
HAL Id: inria-00277661
https://hal.inria.fr/inria-00277661v2

Submitted on 13 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounds for self-stabilization in unidirectional networks
Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru,

Sébastien Tixeuil

To cite this version:
Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, Sébastien Tixeuil. Bounds
for self-stabilization in unidirectional networks. [Research Report] RR-6524, INRIA. 2008, pp.24.
�inria-00277661v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50265014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00277661v2
https://hal.archives-ouvertes.fr

in
ria

-0
02

77
66

1,
 v

er
si

on
 2

 -
 1

3
M

ay
 2

00
8

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
65

24
--

F
R

+
E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Bounds for self-stabilization in unidirectional
networks

Samuel Bernard⋆ — Stéphane Devismes◦ — Maria Gradinariu Potop-Butucaru⋆,† —
Sébastien Tixeuil⋆,‡

⋆ Université Pierre et Marie Curie - Paris 6, LIP6, France
◦ CNRS, LRI, France

† INRIA project-team Regal

‡ INRIA project-team Grand Large

N° 6524

May 2008

Unité de recherche INRIA Futurs
Parc Club Orsay Université, ZAC des Vignes,

4, rue Jacques Monod, 91893 ORSAY Cedex (France)
Téléphone : +33 1 72 92 59 00 — Télécopie : +33 1 60 19 66 08

Bounds for self-stabilization in unidirectional networks

Samuel Bernard⋆ , Stéphane Devismes◦ , Maria Gradinariu

Potop-Butucaru⋆,† , Sébastien Tixeuil⋆,‡

⋆ Université Pierre et Marie Curie - Paris 6, LIP6, France
◦ CNRS, LRI, France

† INRIA project-team Regal
‡ INRIA project-team Grand Large

Thème NUM — Systèmes numériques
Projet Grand Large

Rapport de recherche n° 6524 — May 2008 — 21 pages

Abstract: A distributed algorithm is self-stabilizing if after faults and attacks hit
the system and place it in some arbitrary global state, the systems recovers from
this catastrophic situation without external intervention in finite time. Unidirec-
tional networks preclude many common techniques in self-stabilization from being
used, such as preserving local predicates. In this paper, we investigate the intrinsic
complexity of achieving self-stabilization in unidirectional networks, and focus on
the classical vertex coloring problem.

When deterministic solutions are considered, we prove a lower bound of n states
per process (where n is the network size) and a recovery time of at least n(n− 1)/2
actions in total. We present a deterministic algorithm with matching upper bounds
that performs in arbitrary graphs. When probabilistic solutions are considered, we
observe that at least ∆ + 1 states per process and a recovery time of Ω(n) actions
in total are required (where ∆ denotes the maximal degree of the underlying simple
undirected graph). We present a probabilistically self-stabilizing algorithm that uses
k states per process, where k is a parameter of the algorithm. When k = ∆ + 1, the
algorithm recovers in expected O(∆n) actions. When k may grow arbitrarily, the
algorithm recovers in expected O(n) actions in total. Thus, our algorithm can be
made optimal with respect to space or time complexity.

Key-words: self-stabilization, lower bounds, unidirectional networks, coloring

Bornes pour l’auto-stabilisation dans les réseaux

unidirectionnels

Résumé : Un algorithme réparti est auto-stabilisant si, après que des fautes et des
attaques aient frappé le système et l’aient placé dans un état quelconque, le système
corrige cette situation catastrophique sans intervention extérieure en temps fini.
Les réseaux unidirectionels empêchent de nombreuses techniques habituelles dans
le cadre de l’auto-stabilisation d’être utilisées, comme la préservation de prédicats
locaux. Dans cet article, nous évaluons la complexité intrinsèque de la réalisation
de l’auto-stabilisation dans les réseaux unidirectionels, et nous nous concentrons sur
le problème du coloriage de nœuds.

Quand les solutions déterministes sont envisagées, nous prouvons qu’il existe une
borne inférieure de n états par processus (où n est la taille du réseau) et un temps
minimal avant retour à la normale de n(n−1)/2 action au total. Nous présentons un
algorithme déterministe dans des réseaux de topologies quelconques qui est optimal
en espace et en temps.

Dans le cadre de solutions probabilistes, nous observons que ∆ + 1 états par
processus et Ω(n) actions au total sont requises (où ∆ représente le degré du
graphe non-orienté sous-jacent). Nous présentons un algorithme auto-stabilisant
probabiliste qui utilise k états par processus, où k est un paramètre de l’algorithme.
Quand k = ∆+1, l’algorithme retrouve un comportement correct en O(∆n) actions
en moyenne. Mais si k augmente de manière arbitraire, l’algorithme retrouve un
comportement correct en O(n) actions en moyenne. Au final, notre algorithme peut
être rendu optimal en espace ou en temps.

