
HAL Id: hal-00867287
https://hal.archives-ouvertes.fr/hal-00867287v2

Submitted on 30 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-stabilizing Leader Election in Population Protocols
over Arbitrary Communication Graphs

Joffroy Beauquier, Peva Blanchard, Janna Burman

To cite this version:
Joffroy Beauquier, Peva Blanchard, Janna Burman. Self-stabilizing Leader Election in Population
Protocols over Arbitrary Communication Graphs. 2013. �hal-00867287v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49748976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00867287v2
https://hal.archives-ouvertes.fr


Self-stabilizing Leader Election in Population

Protocols over Arbitrary Communication Graphs

Jo�roy Beauquier1, Peva Blanchard1⋆, and Janna Burman1

LRI, Paris-South 11 University, Orsay, France, {jb,blanchard,burman}@lri.fr

Abstract. This paper considers the fundamental problem of self-stabilizing
leader election (SSLE) in the model of population protocols. In this
model, an unknown number of asynchronous, anonymous and �nite state
mobile agents interact in pairs over a given communication graph. SSLE
has been shown to be impossible in the original model. This impossibility
can been circumvented by a modular technique augmenting the system
with an oracle - an external module abstracting the added assumption
about the system. Fischer and Jiang have proposed solutions to SSLE ,
for complete communication graphs and rings, using an oracle Ω?, called
the eventual leader detector. In this work, we present a solution for ar-
bitrary graphs, using a composition of two copies of Ω?. We also prove
that the di�culty comes from the requirement of self-stabilization, by
giving a solution without oracle for arbitrary graphs, when an uniform
initialization is allowed. Finally, we prove that there is no self-stabilizing
implementation of Ω? using SSLE , in a sense we de�ne precisely.

Keywords: leader election, self-stabilization, population protocols, global fair-
ness, oracles

1 Introduction

Leader election and consensus are among the most fundamental problems in
distributed computing. Both have been formally proven not to admit any solution
under some assumptions and especially under the presence of faults. Consensus
is impossible in asynchronous message passing or shared memory systems, even
with a single crash fault [14]. Leader election is impossible each time the system
is completely symmetrical, involving no identi�ers, or is required to be self-
stabilizing [12], i.e., withstand state-corrupting transient failures (see, e.g., [6,4]).
To circumvent these impossibilities, a lot of studies have been performed for
devising and de�ning the (minimum) supplementary information or assumptions
needed to solve these problems. Such information generally should be available
or possible to retrieve in real systems, allowing practical implementations.

Devising such necessary supplementary information in a modular way can be
done using oracles. An oracle can be viewed as a black box, which, when asked

⋆ Contact author: LRI, Bât. 650, Université Paris-Sud 11, 91405 Orsay Cedex France.
tel: 33 (0)1 69 15 64 32



2 Jo�roy Beauquier, Peva Blanchard, and Janna Burman

by the system, provides some type of information, hopefully useful to solve a
given problem. A great number of studies, following Chandra and Toueg [10],
have been devoted to a speci�c type of oracles, named failure detectors, and
allowing to solve consensus with crashes in asynchronous networks. Generally,
failure detectors provide a quite precise type of information. It is a list of process
identi�ers (estimated to have crashed). Obviously, the oracle that gives as few
information as possible, that is the weakest oracle, is both of theoretical and
practical interest. For instance, in their framework, Chandra et al. [9] exhibit
the weakest failure detector necessary to solve consensus. This oracle is called
the eventual leader elector and is denoted by Ω.

Fischer and Jiang [13] introduced a di�erent type of oracles, for solving the
leader election problem in the model of tiny, asynchronously mobile and pairwise
communicating agents called population protocols [3]. In particular, this model
was introduced in order to characterize what can be computed with only mini-
mal assumptions in a network of mobile agents. The agents are assumed to be
undistinguishable (no identi�ers and the same algorithm for all) and memory
bounded (actually, constant memory). An agent cannot know with which agent
it communicates, nor if the agent it communicates with presently is the same
as the agent it communicated with just before. Moreover, no knowledge or an
upper bound on the number of agents is available. Such characteristics, make
the classical failure detectors, or any variant involving a list or the number of
identi�ers, not applicable to population protocols. This is one of the reasons why
Fischer and Jiang introduced a totally di�erent type of oracle. Their oracle is
able to detect the presence or the absence of (at least) one leader. It is denoted
by Ω?, in reference to Ω, though it is quite di�erent from a failure detector in
the sense that it provides information taken from a global con�guration of a
system.

Fischer and Jiang studied the possibility to solve self-stabilizing leader elec-
tion (SSLE) over speci�c communication graphs. They prove that Ω? helps to
solve SSLE in complete graphs and on rings, while the same problem in com-
plete graphs is proven impossible without oracles [4,7]. After the introduction of
Ω?, other oracles for leader election in population protocols appeared in the lit-
erature, all based on some information related to global con�gurations. Michail
et al. [16] introduced the absence detector, an oracle that indicates which agent
states are not present in a con�guration, as well as a covering service which
informs an agent that it has met (communicated with) all the other agents. In-
tuitively, both are much stronger than Ω?. In [5], we solve SSLE in arbitrary
graphs with Ω$, an oracle which distinguishes between the presence of zero, one
or more leaders in a con�guration (in the way that Ω? does for zero or at least
one leader). Additional oracle WΩ? is introduced in [5]. It is a weaker version
of Ω? that can be used to solve SSLE over oriented or bounded degree trees.

Our Contribution

Comparing precisely and relating all these di�erent oracles seemed necessary.
That is why the �rst contribution of this paper is to provide a formal framework
for dealing with oracles related to SSLE and encompassing all the particular



Leader Election in Population Protocols 3

oracles described above. Although it may seem complicated at a �rst glance, this
framework is necessary for two reasons. First, it provides a uni�ed formalism,
taking into account both oracles that interact with a protocol (like Ω?), and
problems, which are independent of any protocol. A second important feature
of the framework is a formal de�nition of the implementation of an oracle by
another oracle. This step goes through the de�nition of compositions (sequential,
parallel, self ), which, e.g., allows to express that two copies of Ω?, are stronger
than a single one, or that an oracle that provides information on a three value
variable is stronger than an oracle that provides only information on two. Then,
based on the notion of implementation, this framework allows to classify some
class of leader election oracles under the form of a double hierarchy, which leads
to a lattice.

We then show that one of the elements in the lattice, Ω?(2, 1) (a notation
which we de�ne in the sequel and which represents two instances of Ω?, giving
independently two di�erent outputs), allows to solve SSLE over any connected
communication graph (Sec. 6). The protocol is non trivial and, with its correct-
ness proof, may be considered as the major contribution of this paper. On the
contrary, we prove that if the property of self-stabilization is not mandatory,
that is if some (uniform) initialization is allowed, leader election can be solved
without oracle in any communication graph (Sec. 5). This result con�rms the
fact that the di�culties for solving SSLE do come from the tolerance to (tran-
sient) failures, modeled by the framework of self-stabilization. In addition, to the
best of our knowledge, this is the �rst leader election population protocol over
arbitrary graphs.

All the protocols proposed in the paper assume and require the original global
fairness of population protocols. We show that, with only local fairness, leader
election in arbitrary graphs is impossible even with (uniform) initialization (Sec.
4).

Finally we show that Ω? cannot be implemented using SSLE over the family
of all graphs, even with multiple copies of SSLE (Sec. 7). This result is an
illustration of what can be done in the proposed framework. It should be put in
relation with a result in [5], stating that, over rings, Ω? and SSLE are equivalent.
The paper ends with some open problems (Sec. 8).

Related Work

Self-stabilization was introduced by Dijkstra [12]. A self-stabilizing protocol does
not depend on initialization of process states and converges towards a correct
behavior from arbitrary starting con�gurations. Self-stabilization is intended to
deal with transient failures, that hit a system punctually, corrupting memory
and channel contents. It also deals with dynamic networks, where the topology
changes during an execution.

Being an important primitive in distributed computing, leader election has
been extensively studied. Below, we mention only the most relevant literature.

