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Abstract—We provide two interpretations, over nondeterminis-
tic and probabilistic processes, of PML, the probabilistic version
of Hennessy-Milner logic used by Larsen and Skou to char-
acterize bisimilarity of probabilistic processes without internal
nondeterminism. Then, we exhibit two new bisimulation-based
equivalences for nondeterministic and probabilistic processes,
which are in full agreement with the two different interpretations
of PML. The new equivalences are coarser than the bisimilarity
for nondeterministic and probabilistic processes proposed by
Segala and Lynch, which instead is in agreement with a version of
Hennessy-Milner logic extended with an additional probabilistic
operator interpreted over state distributions rather than over
individual states. The modal logic characterizations provided for
the new equivalences thus offer a uniform framework for reason-
ing on purely nondeterministic processes, reactive probabilistic
processes, and alternating and non-alternating nondeterministic
and probabilistic processes.

I. INTRODUCTION

Modal logics and behavioral equivalences play a key rôle in
the specification and verification of concurrent systems. The
former are useful for model checking, in that they can be
employed for specifying the properties to be verified. The latter
are ancillary to the former, in the sense that they enable the
transformation/minimization of models to be checked while
guaranteeing that specific classes of properties are preserved.

Because of this, whenever a new behavioral relation is
proposed, the quest starts for the associated modal logic, i.e.,
for a logic such that two systems are behaviorally equivalent
if and only if they satisfy the same logical formulae. The first
result along this line is due to Hennessy and Milner [15]. They
showed that bisimilarity over fully nondeterministic processes,
each modeled as a labeled transition system (LTS) [18], is in
full agreement with a very simple modal logic, now known
as HML. This logic has only the four operators true, · ∧ ·,
¬·, and 〈a〉·, where the last one is called diamond and is
used to describe the existence of a-labeled transitions. After
this result, whenever any of the many quantitative variants of
process description languages and process models has been
introduced, other behavioral equivalences and modal logics
have been defined and analogous results have been established
to handle features such as probability and time.

Most of the works along the lines outlined above take as
starting point a behavioral equivalence and then look for the
logic in agreement with it. Obviously, it is also interesting,
once one has fixed a model and a logic to reason about it, to
find out the “right” behavioral relation.

A first work in the latter direction was [4]; starting from
CTL interpreted over Kripke structures (state-labeled transi-
tion systems) [6], it showed that bisimilarity and stuttering
bisimilarity are respectively in full agreement with the logical
equivalences induced by CTL* and CTL* without the next-
time operator. In the subsequent work [1], it was shown that
the equivalence induced by PCTL* interpreted over probabilis-
tic Kripke structures coincides with probabilistic bisimilarity.
A more recent work is [28]; starting from PCTL interpreted
over nondeterministic and probabilistic Kripke structures [3], it
defined new probabilistic bisimilarities that fully characterize
the logical equivalences induced by PCTL, PCTL*, and their
variants without the next-time operator.

In this paper, we concentrate on the results obtained for
extended LTS models that have been developed to deal with
probabilistic systems. We look for bisimilarities that are in
agreement with a probabilistic variant of HML known as
PML [19], [20]. This is obtained by simply decorating the
diamond operator with a probability bound. Formula 〈a〉pφ
is satisfied by state s if an a-labeled transition is possible
from s after which a set of states satisfying φ is reached with
probability at least p.

Modal logic characterizations for probabilistic bisimilarities
have been studied for the first time by Larsen and Skou [19],
[20]. They introduced probabilistic bisimilarity for reactive
probabilistic processes [30] and showed that it is in full
agreement with PML. Subsequently, Desharnais et al [11]
showed that PML without negation is sufficient to characterize
probabilistic bisimilarity for the same class of processes.
Reactive probabilistic processes are LTS-based models where
(i) every action-labeled transition reaches a probability dis-
tribution over states and (ii) the actions labeling transitions
departing from the same state are all different from each other.

Segala and Lynch [25] defined, instead, a probabilistic
bisimilarity for a more expressive model that also admits
internal nondeterminism, i.e., the possibility for a state to
have several outgoing transitions labeled with the same action.
For this probabilistic bisimilarity over nondeterministic and
probabilistic processes, Segala and collaborators [21], [16]
exhibited a logical characterization in terms of an extension
of HML, in which formulae satisfaction is defined over prob-
ability distributions on states rather than over single states.
The logic is obtained from HML by giving the diamond
operator a universal interpretation (all states in the support
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Fig. 1. Two games with the same set of winning probabilities (∼PB,gbg,=)

of a distribution must satisfy the formula) and by adding a
unary operator [·]p such that [φ]p is true on a state distribution
whenever the probability of the set of states that satisfy
formula φ is at least p.

The above-mentioned variant of HML has been reconsid-
ered in a number of subsequent works. In [8], D’Argenio et
al revised the logic by distinguishing between state formulae
including the diamond operator (interpreted as in HML over
states) and measure formulae including the new unary operator
(interpreted as before over state distributions). More recently,
Crafa and Ranzato [7] showed an equivalent formulation of
the logic that retrieves the HML interpretation of the diamond
operator by lifting the transition relation to state distributions.
Following a similar lifting, Hennessy [14] proposed an alter-
native logical characterization based on what he calls pHML,
where a binary operator ·⊕p · is added to HML (instead of the
unary operator [·]p) such that φ1⊕pφ2 asserts decomposability
of a state distribution to satisfy the two subformulae.

Now, the difference between PML and the two probabilistic
extensions of HML in [21] and [14] is quite striking. It is thus
interesting to understand whether such a difference is due to
the different expressive power of the models in [19] and [25]
– i.e., the absence or the presence of internal nondeterminism
– or to the way probabilistic bisimilarity was defined on those
two models. Since in [21] it was shown that PML characterizes
probabilistic bisimilarity over processes alternating nondeter-
minism and probability like those in [13] (strictly alternating)
and [32], [22] (non-strictly alternating), we feel it is worth
exploring alternative definitions of probabilistic bisimilarity
rather than alternative models.

The aim of this paper is to show that it is possible to define
new probabilistic bisimilarities for non-alternating nondeter-
ministic and probabilistic processes [24] that are characterized
by PML. Our result is somehow similar to the one established
in [28], where new probabilistic bisimilarities over nonde-
terministic and probabilistic Kripke structures were exhibited
that are characterized by variants of PCTL. In both cases, the
starting point for defining the new probabilistic bisimilarities
is the consideration (see also [9]) that sometimes the definition
of Segala and Lynch [25] might be overdiscriminating and thus
differentiate processes that, according to intuition, should be
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Fig. 2. Two games with the same extremal probabilities (∼PB,gbg,≤)

identified.
Indeed, to compare systems where both nondeterminism and

probabilistic choices coexist, in [24], [25] the notion of sched-
uler (or adversary) is used to resolve internal nondeterminism.
A scheduler can be viewed as an external entity that selects
the next action to perform according to the current state and
the past history. When a scheduler is applied to a system, a
fully probabilistic model called a resolution is obtained. The
basic idea is deeming equivalent two systems if and only if
for each resolution of one system (the challenger) there exists
a resolution of the other (the defender) such that the two
resolutions are probabilistic bisimilar in the sense of [19].

