18,594 research outputs found

    Self-stabilizing protocol for anonymous oriented bi-directional rings under unfair distributed schedulers with a leader

    Full text link
    We propose a self-stabilizing protocol for anonymous oriented bi-directional rings of any size under unfair distributed schedulers with a leader. The protocol is a randomized self-stabilizing, meaning that starting from an arbitrary configuration it converges (with probability 1) in finite time to a legitimate configuration (i.e. global system state) without the need for explicit exception handler of backward recovery. A fault may throw the system into an illegitimate configuration, but the system will autonomously resume a legitimate configuration, by regarding the current illegitimate configuration as an initial configuration, if the fault is transient. A self-stabilizing system thus tolerates any kind and any finite number of transient faults. The protocol can be used to implement an unfair distributed mutual exclusion in any ring topology network; Keywords: self-stabilizing protocol, anonymous oriented bi-directional ring, unfair distributed schedulers. Ring topology network, non-uniform and anonymous network, self-stabilization, fault tolerance, legitimate configuration

    Leader Election in Anonymous Rings: Franklin Goes Probabilistic

    Get PDF
    We present a probabilistic leader election algorithm for anonymous, bidirectional, asynchronous rings. It is based on an algorithm from Franklin, augmented with random identity selection, hop counters to detect identity clashes, and round numbers modulo 2. As a result, the algorithm is finite-state, so that various model checking techniques can be employed to verify its correctness, that is, eventually a unique leader is elected with probability one. We also sketch a formal correctness proof of the algorithm for rings with arbitrary size

    Self-stabilizing Leader Election in Population Protocols over Arbitrary Communication Graphs

    Get PDF
    This paper considers the fundamental problem of \emph{self-stabilizing leader election} (SSLE\mathcal{SSLE}) in the model of \emph{population protocols}. In this model, an unknown number of asynchronous, anonymous and finite state mobile agents interact in pairs over a given communication graph. SSLE\mathcal{SSLE} has been shown to be impossible in the original model. This impossibility can been circumvented by a modular technique augmenting the system with an \emph{oracle} - an external module abstracting the added assumption about the system. Fischer and Jiang have proposed solutions to SSLE\mathcal{SSLE}, for complete communication graphs and rings, using an oracle Ω?\Omega?, called the \emph{eventual leader detector}. In this work, we present a solution for arbitrary graphs, using a \emph{composition} of two copies of Ω?\Omega?. We also prove that the difficulty comes from the requirement of self-stabilization, by giving a solution without oracle for arbitrary graphs, when an uniform initialization is allowed. Finally, we prove that there is no self-stabilizing \emph{implementation} of Ω?\Omega? using SSLE\mathcal{SSLE}, in a sense we define precisely

    Separation of Circulating Tokens

    Full text link
    Self-stabilizing distributed control is often modeled by token abstractions. A system with a single token may implement mutual exclusion; a system with multiple tokens may ensure that immediate neighbors do not simultaneously enjoy a privilege. For a cyber-physical system, tokens may represent physical objects whose movement is controlled. The problem studied in this paper is to ensure that a synchronous system with m circulating tokens has at least d distance between tokens. This problem is first considered in a ring where d is given whilst m and the ring size n are unknown. The protocol solving this problem can be uniform, with all processes running the same program, or it can be non-uniform, with some processes acting only as token relays. The protocol for this first problem is simple, and can be expressed with Petri net formalism. A second problem is to maximize d when m is given, and n is unknown. For the second problem, the paper presents a non-uniform protocol with a single corrective process.Comment: 22 pages, 7 figures, epsf and pstricks in LaTe