Since the introduction of population protocols by Angluin et al. in [2], several
studies have been devoted to self-stabilizing leader election in this model. An-
gluin et al. [4] present a non-uniform SSLE algorithm for rings in the population



4 Jo�roy Beauquier, Peva Blanchard, and Janna Burman

protocol model. They also show in the same paper that there does not exist a
SSLE protocol for general connected networks.

Fischer and Jiang [13] propose the eventual leader detector Ω? and, using
it, present uniform SSLE protocols for complete graphs and rings. The �rst
protocol works under either a local or global fairness condition, whereas the
second requires global fairness. It is also shown that with only local fairness,
uniform self-stabilizing leader election in rings is impossible, even with the help
of Ω?. Canepa and Potop-Butucaru [8] propose deterministic and probabilistic
protocols in arbitrary graphs, assuming Ω? and di�erent types of local fairness
conditions.

Cai et al. [7] show that, in complete communication graphs, n agent-states are
necessary and su�cient to solve SSLE , where n is the population size. This result
involves that an oracle is necessary for solving SSLE in population protocols. For
the enhanced model of mediated population protocols - MPP (allowing an extra
memory on every agent pair) [15], the work of Mizogushi et al. [17] shows that
(2/3)n agent states and a single bit memory on every agent pair are su�cient
to solve SSLE . They also show that there is no MPP that solves SSLE with
any constant agent-states and any constant size memory on each agent-pair, for
general n.

Michail et al. [16] introduce the absence detector, an oracle for population
protocols that indicates which agent states are not present in a con�guration, as
well as a covering service which informs an agent that it has met (communicated
with) all the other agents. Intuitively, both are much stronger than Ω?.

Finally, in [5] we de�ne Ω$ and WΩ?, two oracles respectively stronger and
weaker than Ω?, and prove that SSLE can be solved with Ω$ over weakly
connected communication graphs, with WΩ? over oriented trees and with Ω?
over weakly connected communication graphs of bounded degree.

2 Model and De�nitions

2.1 Population Protocol

We use the same de�nitions as in [13] with some slight modi�cations. A network
is represented by a directed graph G = (V, E) with n vertices and no multi-
edges nor self-loops. Each vertex represents a �nite-state sensing device called
an agent, and an edge (u, v) ∈ E indicates the possibility of a communication
between two distinct nodes u and v in which u plays the role of the initiator and
v of the responder. The orientation of an edge corresponds to this asymmetry in
roles. In this paper, we consider weakly connected networks.

A population protocol A(D,Q, Init, X, Y,O, δ) consists of a family of graphs
D (the domain of the protocol), a �nite state space Q, a function Init that asso-
ciates every graph G(V, E) in D with a set Init(G) of initial con�gurations (see
below) on G , a �nite input alphabet X, a �nite output alphabet Y , an output
function O : Q → Y and a transition function δ : (Q × X)2 → P(Q2) that
maps any tuple (q1, x1, q2, x2) to a non-empty (�nite) subset δ(q1, x1, q2, x2) in



Leader Election in Population Protocols 5

Q2. A (transition) rule of the protocol is a tuple (q1, x1, q2, x2, q
′
1, q

′
2) such that

(q′1, q
′
2) ∈ δ(q1, x1, q2, x2) and is denoted by (q1, x1)(q2, x2) → (q′1, q

′
2). The pop-

ulation protocol A is deterministic if the set δ(q1, x1, q2, x2) always has exactly
one element.

Given a graph G(V, E) in D and a set Z, an assignment with values in Z is a
function from V to Z. A con�guration C is an assignment with values in the state
space Q. An input assignment (resp. output assignment) is an assignment with
values in the input alphabet X (resp. output alphabet Y ). Each con�guration
C induces an output assignment O ◦ C where O is the output function of the
protocol. A trace T with values in Z on the graph G(V, E) is an in�nite sequence
of assignments with values in Z, i.e., T = α0α1 . . . where αi : V → Z. An input
trace (resp. output trace) is a trace with values in the input alphabet X (resp.
the output alphabet Y ). The trace α0α1 . . . is constant if α0 = α1 = . . . , and it
is uniform constant if it is constant and for every u, v ∈ V , α(u) = α(v).

Given a graph G(V, E) in D, an action is a pair σ = (e, r) where r is a rule
(q1, x1)(q2, x2) → (q′1, q

′
2) and e = (u, v) an edge of G. Let C, C ′ be con�gurations

and α be an input assignment. We say that σ is enabled in (C, α) if C(u) =
q1, C(v) = q2 and α(u) = x1, α(v) = x2. We say that (C, α) goes to C ′ via σ in

one step, denoted (C, α)
σ
−→ C ′, if σ is enabled in (C, α), C ′(u) = q′1, C

′(v) = q′2
and C ′(w) = C(w) for all w ∈ V −{u, v}. In other words, C ′ is the con�guration
that results from C by applying the transition rule r to the node pair e. We also
denote by (C, α) → C ′ when (C, α)

σ
−→ C ′ for some action σ. Given an input

trace Tin = α0α1 . . . , we write C
∗
−→ C ′ if there is a sequence of con�gurations

C0C1 . . . Ck such that C = C0, C ′ = Ck and (Ci, αi) → Ci+1 for all 0 ≤ i < k,
in which case we say that C ′ is reachable from C given the input trace Tin.

Given a graph G in D, a virtual execution E is an in�nite sequence of con-
�gurations, input assignments and actions E = (C0, α0, σ0)(C1, α1, σ1) . . . such

that C0 ∈ Init(G) and for each i, (Ci, αi)
σi−→ Ci+1. Such a virtual execution

induces an output trace denoted by O(E) de�ned as (O ◦C0)(O ◦C1) . . . where
O is the output function of the protocol. We denote by SE the (in�nite) su�x of
E such that each couple (C, α) (C being a con�guration, and α an input assign-
ment) in SE appears in�nitely often in SE. This su�x is well-de�ned because
the number of couples (C, α) that occurs �nitely often in E is bounded.

We now de�ne fair executions. We �rst recall two fairness conditions used
with population protocols [13]:

(Local Fairness) a virtual execution (C0, α0, σ0)(C1, α1, σ1) . . . is locally fair
when, for every action σ, if σ is enabled in (Ci, αi) for in�nitely many i, then

(Cj , αj)
σ
−→ Cj+1 for in�nitely many j.

(Global Fairness) a virtual execution (C0, α0, σ0)(C1, α1, σ1) . . . is globally
fair when, for every C, C ′, α such that (C, α) → C ′, if (C, α) = (Ci, αi) for
in�nitely many i, then C ′ = Cj for in�nitely many j.

In this paper, unless stated otherwise, an execution is a virtual execution
that is globally fair. Finally we consider two types of population protocols. A
population protocol is uniformly initialized if there exists a state q0 such that ev-
ery initial con�guration is an assignment with values in {q0}. In a non-initialized



6 Jo�roy Beauquier, Peva Blanchard, and Janna Burman

population protocol, the set of initial con�gurations is the set of all possible con-
�gurations.

2.2 Run, Behaviour, Oracle and Implementation

The de�nitions of runs, behaviours and oracles that we give below, are di�erent
from those in [4,13] and are required to obtain a proper framework for de�ning
oracles and establishing relations between them. For instance, in this frame-
work, the oracles are self-implementable, in contrast with the traditional failure
detectors' frameworks [11].

A schedule on a network G(V, E) is a sequence of edges S = e1e2 . . . , i.e.,
ei ∈ E for all i. The schedule S associated with an execution E is the sequence
S of edges that appear in the sequence of actions in E; we also say that E is an
execution with schedule S.

The following notion of compatibility of a trace with a schedule involves that
the changes in a trace are only caused by the interactions. A trace T = α0α1 . . .
on G is said to be compatible with the schedule S = (u0, v0)(u1, v1) . . . on G if, for
every i, for every w ∈ V − {ui, vi}, αi(w) = αi+1(w). That is, two consecutive
assignments can di�er only in the assignment values of the two agents in the
corresponding edge in the schedule. Note that, by de�nition, the output trace
induced by an execution with schedule S of a population protocol on G, is
compatible with S.

