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Most of the video indexing and retrieval systems suffer
from the lack of a comprehensive video model capturing
the image semantic richness, the conveyed signal infor-
mation and the spatial relations between visual entities.
To remedy such shortcomings, we present in this pa-
per a video model integrating visual semantics, spatial
and signal haracterizations. It relies on an expressive
representation formalism handling high-level video de-
scriptions and a full-text query framework in an attempt
to operate video indexing and retrieval beyond trivial
low-level processes, semantic-based keyword annotation
and retrieval frameworks.
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1. Introduction

Video data can be modeled based on its visual
content (such as color, motion, shape, and in-
tensity) [1], [17] and semantic content in the
form of text annotations [6]. Because machine
understanding of the video data is still an un-
solved research problem, text annotations are
usually used to describe the content of video
data according to the annotator’s understanding
and the purpose of that video data.

Although such content descriptions may be bi-
ased, incomplete and inaccurate, they still pro-
vide much of semantic content that cannot be
obtained by current computer vision or voice
recognition techniques.

In the case of video, there are a number of speci-
ficities due to its multimedia aspect. For in-
stance, a given concept (person, object. . . ) can
be present in different ways: it can be seen, it

can be heard, it can be talked of, and combi-
nation of these representations can also occur.
Of course, these distinctions are important for
the user. A query concerning X as “Show me a
picture of X.” or as “I want to know what Y has
said about X.” are likely to give quite different
answers.

The first one would look for X in the image
track while the second would look in the audio
track for a segment in which Y is the speaker
and X is mentioned in the transcription.

Also, among all possible relations that could
be represented in conceptual graphs, some are
especially appropriate for content-based video
indexing.

Based on the traditional keywords approach to
video information retrieval is that usually too
many or erroneous results are returned. To
overcome this inconvenience, a solution is to
include conceptual descriptions when the doc-
uments are indexed. Let us consider, for exam-
ple, the following query: “documents dealing
with the president of the United States”. Us-
ing the currently existing search techniques like
keywords approach, we extract some words as
for example “president”, “United States” and
search the collection of documents with a query
that combines these keywords. The problem
arising here is that there is no way to specify that
the expected answer to this query is a person,
and thus several wrong results can be obtained
in return of such a query.

Our objective is therefore to propose a model
for content representation semantics of video
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documents allowing the consideration of infor-
mation from each of the modalities (image, text,
sound) and implement this model within a sys-
tem of indexing and search by content of video
documents.

2. Related Works

As far as indexing and retrieval techniques for
the visual content are concerned, the first sys-
tems (content-based) [12] propose a set ofmeth-
ods based on low-level features such as colors,
textures. . . fully automatic, and able to process
queries quickly. Several frameworks dealing
with the automatic extraction of the image se-
mantic content have been proposed [7], [14],
[11]. Their main disadvantage relies however
on the specification of restrained and fixed sets
of semantic classes. Indeed, regarding the fact
that several artificial objects have high degrees
of variability with respect to signal properties
such as color and texture variations, an inter-
esting solution is to extend the extracted visual
semantics with signal characterizations in order
to enrich the image indexing vocabulary and
query language. Therefore, a new generation
of systems integrating semantics and signal de-
scriptions has emerged and the first solutions
[15], [19] are based on the association of textual
annotations with relevance feedback (RF). Pro-
totypes such as iFind [15] offer loosely-coupled
solutions based on textual annotations to char-
acterize semantics and on a RF scheme oper-
ating on low-level signal features. These ap-
proaches present two major drawbacks: first,
they lack to exhibit a single framework unifying
signal features and semantics, which penalizes
the performance of the system in terms of re-
trieval efficiency and quality. Then, regarding
the query process, the user is to query both textu-
ally in order to express high-level concepts and
through several and time-consuming RF loops
to complement his initial query. Therefore, it is
impossible for such systems to process complex
queries combining semantic and signal concepts
as well as relations linking them such as “find
Bill Clinton and a striped red, white and blue
flag behind him”.