Mots-clés : auto-stabilisation, bornes inférieures, réseaux unidirectionels, coloriage

Bounds for self-stabilization in unidirectional networks 3

1 Introduction

One of the most versatile technique to ensure forward recovery of distributed systems
is that of self-stabilization [9, 10]. A distributed algorithm is self-stabilizing if after
faults and attacks hit the system and place it in some arbitrary global state, the
systems recovers from this catastrophic situation without external (e.g. human)
intervention in finite time. Self-stabilization makes no hypotheses about the extent
or the nature of the faults and attacks that may harm the system, yet may induce
some overhead (e.g. memory, time) when there are no faults, compared to a classical
(i.e. non-stabilizing) solution. Computing space and time bounds for particular
problems in a self-stabilizing setting is thus crucial to evaluate the impact of adding
forward recovery properties to the system.

The vast majority of self-stabilizing solutions in the literature [10] considers bidi-
rectional communications capabilities, i.e. if a process u is able to send information
to another process v, then v is always able to send information back to u. This
assumption is valid in many cases, but can not capture the fact that asymmetric
situations may occur, e.g. in wireless networks, it is possible that u is able to send
information to v yet v can not send any information back to u (u may have a wider
range antenna than v). Asymmetric situations, that we denote in the following
under the term of unidirectional networks, preclude many common techniques in
self-stabilization from being used, such as preserving local predicates (a process u
may take an action that violates a predicate involving its outgoing neighbors without
u knowing it, since u can not get any input from them).

Related works Self-stabilization in bidirectional networks makes a distinction
between global tasks (i.e. tasks whose specification forbids particular state combi-
nations of processes arbitrarily far from one another in the network, such as leader
election) and local tasks (whose specifications forbid particular state combinations
only for processes that are at distance at most d from one another, for some pa-
rameter d). Local tasks are often considered easier in bidirectional networks since
detecting incorrect situations requires less memory and computing power [3], recov-
ering can be done locally [2], and Byzantine containment can be guaranteed [19, 21].

Since a self-stabilizing algorithm may start from any arbitrary state, lower bounds
for non-stabilizing (a.k.a. properly initialized) distributed algorithms still hold for
self-stabilizing ones. As a result, relatively few works investigate lower bounds that
are specific to self-stabilization [4, 11, 12, 14, 17, 22]. Results related to space lower
bounds deal with global tasks (e.g. constructing a spanning tree [11], finding a cen-

RR n° 6524

4 S. Bernard et al.

ter [11], electing a leader [4, 11], passing a token [12, 14, 22], etc.). [17] provides a
time lower bound for self-stabilizing token passing, still a global task. Global tasks
typically require Ω(n) states per process (i.e. Ω(log(n) bits per process) and Ω(n)
time complexity to recover from faults.

Investigating the possibility of self-stabilization in unidirectional networks was
recently emphasized in several papers [1, 5, 6, 8, 13, 15, 16]1. In particular, [6]
show that in the simple case of acyclic unidirectional networks, nearly any recursive
function can be computed anonymously in a self-stabilizing way. Computing global
tasks in a general topology requires either unique identifiers [1, 5, 13] or distinguished
processes [8, 15, 16]. Observe that all aforementioned works consider global tasks,
and provide constructive upper bound results (i.e algorithms), leaving the question
of matching lower bounds open.

Our contribution In this paper, we investigate the intrinsic complexity of achiev-
ing self-stabilization in unidirectional networks, and focus on the classical vertex
coloring problem, a local task with several known efficient self-stabilizing solutions
in bidirectional networks [18, 20]. Deterministic and probabilistic solutions require
only a number of states that is proportional to the network maximum degree ∆,
and the number of actions per process in order to recover is O(∆) (in the case of
a deterministic algorithm) or expected O(1) (in the case of a probabilistic one).
To satisfy the vertex coloring specification in unidirectional networks, an algorithm
must ensure that no two neighboring nodes (i.e. two nodes u and v such that either
u can send information to v, or v can send information to u, but not necessarily
both) have identical colors.

The main result of this paper is to show that solving a local task in unidirec-
tional networks with a deterministic algorithm is as difficult as solving a global task
in bidirectional networks, while nice complexity guarantees can be preserved with
probabilistic solutions:

1. When deterministic solutions are considered, we prove a lower bound of n
states per process (where n is the network size) and a recovery time of at
least n(n − 1)/2 actions in total. We present a deterministic algorithm with
matching upper bounds that performs in arbitrary graphs.