(Run). A run R(X, Y ) with an input alphabet X and output alphabet Y on
a network G(V, E) is a triple (Tin, Tout, S), where Tin is a trace with alphabet X
on G, Tout is a trace with alphabet Y on G and S is a schedule on G such that
Tin and Tout are both compatible with S. The trace Tin (resp. Tout) is referred
to as the input trace (resp. output trace) of the run.

(Behaviour). A behaviour B is given by a family D of graphs (the domain
of B), an input alphabet X, an output alphabet Y and a function that maps any
graph G in D to a set B(G) of runs with input alphabet X and output alphabet
Y . Given a population protocol A with domain D, input alphabet X and output
alphabet Y , we de�ne the behaviour Beh(A) associated with the protocol A as
follows. The domain is D, the input alphabet is X, the output alphabet is Y , and,
for any graph G in D, for any run (Tin, Tout, S) on G, (Tin, Tout, S) ∈ Beh(A)(G)
if and only if there exists an execution of A on G with the input trace Tin, the
output trace Tout and the schedule S.

In the following paragraph, we de�ne the notion of composition of behaviours.
Informally, a serial composition uses the output of one behaviour as the input
of another behaviour. A parallel composition consists in two behaviours being
used independently. Finally, a self composition uses (a part of) the output of a
behaviour as the input to the same behaviour, producing a sort of �feedback�. In
[13], the self composition is implicitly used, when the oracle Ω? produces a new
input to a protocol based on the output of the same protocol.

Formally, consider two behaviours B1, B2 with (respectively) domains D1, D2

such that D1 ∩ D2 6= ∅, input alphabets X1, X2, and output alphabets Y1, Y2.
We denote by TX a trace with values in X. The parallel composition B = B1 ⊗



Leader Election in Population Protocols 7

B2 is the behaviour with domain D1 ∩ D2, alphabets X1 × X2, Y1 × Y2 such
that, for every G ∈ F , B(G) is the set of runs ((TX1

, TX2
), (TY1

, TY2
), S) with

(TX1
, TY1

, S) ∈ B1(G) and (TX2
, TY2

, S) ∈ B2(G). If Y1 = X2 = U , the serial
composition B = B2◦B1 is the behaviour with domain D1∩D2 and alphabets X1,
Y2 de�ned as follows. For every G ∈ F , B(G) is the set of runs (TX1

, TY2
, S) such

that there exists a trace TU satisfying (TX1
, TU , S) ∈ B1 and (TU , TY2

, S) ∈ B2.
If X1 = U × V and Y1 = U × W , the self composition B = SelfU (B1) on U is
the behaviour with domain D1, alphabets V,W , where, for every G ∈ F , B(G)
is the set of runs ((T in

U , T in
V ), (T out

U , T out
W ), S) ∈ B such that T in

U = T out
U .

Given a family H of behaviours, a behaviour B is a composition of behaviours
from H if it is a combination of serial, parallel and self composition of behaviours
in H.

(Implementation, Comparison). A behaviour B2 is an implementation
of a behaviour B1 over a family F of graphs when F ⊂ D1 ∩ D2, and for every
graph G ∈ F , B2(G) ⊂ B1(G).

Consider a family H of behaviours and a family F of graphs. We say that a
behaviour B1 is weaker than a behaviour B2 over (F ,H), denoted by B1 4 B2

mod (F ,H), when there exists a composition B involving the behaviour B2 and
behaviours fromH that implements B1 over F . In other words, if we can compose
behaviours from H with one copy of B2 to implement B1, then B1 is said to be
weaker than B2. This is analogous to the de�nition in [10] of an oracle being
weaker than another one.

The two behaviours are equivalent if B1 4 B2 mod (F ,H) and B2 4 B1

mod (F ,H). We denote this case by B1 ≃ B2 mod (F ,H). When F and H are
clear from the context, we write B1 4 B2 and B1 ≃ B2.

A problem and an oracle are de�ned as behaviours. A population protocol
A is a solution to a problem P (resp. an implementation of an oracle Θ) using
a behaviour B over a family F of graphs if there exists a composition involving
the behaviours Beh(A) and B that implements the behaviour P (resp. Θ) over
F . Note that with these de�nitions, if there exists a population protocol in some
family H of protocols that solves the problem P1 using the problem P2 over a
family F , then P1 is weaker than P2 over (F ,H∗), where H∗ is the family of the
behaviours associated with the protocols in H.

Given a behaviour B, we de�ne the stabilizing behaviour Bs associated with
B as follows. It has the same domain D, the same input and output alphabets
as B, and for any graph G in D, the set of runs Bs(G) comprises the runs
having a su�x1 belonging to B(G). Given a problem P (resp. an oracle Θ),
a population protocol A is a self-stabilizing solution to P (resp. self-stabilizing
implementation of Θ) if it is non-initialized and it is a solution to the stabilizing
problem Ps associated with P (resp. an implementation of the stabilizing oracle
Θs associated with Θ).

Remark 1. The results in the paper concern the family Fall of all (weakly con-
nected) graphs. Note however that in Sec. 5 and 6, we present protocols that

1 A run can be seen as a sequence of triples (αs, βs, es)s∈N where αs (resp. βs) is an
input (resp. output) assignment and es is an edge.



8 Jo�roy Beauquier, Peva Blanchard, and Janna Burman

solve the leader election problem in the family of all strongly connected graphs.
The extension of these protocols to the family of all weakly connected graphs
is detailed in Appendix A. Roughly speaking, given a weakly connected graph
G, one can simulate an execution over the symmetric closure G′ of G, which
is strongly connected. This can be done by performing, at each interaction, a
non-deterministic choice to select which agent plays the role of the initiator and
which agent plays the role of the responder. Then, it can be shown that such a
non-deterministic execution on G is an execution on G′. It is possible to get a
deterministic version of this simulation using the transformer in [4].

3 Speci�c Behaviours and Oracles

3.1 Eventual Leader Election Behaviour ELE

The domain of the behaviour ELE is the family Fall of all the graphs, the input
alphabet is {⊥} (no input), the output alphabet is {0, 1} and, for any graph
G ∈ Fall, a run (⊥, T, S) belongs to ELE(G) if and only if T has a constant
su�x T ′ = ααα . . . and there exists a node λ such that α(λ) = 1 and α(u) = 0
for every u 6= λ. In other words, λ is the unique leader. Note that for all our
protocols, there is an implicit output function that maps a state to 1 if it is a
leader state, and to 0 otherwise.

In our settings, the (informal) problem of Self-Stabilizing Leader Election
(SSLE) is reformulated as the problem of constructing a population protocol
that is a self-stabilizing solution to the ELE problem (using some oracle, if nec-
essary).

3.2 Oracles Ω?(k, d)

We �rst de�ne, for each d ≥ 1, an oracle Ω?(1, d). Its input alphabet is {0, 1}, and
its output alphabet is {0, . . . , d}. The domain of Ω?(1, d) is all the graphs. Given
an assignment α, we denote by l(α) the number of vertices that are assigned the
value 1 by α. Informally, if l(α) = c or l(α) ≥ c for all α in an (in�nite) execution
su�x, then the oracle will eventually permanently output values in {c} in the
former case, and in {c, . . . , d} in the latter. When l(α) = 0 for all α in an (in�nite)
execution su�x, it is only required that the oracle permanently outputs 0 at one
agent at least.

Given a graph G and a run (Tin, Tout, S) on G, (Tin, Tout, S) ∈ Ω?(1, d)(G)
when the following conditions hold. If Tin has a su�x α0α1 . . . such that ∀s, l(αs) =
0, then Tout has a su�x in which at least one agent is permanently assigned
the value 0. For every 1 ≤ r ≤ d − 1, if Tin has a su�x α0α1 . . . such that
∀s, l(αs) = r, then Tout has a su�x equal to the uniform constant trace r. For
every 0 ≤ r ≤ d, if Tin has a su�x α0α1 . . . such that ∀s, l(αs) ≥ r, then Tout

has a su�x with values in {r, r+1, . . . , d}. Otherwise, any Tout (compatible with
S) is valid.