Let us consider the two scenarios in Fig. 1 modeling the
offer to Player1 and Player2 of three differently biased dice.
The game is conceived in such a way that if the outcome of
a throw gives 1 or 2 then Player1 wins, while if the outcome
is 5 or 6 then Player2 wins. In case of 3 or 4, the result is
a draw. For instance, with the biased die associated with the
leftmost branch of the first scenario, it happens that 3 or 4
(draw) will appear with probability 0.4, while 1 or 2 (Player1
wins) will appear with probability 0.6. Numbers 5 and 6 will
never appear (no chance for Player2 to win).

The probabilistic bisimilarity proposed in [25] distinguishes
the two models in Fig. 1 even if the set of probabilities of
winning and of drawing for each player are the same. To
identify these models, from a bisimulation perspective the
impact of schedulers needs to be weakened. While in [25]
the challenger and the defender must stepwise behave the
same along any two matching resolutions, here the defender
should be allowed to choose different resolutions in response
to different directions taken by the challenger. In other words,
instead of requiring as in [25] that for each resolution of the
challenger there is a fully matching resolution of the defender,
it might be admissible to consider bisimulation games with
partially matching resolutions in the same vein as [29].

Other two systems differentiated (under deterministic sched-
ulers) by the probabilistic bisimilarity in [25] are those in
Fig. 2. In the first scenario, the two players are offered a choice
among a fair coin and two biased ones. In the second scenario,
the players can simply choose between the two biased coins of
the former scenario. In both scenarios, Player1 wins with head



while Player2 wins with tail. In our view, the two scenarios
should be identified if what matters is that in each of them the
two players have exactly the same extremal (i.e., minimal and
maximal) probabilities of winning.

The first probabilistic bisimilarity we shall introduce –
denoted by ∼PB,gbg,= – identifies the two systems in Fig. 1,
but distinguishes those in Fig. 2. Our second probabilistic
bisimilarity – denoted by ∼PB,gbg,≤ – instead identifies both
the two systems in Fig. 1 and the two systems in Fig. 2.
Notably, the same identifications are induced by one of the
probabilistic bisimilarities in [28]. Indeed, once the appro-
priate transformations (eliminating actions from transitions
and labeling each state with the set of possible next-actions)
are applied to get nondeterministic and probabilistic Kripke
structures from the four systems in Figs. 1 and 2, we have
that no PCTL* formula distinguishes the two systems in
Fig. 1 and the two systems in Fig. 2. We shall, however,
see that neither ∼PB,gbg,= nor ∼PB,gbg,≤ coincides with the
probabilistic bisimilarities in [28].

We shall show that ∼PB,gbg,≤ is precisely characterized by
the original PML as defined by Larsen and Skou [19], [20],
with the original interpretation of the diamond operator: state
s satisfies 〈a〉pφ if s has an a-transition that reaches with
probability at least p a set of states satisfying φ. In contrast,
∼PB,gbg,= is characterized by a variant of PML having an
interval-based operator 〈a〉[p1,p2]· instead of 〈a〉p·: state s
satisfies 〈a〉[p1,p2]φ if s has an a-transition that reaches with
probability between p1 and p2 a set of states satisfying φ. We
shall refer to the interpretation of these two diamond operators
as existential because it simply requires that there exists a way
to resolve internal nondeterminism that guarantees satisfaction
of formula φ within a certain probability range.

For both logics, we shall also provide an alternative inter-
pretation of the diamond operator, which is inspired by the
actual interpretation of PCTL* in [3]. We shall call universal
this interpretation that might appear more appropriate in a
nondeterministic and probabilistic setting. With this interpre-
tation, state s satisfies 〈a〉pφ (resp. 〈a〉[p1,p2]φ) if it has an
a-transition that enjoys the same property as before and each
a-transition departing from s enjoys that property, meaning
that the formula is satisfied by s no matter how internal
nondeterminism is resolved. We shall see that both universally
interpreted variants of the logic lead to the same equivalence
as the one characterized by the original interpretation of
the original PML. Indeed, ∼PB,gbg,≤ has also many other
characterizations, and this leads us to the convincement that it
is an interesting behavioral relation for nondeterministic and
probabilistic processes.

The rest of the paper is organized as follows. In Sect. II, we
provide the necessary background about the non-alternating
model of nondeterministic and probabilistic processes, the
bisimilarities in [15], [19], [25], and their modal logic char-
acterizations. The two interpretations of PML over the non-
alternating model are introduced in Sect. III and the new
probabilistic bisimilarities that they characterize are presented
in Sect. IV. In Sect. V, we provide further motivations, variants

and results for the new probabilistic bisimilarities. Finally,
Sect. VI draws some conclusions and hints at possible future
work. All proofs of our results are collected in Appendix A.

II. BACKGROUND

In this section, we present a model for nondeterministic and
probabilistic processes. Then, we recast in this general model
the bisimilarity in [15] and the probabilistic bimilarity in [19],
together with their modal logic characterizations respectively
based on HML and PML. Finally, we recall the probabilistic
bisimilarity in [25] and its modal logic characterization for the
non-alternating case and for the alternating case.

A. The NPLTS Model

Processes combining nondeterminism and probability are
typically described by means of extensions of the LTS model,
in which every action-labeled transition goes from a source
state to a probability distribution over target states rather than
to a single target state. The resulting processes are essentially
Markov decision processes [10] and are representative of a
number of slightly different probabilistic computational mod-
els including internal nondeterminism such as, e.g., concurrent
Markov chains [31], strictly alternating models [13], proba-
bilistic automata in the sense of [24], and the denotational
probabilistic models in [17] (see [27] for an overview). We for-
malize them as a variant of simple probabilistic automata [24].

Definition 2.1: A nondeterministic and probabilistic la-
beled transition system, NPLTS for short, is a triple
(S,A,−→) where:
• S is an at most countable set of states.
• A is a countable set of transition-labeling actions.
• −→ ⊆ S × A× Distr(S) is a transition relation, where

Distr(S) is the set of probability distributions over S.
A transition (s, a,D) is written s a−→D. We say that s′ ∈ S

is not reachable from s via that a-transition if D(s′) = 0,
otherwise we say that it is reachable with probability p =
D(s′). The reachable states form the support of D, i.e.,
supp(D) = {s′ ∈ S | D(s′) > 0}. We write s a−→ to indicate
that s has an a-transition. The choice among all the transitions
departing from s is external and nondeterministic, while the
choice of the target state for a specific transition is internal
and probabilistic.