2. When probabilistic solutions are considered, we observe that at least ∆ + 1
states per process and a recovery time of Ω(n) actions in total are required.

1We do consider here the overwhelming number of contributions that assume a unidirectional
ring shaped network, please refer to [10] for additional references

INRIA

Bounds for self-stabilization in unidirectional networks 5

We present a probabilistically self-stabilizing algorithm that uses k states per
process, where k is a parameter of the algorithm. When k = ∆ + 1, the
algorithm recovers in expected O(∆n) actions. When k may grow arbitrarily,
the algorithm recovers in expected O(n) actions in total. Thus, our algorithm
can be made optimal with respect to space or time complexity.

Outline The remaining of the paper is organized as follows: Section 2 presents
the programming model and problem specification, Section 3 provides impossibility
results and lower bounds for our problem, while Sections 4 and 5 present match-
ing upper bounds (in the deterministic case) and asymptotically matching upper
bounds (in the probabilistic case). Section 6 gives some concluding remarks and
open questions.

2 Model

Program model A program consists of a set V of n processes. A process main-
tains a set of variables that it can read or update, that define its state. Each variable
ranges over a fixed domain of values. We use small case letters to denote singleton
variables, and capital ones to denote sets. A process contains a set of constants that
it can read but not update. A binary relation E is defined over distinct processes
such that (i, j) ∈ E if and only if j can read the variables maintained by i; i is a
predecessor of j, and j is a successor of i. The set of predecessors (resp. successors)
of i is denoted by P.i (resp. S.i), and the union of predecessors and successors of i
is denoted by N.i, the neighbors of i. In some case, we are interested in the iterated
notions of those sets, e.g. S.i0 = i, S.i1 = S.i, . . . , S.ik = ∪j∈S.iS.jk−1. The val-
ues δin.i, δout.i, and δ.i denote respectively |P.i|, |S.i|, and |N.i|; ∆in, ∆out, and ∆
denote the maximum possible values of δin.i, δout.i, and δ.i over all processes in V .

An action has the form 〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a Boolean
predicate over the variables of the process and its communication neighbors. A com-
mand is a sequence of statements assigning new values to the variables of the process.
We refer to a variable v and an action a of process i as v.i and a.i respectively. A
parameter is used to define a set of actions as one parameterized action.

A configuration of the program is the assignment of a value to every variable
of each process from its corresponding domain. Each process contains a set of
actions. An action is enabled in some configuration if its guard is true in this
configuration. A computation is a maximal sequence of configurations such that
for each configuration γi, the next configuration γi+1 is obtained by executing the

RR n° 6524

6 S. Bernard et al.

command of at least one action that is enabled in γi. Maximality of a computation
means that the computation is infinite or it terminates in a configuration where none
of the actions are enabled. A program that only has terminating computations is
silent.

A scheduler is a predicate on computations, that is, a scheduler is a set of
possible computations, such that every computation in this set satisfies the scheduler
predicate. We distinguish two particular schedulers in the sequel of the paper: the
distributed scheduler corresponds to predicate true (that is, all computations are
allowed); in contrast, the locally central scheduler implies that in any configuration
belonging to a computation satisfying the scheduler, no two enabled actions are
executed simultaneously on neighboring processes.

A configuration conforms to a predicate if this predicate is true in this config-
uration; otherwise the configuration violates the predicate. By this definition every
configuration conforms to predicate true and none conforms to false. Let R and
S be predicates over the configurations of the program. Predicate R is closed with
respect to the program actions if every configuration of the computation that starts
in a configuration conforming to R also conforms to R. Predicate R converges to S
if R and S are closed and any computation starting from a configuration conform-
ing to R contains a configuration conforming to S. The program deterministically
stabilizes to R if and only if true converges to R. The program probabilistically
stabilizes to R if and only if true converges to R with probability 1.

Problem specification Consider a set of colors ranging from 0 to k − 1, for
some integer k ≥ 1. Each process i defines a function color .i that takes as input
the states of i and its predecessors, and outputs a value in {0, . . . , k − 1}. The
unidirectional vertex coloring predicate is satisfied if and only if for every (i, j) ∈ E,
color .i 6= color .j.

3 Impossibility results and lower bounds

General bounds We first observe two lower bounds that hold for any kind of
silent program that is self-stabilizing or probabilistically self-stabilizing for the uni-
directional coloring specification:

1. The minimal number of states per process is ∆ + 1. Consider a bidirectional
clique network (that is (∆ + 1)-sized), and a terminal configuration of the
program. Suppose that only ∆ states are used, then at least two processes

INRIA

Bounds for self-stabilization in unidirectional networks 7

i and j have the same state, and have the same view of their predecessors.
As a result color .i = color .j, and i and j being neighbors, the unidirectional
coloring predicate does not hold in this terminal configuration.