Leader Election in Population Protocols 9

For any k, d ≥ 1, we formally de�ne Ω?(k, d) =
⊗k

Ω?(1, d). In other words,
Ω?(k, d) is the parallel composition of k copies of Ω?(1, d). Thus, the input
alphabet of Ω?(k, d) is {0, 1}k, and the output alphabet is {0, . . . , d}k.

Note that Ω?(1, 1) corresponds to the Fischer and Jiang's oracle Ω? in [13],
while Ω?(1, 2) corresponds to the oracle Ω$ in [5], except that in the case of
absence of a leader, it is only required that at least one agent reports the fact. It
is easy to see that the oracles Ω?(k, d) form a lattice, i.e., if k ≤ k′ and d ≤ d′,
then Ω?(k, d) 4 Ω?(k′, d′) over any graph and behaviour families.

4 Impossibility of Leader Election under Local Fairness

with Uniform Initialization

In this section, we show that the eventual leader election problem cannot be
solved by any uniformly initialized population protocol under the local fairness
assumption.

We �rst recall the notion of graph covering [1,6]. A �bration (resp. op�bra-
tion) between graphs G and B is a graph morphism φ : G → B such that for
every node b in B, for every node y satisfying φ(y) = b, φ induces a bijection
between the set of incoming (resp. outgoing) edges at y and the set of incoming
(resp. outgoing) edges at b. A covering from G to B is a graph morphism from
G to B that is both a �bration and an op�bration. The graph G is called the
total graph, and B is the base graph. The �ber over a node b in B is the set of
nodes in G that are mapped to b via φ, which we denote by φ−1(b). A �ber is
trivial if it is a singleton. A covering is a k-covering if every �ber has k elements,
i.e., ∀b, |φ−1(b)| = k. For instance, there is a covering from a ring of size 2 · n
to a ring of size n obtained by mapping two diametrically opposite nodes to the
same node.

The following theorem is inspired by the impossibility result of leader elec-
tion in the family of rings under local fairness [13] and the ideas developed in
[1,6]. Note that the models considered in [1,6] are di�erent from the population
protocols. Hence, the results do not directly apply to our case.

Theorem 1. Let F be a family of graphs that contains graphs G and B such
that there exists a k-covering φ : G → B with k ≥ 2. There is no uniformly
initialized population protocol that solves the ELE problem over the family F
under the local fairness assumption.

Proof (Sketch). Full details are presented in Appendix B. The result is proved
by contradiction. Assume that such a protocol exists, and consider a locally fair
execution EB on B with γ0γ1 . . . being the corresponding sequence of con�gu-
rations. Thanks to the property of covering, we can lift EB to get a locally fair
execution EG on G containing con�gurations gs such that gs = γs ◦ φ for every
s ∈ N. Hence, since φ is a k-covering, and since EB has a su�x during which
there is a unique leader, EG contains in�nitely many con�gurations with k ≥ 2
leaders; whence a contradiction. ⊓⊔



10 Jo�roy Beauquier, Peva Blanchard, and Janna Burman

5 Leader Election under Global Fairness with Uniform

Initialization

We establish that, under global fairness, solving the leader election problem on
arbitrary communication graphs is possible without oracle, when an uniform
initialization is possible (Alg. 1). In other words, there exists a uniformly ini-
tialized population protocol that solves the ELE problem over the family of all
graphs under the global fairness assumption. This result highlights the di�er-
ence between global and local fairness. It also shows that the necessity to use
an oracle comes from the requirement of self-stabilization. As explained in Re-
mark 1, our protocol considers strongly connected graphs. Each agent x can be
leader or non-leader (implemented with a variable leaderx) and can hold a white
or black token (implemented with a variable tokenx). Initially, every agent is a
leader and holds a black token (uniform initialization). The tokens move through
the network by swapping between two agents during an interaction. When two
black tokens meet, one of them turns white. When a white token interacts with
a leader x, x becomes a non-leader and the token is destroyed.

Algorithm 1: Leader Election with Uniform Initialization

1 variables for every agent x:
2 leaderx : 0 (non-leader) or 1 (leader)
3 tokenx : ⊥ (no token), white or black

4 initialization: ∀x, (leaderx, tokenx) = (1, black) /* uniform */

5 protocol (initiator x, responder y):
6 if tokenx = tokeny = black then

7 tokeny ← white

8 if tokenx = white ∧ leadery = 1 then

9 leadery ← 0 /* y becomes a non-leader */

10 tokenx ← ⊥ /* the token is destroyed */

11 tokenx ↔ tokeny /* swap the tokens */

We consider an execution E of Alg. 1 and prove that there is eventually a
unique leader. Recall that SE denotes the in�nite su�x of E such that each
couple (C, α) in SE occurs in�nitely often in SE (see Sec. 2.1). Given a con�g-
uration C, let b(C) be the number of black tokens, w(C) the number of white
tokens and l(C) the number of leaders in C. In addition, for every agent x, we
denote by C.leaderx (resp. C.tokenx) the value of the variable leaderx (resp.
tokenx) in the con�guration C.

Lemma 1. In each con�guration C in every execution E of Alg. 1, b(C) +
w(C) = l(C) and b(C) ≥ 1.

Proof (Sketch). Full details are presented in Appendix C, Lem. A. The initial
con�guration satis�es this relation. During an interaction, if no leader is turned



Leader Election in Population Protocols 11

into a non-leader, then the total number of tokens remains constant. When a
leader is turned into a non-leader (by a white token), the corresponding token
is also destroyed. ⊓⊔

Lemma 2. For every con�guration C in SE, b(C) = 1.

Proof (Sketch). Full details are presented in Appendix C, Lem. B. The global
fairness and the fact that two colliding black tokens yield one black token and
one white token involves that eventually in E, there is always a unique black
token. ⊓⊔

Theorem 2. In every execution E of Alg. 1, there exists exactly one agent λ
such that for every con�guration C in SE, C.leaderλ = 1 and for every agent
µ 6= λ, C.leaderµ = 0.

Proof (Sketch). Full details are presented in Appendix C, Th. B. By the previous
lemmas, for every con�guration C in SE, l(C) = w(C) + 1. If a con�guration
C in SE has l ≥ 2 leaders, then C also has l − 1 white tokens. Thus there is
a sequence of steps during which each white token is moved to turn one leader
into a non-leader, then reaching a con�guration C ′ with one leader. By global
fairness, C ′ occurs in SE. The con�guration C ′ has exactly one leader, one
black token and no white token, thus every subsequent con�guration has the
same unique leader. ⊓⊔

6 Self-Stabilizing Leader Election using Ω?(2, 1) under

Global Fairness

In this section, we exhibit a self-stabilizing solution to ELE using Ω?(2, 1), i.e.,
two copies of the Fischer and Jiang's oracle, over the family Fall of all graphs
under the global fairness assumption. Alg. 2 below, referred to as the protocol
A, is a self-stabilizing solution2 to ELE using Ω?(2, 1) over Fall. In this protocol,
each agent can be a leader or not, and a leader can be either black or white.
An agent can also hold a token, and a token can be either black or white. We
denote by Ω?l, resp. Ω?t, the copy of the oracle Ω? used to detect the absence
of leaders, resp. tokens. As explained in Remark 1, we only consider strongly
connected graphs.

Whenever the oracle Ω?l, resp. Ω?t, outputs 0, a black leader, resp. a black
token, is created. The tokens keep moving through the network by swapping
between two agents during an interaction. When a black token interacts with
a white leader, the leader becomes a non-leader. When a white token interacts
with a black leader, the leader becomes white. When a token interacts with a
leader having the same color, then both the token and the leader turn into the
opposite color.