The notion of NPLTS yields a non-alternating model [24]
and embeds the following restricted models:
• Fully nondeterministic processes: every transition is

Dirac, i.e., it leads to a distribution that concentrates all
the probability mass into a single target state.

• Fully probabilistic processes: every state has at most one
outgoing transition.

• Reactive probabilistic processes: no state has two or more
outgoing transitions labeled with the same action [30].
These processes include the probabilistic automata in the
sense of [23].

• Alternating processes: every state that enables a non-
Dirac transition enables only that transition. Similar
to [32] and [22], these processes consist of a non-strict



alternation of fully nondeterministic states and fully prob-
abilistic states, with the addition that transitions departing
from fully probabilistic states are labeled with actions.

An NPLTS can be depicted as a directed graph-like struc-
ture in which vertices represent states and action-labeled
edges represent action-labeled transitions. Given a transition
s

a−→D, the corresponding a-labeled edge goes from the
vertex representing state s to a set of vertices linked by a
dashed line, each of which represents a state s′ ∈ supp(D)
and is labeled with D(s′) – label omitted if D(s′) = 1. Four
NPLTS models are shown in Figs. 1 and 2.

We say that an NPLTS (S,A,−→) is image finite iff for
all s ∈ S and a ∈ A the set {D ∈ Distr(S) | s a−→D}
is finite. Following [19], we say that it satisfies the minimal
probability assumption iff there exists ε ∈ R>0 such that,
whenever s a−→D, then for all s′ ∈ S either D(s′) = 0 or
D(s′) ≥ ε; this implies that supp(D) is finite because it can
have at most d1/εe elements. If D(s′) is a multiple of ε for all
s′ ∈ S, then the minimal deviation assumption is also satisfied.

Sometimes, instead of ordinary transitions, we will consider
combined transitions [25], each being a convex combination
of equally labeled transitions. Given an NPLTS (S,A,−→),
s ∈ S, a ∈ A, and D ∈ Distr(S), in the following we write
s

a−→cD iff there exist n ∈ N>0, {pi ∈ R]0,1] | 1 ≤ i ≤ n},
and {s a−→Di | 1 ≤ i ≤ n} such that

∑n
i=1 pi = 1 and∑n

i=1 pi · Di = D.

B. Bisimilarity for Fully Nondeterministic Processes

We recast in the NPLTS model the definition of bisimilarity
for fully nondeterministic processes in [15]. In this case, the
target of each transition is a Dirac distribution δs for s ∈ S,
i.e., δs(s) = 1 and δs(s′) = 0 for all s′ ∈ S \ {s}.

Definition 2.2: Let (S,A,−→) be an NPLTS in which the
target of each transition is a Dirac distribution. A relation B
over S is a bisimulation iff, whenever (s1, s2) ∈ B, then for
all actions a ∈ A:
• If s1

a−→ δs′1 , then s2
a−→ δs′2 such that (s′1, s

′
2) ∈ B.

• If s2
a−→ δs′2 , then s1

a−→ δs′1 such that (s′1, s
′
2) ∈ B.

We denote by ∼B the largest bisimulation.
Given an image-finite NPLTS (S,A,−→) in which the

target of each transition is a Dirac distribution, the relation
∼B is characterized by the so-called Hennessy-Milner logic
(HML) [15]. The set FHML of its formulae is generated by
the following grammar (a ∈ A):

φ ::= true | ¬φ | φ ∧ φ | 〈a〉φ
The semantics of HML can be defined through an
interpretation function MHML that associates with any
formula in FHML the set of states satisfying the formula:

MHML[[true]] = S
MHML[[¬φ]] = S \MHML[[φ]]

MHML[[φ1 ∧ φ2]] = MHML[[φ1]] ∩MHML[[φ2]]
MHML[[〈a〉φ]] = {s ∈ S | ∃s′ ∈MHML[[φ]]. s a−→ δs′}

C. Bisimilarity for Reactive Probabilistic Processes

We recast in the NPLTS model also the definition of
probabilistic bisimilarity for reactive probabilistic processes

in [19]. In the following, we let D(S′) =
∑
s′∈S′ D(s′) for

D ∈ Distr(S) and S′ ⊆ S.
Definition 2.3: Let (S,A,−→) be an NPLTS in which the

transitions of each state have different labels. An equivalence
relation B over S is a probabilistic bisimulation iff, whenever
(s1, s2) ∈ B, then for all actions a ∈ A and equivalence
classes C ∈ S/B it holds that s1

a−→D1 implies s2
a−→D2

such that D1(C) = D2(C). We denote by ∼PB the largest
probabilistic bisimulation.

Given an NPLTS (S,A,−→) satisfying the minimal de-
viation assumption in which the transitions of each state
have different labels, the relation ∼PB is characterized by
PML [19], [20]. The set FPML of its formulae is generated
by the following grammar (a ∈ A, p ∈ R[0,1]):

φ ::= true | ¬φ | φ ∧ φ | 〈a〉pφ
The semantics of PML can be defined through an interpretation
function MPML that differs from MHML only for the last
clause, which becomes as follows:
MPML[[〈a〉pφ]] = {s ∈ S | ∃D ∈ Distr(S).

s
a−→D ∧D(MPML[[φ]]) ≥ p}

Note that, in this reactive setting, if an a-labeled transition
exists that goes from s to D, then it is the only a-labeled
transition departing from s, and hence D is unique.

In [11], it was subsequently shown that probabilistic bisimi-
larity for reactive probabilistic processes can be characterized
by PML without negation and that the existence of neither
a minimal deviation nor a minimal probability needs to be
assumed to achieve the characterization result.

D. Bisimilarity for Non-Alternating and Alternating Processes

For NPLTS models in their full generality, we now recall
two probabilistic bisimulation equivalences defined in [25].
Both of them check whether the probabilities of all classes of
equivalent states – i.e., the class distributions – reached by the
two transitions considered in the bisimulation game are equal.

The first equivalence relies on deterministic schedulers for
resolving nondeterminism. This means that, when responding
to an a-transition of the challenger, the defender can only
select a single a-transition (if any).

Definition 2.4: Let (S,A,−→) be an NPLTS. An equiva-
lence relation B over S is a class-distribution probabilistic
bisimulation iff, whenever (s1, s2) ∈ B, then for all actions
a ∈ A it holds that s1

a−→D1 implies s2
a−→D2 such that,

for all equivalence classes C ∈ S/B, D1(C) = D2(C). We
denote by ∼PB,dis the largest class-distribution probabilistic
bisimulation.

While in Def. 2.3 the quantification over C ∈ S/B can be
placed before or after the implication because s1 and s2 can
have at most one outgoing a-transition each, in Def. 2.4 it is
important for the quantification to be after the implication.