2. The minimal number of moves overall is Ω(n). Consider a unidirectional chain
of processes which are all initially in the same state. For every process but one,
the color is identical to that of its predecessor. Since a change of state may
only resolve two conflicts (that of the moving node and that of its successor), a
number of overall moves at least equal to ⌊n/2⌋ is required, thus Ω(n) moves.

Deterministic bounds The rest of the section is dedicated to deterministic im-
possibility results and lower bounds. Theorem 1 (presented below) shows that if
unconstrained schedules (i.e. the scheduler is distributed) are allowed, some initial
symmetric configurations can not be broken afterwards, making the unidirectional
coloring problem impossible to solve by a deterministic algorithm. This justifies the
later assumption of a locally central scheduler in Section 4, i.e. a scheduler that
never schedules for execution two neighboring activatable processes simultaneously.

Lemma 1 Let an unidirectional network {p0, p1, . . . , pn−1} of size n. Consider ev-
ery node executes a uniform deterministic self-stabilizing uniform coloring algorithm.
Whenever there exists i such that s.pi = s.p(i−1) mod n, pi is activatable and if acti-
vated would change its state to s′.pi with s′.pi 6= s.pi.

Proof: We first show that pi is activatable. Assume the contrary, and consider a
uniform cycle of n nodes that are all in the same state. If pi is not activatable,
none of the remaining processes is activatable either. Hence, the configuration is
terminal. Now, a process pi may only read its own state and that of its predecessor
in the cycle, so the color color .pi is uniquely determined by these two values only.
Moreover, the color .pi is the same as color .p(i−1) mod n. So, the configuration is
terminal and two neighboring processes have the same color. This contradicts the
fact that the algorithm is a deterministic self-stabilizing unidirectional coloring one.

Then we show that pi, if activated moves to a different state s′.pi. Assume pi

moves to the same state s.pi, then if the starting configuration is such that all nodes
have the same state, then no node is able to change its state, the algorithm being
uniform. Since this configuration can not be a coloring, the system never changes
the global configuration and thus is not self-stabilizing. 2

Theorem 1 There exists no uniform deterministic self-stabilizing coloring algo-
rithm that can run on any unidirectional graph under a distributed scheduler.

RR n° 6524

8 S. Bernard et al.

Proof: Assume the contrary. Consider a unidirectional cycle {p0, p1, . . . , pn−1}
of size n. Assume that in the initial state all nodes are in the same state s (see
Figure 1.(a)). By Lemma 1, all nodes are activatable, and if a node is activated by
the scheduler, it moves to a different state s′. Consider the synchronous scheduler
that, at each step, activates all nodes. Then, after one scheduler activation, all nodes
have state s′ (see Figure 1.(b)). After another activation, all nodes move to state
s′′, etc. In this infinite execution, every configuration has all nodes with the same
state and thus, the coloration problem is not solved. As a result, the algorithm can
not be self-stabilizing. 2

Notice that the result of Theorem 1 holds even if the program is not required to
be silent or if participating processes have infinite number of states.

From now on, we assume the scheduler is locally central. We demonstrate that a
uniform silent deterministic self-stabilizing algorithm for the unidirectional coloring
problem must use at least n states per process in general networks. The proof is
by exhibiting a particular family of networks (namely, n-sized cycles) in which the
bound is reached by any such algorithm even assuming a locally central scheduler.

Algorithm 1 A uniform deterministic coloring algorithm for unidirectional rings

process i
const

k : integer
p.i : predecessor of i

var
c.i : color of node i

action
c.i = c.p.i →

c.i := c.i + 1modk

Lemma 2 Consider a unidirectional cycle {p0, p1, . . . , pn−1} of size n. Consider a
scheduler that only activates a node pi when s.pi = s.p(i−1) mod n. Assume every
node executes a uniform deterministic self-stabilizing unidirectional coloring algo-
rithm that uses a finite number of states K. There exists an initial configuration
such that the state sequence starting from this configuration is isomorphic to that of
Algorithm 1, for some parameter k ≤ K.

