54 research outputs found

    A uniform framework for modelling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences

    Get PDF
    Labeled transition systems are typically used as behavioral models of concurrent processes, and the labeled transitions define the a one-step state-to-state reachability relation. This model can be made generalized by modifying the transition relation to associate a state reachability distribution, rather than a single target state, with any pair of source state and transition label. The state reachability distribution becomes a function mapping each possible target state to a value that expresses the degree of one-step reachability of that state. Values are taken from a preordered set equipped with a minimum that denotes unreachability. By selecting suitable preordered sets, the resulting model, called ULTraS from Uniform Labeled Transition System, can be specialized to capture well-known models of fully nondeterministic processes (LTS), fully probabilistic processes (ADTMC), fully stochastic processes (ACTMC), and of nondeterministic and probabilistic (MDP) or nondeterministic and stochastic (CTMDP) processes. This uniform treatment of different behavioral models extends to behavioral equivalences. These can be defined on ULTraS by relying on appropriate measure functions that expresses the degree of reachability of a set of states when performing single-step or multi-step computations. It is shown that the specializations of bisimulation, trace, and testing equivalences for the different classes of ULTraS coincide with the behavioral equivalences defined in the literature over traditional models

    Markovian Testing Equivalence and Exponentially Timed Internal Actions

    Full text link
    In the theory of testing for Markovian processes developed so far, exponentially timed internal actions are not admitted within processes. When present, these actions cannot be abstracted away, because their execution takes a nonzero amount of time and hence can be observed. On the other hand, they must be carefully taken into account, in order not to equate processes that are distinguishable from a timing viewpoint. In this paper, we recast the definition of Markovian testing equivalence in the framework of a Markovian process calculus including exponentially timed internal actions. Then, we show that the resulting behavioral equivalence is a congruence, has a sound and complete axiomatization, has a modal logic characterization, and can be decided in polynomial time

    Revisiting bisimilarity and its modal logic for nondeterministic and probabilistic processes

    Get PDF
    We consider PML, the probabilistic version of Hennessy-Milner logic introduced by Larsen and Skou to characterize bisimilarity over probabilistic processes without internal nondeterminism.We provide two different interpretations for PML by considering nondeterministic and probabilistic processes as models, and we exhibit two new bisimulation-based equivalences that are in full agreement with those interpretations. Our new equivalences include as coarsest congruences the two bisimilarities for nondeterministic and probabilistic processes proposed by Segala and Lynch. The latter equivalences are instead in agreement with two versions of Hennessy-Milner logic extended with an additional probabilistic operator interpreted over state distributions rather than over individual states. Thus, our new interpretations of PML and the corresponding new bisimilarities offer a uniform framework for reasoning on processes that are purely nondeterministic or reactive probabilistic or are mixing nondeterminism and probability in an alternating/non-alternating way

    Revisiting bisimilarity and its modal logic for nondeterministic and probabilistic processes

    Get PDF
    The logic PML is a probabilistic version of Hennessy–Milner logic introduced by Larsen and Skou to characterize bisimilarity over probabilistic processes without internal nondeterminism. In this paper, two alternative interpretations of PML over nondeterministic and probabilistic processes as models are considered, and two new bisimulation-based equivalences that are in full agreement with those interpretations are provided. The new equivalences include as coarsest congruences the two bisimilarities for nondeterministic and probabilistic processes proposed by Segala and Lynch. The latter equivalences are instead known to agree with two versions of Hennessy–Milner logic extended with an additional probabilistic operator interpreted over state distributions in place of individual states. The new interpretations of PML and the corresponding new bisimilarities are thus the first ones to offer a uniform framework for reasoning on processes that are purely nondeterministic or reactive probabilistic or that mix nondeterminism and probability in an alternating/nonalternating way

    Probabilistic Semantics: Metric and Logical Character¨ations for Nondeterministic Probabilistic Processes

    Get PDF
    In this thesis we focus on processes with nondeterminism and probability in the PTS model, and we propose novel techniques to study their semantics, in terms of both classic behavioral relations and the more recent behavioral metrics. Firstly, we propose a method for decomposing modal formulae in a probabilistic extension of the Hennessy-Milner logic. This decomposition method allows us to derive the compositional properties of probabilistic (bi)simulations. Then, we propose original notions of metrics measuring the disparities in the behavior of processes with respect to (decorated) trace and testing semantics. To capture the differences in the expressive power of the metrics we order them by the relation `makes processes further than'. Thus, we obtain the first spectrum of behavioral metrics on the PTS model. From this spectrum we derive an analogous one for the kernels of the metrics, ordered by the relation `makes strictly less identification than'. Finally, we introduce a novel technique for the logical characterization of both behavioral metrics and their kernels, based on the notions of mimicking formula and distance on formulae. This kind of characterization allows us to obtain the first example of a spectrum of distances on processes obtained directly from logics. Moreover, we show that the kernels of the metrics can be characterized by simply comparing the mimicking formulae of processes

    Probabilistic Semantics: Metric and Logical Character\ua8ations for Nondeterministic Probabilistic Processes

    Get PDF
    In this thesis we focus on processes with nondeterminism and probability in the PTS model, and we propose novel techniques to study their semantics, in terms of both classic behavioral relations and the more recent behavioral metrics. Firstly, we propose a method for decomposing modal formulae in a probabilistic extension of the Hennessy-Milner logic. This decomposition method allows us to derive the compositional properties of probabilistic (bi)simulations. Then, we propose original notions of metrics measuring the disparities in the behavior of processes with respect to (decorated) trace and testing semantics. To capture the differences in the expressive power of the metrics we order them by the relation `makes processes further than'. Thus, we obtain the first spectrum of behavioral metrics on the PTS model. From this spectrum we derive an analogous one for the kernels of the metrics, ordered by the relation `makes strictly less identification than'. Finally, we introduce a novel technique for the logical characterization of both behavioral metrics and their kernels, based on the notions of mimicking formula and distance on formulae. This kind of characterization allows us to obtain the first example of a spectrum of distances on processes obtained directly from logics. Moreover, we show that the kernels of the metrics can be characterized by simply comparing the mimicking formulae of processes

    Probabilistic Models and Process Calculi for Mobile Ad Hoc Networks

    Get PDF
    corecore