The second equivalence relies instead on randomized sched-
ulers. This means that, when responding to an a-transition of
the challenger, the defender can select a convex combination of
a-transitions (if any). In the following, the acronym ct stands
for “based on combined transitions”.



Definition 2.5: Let (S,A,−→) be an NPLTS. An equiva-
lence relation B over S is a class-distribution ct-probabilistic
bisimulation iff, whenever (s1, s2) ∈ B, then for all actions
a ∈ A it holds that s1

a−→D1 implies s2
a−→cD2 such that,

for all equivalence classes C ∈ S/B, D1(C) = D2(C). We
denote by ∼ct

PB,dis the largest class-distribution ct-probabilistic
bisimulation.

In order to obtain a modal logic characterization for ∼PB,dis

and ∼ct
PB,dis, in [21] and [16] an extension of HML much

richer than PML was defined. The main differences are that
(i) formulae are interpreted over probability distribution on
states rather than over single states and (ii) the modal operator
〈a〉p· is split into the original modal operator 〈a〉· of HML and
an additional unary operator [·]p such that state distribution D
satisfies [φ]p if D associates with the set of states satisfying φ
a probability that is at least p.

In [14], the same equivalences (lifted to state distributions)
were differently characterized by adding to HML a binary
operator · ⊕p ·, where φ1 ⊕p φ2 asserts decomposability of
a state distribution to satisfy the two subformulae.

For alternating processes, i.e., NPLTS models in which
every state that enables a non-Dirac transition enables only
that transition, the following holds:

• ∼PB,dis and ∼ct
PB,dis collapse into a single equivalence

that coincides with those defined in [13] and [22] for
alternating processes, as shown in [26].

• ∼PB,dis is again characterized by the original PML, as
shown in [21].

III. INTERPRETING PML OVER NPLTS MODELS

PML was originally interpreted in [19], [20] on reactive
probabilistic processes and then in [21] on alternating pro-
cesses. The same interpretation can be applied to general
NPLTS models by establishing that state s satisfies formula
〈a〉pφ iff there exists a resolution of internal nondeterminism
such that s can perform an a-transition and afterwards reaches
with probability at least p a set of states that satisfy φ. This
existential interpretation only provides a weak guarantee of
fulfilling properties, as it depends on how internal nondeter-
minism is resolved.

A different interpretation can be adopted by following [3]:
s satisfies 〈a〉pφ iff, for each resolution of internal nondeter-
minism, s can perform an a-transition and afterwards reaches
with probability at least p a set of states that satisfy φ. The
resulting universal interpretation provides a strong guarantee
of fulfilling properties because, no matter how internal non-
determinism is resolved, a certain behavior is ensured.

We denote by PML∃,≥ and PML∀,≥ the logics resulting
from the two different interpretations of the diamond operator,
which we formalize as follows:
MPML∃,≥ [[〈a〉pφ]] = {s ∈ S |

∃D. s a−→D ∧D(MPML∃,≥ [[φ]]) ≥ p}
MPML∀,≥ [[〈a〉pφ]] = {s ∈ S | s a−→∧

∀D. s a−→D =⇒ D(MPML∀,≥ [[φ]]) ≥ p}

We also introduce the two variants PML∃,≤ and PML∀,≤ in
which the probability value p decorating the diamond operator
is intended as an upper bound rather than a lower bound.

Finally, we denote by PML∃,I and PML∀,I two further
variants generalizing the previous four logics, in which the
probability value p is replaced by a probability interval [p1, p2]
– where p1, p2 ∈ R[0,1] are such that p1 ≤ p2 – and the
resulting diamond operator is interpreted as follows:
MPML∃,I [[〈a〉[p1,p2]φ]] = {s ∈ S |

∃D. s a−→D ∧ p1 ≤ D(MPML∃,I [[φ]]) ≤ p2}
MPML∀,I [[〈a〉[p1,p2]φ]] = {s ∈ S | s a−→∧

∀D. s a−→D =⇒ p1 ≤ D(MPML∀,I [[φ]]) ≤ p2}
Note that 〈a〉pφ can be encoded as 〈a〉[p,1]φ when p is a lower
bound and as 〈a〉[0,p]φ when p is an upper bound.

In the following, if L is one of the above variants of PML,
then we denote by FL(s) the set of formulae in FL that are
satisfied by state s and we let s1 ∼L s2 iff FL(s1) = FL(s2).
Interestingly enough, in Sect. V-C we shall see that the
equivalences induced by the universally interpreted variants
are the same and coincide with the equivalences induced by
the existentially interpreted variants with probabilistic bound.
In contrast, the equivalence induced by PML∃,I is finer.

IV. BISIMILARITIES CHARACTERIZED BY PML

In this section, we introduce the probabilistic bisimilari-
ties for NPLTS models that are characterized by PML as
interpreted in the previous section. Before presenting their
definition, we highlight the differences with respect to ∼PB,dis.

Firstly, the new equivalences focus on a single equivalence
class at a time instead of comparing the probability distri-
butions over all classes of equivalent states reached by the
transitions considered in the bisimulation game. Therefore,
given an action a, the probability distribution over all classes
of equivalent states reached by an a-transition of the challenger
can now be matched by means of several (not just by one)
a-transitions of the defender, each taking care of a different
class. This is similar to the approach followed in [29] to
prove a logical characterization in the setting of approximate
probabilistic relations.

Secondly, the new equivalences take into account the
probability of reaching groups of equivalence classes rather
than only individual classes. This is similar to the approach
followed in [12] and in [5], [8] to ensure transitivity of
probabilistic bisimilarity over probabilistic processes without
and with internal nondeterminism, respectively, when the state
space is continuous. Considering also groups would make no
difference in the case of ∼PB,dis, while here it significantly
changes the discriminating power as will be illustrated in
Sect. V-A. Due to the previous and the current difference with
respect to ∼PB,dis, we call our equivalences group-by-group
probabilistic bisimilarities.

Thirdly, the new equivalences come in several variants de-
pending on whether, in the bisimulation game, the probabilities
of reaching a certain group of classes of equivalent states are
compared based on =, ≤, or ≥. Again, this would make no
difference in the case of ∼PB,dis.



In the following, we let
⋃
G =

⋃
C∈G C when G ∈ 2S/B is

a group of equivalence classes with respect to an equivalence
relation B over S.

Definition 4.1: Let (S,A,−→) be an NPLTS and the re-
lational operator ./∈ {=,≤,≥}. An equivalence relation B
over S is a ./-group-by-group probabilistic bisimulation iff,
whenever (s1, s2) ∈ B, then for all actions a ∈ A and groups
of equivalence classes G ∈ 2S/B it holds that s1

a−→D1

implies s2
a−→D2 such that D1(

⋃
G) ./ D2(

⋃
G). We de-

note by ∼PB,gbg,./ the largest ./-group-by-group probabilistic
bisimulation.