All previous works in visual case can’t describe
the video content in much depth. The solu-
tion consists of combining signal and symbolic

characterizations in order to reinforce the se-
mantic gap and to take into account the generic
and multifacets descriptions for video content
indexing and retrieval.

3. A Multi-facetted Framework for Video
Retrieval

As for textual document, video has a specific
organization. A video is composed of scenes,
each of which describes an event.

A video scene itself is composed of a number of
shots, each of which is an unbroken image se-
quence captured continuously by the same cam-
era. A shot could legitimately be compared to
a word, as they are both the basic entities struc-
turing respectively a video sequence and a text
fragment.

The visual content of a video shot can be rep-
resented by its key frames. Key-frames are im-
ages providing a compact representation of the
video shots. They can serve as pointers to the
given portion of the video content for index-
ing and retrieval process. Generally, the key
frame extraction process is integrated with the
processes of shot segmentation. Each time a
new shot is identified, the key-frame extrac-
tion process is invoked, using parameters al-
ready computed during shot boundary detec-
tion (SBD) [17]. These parameters are related
to visual data such as color, or camera motions
descriptors. Key frame selection can differ de-
pending on the application needs. For example,
we require only a few key frames (1-2) for a
video-captured meeting since camera motions
are sparse [17], [5]. Whereas, in a broadcast
news document, we find more animation (re-
lated to visual aspects) so we have more shots
and key-frames. In our approach, the key-frame
is selected as the most stable image of a given
shot (i.e. image that appears many times at the
same shot).

We propose the outline of an image model com-
bining a set of interpretations, each considered
as a particular facet of an image, to build the
most exhaustive image description. The image
is therefore seen as a multi-facetted object with
the two principal facets being the physical (con-
sidering an image as a matrix of pixels) and the
symbolic facets. The symbolic facet, grouping
all aspects of the image content and its general
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context, is itself an aggregation of two basic
facets:

— The visual semantics facet describes the im-
age semantic content and is based on la-
belling image objects with a visual semantic
concept.

— The signal facet describes the image signal
content in terms of symbolic perceptive fea-
tures and consists of characterizing image
objects with signal concepts. It is itself di-
vided into two sub-facets. The color sub-
facet features the image signal content in
terms of symbolic colors. E.g., the image
object (USA flag) is associated with sym-
bolic colors Blue, Red and White. The tex-
ture subfacet describes the signal content in
terms of symbolic texture features.

At the core of the image model is the notion
of image object (IO), abstract structure repre-
senting a visual entity within an image. Its
specification is an attempt to operate visual in-
dexing and retrieval operations beyond simple
low-level processes or object-based techniques
[14] since Ios convey the visual semantics and
signal information.

3.1. Representation Formalism

In order to instantiate this model as an image re-
trieval framework, we need representation for-
malism capable of representing image objects
as well as the visual semantics, spatial and sig-
nal information they convey. Moreover, this
representation formalism should make it easy
to visualize the information related to an image.
It should therefore combine expressivity and a
user-friendly representation. As amatter of fact,
a graph-based representation and particularly
conceptual graphs (CGs) [15] are an efficient
solution to describe an image and characterize
its components. The asset of this knowledge
representation formalism is its flexible adapta-
tion to the symbolic approach of image retrieval
[16], [8]. It allows indeed to uniformly represent
components of our architecture and to develop
expressive and efficient index and query frame-
works.

Formally, a CG is a finite, bipartite, connex and
oriented graph. It features 2 types of nodes:
the first one between brackets in our CG al-
phanumerical representation (i.e. as coded in

our framework) is tagged by a concept, how-
ever, the second between parentheses is tagged
by a conceptual relation. E.g., the CG:

[ICTA]← (Name)← [Conference]
→ (Location)→ [Tunisia]

is interpreted as: the ICTA conference is held
in Tunisia.