    Distributed stabilizing data structures

    Full text link
    Distributed algorithms aim to achieve better performance than sequential algorithms in terms of time complexity (or asymptotic time complexity) while keeping or lowering the memory requirement (space complexity) in a node. (In sequential algorithms, the memory requirement is the memory requirement of the algorithm itself.); Self-stabilizing distributed algorithms aim to achieve a comparable performance to non-stabilizing distributed algorithms when transient faults or arbitrary initialization cause the system to enter a state where a non-stabilizing algorithm cannot continue to properly perform its task; Transient faults can affect an existing data structure and alter its data content. As a result, the data structure may lose its properties, and the operations defined over the data structure will have unpredictable and undesirable results, making the data structure unusable; We present several self or snap-stabilizing algorithms for particular data structures; We propose an optimal self-stabilizing distributed algorithm for simultaneously activating non-adjacent processes on an oriented chain (Algorithm SSDS ). We use Algorithm SSDS to accomplish two tasks: local mutual exclusion and line sorting. We propose two uniform, self-stabilizing, deterministic protocols on oriented chains: a time and space optimal solution to the local mutual exclusion problem (Algorithm LMEC ), and a space and (asymptotic) time optimal solution to the distributed sorting problem (Algorithm SORTc ); We extend Algorithm SSDS to an asynchronous oriented ring with a distinguished node with some minor modifications, and we obtain general self-stabilization for simultaneously activated non-adjacent processes in an oriented ring with a distinguished process (Algorithm SSDSR ). We use Algorithm SSDSR to accomplish two tasks: local resource allocation and ring sorting. We propose two uniform, self-stabilizing, deterministic protocols on oriented rings: a time and space optimal solution to the local resource allocation problem (Algorithm LRAR ), and a space and (asymptotic) time optimal solution to the distributed sorting problem (Algorithm SORTr ); We extend Algorithm SSDS to an asynchronous rooted tree, and we obtain general self-stabilization for simultaneously activated non-adjacent processes in a rooted tree (Algorithm SSDST ). We then give two applications of Algorithm SSDST : a time and space optimal solution to the local mutual exclusion problem (Algorithm LMET ) and a space and (asymptotically) time optimal solution to the min heap problem (Algorithm HEAP ); In proving the time complexity of sorting, we introduce the notion of pseudo-time, similar to logical time introduced by Lamport; We present the first snap-stabilizing distributed binary search tree (BST) algorithm. The proposed algorithm uses a heap algorithm (Algorithm Heap) as a preprocessing step. This is also the first snap-stabilizing distributed solution to the heap problem

    Bounds for self-stabilization in unidirectional networks

    Get PDF
    A distributed algorithm is self-stabilizing if after faults and attacks hit the system and place it in some arbitrary global state, the systems recovers from this catastrophic situation without external intervention in finite time. Unidirectional networks preclude many common techniques in self-stabilization from being used, such as preserving local predicates. In this paper, we investigate the intrinsic complexity of achieving self-stabilization in unidirectional networks, and focus on the classical vertex coloring problem. When deterministic solutions are considered, we prove a lower bound of nn states per process (where nn is the network size) and a recovery time of at least n(n1)/2n(n-1)/2 actions in total. We present a deterministic algorithm with matching upper bounds that performs in arbitrary graphs. When probabilistic solutions are considered, we observe that at least Δ+1\Delta + 1 states per process and a recovery time of Ω(n)\Omega(n) actions in total are required (where Δ\Delta denotes the maximal degree of the underlying simple undirected graph). We present a probabilistically self-stabilizing algorithm that uses k\mathtt{k} states per process, where k\mathtt{k} is a parameter of the algorithm. When k=Δ+1\mathtt{k}=\Delta+1, the algorithm recovers in expected O(Δn)O(\Delta n) actions. When k\mathtt{k} may grow arbitrarily, the algorithm recovers in expected O(n) actions in total. Thus, our algorithm can be made optimal with respect to space or time complexity

    Compact Deterministic Self-Stabilizing Leader Election: The Exponential Advantage of Being Talkative

    Full text link
    This paper focuses on compact deterministic self-stabilizing solutions for the leader election problem. When the protocol is required to be \emph{silent} (i.e., when communication content remains fixed from some point in time during any execution), there exists a lower bound of Omega(\log n) bits of memory per node participating to the leader election (where n denotes the number of nodes in the system). This lower bound holds even in rings. We present a new deterministic (non-silent) self-stabilizing protocol for n-node rings that uses only O(\log\log n) memory bits per node, and stabilizes in O(n\log^2 n) rounds. Our protocol has several attractive features that make it suitable for practical purposes. First, the communication model fits with the model used by existing compilers for real networks. Second, the size of the ring (or any upper bound on this size) needs not to be known by any node. Third, the node identifiers can be of various sizes. Finally, no synchrony assumption, besides a weakly fair scheduler, is assumed. Therefore, our result shows that, perhaps surprisingly, trading silence for exponential improvement in term of memory space does not come at a high cost regarding stabilization time or minimal assumptions
    corecore