The definition of ∼PB,gbg,./ assumes the use of determin-
istic schedulers, but it can be easily extended to the case of
randomized schedulers by analogy with ∼ct

PB,dis, thus yielding
∼ct

PB,gbg,./. Note that, while in Def. 2.4 the quantification over
C ∈ S/B is after the implication, in Def. 4.1 the quantification
over G ∈ 2S/B is before the implication thus allowing a
transition of the challenger to be matched by several transitions
of the defender depending on the target groups.

The relation ∼PB,gbg,= identifies the two systems in Fig. 1,
whilst the relations ∼PB,gbg,≤ and ∼PB,gbg,≥ also identify the
two systems in Fig. 2. In Sect. V-C, we shall see that ∼PB,dis is
finer than ∼PB,gbg,= and that the latter is finer than ∼PB,gbg,≤,
which in turn coincides with ∼PB,gbg,≥.

Before moving to the modal logic characterization results, as
a sanity check we show that the three group-by-group prob-
abilistic bisimilarities and their ct-variants (i) are backward
compatible with the bisimilarity in [15] for fully nondeter-
ministic processes (see Def. 2.2) and with the probabilistic
bisimilarity in [19] for reactive probabilistic processes (see
Def. 2.3) and (ii) coincide with ∼PB,dis and ∼ct

PB,dis when
restricting attention to alternating processes.

Theorem 4.2: Let (S,A,−→) be an NPLTS in which the
target of each transition is a Dirac distribution. Let s1, s2 ∈ S
and ./∈ {=,≤,≥}. Then:
s1 ∼PB,gbg,./ s2 ⇐⇒ s1 ∼ct

PB,gbg,./ s2 ⇐⇒ s1 ∼B s2

Theorem 4.3: Let (S,A,−→) be an NPLTS in which the
transitions of each state have different labels. Let s1, s2 ∈ S
and ./∈ {=,≤,≥}. Then:
s1 ∼PB,gbg,./ s2 ⇐⇒ s1 ∼ct

PB,gbg,./ s2 ⇐⇒ s1 ∼PB s2

Theorem 4.4: Let (S,A,−→) be an NPLTS in which every
state that enables a non-Dirac transition enables only that
transition. Let s1, s2 ∈ S and ./∈ {=,≤,≥}. Then:

s1 ∼PB,gbg,./ s2 ⇐⇒ s1 ∼PB,dis s2
s1 ∼ct

PB,gbg,./ s2 ⇐⇒ s1 ∼ct
PB,dis s2

The relation ∼PB,gbg,= turns out to be characterized by
PML∃,I under assumptions of image finiteness and minimal
probability.

Theorem 4.5: Let (S,A,−→) be an image-finite NPLTS
satisfying the minimal probability assumption. Let s1, s2 ∈ S.
Then:

s1 ∼PB,gbg,= s2 ⇐⇒ s1 ∼PML∃,I s2

The proof of this result follows the same pattern as in [15].
First, an alternative characterization of ∼PB,gbg,= as the limit
of a sequence of equivalence relations ∼iPB,gbg,= is provided.

For an NPLTS (S,A,−→), the family {∼iPB,gbg,= | i ∈ N} of
equivalence relations over S is inductively defined as follows:
• ∼0

PB,gbg,= = S × S.
• ∼i+1

PB,gbg,= is the set of all pairs (s1, s2) ∈ ∼iPB,gbg,=

such that for all actions a ∈ A and groups of equivalence
classes G ∈ 2S/∼

i
PB,gbg,= it holds that s1

a−→D1 implies
s2

a−→D2 such that D1(
⋃
G) = D2(

⋃
G).

Each equivalence relation ∼iPB,gbg,= identifies those states
that cannot be distinguished within i steps of computation.
The following lemma guarantees that two states of an image-
finite NPLTS are equivalent according to ∼PB,gbg,= iff they
are equivalent according to all the relations ∼iPB,gbg,=.

Lemma 4.6: Let (S,A,−→) be an image-finite NPLTS.
Then:

∼PB,gbg,= =
⋂
i∈N
∼iPB,gbg,=

The second step of the proof is to show that two states
are equated by ∼iPB,gbg,= iff they satisfy the same formulae
in FiPML∃,I

, which is the set of formulae in FPML∃,I whose
maximum number of nested diamond operators is at most i.

Lemma 4.7: Let (S,A,−→) be an image-finite NPLTS
satisfying the minimal probability assumption. Let s1, s2 ∈ S.
Then for all i ∈ N:

s1 ∼iPB,gbg,= s2 ⇐⇒ F iPML∃,I
(s1) = F iPML∃,I

(s2)
Now Thm. 4.5 directly follows from Lemma 4.6 and

Lemma 4.7. The same result would not hold if PML∃,≥ or
PML∃,≤ were used. For instance, the two states s1 and s2 in
Fig. 2, which are not related by ∼PB,gbg,= as can be seen by
considering the PML∃,I formula 〈offer〉[0.5,0.5]〈head〉[1,1]true,
cannot be distinguished by any PML∃,≥ or PML∃,≤ formula.

Following the same strategy, we can prove that the relations
∼PB,gbg,≤ and ∼PB,gbg,≥ are respectively characterized by
PML∃,≥ and PML∃,≤.

Theorem 4.8: Let (S,A,−→) be an image-finite NPLTS
satisfying the minimal probability assumption. Let s1, s2 ∈ S.
Then:

s1 ∼PB,gbg,≤ s2 ⇐⇒ s1 ∼PML∃,≥ s2
s1 ∼PB,gbg,≥ s2 ⇐⇒ s1 ∼PML∃,≤ s2

It is easy to see that ∼ct
PB,gbg,=, ∼ct

PB,gbg,≤, and ∼ct
PB,gbg,≥

are respectively characterized by PMLct
∃,I, PMLct

∃,≥, and
PMLct

∃,≤, in which the interpretation of the diamond operator
relies on combined transitions instead of ordinary ones.

V. VARIANTS OF GROUP-BY-GROUP BISIMILARITIES

In this section, we present further motivations, alternative
characterizations based on extremal probabilities and universal
interpretations, relationships determined by the distinguishing
power, and multistep variants for the group-by-group proba-
bilistic bisimilarities of the previous section.

A. Class-by-Class Probabilistic Bisimilarities

In order to motivate the use of groups of equivalence
classes in Def. 4.1, we now introduce class-by-class variants
of ∼PB,dis by simply anticipating the quantification over
equivalence classes of target states in Def. 2.4.
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Fig. 3. Models related by ∼PB,cbc,= and distinguished by all PML variants

Definition 5.1: Let (S,A,−→) be an NPLTS and the re-
lational operator ./∈ {=,≤,≥}. An equivalence relation B
over S is a ./-class-by-class probabilistic bisimulation iff,
whenever (s1, s2) ∈ B, then for all actions a ∈ A and
equivalence classes C ∈ S/B it holds that s1

a−→D1 im-
plies s2

a−→D2 such that D1(C) ./ D2(C). We denote by
∼PB,cbc,./ the largest ./-class-by-class probabilistic bisimula-
tion.