2 More formally, the behaviour Self(Ω?(2, 1) ◦ Beh(A)) implements the behaviour
ELE (see Sec. 2).



12 Jo�roy Beauquier, Peva Blanchard, and Janna Burman

Algorithm 2: Self-Stabilizing Leader Election

1 variables agent x

2 Ω?l
x : input (read-only) from the leader detector

3 Ω?t
x : input (read-only) from the token detector

4 leaderx : ⊥ (non-leader), white or black

5 tokenx : ⊥ (no token), white or black

6 protocol (initiator x, responder y)

7 if Ω?l
x = 0 then leaderx ← black

8 if Ω?t
x = 0 then tokenx ← black

9 if tokenx = black ∧ leadery = white then leadery ← ⊥

10 if tokenx = white ∧ leadery = black then leadery ← white

11 if tokenx = leadery = black then tokenx ← leadery ← white

12 if tokenx = leadery = white then tokenx ← leadery ← black

13 if tokenx 6= ⊥ ∧ tokeny 6= ⊥ then tokenx ← ⊥

14 tokenx ↔ tokeny

Given an input assignment α for the Alg. 2, we denote by α.Ω?l
x (resp.

α.Ω?t
x) the value assigned by α to the (read-only) variable Ω?l

x (resp. Ω?t
x).

Similarly, given a con�guration C, for every agent x, we denote by C.leaderx

(resp. C.tokenx) the value of the variable leaderx (resp. tokenx) in the con�gu-
ration C.

Given a con�guration C, let t(C) (resp. l(C)) be the total number of tokens
(resp. leaders) in C. In C, if an agent x is a leader and an agent y holds a
token (x and y not necessarily neighbours), we say that the leader at x and the
token at y are synchronized if they have the same color. Then, we say that the
con�guration C contains a synchronized pair of leader and token. We consider
an execution E of Alg. 2 and its in�nite su�x SE (each couple (C, α) in SE
occurs in�nitely often in SE).

Lemma 3. For every (C, α) in SE, there is a unique token in C and α assigns
1 to every variable Ω?t

x, i.e. t(C) = 1 and ∀x, α.Ω?t
x = 1.

Proof (Sketch). Full details are presented in Appendix D, Lem. C. The oracle Ω?t

ensures that eventually there is at least one token. Since the number of tokens
decreases only when two tokens merge, there is eventually always at least one
token; whence eventually Ω?t always outputs 1 everywhere. Finally, by global
fairness, all the tokens eventually merge, and from that point there is exactly
one (circulating) token3. ⊓⊔

Lemma 4. Consider a con�guration C that contains a synchronized pair of
leader and token such that l(C) ≥ t(C) = 1. Consider an input assignment α
that assigns 1 to every variable Ω?t

x, i.e., for all x, α.Ω?t
x = 1. Then for any

con�guration C ′ such that (C, α) → C ′, C ′ contains a synchronized pair of leader
and token and l(C ′) ≥ t(C ′) = 1.

3 Note that this token may change its color.



Leader Election in Population Protocols 13

Proof. Full details are presented in Appendix D, Lem. D. The assumption on α
ensures that no token is created during the step (C, α) → C ′. If the unique token
meets a leader with which it is synchronized, the leader remains a leader, and
both �ip their colors. Hence, C ′ still contains a unique token and some leader
synchronized with this token. ⊓⊔

Lemma 5. There exists a con�guration C in SE that contains a synchronized
pair of leader and token such that l(C) ≥ t(C) = 1.

Proof (Sketch). Full details are presented in Appendix D, Lem. E. We already
know that every con�guration in SE has a unique token. By contradiction,
assume that no con�guration in SE satis�es the condition. This means that in
every con�guration C in SE, every leader (if any) has a color opposite to the
color of the unique token. Thanks to Ω?l, there is a con�guration C in SE that
has at least one leader, thus l(C) ≥ t(C) = 1. If the token is white, all the leaders
are black, and it is possible to move the token to whiten one of the leaders. The
resulting con�guration C ′ contains a synchronized pair of leader and token, and
l(C ′) ≥ t(C ′) = 1. By global fairness, C ′ occurs in SE. On the other hand, if the
token is black, it is possible to turn all the white leaders into non-leaders and
keep a black token. By global fairness, the resulting con�guration C ′ occurs in
SE. Since C ′ has no leader, thanks to the oracle Ω?l, a black leader is created at
some point in SE. Hence, the corresponding con�guration C ′′ has a synchronized
pair of leader and token, and l(C ′′) ≥ t(C ′′) = 1. ⊓⊔

Lemma 6. For every (C, α) in SE, C contains a synchronized pair of leader
and token, l(C) ≥ t(C) = 1 and for every agent x, α.Ω?l

x = α.Ω?t
x = 1.

Proof (Sketch). Full details are presented in Appendix D, Lem. F. The result
follows from Lemmas 3, 4, 5 and the de�nition of Ω?l. ⊓⊔

Theorem 3. Alg. 2 is a self-stabilizing solution to ELE using Ω?(2, 1). Pre-
cisely, in any execution, there exists exactly one agent λ such that for every con-
�guration C in SE, C.leaderλ 6= ⊥ and for every agent µ 6= λ, C.leaderµ = ⊥.

Proof (Sketch). Full details are presented in Appendix D, Th. C. Thanks to
Lem. 6, no leader is ever created during SE. In addition, in every con�guration
in SE, there is a leader synchronized with the token. On one hand, if the token is
white, it can whiten all the black leaders, interact with one white leader, become
black and turn all the white leaders into non-leaders. On the other hand, if the
token is black, it can interact with a black leader (the leader with which it is
synchronized) and become white; the next steps are the same as before. In both
cases, the resulting con�guration has exactly one leader. By global fairness, this
con�guration occurs in SE. Since no leader is created, there is actually a unique
and permanent leader in SE. ⊓⊔



14 Jo�roy Beauquier, Peva Blanchard, and Janna Burman

7 Impossibility of Self-Stabilizing Implementation of Ω?
using ELE under Global Fairness

We show that there is no self-stabilizing implementation of Ω? (i.e. Ω?(1, 1))
using ELE , even if we are allowed to use many copies of ELE , under the global
fairness assumption.

Theorem 4. There is no non-initialized population protocol A such that, for
some k ≥ 1, the composition B = (ELE ⊗ · · ·⊗ELE)◦Beh(A), using k copies of
ELE, implements the behaviour Ω? over the family of all graphs under the global
fairness assumption.

Proof (Sketch). Full details are presented in Appendix E, Th. D. The result is
proved by contradiction. Assume that such a protocol A exists. We consider a
complete graph G of size n ≥ k+1. We consider a run of the composition B on G,
with a constant input trace αα . . . that assigns permanently 1 to a unique agent
µ. In the corresponding execution E of A, at some point in SE, the output of the
di�erent ELE oracles have stabilized, and all the agents permanently output the
value 1. However, by looking at the subgraph obtained by excluding µ, thanks
to the assumption on A and the global fairness, there is a con�guration in SE
in which all the agents but µ output 0; whence a contradiction. ⊓⊔

8 Discussion and Open Problems

Although an abundant literature has been devoted to leader election in the pop-
ulation protocol model, some problems remain open. One of the most challenging
is maybe to decide whether or not an oracle is necessary for self-stabilizing so-
lutions to ELE over rings. Angluin et al. [4], who raised �rst the issue, present
non-uniform solutions (solutions depending on the size of the ring), but the ques-
tion of an uniform solution has been open for several years. In [13], Fischer and
Jiang tackle this issue, provided that the oracle Ω? is available.

The general framework we proposed allows to express several natural ques-
tions. We list some of them here.

In Sec. 3.2, we generalize Fischer and Jiang's oracle and present a lattice
of oracles {Ω?(k, d)}k,d≥1 such that Ω? coincides with Ω?(1, 1). Analyzing the
relations among oracles, which are strong enough to solve leader election, is an
interesting way to assess the hardness of this problem. For instance, in a previous
work [5], the authors complement Fischer and Jiang's approach by showing that
ELE is equivalent to Ω? over rings, for non-initialized protocols' behaviours, i.e.,
each problem is as hard as the other. It seems that the same technique as in [5]
would show that all the oracles Ω?(k, d) are equivalent to ELE over rings, for
non-initialized protocols' behaviours.