INRIA

Bounds for self-stabilization in unidirectional networks 9

Proof: Consider a unidirectional cycle {p0, p1, . . . , pn−1} of size n. Assume a node
pi is activated only when its state s.pi is equal to s.p(i−1) mod n, the state of the
predecessor of pi in the cycle. Then, the transition function of node pi is solely
based on the state s.pi. Let s(0), s(1), . . . the sequence of states returned by the
transition function of process pi executing the self-stabilizing coloring algorithm
started in an arbitrary state s(0). Note that (i) the number of states is finite, (ii) a
process with the same state as its predecessor is always activatable (Lemma 1), and
(iii) the protocol is deterministic. Then, the shape of the transition function of pi is
as depicted in Figure 2.(a). That is, there exist i and l (i < l) such that s(i) = s(l)
and l − i ≤ K. Since the protocol is self-stabilizing, it may be started from any
arbitrary state, and in particular from state s(i) (in Figure 2.(a)). Let denote s(j)
by j − i, ∀i ≤ j < l. The transition function of pi is isomorphic to that of the same
process executing Algorithm 1 (given in Figure 2(b)) and assuming k = l − i. 2

Theorem 2 A silent uniform deterministic self-stabilizing protocol for unidirec-
tional coloring requires at least n states per process in a n-sized network (with n ≥ 2).

Proof: Assume there exists a silent uniform deterministic self-stabilizing protocol
for coloring that requires less than n states for a particular node. Since the protocol
is uniform, every node must use k < n states.

Consider a unidirectional cycle {p0, p1, . . . , pn−1} of size n. In what follows, we
consider executions of the protocol in which the scheduler only activates nodes that
have the same state as their predecessor. By Lemma 2, the transition function of
every node is isomorphic to that of Algorithm 1, so we assume all nodes execute
Algorithm 1 with k < n.

In the following, we consider k = n− 1 but the proof is easily expendable to any
k < n by putting the n − k + 1 last processors in the same state. Now consider the
unidirectional ring presented in Figure 3.(a). The scheduler only activates the single
node with the same state 0 as its parent, and reach the configuration presented in
Figure 3.(b). The scheduler may now activate the single node with the same state
1 as its parent and reach the configuration presented in Figure 3.(c). We repeat the
argument and reach the configuration presented in Figure 3.(d). This configuration
is symmetric to that of the configuration presented in Figure 3.(a), so the process
can repeat infinitely often. As a result, the protocol is not silent. 2

We now address the question of time lower bounds for deterministic self-stabilizing
programs for the unidirectional coloring problem.

Theorem 3 A silent uniform deterministic self-stabilizing protocol for unidirec-
tional coloring converges in at least n(n−1)

2 steps in general graphs.

RR n° 6524

10 S. Bernard et al.

Proof: Consider a chain topology, and assume that processors are ordered from
the sink p1 to the source pn. Assume all processors are initially in the same state
(a self-stabilizing program may start from any arbitrary configuration). We now
consider a locally central scheduler that activates nodes according to the schedule
presented in Schedule 1.

Schedule 1 Our n(n−1)
2 -steps scheduling in n-sized chains

var
i,j: integer

scheduler
for j from n − 1 to 1

for i from 1 to j
activate pi

Schedule 1 selects a single process at a time for execution, thus it satisfies the
locally central scheduler property. In addition, it only selects for execution a process
that has the same state as its predecessor (and thus activatable by Lemma 1): if
p1 to pk have the same state s then p1 to pk−1 are activatable and if they are
activated in ascending order, p1 to pk−1 will move to the same “next” state s′ (see
Figure 2.(a)). So every process activation leads to an effective move and the total

number of activations is
∑n−1

i=1 i = n(n−1)
2 .

Finally, all executions of the protocol must be terminating (it is silent), and from
an initial configuration where all processes have the same state, a locally central
schedule (like Schedule 1) may leads to n(n− 1)/2 steps at least before termination.
Hence the result. 2

4 Self-stabilizing deterministic unidirectional coloring

In this section we propose a time and space optimal silent self-stabilizing determin-
istic algorithm for unidirectional coloring. The algorithm is referred thereafter as
Algorithm 2 and performs under the locally central scheduler. The algorithm can
be informally described as follows: each process i has an integer variable c.i (that
ranges from 0 to k − 1, where k is a parameter of the algorithm) that denotes its
color; whenever a node has the same color as one of its predecessors, it changes its
color to the next available color (using the classical total order on integers). Here,
the color .i function simply returns the color variable c.i of i.

INRIA

Bounds for self-stabilization in unidirectional networks 11

Algorithm 2 A uniform deterministic coloring algorithm for general unidirectional
networks

process i
const

k : integer
P.i : set of predecessors of i

parameter
p : node in P.i

var
c.i : color of node i

action
p ∈ P.i, c.i = c.p →

do p ∈ P.i, c.i = c.p →
c.i := c.i + 1modk

od

A configuration is legitimate if, for every process i, and for every predecessor
p ∈ P.i, c.i 6= c.p.i. Obviously, a legitimate configuration satisfies the unidirec-
tional coloring predicate (assuming color .i return c.i) and is terminal (all guarded
commands are disabled). There remains to show how fast the algorithm attains a
legitimate configuration in the worst case for every possible locally central schedule.