Concepts and conceptual relations are organized
within a lattice structure partially ordered by the
IS-A (≤) relation. E.g., Person ≤Man denotes
that the concept Man is a specialization of the
concept Person, and will therefore appear in the
offspring of the latter within the lattice orga-
nizing these concepts. Within the scope of the
model, CGs is used to represent the video shot
content in the logical facet.

The indexing module provides a representation
of a video shot document in the corpus with re-
spect to the multi-facetted image model. It is a
CG called document index graph.

Also, as far as the retrieval module is concerned,
a user full text query is translated into a video
shot conceptual representation: the video shot
query graph corresponding to the multi-facetted
shot description.

After presenting our representation formalism,
we now focus on the visual semantics facet and
propose conceptual structures handling seman-
tics. We then specify its CG representation.

3.2. The Visual Content Modeling

3.2.1. The Visual Semantics Facet

a) Automatic extraction of semantic
concepts

Visual semantic concepts are learned and then
automatically extracted given a visual ontology.
Several experimental studies presented in [20]
have led to the specification of twenty categories
or picture scenes describing the image content
at a global level. Web-based image search en-
gines (Google, AltaVista) are queried by textual
keywords corresponding to these picture scenes
and 100 images are gathered for each query.
These images are used to establish a list of se-
mantic concepts characterizing objects that can
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Figure 1. Architecture for visual semantics extraction: The tiled key-frame (1) is subjected to visual token
recognition and recognition (2) results are then spatially aggregated to determine semantic concepts (3).

be encountered in these scenes. This list (in par-
ticular concepts related to individual names) is
enriched with concepts provided by Video An-
nex [11] and a total of 72 visual semantic con-
cepts to be learned and automatically extracted
are specified.

Figure 1 presents the architecture for automatic
extraction of visual semantic concepts: a 3-
layer feed-forward neural networkwith dynamic
node creation capabilities is used to learn these
concepts from 1000 labelled key-frame patches
cropped from the training and annotation corpus
of the TRECVID 2003 search task. Color and
texture features are computed for each training
region as an input vector for the neural net-
work. Once the network has learned the visual
vocabulary, the approach subjects a tiled key-
frame to be indexed to multi-scale, view-based
recognition against these visual semantic con-
cepts. A key-frame to be processed is scanned
with windows of several scales within the Fuzzy
Object Map in Figure 1. Each one represents
a visual token characterized by a feature vector
constructedwith respect to the feature vectors of
visual semantic concepts exhibited previously.
Recognition results are then reconciled across
multiple resolutions and aggregated according
to configurable spatial tessellation within the
Spatial Aggregation Map.

b) Model of the visual semantics facet

Image objects are represented by Io concepts
and visual semantic concepts are organized
within a multi-layered lattice ordered by a spe-
cific/generic partial order (we propose a part
of the lattice in Figure 2). An instance of the
visual semantics facet is represented by a set
of canonical CGs, each one containing an Io
type linked through the conceptual relation vsc
to a visual semantic concept. The basic graph
controlling the generation of all visual semantic
facet graphs is:

[Io]→ (vsc)→ [VSC]

E.g., the representation of the visual semantics

Figure 2. Lattice organizing semantic concepts.
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facet for our example image in Figure 1 is

[Io1]→ (vsc)→ [Clinton]

and
[Io2]→ (vsc)→ [f lag]

translated as the first IO represents Clinton and
the second IO a flag.

3.2.2. The Signal Facet

The integration of signal information within the
conceptual level is crucial since it enriches the
indexing framework and expands the query lan-
guage with the possibility to query over both
semantics and visual information. After pre-
senting our formalism, we will now focus on
the signal facet and deal with theoretical impli-
cations of integrating signal features within our
multifaceted conceptual model. This integra-
tion is not straightforward as we need to charac-
terize low-level signal features at the conceptual
level, and therefore specify a rich framework for
conceptual signal indexing and querying.