The relations ∼PB,cbc,./ are too coarse. For example, in
Fig. 3 it holds that s1 ∼PB,cbc,= s2, as witnessed by the
equivalence relation that pairs states with identically labeled
transitions. However, after performing a, from s2 it is always
possible to reach a state in which c′ or c′′ is enabled, whereas
this is not the case from s1.

From a modal logic perspective, none of the relations
∼PB,cbc,./ is characterized by the PML variants of Sect. III.
For instance, in Fig. 3 it holds that only s1 satisfies the
following existentially interpreted formulae:

PML∃,≥ : 〈a〉0.5(〈c′〉1true ∨ 〈c′′〉1true)
PML∃,≤ : 〈a〉0(〈c′〉1true ∨ 〈c′′〉1true)
PML∃,I : ¬〈a〉[0.2,0.3](〈c′〉[1,1]true ∨ 〈c′′〉[1,1]true)

while only s2 satisfies the following universally interpreted
formulae:

PML∀,≥ : 〈a〉0.7(〈b〉1true ∨ 〈d〉1true)
PML∀,≤ : 〈a〉0.8(〈b〉1true ∨ 〈d〉1true)
PML∀,I : 〈a〉[0.7,0.8](〈b〉[1,1]true ∨ 〈d〉[1,1]true)

where as usual φ1∨φ2 stands for ¬(¬φ1∧¬φ2). The presence
of the logical disjunction in the distinguishing formulae above
clearly indicates that – having anticipated the quantification
over the target states – it is necessary to group equivalence
classes together if one wants to obtain the same identifications
as the equivalences induced by the variants of PML.

B. Group-by-Group Bisimilarities and Extremal Probabilities

The group-by-group probabilistic bisimilarities of Def. 4.1
are directly characterized by the existentially interpreted vari-
ants of PML. We consider below variants of the group-by-
group approach in which only the supremum (t) and/or the
infimum (u) of the probabilities of reaching a certain group
after a certain action are considered. It turns out that the

resulting probabilistic bisimilarities are directly characterized
by the universally interpreted variants of PML.

Definition 5.2: Let (S,A,−→) be an NPLTS. An equiva-
lence relation B over S is a tu-group-by-group probabilistic
bisimulation iff, whenever (s1, s2) ∈ B, then for all actions
a ∈ A and groups of equivalence classes G ∈ 2S/B it holds
that s1

a−→ implies s2
a−→ with:⊔

s1
a−→D1

D1(
⋃
G) =

⊔
s2

a−→D2

D2(
⋃
G)

d

s1
a−→D1

D1(
⋃
G) =

d

s2
a−→D2

D2(
⋃
G)

We denote by ∼PB,gbg,tu the largest tu-group-by-group
probabilistic bisimulation.

Theorem 5.3: Let (S,A,−→) be an image-finite NPLTS
satisfying the minimal probability assumption. Let s1, s2 ∈ S.
Then:

s1 ∼PB,gbg,tu s2 ⇐⇒ s1 ∼PML∀,I s2
Definition 5.4: Let (S,A,−→) be an NPLTS and symbol

# ∈ {t,u}. An equivalence relation B over S is a #-group-
by-group probabilistic bisimulation iff, whenever (s1, s2) ∈ B,
then for all actions a ∈ A and groups of equivalence classes
G ∈ 2S/B it holds that s1

a−→ implies s2
a−→ with:

#
s1

a−→D1

D1(
⋃
G) = #

s2
a−→D2

D2(
⋃
G)

We denote by ∼PB,gbg,# the largest #-group-by-group prob-
abilistic bisimulation.

Theorem 5.5: Let (S,A,−→) be an image-finite NPLTS
satisfying the minimal probability assumption. Let s1, s2 ∈ S.
Then:

s1 ∼PB,gbg,t s2 ⇐⇒ s1 ∼PML∀,≤ s2
s1 ∼PB,gbg,u s2 ⇐⇒ s1 ∼PML∀,≥ s2

C. Relating the Various Probabilistic Bisimilarities

If we investigate the spectrum of relations considered so far,
we discover that five of the six group-by-group probabilistic
bisimilarities boil down to the same equivalence, and this
extends to the corresponding PML-based equivalences.

Theorem 5.6: Let U = (S,A,−→) be an NPLTS and
s1, s2 ∈ S. Then:

1) s1∼PB,dis s2 =⇒ s1∼PB,gbg,= s2 =⇒ s1∼PB,gbg,tu s2.
2) s1 ∼PB,gbg,≤ s2 ⇐⇒ s1 ∼PB,gbg,t s2

when U is image finite.
3) s1 ∼PB,gbg,≥ s2 ⇐⇒ s1 ∼PB,gbg,u s2

when U is image finite.
4) s1 ∼PB,gbg,t s2 ⇐⇒ s1 ∼PB,gbg,u s2 ⇐⇒

s1 ∼PB,gbg,tu s2.
The two implications above cannot be reversed: Fig. 1

shows that ∼PB,dis is strictly finer than ∼PB,gbg,= and Fig. 2
shows that ∼PB,gbg,= is strictly finer than ∼PB,gbg,tu. Note
that the result relating ∼PB,gbg,t, ∼PB,gbg,u, and ∼PB,gbg,tu
holds because groups of equivalence classes are considered.
Analogous bisimilarities defined in a class-by-class fashion
would not coincide.

Another interesting property is that the five coinciding
group-by-group probabilistic bisimilarities are the same as
their ct-variants, and hence are insensitive to whether de-
terministic or randomized schedulers are employed to re-
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Fig. 4. Two models identified by ∼PB,gbg,= and ∼PB,gbg,≤ that are distinguished by PCTL*

solve nondeterminism. This is not the case with ∼PB,dis and
∼PB,gbg,=. Moreover, the ct-variants of all the six group-by-
group probabilistic bisimilarities boil down to the same equiv-
alence (∼PB,gbg,≤), meaning that, in the bisimulation game,
randomized schedulers reduce the discriminating power of the
=-comparison of probabilities to that of the ≤-comparison.

Theorem 5.7: Let U = (S,A,−→) be an NPLTS and
s1, s2 ∈ S. Then:

1) s1 ∼PB,/ s2 =⇒ s1 ∼ct
PB,/ s2

for / ∈ {”dis”, ”gbg,=”}.
2) s1 ∼PB,gbg,. s2 ⇐⇒ s1 ∼ct

PB,gbg,. s2
for . ∈ {≤,≥,tu,t,u} when U is image finite.

3) s1 ∼ct
PB,dis s2 =⇒ s1 ∼ct

PB,gbg,= s2.
4) s1 ∼ct

PB,gbg,= s2 ⇐⇒ s1 ∼ct
PB,gbg,tu s2 when U is

image finite.