In addition, in this paper, we address the issue of comparing ELE with the or-
acles Ω?(k, d) over the family Fall of all graphs, for the family, denoted by PPNI ,
of non-inialized protocols' behaviours. In Sec. 6, we show that ELE 4 Ω?(2, 1),
and in Sec. 7, we show that Ω? 64 ELE . Since Ω? 4 Ω?(2, 1), we have the strict



Leader Election in Population Protocols 15

relation ELE ≺ Ω?(2, 1). In addition, it has been shown in [5] that Ω?(1, 1) is
su�cient to solve ELE over the family BDeg(d) of d-bounded degree graphs (for
any d), i.e. ELE 4 Ω?(1, 1) mod (BDeg(d), PPNI). It is an open problem to
determine whether there exists a self-stabilizing implementation of ELE using
Ω?(1, 1) over Fall and if the relations Ω?(k, d) 4 Ω?(k′, d′) mod (Fall, PPNI)
(k ≤ k′ and d ≤ d′) are strict when k < k′ or d < d′.

References

1. D. Angluin. Local and global properties in networks of processors. In 12th Sym-
posium on the Theory of Computing, pages 82�93. ACM, 1980.

2. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in
networks of passively mobile �nite-state sensors. In PODC, pages 290�299, 2004.

3. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in
networks of passively mobile �nite-state sensors. Distributed Computing, 18(4):235�
253, 2006.

4. D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing population
protocols. ACM Trans. Auton. Adapt. Syst., 3(4), 2008.

5. J. Beauquier, P. Blanchard, J. Burman, and O. Denysyuk. Oracles for self-
stabilizing leader election in population protocols. Technical report, INRIA, 2013.
http://hal.archives-ouvertes.fr/hal-00839759.

6. P. Boldi, S. Shammah, S. Vigna, B. Codenotti, P. Gemmell, and J. Simon. Symme-
try breaking in anonymous networks: Characterizations. In ISTCS, pages 16�26,
1996.

7. S. Cai, T. Izumi, and K. Wada. How to prove impossibility under global fairness:
On space complexity of self-stabilizing leader election on a population protocol
model. Theory Comput. Syst., 50(3):433�445, 2012.

8. D. Canepa and M. G. Potop-Butucaru. Self-stabilizing tiny interaction protocols.
In WRAS, pages 10:1�10:6, 2010.

9. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685�722, 1996.

10. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225�267, 1996.

11. B. Charron-Bost, M. Hutle, and J. Widder. In search of lost time. Inf. Process.
Lett., 110(21):928�933, 2010.

12. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
of the ACM, 17(11):643�644, Nov. 1974.

13. M. Fischer and H. Jiang. Self-stabilizing leader election in networks of �nite-state
anonymous agents. In OPODIS, pages 395�409, 2006.

14. M. H. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of consensus with
one faulty process. Journal of the ACM, 32(2):374�382, Apr. 1985.

15. O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Mediated population protocols.
Theor. Comput. Sci., 412(22):2434�2450, 2011.

16. O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Terminating population proto-
cols via some minimal global knowledge assumptions. In SSS, pages 77�89, 2012.

17. R. Mizoguchi, H. Ono, S. Kijima, and M. Yamashita. On space complexity of self-
stabilizing leader election in mediated population protocol. Distributed Computing,
25(6):451�460, 2012.



16 Jo�roy Beauquier, Peva Blanchard, and Janna Burman

Appendix

A From Strongly Connected to Weakly Connected

Graphs

In Sec. 5 and 6, we present protocols that solve the leader election problem
in the family of all strongly connected graphs. We now show how to extend
these results to the family Fall of weakly connected graphs. Consider a popula-
tion protocol A. First, we de�ne the non-deterministic protocol AND with the
same state space and input alphabet as A, and the following transition rules.
The rule (p, x)(q, y) → (p′, q′) is a rule of AND if and only if (p, x)(q, y) →
(p′, q′) is a rule of A or (q, y)(p, x) → (q′, p′) is a rule of A. In other words,
there is a non-deterministic choice that selects which agent is the initiator, and
which is the responder, in a rule of A. Given a weakly connected graph G,
the symmetric closure Gsym of G is necessarily a strongly connected graph.
If E = (C0, α0, σ0)(C1, α1, σ1) . . . is a globally fair execution of AND on G,
then there is a sequence4 of actions σ′

i, i ∈ N, such that the sequence E′ =
(C0, α0, σ

′
0)(C1, α1, σ

′
1) . . . is a globally fair execution of A on Gsym. Hence if A

solves ELE on Gsym using an oracle Θ such that Θ(G) = Θ(Gsym), then AND

solves ELE on G using the oracle Θ. It is then possible to transform AND into a
deterministic protocol that implements ELE using Θ over G. It can be done, for
instance, by using the general deterministic transformer in [4], since in terms of
[4], AND implements an elastic behaviour.

B Impossibility of Leader Election under Local Fairness

with Uniform Initialization

Theorem A Let F be a family of graphs that contains graphs G and B such
that there exists a k-covering φ : G → B with k ≥ 2. There is no uniformly
initialized population protocol that solves the ELE problem over the family F
under the local fairness assumption.

Proof. We prove the result by contradiction. Assume that there exists a protocol
A that solves the leader election problem with uniform initialization (all agents
are initially in the same state q) under local fairness. We �rst show how to
simulate a step of A on B with a speci�c sequence of steps on G. Then we show
how to lift any locally fair execution on B to a locally fair execution on G, and
�nally we prove the contradiction.

(Simulation). Consider con�gurations γ, γ′ on B and an action σ = ((a, b), (p, q) →

(p′, q′)) enabled in γ such that γ
σ
−→ γ′. Since φ is an op�bration, we know that

for each node xi in φ−1(a) (1 ≤ i ≤ k), there is a unique edge (xi, yi) that is

4 If σi = (ui, vi, (q, y)(p, x) → (q′, p′)) with (p, x)(q, y) → (p′, q′) a rule of A, then
de�ne σ′

i = (vi, ui, (p, x)(q, y)→ (p′, q′)). If (q, y)(p, x)→ (q′, p′) is a rule of A, then
de�ne σ′

i = σi.



Leader Election in Population Protocols 17

mapped to (a, b); then let si = ((xi, yi), (p, q) → (p′, q′)) be an action (on G). If
there were indices i 6= j such that yi = yj = y, then y would have two incoming
edges that are both mapped to the edge (a, b); whence a contradiction with the
fact that φ is a �bration. Hence, the yi's are pairwise distinct (as well as the xi's
by de�nition).

We denote by u0 the con�guration on G such that u0(φ
−1(c)) = {γ(c)} for

every c in B. The action s1 is enabled in u0 since (u0(x1), u0(y1)) = (γ(a), γ(b)) =

(p, q). Thus the con�guration u1 such that u0

s1−→ u1 is well-de�ned, and we have
(u1(x0), u1(y0)) = (p′, q′). The action s2 is enabled in u1 since x1 6= x2, y1 6= y2

and (thus) (u1(x1), u1(y1)) = (u0(x1), u0(y1)) = (p, q). Hence, the con�guration

u2 such that u1

s2−→ u2 is well de�ned. We can iterate the construction until i = k.
In the last con�guration we have (uk(xi), uk(yi)) = (p′, q′) for every 1 ≤ i ≤ k.
Actually, uk(φ−1(b)) = {γ′(b)} for every agent b in B. In other words, we have

simulated the step γ → γ′ in B by a sequence of steps u0

∗
−→ uk in G.

(Locally Fair Lift). Consider a locally fair execution EB = γ0γ1 . . . of A
on the graph B; we have ∀b, γ0(b) = q. Thanks to the simulation above, we can
build a virtual execution EG = g0 . . . g1 . . . g2 . . . of A on G such that for every
t ∈ N, for every node b ∈ B, gt(φ

−1(b)) = {γt(b)}. Note that g0 maps every node
in G to q, so EG is uniformly initialized.