We first propose conceptual structures for the
color and texture subfacets and then thoroughly
specify their CG representation

3.2.2.1. The Color Subfacet

Integrating signal features within a high-level
conceptual framework is not straightforward.
The first step is to specify conceptual signal
data which correspond to low-level features,
therefore specifying a correspondence process
between color names and color stimuli. Our
symbolic representation of color information is
guided by the research carried out in color nam-
ing and categorization [2] stressing a step of
correspondence between color names and their
stimuli. We will consider the existence of a
formal system Snc of color categorization and
naming which specifies a set of color words Cat
with a cardinal Ccat. These color words are the
Ci. Within the scope of this paper, 11 color
words:

C1 = red, C2 = white, C3 = blue,
C4 = grey, C5 = cyan, C6 = green,

C7 = yellow, C8 = purple, C9 = black,
C10 = skin, C11 = orange

spotlighted in [29] are described in the HVC
perceptually uniform space by a union of bright-
ness, tonality and saturation intervals.

a) Conceptual specification

Each IO is indexed by a color index concepts
(CICs) feature the color distribution of image
objects by a conjunction of color words and
their corresponding integer pixel percentages.
The second image object (Io2) corresponding
to the semantic concept flag in Figure 1 is char-
acterized by the CIC:

< r : 40, w : 45, b : 15, g : 0 . . . >

interpreted as Io2 having 40% of red, 45% of
white and 15% of blue.

CICs are elements of partially ordered lattices,
organized with respect to the query operator
processes: either a Boolean or a quantifica-
tion operator (at most, at least, mostly, few)
explicited in [21] [22]. Index color graphs
link an Io type through the conceptual relation
has color to a CIC:

[Io]→ (has color)→ [CIC].

b) Automatic generation of color subfacet
CGs

Here is the algorithm summarizing the auto-
matic generation of all conceptual structures of
the color subfacet:

• Given an IO

• compute the RGB value of each of its pixels

• Map it to tonality, brightness & saturation
values in the HVC perceptive space

• Determine the associated color word consid-
ering the HVC perceptive color word parti-
tion [9]

• Store for each color word the percentage of
associated pixels

• Generate the associated CIC and the al-
phanumerical color CG:

[IO]→ (has color)→ [CIC]

E.g., the representation of the color subfacet for
our example image in Section 1 is:

[Io2]→ (has color)
→ [< r : 40, w : 45, b : 15, g : 0 . . . >]
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TW B C D I L M N S Sp U W

% 83.7 85.2 88.9 91.9 94.5 89 86.8 83.4 90 97.3 81.4

Table 1. Cross-validation percentages.

translated as the second image object (Io2) is
associated with the CIC :

< r : 40, w : 45, b : 15, g : 0 . . . >

(i.e. 40% of red, 45% of white & 15% of blue).

3.2.2.2. The Texture Sub Facet

The study of texture in computer vision has
led to the development of several computational
models for texture analysis used in several CBIR
architectures [7]. However, these texture ex-
traction frameworks mostly fail to capture as-
pects related to human perception. Therefore,
we propose a solution inspired by the work in
[12] specifying a computational framework for
texture extraction which is the closest approxi-
mation of the human visual system. The action
of the visual cortex, where an object is decom-
posed into several primitives by the filtering of
cortical neurons sensitive to several frequencies
and orientations of the stimuli, is simulated by
a bank of Gabor filters. However, as opposed
to their work operating at a global level of an
image, we will focus on computational texture
extraction at the object level. We will therefore
characterize each image object by its Gabor en-
ergy distribution within seven spatial frequen-
cies covering the whole spectral domain and
seven angular orientations. Each image object
is then represented by a 49-dimensions vector,
with each dimension corresponding to Gabor
energy.

a) Conceptual texture characterization

Although several studies have been proposed
for the analysis of the characteristic texture, few
proposals were made for the symbolic recogni-
tion of this feature. Our symbolic representation
of texture is based on research in naming and
categorizing textures proposed by Bhushan [3].
We consider the following concepts of texture
as a representation of each of these categories:

bumpy, cracked, disordered, interlaced, lined,
marbled, netlike, smeared, spotted, uniform and
whirly.