The inclusions of ∼PB,dis and ∼PB,gbg,= in ∼ct
PB,dis and

∼ct
PB,gbg,=, respectively, are strict, as shown by Fig. 2; the

central offer-transition of s1 can be matched by a convex
combination of the two offer-transitions of s2 both weighted
by 0.5. Moreover, Fig. 1 shows that the inclusion of ∼ct

PB,dis

in ∼ct
PB,gbg,= is strict. Finally, Figs. 1 and 2 show that ∼ct

PB,dis

and ∼PB,gbg,= are incomparable with each other.

D. Multistep Variants of Probabilistic Bisimilarities

Further relations can be defined by considering entire com-
putations instead of individual transitions in the bisimulation
game. Given an NPLTS U = (S,A,−→), we say that
c ≡ s0

a1
−7→ s1

a2
−7→ s2 . . . sn−1

an
−7→ sn is a computation of U

of length n going from s0 to sn iff for all i = 1, . . . , n there
exists a transition si−1

ai−→Di such that si ∈ supp(Di), with
Di(si) being the execution probability of step si−1

ai
−7→ si of c

conditioned on the selection of transition si−1
ai−→Di of U at

state si−1. We call combined computation a computation in
which every step arises from a combined transition.

The multistep variants of probabilistic bisimilarities for
NPLTS models can be defined in different ways. The first
option, inspired by bisimilarity for fully nondeterministic
processes, consists of changing the one-step definitions by
considering traces α ∈ A∗ in place of actions a ∈ A and
α=⇒ in place of a−→ (resp. α=⇒c in place of a−→c ), where
s

α=⇒D means that there exists a computation from s labeled
with α whose last step is originated by a transition reaching
distribution D. When α is the empty sequence ε, we let
s

ε=⇒ δs. It was shown in [15] that the discriminating power
of bisimilarity for fully nondeterministic processes does not
change if the multistep transition relation α=⇒ is used instead
of the one-step relation a−→ . As expected, this result carries
over class-distribution and group-by-group probabilistic bisim-
ilarities for nondeterministic and probabilistic processes (see
Appendix B).

The second option, inspired by probabilistic bisimilarity
for reactive probabilistic processes, does not only compare
the probability values arising from the last step of the com-
putations, but additionally considers the probability of per-
forming the entire computations. While it can be shown that
the discriminating power of the probabilistic bisimilarity for
reactive probabilistic processes in [19] and of class-distribution
probabilistic bisimilarities for nondeterministic and proba-
bilistic processes does not change if multistep probability
values are compared instead of one-step values, this is not
the case with the group-by-group probabilistic bisimilarities
(see Appendix C).

Finally, the third option, which is orthogonal to the pre-
vious two, consists of imposing some constraints along the
computations, such as passing through specific sets of states
at each step. This is the idea exploited in [28] in order to define
probabilistic bisimilarities – following the second option above
– over nondeterministic and probabilistic Kripke structures
that are precisely characterized by PCTL, PCTL*, and their



variants without the next-time operator, as interpreted in [3].
We note that the strong 1-depth bisimulation in [28] and our
∼PB,gbg,≤ are strongly related. In contrast, the probabilistic
bisimilarities built in [28] as the limit of a chain of n-
depth bisimulations are provably finer than our group-by-
group probabilistic bisimilarities. Consider for instance the two
NPLTS models in Fig. 4. We have that s1 ∼PB,gbg,= s2 – and
hence s1 ∼PB,gbg,≤ s2 – as witnessed by the equivalence
relation that pairs states with identically labeled transitions
and, in the case of b-transitions, identical target distributions.
However, s1 and s2 are distinguished by the probabilistic
bisimilarity in [28] that is characterized by PCTL*. In fact,
let us view the two NPLTS models as two nondeterministic
and probabilistic Kripke structures by eliminating actions from
transitions and labeling each state with the set of its next-
actions. Then the PCTL* formula Pr≤0.61(XX c) is satisfied
by s2 but it is not satisfied by s1, because the probability of
reaching in two steps a state that enables c in the maximal
resolution of s1 starting with the rightmost a-transition is
0.8 · 0.7 + 0.2 · 0.6 = 0.68 and hence it is greater than 0.61.

VI. CONCLUSION

We have addressed the problem of defining behavioral rela-
tions for nondeterministic and probabilistic processes that are
characterized by modal logics as close as possible to PML, the
natural probabilistic version of the by now standard HML for
fully nondeterministic processes. We have introduced two new
probabilistic bisimilarities (∼PB,gbg,= and ∼PB,gbg,≤) follow-
ing a group-by-group approach and proved their relationships
with an existential interpretation and a universal interpretation
of two variants of PML, in which the diamond is respectively
decorated with a probability bound and a probability interval.
All the resulting logical equivalences, except the one based
on existential interpretation and probability intervals (which
corresponds to ∼PB,gbg,=), have turned out to coincide. This
suggests that adopting a universal interpretation rather than an
existential one does not matter for comparison purposes when
using probability bounds.

For the new probabilistic bisimilarities, we have provided
alternative definitions obtained by varying the requirements on
the comparison between sets of probabilities (=, ≤, ≥) or by
comparing only extremal probabilities (t and/or u). Quite sur-
prisingly, all relations but the one based on = do collapse. We
have also considered variants relying on combined transitions
and have proved that all such variants, except the one based on
=, coincide with the relations relying on ordinary transitions.
This suggests that, in the group-by-group approach, resolving
nondeterminism with deterministic schedulers or randomized
ones leads to the same identifications except when checking
for equality of probabilities.

The above-mentioned results for image-finite NPLTS mod-
els satisfying the minimal probability assumption are summa-
rized in Fig. 5, where each arrow means more-discriminating-
than and equivalences collected in the same dashed box
coincide. Please notice that the top part of each dashed

PB,gbg,~
PB,gbg,~ct

PB,gbg,~
PB,gbg,~ct

~PB,gbg,

~PB,gbg,
ct

PB,gbg,~
PB,gbg,~ct

PB,gbg,~
PB,gbg,~ct

ct~PML,  ,I∃

~PB,gbg,=
ct

~ ∀PML,  ,I
ct~ ∃PML,  ,

ct~ ∃PML,  ,
ct ~ ∀PML,  ,

ct ~ ∀PML,  ,
ct

~ ∀PML,  ,I~ ∃PML,  ,~ ∃PML,  , ~ ∀PML,  , ~ ∀PML,  ,

~PB,dis

~PML,  ,I∃

~PB,gbg,=
~PB,dis

ct

Fig. 5. Relating bisimulation-based and PML-based equivalences

box contains behavioral equivalences while the bottom part
contains logical ones.