Theorem 4 Algorithm 2 is a (state-optimal) uniform silent deterministic self-stabilizing
protocol for coloring nodes in unidirectional general networks of size n (when k = n),

assuming a locally central scheduler and converges in n(n−1)
2 steps to a legitimate

configuration.

Proof: Assume Algorithm 2 starts in an arbitrary initial configuration c. We now
consider the table that lists, for every possible color (in the set {0, . . . , n − 1} since
we assume k = n), the processes that currently have this color. An example of such
a table is presented as Table 1, where processes P3 and P2 have color 0, process
Pn−2 has color n − 1, etc. This table is denoted in the sequel as the color table.

According to Algorithm 2 the evolution of the color table follows two rules:

1. A cell containing one process can not become empty. That is, a process having
a color not used by any other process in the system can not be activated. In

RR n° 6524

12 S. Bernard et al.

Processors P3, P2 Pn−1, P1 ... Pn−2

States 0 1 2 3 ... n − 1

Table 1: An example of color table

our algorithm, this is due to the fact that processes are activatable only if they
share their color with their predecessor.

2. A process only moves to the right (in a cyclic manner) and can not jump over
an empty cell. Indeed, when activated, a process chooses the first “next” (in
the sense of the usual total order on integers) unconflictual color hence the
processes always move to the right. A process may move by several positions,
but never skips a free position (this would mean that a process does not choose
the ”next” color although this color is not conflicting with any other process
and thus not with the process predecessors).

Since there are n cells and n processes, every process could be placed in a different
cell if necessary. Since a process can not jump over an empty cell, after n−1 moves,
a process is sure to find a free cell. In fact, the number of moves a process may
have to perform to reach a free cell depends on the number of free cells. With k
free cells, there are at most n−k consecutive non-empty cells that could potentially
provoke further conflicts. A process, in order to reach a free cell has to perform at
most n − k moves. Once this process occupies a free cell, the number of free cells
decreases to k − 1. Starting with n − 1 free cell (every process has the same color),

and finishing with 1, at most 1 + 2 + ... + (n− 1) = n(n−1)
2 steps are needed to have

every process in a free cell or with a non-conflicting color (i.e. different from that
of its predecessors) and thus reach a legitimate configuration. 2

5 Probabilistic self-stabilizing unidirectional coloring

In Section 3, we observed that there exist lowers bounds even for probabilistic ap-
proaches to the unidirectional coloring problem. The space lower bound is ∆ + 1
and the time lower bound is n (where ∆ and n are the degree and the size of the
underlying simple undirected graph, respectively).

The algorithm presented as Algorithm 3 can be informally described as follows.
If a process has the same color as one of its predecessors then it chooses a new color
in the set of available colors (i.e. the set of colors that are not already used by any

INRIA

Bounds for self-stabilization in unidirectional networks 13

of its predecessors). The colors are chosen in a set of size k, where k is a parameter
of the algorithm. In the following, we show that Algorithm 3 is probabilistically
self-stabilizing for the unidirectional coloring problem if k > ∆. To reach that goal
we proceed in two steps: first we show that any terminal configuration satisfies the
unidirectional coloring predicate (Lemma 3); secondly, we show that the expected
number of steps to reach a terminal configuration starting from an arbitrary one is
bounded (Lemma 7).

Algorithm 3 A uniform probabilistic coloring algorithm for general unidirectional
networks

process i
const

k : integer
P.i : set of predecessors of i
C.i : set of colors of nodes in P.i

parameter
p : node in P.i

var
c.i : color of node i

action
p ∈ P.i, c.i = c.p →

c.i := random ({0, . . . , k− 1} \ C.i)

Lemma 3 Any terminal configuration satisfies the unidirectional coloring predicate.

Proof: In a terminal configuration, every process i satisfies ∀j ∈ P.i, c.i 6= c.j and
∀j ∈ S.i, c.i 6= c.j. Hence, in a terminal configuration, every process i has a color
that is different from those of its neighbors, which proves the theorem. 2

Definition 1 (Conflict) Let p be a process and γ a configuration. The tuple (p,γ)
is called a conflict if and only if there exists q ∈ P.p (the predecessors of p) such
that c.q = c.p in γ.