These 11 high-level texture words, foundation
of our framework for texture symbolic charac-
terization are automatically mapped to the 49-
dimensions vectors of Gabor energies through
support vector machines [20]. We adopt the
one-against-rest approachwhere a separate clas-
sifier is designed for each of the eleven texture
words for reasons of optimized inter-class sepa-
ration. We also associate a confidence value for
the classification defined. For this, we use the
distance from an IO i to be characterized with
texture word t to the decision boundary f t(i)
(where f t is the trained discriminate function on
the one-against-rest classification problem in-
volving texture word t) and map it on posterior
probabilities of recognition. In order to achieve
this mapping, we use a 1D logistic classifier
which maximizes the likelihood of the classi-
fied training IOs. For each of the eleven texture
words, the best cross-validation rate is given in
Table 1. Let us note that the SVMs are able to
label new instances of unknown textures with
corresponding texture words with a high accu-
racy, cross-validation percentages being higher
than 80%.

b) Conceptual specification

Each IO is indexed by a texture concept (TC).
A TC is supported by a vector structure t with
eleven elements corresponding to texture words
twi. Values t[i], i ∈ {1, . . . , 11} are booleans
stressing that the texture distribution of the con-
sidered IO is characterized by the texture word
twi.

E.g., the second IO (Io2) corresponding to the
semantic concept flag in Figure 2 is character-
ized by the TC:

< B : 0 . . .D : 0 . . .L : 1 . . .U : 1 . . . >

translated as Io2 being characterized by the tex-
ture word striped (lined). TCs are elements
of partially ordered lattices which are orga-
nized respectively to the type of the query pro-
cessed. The basic graphs controlling the gen-
eration of all texture subfacet graphs link an
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Io type through the conceptual relation tx to a
texture concept:

[Io]→ (has tx)→ [TC]

c) Automatic generation of texture subfacet
CGs

Here is the algorithm summarizing the auto-
matic generation of all conceptual structures of
the color subfacet:

• Given an IO

• Compute its associated 49-dimensions vec-
tor of Gabor energies

• Map it to the linked texture words through
the explicated SVM architecture

• Compute the posterior recognition probabil-
ities of association

• Generate the associated TC & the texture
CG:

[Io]→ (has tx)→ [TC]

E.g., the representation of the texture subfacet
for our example image in Figure 1 is

[Io2]→ (has tex)
→ [< B : 0 . . .D : 0 . . .L : 1 . . .U : 1 . . . >]

translated as the second image object (Io2, rep-
resenting the semantic concept flag) is asso-
ciated with the TC < B : 0 . . .D : 0 . . .L :
1 . . .U : 1 . . . > (i.e. striped/lined).

3.2.2.3. The Spatial Subfacet

In order to model spatial data, we first consider
a subset of the topological relations explicited
in the RCC-8 theory [5]; 4 relations which are
exhaustive and relevant for image querying are
chosen. Considering 2 image objects (Io1 and
Io2), these relations are:

— s1 = (C, Io1, Io2): Io1 covers/is in front of
Io2 (therefore Io2 is behind Io1).

— s2 = (P, Io1, Io2): Io1 is a part of Io2.

— s3 = (T, so1, so2): Io1 touches Io2 (exter-
nally connected or overlaps).

— s4 = (D, so1, so2): Io1 is disconnected with
Io2.

Directional relations Right (s5 = R), Left (s6 =
L), Above (s7 = A), Below (s8 = B) are invari-
ant to basic geometrical transformations (trans-
lation, scaling).

Two relations specified in the metric space are
based on the distances between image objects.
They are the Near (s9 = N) and Far (s10 = F)
relations.

An instance of the spatial facet is represented
by a set of CGs, each one containing 2 Io types
linked through the previously defined spatial re-
lations (more details are found in [18], [23]).

