8 research outputs found

    Review implementation of linguistic approach in schema matching

    Get PDF
    Research related schema matching has been conducted since last decade. Few approach related schema matching has been conducted with various methods such as neuron network, feature selection, constrain based, instance based, linguistic, and so on. Some field used schema matching as basic model such as e-commerce, e-business and data warehousing. Implementation of linguistic approach itself has been used a long time with various problem such as to calculated entity similarity values in two or more schemas. The purpose of this paper was to provide an overview of previous studies related to the implementation of the linguistic approach in the schema matching and finding gap for the development of existing methods. Futhermore, this paper focused on measurement of similarity in linguistic approach in schema matching

    Survey: Models and Prototypes of Schema Matching

    Get PDF
    Schema matching is critical problem within many applications to integration of data/information, to achieve interoperability, and other cases caused by schematic heterogeneity. Schema matching evolved from manual way on a specific domain, leading to a new models and methods that are semi-automatic and more general, so it is able to effectively direct the user within generate a mapping among elements of two the schema or ontologies better. This paper is a summary of literature review on models and prototypes on schema matching within the last 25 years to describe the progress of and research chalenge and opportunities on a new models, methods, and/or prototypes

    Matching Large XML Schemas

    Get PDF
    Current schema matching approaches still have to improve for very large and complex schemas. Such schemas are increasingly written in the standard language W3C XML schema, especially in E-business applications. The high expressive power and versatility of this schema language, in particular its type system and support for distributed schemas and namespaces, introduce new issues. In this paper, we study some of the important problems in matching such large XML schemas. We propose a fragment-oriented match approach to decompose a large match problem into several smaller ones and to reuse previous match results at the level of schema fragments

    Variations in Conceptual Modeling: Classification and Ontological Analysis

    Get PDF
    Conceptual models are aimed at providing formal representations of a domain. They are mainly used for the purpose of understanding and communicating about requirements for information systems.Conceptual modeling has acquired a large body of research dealing with the semantics of modeling constructs, with the goal to make models better vehicles for understanding and communication. However, it is commonly known that different people construct different models of a given domain although all may be similarly adequate. The premise of this paper is that variations in models reflect vagueness in the criteria for deciding how to map reality into modeling constructs. Exploring model variations as such can contribute to research that deals with the semantics of modeling constructs.This paper reports an exploratory study in which empirically obtained model variations were qualitatively analyzed and classified into variation types. In light of the identified variation types, we analyzed two ontology-based modeling frameworks in order to evaluate their potential contribution to a reduction in variations. Our analysis suggests that such frameworks may contribute to more conclusive modeling decision making, thus reducing variations. However, since there is no complete consistency between the two frameworks, in order to reduce variations, a single framework should be systematically applied

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure

    RiMOM: A Dynamic Multistrategy Ontology Alignment Framework

    Full text link

    Uniform techniques for deriving Similarities of objects and subschemes in heterogeneous databases

    No full text
    Abstract—The availability of automatic tools for inferring semantics of database schemes is useful to solve several database design problems such as, that of obtaining Cooperative Information Systems or Data Warehouses from large sets of data sources. In this context, a main problem is to single out similarities or dissimilarities among scheme objects (interscheme properties) [7]. This paper presents graph-based techniques for a uniform derivation of interscheme properties including synonymies, homonymies, type conflicts, and subscheme similarities. These techniques are characterized by a common core: the computation of maximum weight matchings on some bipartite weighted graphs derived using a suitable metrics to measure semantic closeness of objects. The techniques have been implemented in a system prototype. Several experiments conducted with it, and (in part) accounted for in the paper, confirmed the effectiveness of our approach. Index Terms—Synonymies, homonymies, type conflicts, subscheme similarities, derivation of database semantics, heterogeneous databases, database interoperability

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives
    corecore