RR n° 6524

14 S. Bernard et al.

Lemma 4 Assume k > ∆. Let (p,γ) be a conflict. The expected number of conflicts
created by the execution of one step of p in order to resolve (p,γ) is:

δ.p − δin.p

k− δin.p
(1)

Proof: When a process p executes Action A from γ, it chooses a new color in a set
of at least k− δin.p colors. That is, there are k colors and it can not choose a color
chosen by one of its predecessors, therefore at most δin.p colors are removed from
the set of possible choices.

For each q ∈ S.p ∧ q /∈ P.p, p and q are in conflict if and only if, p chooses the
color of q. Notice that p has 1

(k−δin.p) chance to create a new conflict. Since the

number of successors of p not in the set of predecessors of p, ♯{q ∈ S.p ∧ q /∈ P.p},
is δ.p − δin.p, the expected number of created conflicts is δ.p−δin.p

k−δin.p
. 2

Lemma 5 Let (p, γ) be a conflict. The expected number of conflicts created by the
execution of one step of p in order to resolve (p,γ) is less than or equal to:

M =
∆ − 1

k− 1
, k > ∆ (2)

Proof: Observe that ∀p ∈ V,∆ ≥ δ.p, therefore ∀p ∈ V, δ.p−δin.p
k−δin.p

≤ ∆−δin.p
k−δin.p

. In order
to find an upper bound for this value, let f : p ∈ V,∆ < k, δin.p ∈ [0,∆], δin.p 7→
∆−δin.p
k−δin.p

. Its derivative exists and is f ′(δin.p) = ∆−k

(k−δin.p)2
. By hypothesis, k > ∆, so

f ′(δin.p) < 0 and f is decreasing. Therefore, f(δin.p) is maximum when δin.p = 0
but for this value (p,γ) can not be a conflict. Therefore, δin.p ≥ 1 and f is maximum
for δin.p = 1 which leads to δ.p−δin.p

k−δin.p
≤ ∆−δin.p

k−δin.p
≤ ∆−1

k−1 . 2

Lemma 6 Let (p, γ) be a conflict. The expected number of step created in order to
resolve this conflict is less than:

k− 1

k− ∆
, k > ∆ (3)

Proof: From Lemma 5, the expected number of conflicts created by one step of p
is less than M = ∆−1

k−1 . Then, the processes in S.p who received the created conflicts
produce at most M new conflicts each since there are at most M expected such pro-

cesses. They will perform M steps and create at most M
2 =

(

∆−1
k−1

)2
new conflicts.

Then the M
2 processes in S.p2 (the successors at distance two from p), after M2 step

INRIA

Bounds for self-stabilization in unidirectional networks 15

(one for each) will produce M
3 new conflicts. By recurrence, at most M

i expected
steps will be executed and M

i+1 new conflicts will be created by the processes in S.pi

(the successors at distance i from p).

Finally, the expected number of steps executed is
∑∞

i=0 M
i =

∑∞
i=0

(

∆−1
k−1

)i

. Note

that ∆ ≥ 1 and k > ∆, so 0 < ∆−1
k−1 < 1. The expected number of steps executed in

order to solve the conflict (p, γ) is
∑∞

i=0

(

∆−1
k−1

)i

= 1
1−∆−1

k−1

= k−1
k−∆ 2

Lemma 7 Starting from an arbitrary configuration, the expected number of steps to
reach a configuration verifying the unidirectional coloring predicate is less or equal
to:

n(k− 1)

k− ∆
, k > ∆ (4)

Proof: In the worst case the number of initial conflicts is n. Then the proof is a
direct consequence of Lemma 6. 2

Notice that with a minimal number of colors (i.e., k = ∆ + 1), the expected
number of steps to reach a terminal configuration starting from an arbitrary con-
figuration is less than n∆. Moreover, when the number of colors increases (i.e.,
k → ∞), the expected number of steps to reach a terminal configuration starting
from an arbitrary configuration converges to n.

Theorem 5 Algorithm 3 is a probabilistic self-stabilizing solution for the unidirec-
tional coloring when k > ∆.

Proof: The proof is a direct consequence of Lemma 3 and Lemma 7. 2

6 Conclusion

We investigated the intrinsic complexity of performing local tasks in unidirectional
networks in a self-stabilizing setting. Contrary to “classical” bidirectional networks,
local vertex coloring now induces global complexity (n states per process at least, n
moves per process at least) for deterministic solutions. We presented state and time
optimal solutions for the deterministic case, and asymptotically optimal solutions
for the probabilistic case. This work raises several important open questions:

1. Our probabilistic solution can be tuned to be optimal in space (and is then with
a ∆ multiplicative penalty in time), or optimal in time, but not both. However,

RR n° 6524

16 S. Bernard et al.

our lower bounds do not preclude the existence of probabilistic solutions that
are optimal for both complexity measures.