An IO is characterized by its centre of grav-
ity io g as well as two pixel sets: its interior,
noted io i and its boundary, noted io b. To deal
with the automatic computation of topological
relations [9], two image objects Io1 and Io2 are
characterized by intersections of their interior
and boundary sets:

io1 i ∩ io2 i, io1 i ∩ io2 b, io1 b ∩ io2 i

and io1 b ∩ io2 b.

Each topological relation is mapped to the re-
sults of these intersections, e.g. (DC, so1, so2)
iff.

io1 i ∩ io2 i = ∅, io1 i ∩ io2 b = ∅,
io1 b ∩ io2 i = ∅ and io1 b ∩ io2 b = ∅.

The interest of this computation method relies
on the association of topological relations to the
previous set of necessary and sufficient condi-
tions involving attributes of spatial objects (i.e.
interior and boundary). The computation of di-
rectional relations between Io1 and Io2 relies on
the relative position of their centers of gravity.

Finally, to distinguish between near and far re-
lations, we use the Dnf constant given by

Dnf = d(�0, 0.5 ∗ [σ1,σ2]T)

where d is the Euclidean distance between the
null vector �0 and [σ1,σ2]T is the vector of stan-
dard deviations of the localization of centers of
gravity for each IO in each dimension from the
overall spatial distribution of all IOs in the cor-
pus. Dnf is therefore a measure of the spread of
the distribution of centers of gravity of IOs. This
distance agrees with results from psychophysics
and can be interpreted as: the bigger the spread,
the larger the distances between centers of grav-
ity are. We will say that two IOs are near if
the Euclidean distance between their centers of
gravity is inferior to Dnf , far otherwise.
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a) Conceptual specification

Each pair of IOs are related through a spa-
tial concept (SpC), compact structure summa-
rizing spatial relationships between these IOs.
A SpC is supported by a vector structure sp
with ten elements corresponding to the previ-
ously explicited spatial relations. Values sp[i],
i∈{1,. . . ,10} are booleans stressing that the spa-
tial relation si links the two considered IOs.
E.g., Io1 and Io2 are related through the SpC:

< C : 1, P : 0 . . .N : 1, F : 0 >

translated as Io1 covering and being near to Io2
(Io2 being therefore behind Io1). SpCs are el-
ements of a partially ordered lattice explicited
in [21]. The basic graph controlling the gener-
ation of all spatial subfacet graphs links two Io
types through the conceptual relations agent 1
and agent 2 to a SpC:

[Io1]← (agent 1)← [SIC]→ (agent 2)
→ [Io2].

b) Automatic generation of spatial subfacet
CGs

Here is the algorithm summarizing the auto-
matic generation of all conceptual structures of
the spatial subfacet:

• Given a pair of IOs, Io1 and Io2

• Associate a topological relation to the results
of interior and boundary sets of Io1 and Io2

• Compare the centers of gravity of both IOs
to determine the directional relations linking
them

• Compute dEuc(Io1 g, Io2 g) and compare
it to Dnf to determine the near /far relations
between Io1 and Io2

• Generate the associated SICand the alphanu-
merical spatial CG:

[Io1]← (agent 1)← [SIC]→ (agent 2)
→ [Io2].

E.g., the representation of the spatial subfacet
for our example image in Figure 1 is [io1] ←
(agent 1) ← [< c : 1, p : 0 . . .n : 1, f : 0 >
] → (agent 2) → [io2], translated as io1 cov-
ering and being near to io2.

4. The Query Module

Our conceptual architecture is based on a uni-
fied full-text framework allowing a user to query
over the visual layer.

This obviously optimizes user interaction since
the user is in ‘charge’ of the query process by
making his information needs explicit to the
system. The retrieval process using CGs relies
on the fact that a query is also expressed under
the form of a CG. The representation of a user
query in our model is, like image index rep-
resentations, obtained through the combination
(joint operation) of CGs over all the facets of vi-
sual layers. Without going into details, a simple
grammar composed of a list of the previously
introduced visual concepts, as well as the spec-
ified visual relations is automatically translated
into an alphanumerical CG structure.

