient implementation
of our method, adapted to some powerful hardware such as a
cluster machine.
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