2. Several of the lower bounds we provide in the deterministic case rely on the
silence property of the expected solution. We question the possibility of de-
signing deterministic algorithms that are not silent yet provide coloring with
less than n colors in general graphs.

References

[1] Yehuda Afek and Anat Bremler-Barr. Self-stabilizing unidirectional network
algorithms by power supply. Chicago J. Theor. Comput. Sci., 1998, 1998.

[2] Yehuda Afek and Shlomi Dolev. Local stabilizer. J. Parallel Distrib. Comput.,
62(5):745–765, 2002.

[3] Joffroy Beauquier, Sylvie Delaët, Shlomi Dolev, and Sébastien Tixeuil. Tran-
sient fault detectors. Distributed Computing, 20(1):39–51, 2007.

[4] Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. Randomized self-
stabilizing and space optimal leader election under arbitrary scheduler on rings.
Distributed Computing, 20(1):75–93, 2007.

[5] Jorge Arturo Cobb and Mohamed G. Gouda. Stabilization of routing in directed
networks. In Datta and Herman [7], pages 51–66.

[6] Sajal K. Das, Ajoy Kumar Datta, and Sébastien Tixeuil. Self-stabilizing algo-
rithms in dag structured networks. Parallel Processing Letters, 9(4):563–574,
December 1999.

[7] Ajoy Kumar Datta and Ted Herman, editors. Self-Stabilizing Systems, 5th
International Workshop, WSS 2001, Lisbon, Portugal, October 1-2, 2001, Pro-
ceedings, volume 2194 of Lecture Notes in Computer Science. Springer, 2001.

[8] Sylvie Delaët, Bertrand Ducourthial, and Sébastien Tixeuil. Self-stabilization
with r-operators revisited. Journal of Aerospace Computing, Information, and
Communication, 2006.

[9] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Commun. ACM, 17(11):643–644, 1974.

INRIA

Bounds for self-stabilization in unidirectional networks 17

[10] S. Dolev. Self-stabilization. MIT Press, March 2000.

[11] Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Memory require-
ments for silent stabilization. Acta Inf., 36(6):447–462, 1999.

[12] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Resource bounds for self-
stabilizing message-driven protocols. SIAM J. Comput., 26(1):273–290, 1997.

[13] Shlomi Dolev and Elad Schiller. Self-stabilizing group communication in di-
rected networks. Acta Inf., 40(9):609–636, 2004.

[14] Philippe Duchon, Nicolas Hanusse, and Sébastien Tixeuil. Optimal random-
ized self-stabilizing mutual exclusion in synchronous rings. In Proceedings of
the 18th Symposium on Distributed Computing (DISC 2004), number 3274 in
Lecture Notes in Computer Science, pages 216–229, Amsterdam, The Neder-
lands, October 2004. Springer Verlag.

[15] Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with r-operators.
Distributed Computing, 14(3):147–162, July 2001.

[16] Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with path alge-
bra. Theoretical Computer Science, 293(1):219–236, 2003. Extended abstract
in Sirrocco 2000.

[17] Christophe Genolini and Sébastien Tixeuil. A lower bound on k-stabilization
in asynchronous systems. In Proceedings of IEEE 21st Symposium on Reliable
Distributed Systems (SRDS’2002), Osaka, Japan, October 2002.

[18] Maria Gradinariu and Sébastien Tixeuil. Self-stabilizing vertex coloring of arbi-
trary graphs. In International Conference on Principles of Distributed Systems
(OPODIS’2000), pages 55–70, Paris, France, December 2000.

[19] Toshimitsu Masuzawa and Sébastien Tixeuil. Stabilizing link-coloration of ar-
bitrary networks with unbounded byzantine faults. International Journal of
Principles and Applications of Information Science and Technology (PAIST),
1(1):1–13, December 2007.

[20] Nathalie Mitton, Eric Fleury, Isabelle Guérin-Lassous, Bruno Séricola, and
Sébastien Tixeuil. On fast randomized colorings in sensor networks. In Pro-
ceedings of ICPADS 2006, pages 31–38. IEEE Press, July 2006.

RR n° 6524

18 S. Bernard et al.

[21] Mikhail Nesterenko and Anish Arora. Tolerance to unbounded byzantine faults.
In 21st Symposium on Reliable Distributed Systems (SRDS 2002), pages 22–.
IEEE Computer Society, 2002.

[22] Sébastien Tixeuil. On a space-optimal distributed traversal algorithm. In Datta
and Herman [7], pages 216–228.

INRIA