We distinguish several categories of requests:

— Request Event: The application event in-
volves actions (often real) in the document.
For example, the query: “find the video seg-
ments showing a rally”. Representation with
the formalism of conceptual graph of this
query is given.

Figure 3. Example query event.

— Temporal request: The temporal request in-
tegrates constraints from the temporal as-
pect. For example, the query: “find the
video segments showing both events ending
at the same time”. Representation with the
formalism of conceptual graph of this query
is given in the following figure:

Figure 4. Example query temporal.



A Framework of Indexation and Document Video Retrieval Based on the Conceptual Graphs 253

— Audio semantic request: The audio semantic
request combines the descriptions connected
with the audio contents. For example, the
request: “find the video segments in which
Bill Clinton spoke”. Representation with the
formalism of conceptual graph of this query
is given in the following figure:

Figure 5. Example query semantics audio.

— Visual semantic request: The visual seman-
tic request combines the descriptions con-
nected with the visual contents. For exam-
ple, the request: “find the video segments
showing Bill Clinton”. Representation with
the formalism of conceptual graph of this
query is given in the following figure:

Figure 6. Example of visual semantic query.

— Semantic request signal: The semantic re-
quest signal can search the video based on
low-level descriptions. For example, the re-
quest: “Find the video segments showing a
flag with a red, white and blue striped tex-
ture”.

[Flag]→ (has color)→ [< C1 : 1, C2 : 1,

C3 : 1, . . . , C9 : 0 >].
→ (has texture)→ [< T1 : 0, T2 : 0,

T3 : 0,→ T4 : 0, T5 : 1, . . . >]

— Multimodal request: The multimodal re-
quest allows searching the video based on
a description from several modalities (im-
age, audio or text). For example, the request:
“Find the video segments showing Bill Clin-
ton speak on Iraq and where at least part of

the American flag is visible”. Representa-
tion with the formalism of conceptual graph
of this query is given in the following figure:

Figure 7. Example of multimodal semantic query.

5. The Matching Process

The correspondence between a document d (d
may be a video or a segment of video document)
and a query q is determined using the operator
of projection of the graph Gq representing the
request in the graph Gd representing the docu-
ment. There is a projection of the graph Gq on
a graph Gd if there is one under graph G′

d of Gd
which is a restriction of Gq.

Given a query q and document d, there may be
zero, one or more such projections. We denote∏

(q, d) all of these projections.

When many documents match the query in ac-
cordance with such correspondence, it is neces-
sary to order them. For this, we calculate the
relevance for each video shot VS (document). It
is calculated by combining the measures called
for exhaustivity and specificity. This correla-
tion model is based on an extension of the logic
model ofVanRijsbergen logicalmodel proposed
in [13]. We use a function F to combine exhaus-
tivity and specificity measures:

Relevance(VS, Q) = F[E(VS→ Q),
S(Q→ VS)]

Exhaustivityquantifies towhich extent the video
shot satisfies the query. It is given by the value
of E(VS → Q), E being the exhaustivity func-
tion. Specificity measures the importance of the
query themes within the considered video shot,
it is given by the value of S(Q → VS), S being
the specificity function.
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The function F values are to be proportional
to the values of the exhaustivity and specificity
functions: it takes its values in the [0,1].

F(a, b) = 0 if a = 0 or b = 0;

F(a, b) = 1 if a = 1 and b = 1;

We have chosen the trivial multiplication oper-
ation.

F(a, b) = a ∗ b;

6. Application: TRECVID Topic Search

Our prototype called CLOVIS1 implements the
theoretical framework exposed in this paper and
validation experiments are carried out on the
TRECVID 2004 corpus comprising 128 videos
segmented in 48817 shots, each one itself rep-
resented by a key-frame.