We show that EG is locally fair. Assume that an action s = ((x, y), (p, q) →
(p′, q′)) is enabled in�nitely often in EG. The construction of EG involves that
s is enabled in gi for in�nitely many i. But, since (gi(x), gi(y)) = (p, q) =
(γi(φ(x)), γi(φ(y))), the action σ = ((φ(x), φ(y)), (p, q) → (p′, q′)) is enabled
in�nitely many times in EB . Hence, by local fairness, there are in�nitely many
i such that γi

σ
−→ γi+1. Then, for in�nitely many i, the construction of the se-

quence gi
∗
−→ gi+1 involves that the action s is triggered during it. Whence EG

is locally fair.
(Contradiction). If A solves the leader election problem, there exists some

i0 ∈ N such that for every i ≥ i0, the con�guration γi on B outputs a unique
leader at λ. By construction, for every l ∈ φ−1(λ), gi(l) = γi(λ). This involves
that gi outputs a leader at k agents (since |φ−1(λ)| = k) for in�nitely many
i. This contradicts the fact that any locally fair execution of A solves leader
election on G.

Note that imposing only that φ is a �bration (or an op�bration) is not enough
to lift a locally fair execution on the base graph to a locally fair execution on
the total graph. ⊓⊔

C Leader Election with Uniform Initialization under

Global Fairness

We consider an execution E and prove that there eventually is a unique leader.
Recall that SE denotes the in�nite su�x of E such that each couple (C, α) in
SE occurs in�nitely often in SE (see Sec. 2). Given a con�guration C, let b(C)
be the number of black tokens, w(C) the number of white tokens and l(C) the
number of leaders in C. In addition, for every agent x, we denote by C.leaderx



18 Jo�roy Beauquier, Peva Blanchard, and Janna Burman

(resp. C.tokenx) the value of the variable leaderx (resp. tokenx) in con�guration
C.

Lemma A In each con�guration C in an execution E of Alg. 1, b(C)+w(C) =
l(C) and b(C) ≥ 1.

Proof. In the initial con�guration, b(C) = l(C) = n the number of agents, and
w(C) = 0. We show that for any con�guration C satisfying the property, any
con�guration C ′ such that C → C ′, C ′ satis�es the property. In the algorithm,
the swapping of tokens (line 11) does not modify the number of tokens nor the
number of leaders. If line 7 is executed, then b(C ′) = b(C)−1 ≥ 1 (the condition
in the if statement implies b(C) ≥ 2), w(C ′) = w(C)+1 and l(C ′) = l(C); whence
b(C ′) + w(C ′) = l(C ′). If lines 9 and 10 are executed, then b(C ′) = b(C) ≥ 1,
w(C ′) = w(C) − 1 and l(C ′) = l(C) − 1; whence b(C ′) + w(C ′) = l(C ′). Hence,
in all cases, C ′ also satis�es the property. ⊓⊔

Lemma B For every con�guration C in SE, b(C) = 1.

Proof. First note that, since no black token is ever created in Alg. 1, if C → C ′,
then b(C) ≥ b(C ′). Hence, the number of black tokens cannot increase during
SE. Assume that there is a con�guration C in SE such that b(C) = t ≥ 2. By
global fairness, there is a con�guration in SE where two black tokens are in two
neighboring nodes. From this con�guration, there is a reachable con�guration C ′

resulting from the interaction of these two neighbors. In C ′, b(C ′) ≤ t−1 < b(C).
The global fairness ensures that C ′ is in SE. By the �rst remark, C cannot occur
in SE after the �rst occurrence of C ′. This is a contradiction with the de�nition
of SE. ⊓⊔

Theorem B In any execution E of Alg. 1, there exists an agent λ such that
for every con�guration C in SE, C.leaderλ = 1 and for every agent µ 6= λ,
C.leaderµ = 0.

Proof. We show by contradiction that for every C in SE, w(C) = 0. Assume
that there exists a C such that w(C) ≥ 1. Since b(C) = 1, l(C) = w(C) +
b(C) = w(C) + 1 ≥ 1. By global fairness, there is a con�guration in SE where a
white token and a leader are in two neighbouring nodes. From this con�guration,
there is a reachable con�guration C ′ resulting from the interaction of these two
neighbours such that l(C ′) < l(C). The global fairness ensures that C ′ is in

SE. Since C is also in SE, there must be a sequence of steps C ′ ∗
−→ C. During

this sequence, a leader must be created. This is impossible since no leader is
ever created. Then, w(C) = 0 for every C in SE. This implies that l(C) =
w(C) + b(C) = 0 + 1 = 1 for every C in SE. Since the variables leaderx's are
never swapped, there exists an agent λ such that for every con�guration C in
SE, C.leaderλ = 1 and for every agent µ 6= λ, C.leaderµ = 0. ⊓⊔



Leader Election in Population Protocols 19

D Self-Stabilizing Leader Election using Ω?(2, 1) under

Global Fairness

Given an input assignment α for the Alg. 2, we denote by α.Ω?l
x (resp. α.Ω?t

x) the
value assigned by α to the (read-only) variable Ω?l

x (resp. Ω?t
x). Similarly, given

a con�guration C, for every agent x, we denote by C.leaderx (resp. C.tokenx)
the value of the variable leaderx (resp. tokenx) in con�guration C.

Given a con�guration C, let t(C) and l(C) be the total number of tokens
and leaders respectively in the con�guration C. In C, if an agent x is a leader
and agent y holds a token (x and y not necessarily neighbours), we say that the
leader at x and the token at y are synchronized if they have the same color. We
say that the con�guration C contains a synchronized pair of leader and token
if there exist a leader at some agent and a token at another agent that are
synchronized. We consider an execution E of Alg. 2. Recall that SE denotes the
in�nite su�x of E such that each couple (C, α) in SE occurs in�nitely often in
SE (see Sec. 2).

Lemma C For every (C, α) occurring in SE, there is a unique token in C and
α assigns 1 to every Ω?t

x variable, i.e. t(C) = 1 and ∀x, α.Ω?t
x = 1.

Proof. Assume �rst that for every (C, α) in SE, t(C) = 0. Then by the de�nition
of Ω?t, for every (C, α) in SE, α.Ω?t

x = 0 for every agent x. By line 8, a token
is created at some point during SE; whence a contradiction. Hence, there exists
(C ′, α′) in SE such that t(C ′) ≥ 1. Since the only way to reduce the number of
tokens is by mergin two existing tokens (line 13), for every con�guration C such
that (C ′, α′) → C, t(C) ≥ 1. Hence, for every couple (C, α) in SE, t(C) ≥ 1. The
de�nition of Ω?t involves that for every (C, α) in SE, α.Ω?t

x = 1 for every agent
x. This disables the creation of token during SE. Thus, the number of tokens
cannot increase during SE. Actually, since each couple (C, α) occurs in�nitely
often in SE, the number of tokens during SE is constant, say t0. The previous
argument shows that t0 ≥ 1. Assume that t0 ≥ 2. Then, by global fairness, there
is a con�guration in SE in which two tokens are located at two neighbouring
nodes. From this con�guration, there is a reachable con�guration C ′ resulting
from the interaction of these two neighbours, such that t(C ′) ≤ t0−1. The global
fairness ensures that C ′ is in SE; whence a contradiction. Hence, t0 = 1, i.e.,
there is a unique token during SE. ⊓⊔

Lemma D Consider a con�guration C that contains a synchronized pair of
leader and token, and such that l(C) ≥ t(C) = 1. Consider also an input assign-
ment α that assigns 1 to every variable Ω?t

x, i.e., for all x, α.Ω?t
x = 1. Then for

any con�guration C ′ such that (C, α) → C ′, C ′ contains a synchronized pair of
leader and token and l(C ′) ≥ t(C ′) = 1.

Proof. In Alg. 2, if line 7 is executed, then the number of leader increases. Line 8
is not executed since α.Ω?t

x = 1 for every x.
If line 9 is executed, then l(C ′) = l(C) − 1 and t(C ′) = t(C) = 1. Since C

contains a synchronized pair of leader and token and since the unique token is



20 Jo�roy Beauquier, Peva Blanchard, and Janna Burman

black in C, there must be a black leader in C (not involved in the interaction).
Thus l(C) ≥ 2, l(C ′) ≥ t(C ′) = 1 and C ′ also contains a synchronized pair of
leader and token.