The search task is based on topic retrievalwhere
a topic is defined as a formated description of
an information need, therefore involving multi-
ple characterizations. The complexity inherent
in topic search revolves around the difficulty to
design the intended meaning and interrelation-
ships between the various characterizations. We
therefore design the evaluation task in the con-
text of manual search, where a human1expert
in the search system interface is able to inter-
pret a topic and propose an optimal query to be
processed by the system. 24 multimedia topics
developed by NIST for the search task express
the need for video concerning people, things,
events, locations. . . and combinations of the
former. The topics are designed to reflect many
of the various sorts of queries real users pro-
pose: requests for video with specific people
or people types, specific objects or instances of
object types, specific activities or locations or
instances of activity or location types. We com-
pare our system with themainstream TRECVID
2004 systems operating manual search [10].

Carnegie Mellon University proposes a manual
search system using text retrieval based on ASR
and closed captioning to find candidate shots
and then re-ranking the candidates by linearly
combining scores from multimodal features or
re-ranking weights trained by logistic regres-
sion.

The manual search system of the National Uni-
versity of Singapore is based on a generic query
analysis module. They use 6 query-specific
models and the fusion of multi-modality fea-
tures such as text, OCR, visual concepts. . . their
work being inspired by text-based question-
answering techniques.

Finally, the Lowlands team (CWI Amsterdam &
Twente University) proposed a generative prob-
abilistic model for video retrieval based on dy-
namic (at the shot level), static (at the key-frame
level) and audio/language (using ASR) charac-
terizations. Their queries are created by manual
construction and selection of visual examples.

The Recall/Precision curves in Figure 8 illus-
trate the average results in terms of mean av-
erage precision obtained for the 24 multime-
dia topics. The average precision of CLO-
VIS (0.0868) is approximately 14.2%, 19% and
22.3% higher over respectively the average pre-
cisions of the CMU (0.076), Lowlands (0.073)
and NUS (0.071) systems. This clearly indi-
cates that, on average, the first video shots re-
turned by our system are particularly relevant
compared to the first video shots retrieved by
other systems.

Figure 8. Recall/Precision curves for TRECVID topics.

The obtained results allow us to state that when
performing topic search and therefore dealing
with elaborate queries which combine multiple
sources of information (here visual and audio
semantics, signal features) and thus require a
higher level of abstraction, the use of an “intel-
ligent” and expressive representation formalism
(here the CG formalism within our framework)
is crucial. As a matter of fact, our framework
outperforms state-of-the-art TRECVID 2004

1 CLOVIS: Conceptual Layer Organization for Video and Indexing and Search.
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systems by proposing a unified full-text frame-
work optimizing user interaction and allowing
querying with precision over visual and au-
dio/speech descriptions.

7. Conclusion

We proposed the specification of a framework
combining semantics, signal and spatial char-
acterizations within a strongly-integrated archi-
tecture to achieve greater retrieval accuracy. We
introduced image objects, abstract structures
representing visual entities in order to oper-
ate video indexing and retrieval operations at
a higher abstraction level than state-of-the-art
frameworks. We specified the multiple facets,
their conceptual representation and finally pro-
posed a full-text unified and rich query frame-
work.

Our experimental contribution consists of the
(partial) implementation of the CLOVIS proto-
type. We have integrated the proposed model
in the video indexing and retrieval system by
content in order to evaluate its contributions in
terms of effectiveness and precision. Experi-
mental results on a TRECVID corpus allowed
us to validate our approach which aims to solve
several problems such as:

— Exploit semantic descriptions of content

— Facilitate handling and access to large video
databases based on the description level sym-
bolic

— To gather descriptions from different sub-
media in the same schema modelling.

In further work, we propose in the short term to
exploit the results of visual analysis (signal) and
integrate different representations at the level of
the modeling, then complete the integration of
model in a video search system for assessing the
contribution of the proposed model on another
corpus. On the long run, we propose to use ex-
ternal knowledge to enrich the descriptions in
the schema modeling.
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