If line 10 is executed, then l(C ′) = l(C) and t(C ′) = t(C) = 1, whence
l(C ′) ≥ t(C ′) = 1. Since C contains a synchronized pair of leader and token
and since the unique token is white in C, there must be a white leader in C
(not involved in the interaction). Hence, C ′ also contains a synchronized pair of
leader and token.

If line 11 is executed, then l(C ′) = l(C) and t(C ′) = t(C) = 1, whence
l(C ′) ≥ t(C ′) = 1. The interaction involves a synchronized pair of leader and
token, and since both the leader and the token �ip their color, C ′ also contains
the same synchronized pair of leader and token. The same argument applies for
line 12.

Finally, line 13 cannot be executed since t(C) = 1, and line 14 just swap the
token values. Therefore, in all cases, C ′ contains a synchronized pair of leader
and token and l(C ′) ≥ t(C ′) = 1. ⊓⊔

Lemma E There exists a con�guration C occurring in SE that contains a syn-
chronized pair of leader and token, and such that l(C) ≥ t(C) = 1.

Proof. We prove the result by contradiction. By Lem. C, we already know that
every con�guration in SE contains a unique token. Hence, assume that, for
every con�guration C in SE, any leader in C (if any) does not have the same
color as the (unique) token in C. Note that, if every con�guration C in SE has
no leader, then the de�nition of Ω?l, the global fairness and the rules of the
protocol involve that a (black) leader is created at some point in SE; whence
a contradiction. Hence, there exists a con�guration C in SE which has at least
one leader, l(C) ≥ t(C) = 1.

By our hypothesis, every leader in C has the same color, opposite to the color
of the token. Consider the case where the token is white. Thus all the leaders
in C are black. Whatever the sequence of input assignment is, it is possible to
reach from C a con�guration C ′ with one white leader and one white token,
simply by moving the white token towards one of the black leaders, and apply
the rule of the protocol that turns this leader white. The con�guration C ′ has
a synchronized pair of leader and token, and l(C ′) ≥ t(C ′) = 1. By the global
fairness, C ′ must belong to SE; whence a contradiction.

Consider the case where where the token is black. Thus all the leaders in C are
white. By moving the token, it is possible to turn all the leaders into non-leaders.
Hence, there exists a con�guration C ′ occurring in SE with no leaders and one
black token. Now since C occurs in SE, it occurs in�nitely many times in SE,
and there is a sequence of steps (C ′, α′) . . . (C, α) in SE. During this sequence,
a leader is created. Before this creation, the unique token stays black since it
interacts with no leader. The rules of the protocol involve that the �rst created
leader is black. Hence, there exists a con�guration C ′′ in SE which contains a
synchronized pair of leader and token, and such that l(C ′′) ≥ t(C ′′) = 1; whence
a contradiction. ⊓⊔



Leader Election in Population Protocols 21

Lemma F For every (C, α) in SE, C contains a synchronized pair of leader
and token, l(C) ≥ t(C) = 1 and for every agent x, α.Ω?l

x = α.Ω?t
x = 1.

Proof. By Lem. C, we already know that for every (C, α) in SE, t(C) = 1 and
for every agent x, α.Ω?t

x = 1. Also by Lem. E, we know that there exists a
(C, α) in SE, such that C contains a synchronized pair of leader and token, and
l(C) ≥ t(C) = 1. These two results, and Lem. D ensure that every (C, α) in SE
contains a synchronized pair of leader and token, and l(C) ≥ t(C) = 1. Then,
the de�nition of Ω?l involves that every input assignment α occurring in SE is
such that for all x, α.Ω?l

x = 1. ⊓⊔

Theorem C Alg. 2 is a self-stabilizing solution to ELE using Ω?(2, 1). Pre-
cisely, there exists an agent λ such that for every con�guration C in SE, C.leaderλ 6=
⊥ and for every agent µ 6= λ, C.leaderµ = ⊥.

Proof. By Lem. F, we know that during SE, the leader detector Ω?l outputs
1 everywhere. Hence, no leader is ever created during SE. This involves that
the number of leaders (greater than or equal to 1) cannot increase during SE.
Actually, since each (C, α) in SE occurs in�nitely often in SE, the number of
leaders is constant during SE. We denote by c this constant; we already know
that c ≥ 1.

Assume that c ≥ 2. Consider a con�guration C occurring in SE. We know
that C contains a synchronized pair of leader and token and that l(C) = c ≥ 2,
t(C) = 1. We now describe scenarios that produce a con�guration C ′ out of C,
such that C ′ contains a unique leader (synchronized with the unique token).

Case (a). The unique token in C is black. There must be a black leader
since C contains a synchronized pair of leader and token. By global fairness, it is
possible to move the token near this leader, and to turn them both white. Then
we come down to case (b).

Case (b). The unique token in C is white. By moving the token to meet every
black leaders, we can turn all the black leaders white. Then by global fairness,
we can assume that there are no black leaders in C. Still by global fairness, the
following sequence of moves is possible. First, the white token meets a white
leader and they both turn black. Then the black token successively meets the
white leaders and turn them into non-leaders. The resulting con�guration has
a unique (black) leader (and a unique black token). The global fairness ensures
that this con�guration occurs in SE; whence a contradiction with the fact that
the number of leaders is c ≥ 2.

Therefore, c = 1, i.e., there is a unique leader in every con�guration during
SE. Since every con�guration in SE contains a synchronized pair of leader and
token, in each con�guration, the unique leader must be synchronized with the
unique token. Since a leader cannot be turned into a non-leader by a token with
which it is synchronized, the unique leader is the same for every con�guration
in SE. Precisely, there exists an agent λ such that for every con�guration C in
SE, C.leaderλ 6= ⊥ and for every agent µ 6= λ, C.leaderµ = ⊥. ⊓⊔



22 Jo�roy Beauquier, Peva Blanchard, and Janna Burman

E Impossibility of Self-Stabilizing Implementation of Ω?
using ELE under Global Fairness

Theorem D There is no non-initialized population protocol A such that for
some k ≥ 1, the composition B = (ELE ⊗ · · · ⊗ ELE) ◦ Beh(A) with k copies of
ELE implements the behaviour Ω? over the family of all graphs under the global
fairness assumption.

Proof. We prove the result by contradiction. Assume that protocol A exists and
consider a complete graph G of size n ≥ k + 1. Let (Tin, Tout, S) be a run of
the behaviour B on G. By de�nition, there exist traces T1, . . . , Tk such that
(⊥, Ti, S) is a run of the i-th copy of ELE on G, and an execution E of A on
G with an input trace IT = (T1, . . . , Tk, Tin) and a schedule S that induces the
output trace Tout.

By the de�nition of ELE , each Ti eventually permanently assigns 1 to a
unique agent λi and 0 to every other; we denote by βi this assignment. Note
that the λi's are not necessarily distinct. We choose the trace Tin to be the
constant trace αα . . . where α assigns 1 to some agent µ 6∈ {λ1, . . . , λk} and
0 to every other. By the assumption on A, the output trace Tout has a su�x
equal to the uniform constant trace 1. Thus, for every couple (C, β) in SE,
β = (β1, . . . , βk, α) and the output associated with C assigns 1 to every agent.
Now, consider such a couple (C, β) in SE. If we restrict (C, β) to the network Gc,
obtained from G by eliminating the node µ, we obtain a con�guration and input
assignment (Cc, βc). The agents λi are still the unique agents to be assigned the
value 1 by βc

i respectively, and αc assigns 0 to every agents in Gc. Since the
protocol must be self-stabilizing, there is a sequence of steps, involving all the
agents but µ and having the input assignment βc at each step. This leads to a
con�guration C ′c that outputs 0 on every agent in Gc.

This involves that there is a sequence of steps (C, β)(C1, β)(C2, β) . . . (C ′, β)
such that C ′ outputs 1 on agent µ and 0 on every other agent. The global fairness
ensures that C ′ occurs in SE; whence a contradiction. ⊓⊔