Our modal logic characterization and backward compati-
bility results for ∼PB,gbg,≤, together with the modal logic
characterization in [19], [20] for probabilistic bisimilarity over
reactive probabilistic processes and with the modal logic char-
acterization in [21] for class-distribution probabilistic bisim-
ilarity over alternating processes, show that PML provides
a uniform framework for reasoning on different classes of
processes including probability and various degrees of non-
determinism.

With regard to ∼PB,gbg,=, which is finer than ∼PB,gbg,≤
and is characterized by an interval-based variant of PML rather
than the original PML, we would like to mention that it has
emerged quite naturally in a framework we have recently
developed to provide a uniform model for different classes
of widely used processes together with uniform definitions of
the major behavioral equivalences [2].

Our work has some interesting points in common with [28],
where new probabilistic bisimilarities over nondeterministic
and probabilistic Kripke structures have been defined that
are in full agreement with PCTL, PCTL*, and their variants
without the next-time operator. Indeed, both [28] and our work
witness that, in order to characterize the equivalences induced
by PCTL/PCTL*/PML in a nondeterministic and probabilistic
setting, it is necessary to:

• Anticipate the quantification over the sets of equivalent
states to be reached in the bisimulation game, as done
in [29] in the setting of approximate probabilistic rela-
tions. Placing this quantification after the comparison of
probability values, like in [25], results in a much finer
probabilistic bisimilarity that needs a modal logic much
more expressive than PML as shown in [21], [16], [14].

• Consider groups of classes of equivalent states rather
than only individual classes, as done in [12], [5], [8]
in the setting of continuous-state probabilistic processes.
Otherwise, due to the anticipation of the previously
mentioned quantification, a much coarser probabilistic
bisimilarity is obtained.



• Compare for equality only the extremal probabilities of
reaching certain sets of states rather than all the proba-
bilities, so that the presence of nondeterminism and the
probabilistic bounds in logical formulae fit well together.

Our results and those in [28] also show that, in the case of
nondeterministic and probabilistic processes, it is not possible
to define a single probabilistic bisimilarity that is characterized
by both PML – as interpreted in this paper – and PCTL* – as
interpreted in [3]. Thus, for nondeterministic and probabilistic
processes the situation is quite different from the case of fully
nondeterministic processes, where probabilistic bisimilarity is
characterized by both HML [15] and CTL* [4], and from the
case of reactive probabilistic processes, where probabilistic
bisimilarity is characterized by both PML [19], [20] and
PCTL* [1].

With regard to future work, we plan to investigate further
properties of group-by-group probabilistic bisimilarities. Re-
sults along this direction would also be useful for a better un-
derstanding of the probabilistic bisimilarities in [28]. Another
obvious direction of research would be to define the weak
variants of the group-by-group probabilistic bisimilarities and
find the corresponding modal logics. Finally, we would like to
study the expressiveness of the variants of PML that we have
introduced in this paper.
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APPENDIX

A: PROOFS OF RESULTS

Proof of Thm. 4.2. Since every transition of this specific
NPLTS can reach with probability greater than 0 a single state
and hence a single class of any equivalence relation – which
are thus reached with probability 1 – the reflexive, symmetric,
and transitive closure of a bisimulation is trivially a =-group-
by-group (ct-)probabilistic bisimulation, a ≤-group-by-group
(ct-)probabilistic bisimulation, and a ≥-group-by-group
(ct-)probabilistic bisimulation.

Proof of Thm. 4.3. Since every state of this specific
NPLTS has at most one transition labeled with a certain
action, a probabilistic bisimulation is trivially a =-group-
by-group (ct-)probabilistic bisimulation, a ≤-group-by-group
(ct-)probabilistic bisimulation, and a ≥-group-by-group
(ct-)probabilistic bisimulation.

Proof of Thm. 4.4. Since every state of this specific NPLTS
has either zero or more Dirac transitions or a single non-Dirac
transition, a class-distribution (ct-)probabilistic bisimulation
is trivially a =-group-by-group (ct-)probabilistic bisimula-
tion, a ≤-group-by-group (ct-)probabilistic bisimulation, and a
≥-group-by-group (ct-)probabilistic bisimulation.

Proof of Lemma 4.6. For each equivalence relation B over S,
we define E(B) as the following relation over S: (s1, s2) ∈
E(B) iff for all actions a ∈ A and groups of equivalence
classes G ∈ 2S/B it holds that s1

a−→D1 implies s2
a−→D2

such that D1(
⋃
G) = D2(

⋃
G). The proof then proceeds like

in [15] by showing that:
• E(B) is an equivalence relation.
• If B1 ⊆ B2, then E(B1) ⊆ E(B2).
• For each i ∈ N, ∼i+1

PB,gbg,= = E(∼iPB,gbg,=).
•
⋂
i∈N ∼iPB,gbg,= is the maximal solution of B = E(B)

and is a =-group-by-group probabilistic bisimulation.
• ∼PB,gbg,= = E(∼PB,gbg,=).

Directly from the last two items, it follows that ∼PB,gbg,= =⋂
i∈N ∼iPB,gbg,=.

Proof of Lemma 4.7. Given an image-finite NPLTS
(S,A,−→) satisfying the minimal probability assumption, and
given s1, s2 ∈ S, we proceed by induction on i ∈ N.
Base of Induction (i = 0): Since ∼0

PB,gbg,= = S × S and
F0

PML∃,I
(s) = {φ ∈ F0

PML∃,I
| φ ≡ true} for all s ∈ S, it

trivially holds that:
s1 ∼0

PB,gbg,= s2 ⇐⇒ F0
PML∃,I

(s1) = F0
PML∃,I

(s2)
Induction Hypothesis: Given i ∈ N, we assume that for all
j = 0, . . . , i:

s1 ∼jPB,gbg,= s2 ⇐⇒ F jPML∃,I
(s1) = F jPML∃,I

(s2)
Induction Step: We prove both implications for i + 1 by
reasoning on their corresponding contrapositive statements,
i.e., we prove that:

F i+1
PML∃,I

(s1) 6= F i+1
PML∃,I

(s2) ⇐⇒ s1 6∼i+1
PB,gbg,= s2

(=⇒) If F i+1
PML∃,I

(s1) 6= F i+1
PML∃,I

(s2), then there are two
cases:

• If F iPML∃,I
(s1) 6= F iPML∃,I

(s2), then by the induction
hypothesis it holds that s1 6∼iPB,gbg,= s2 and hence
s1 6∼i+1

PB,gbg,= s2.
• If F iPML∃,I

(s1) = F iPML∃,I
(s2), then from

F i+1
PML∃,I

(s1) 6= F i+1
PML∃,I

(s2) it follows that there
exists φ ∈ Fi+1

PML∃,I
such that s1 ∈ MPML∃,I [[φ]] and

s2 6∈ MPML∃,I [[φ]]. We now proceed by induction on
the syntactical structure of φ. Here we only consider the
case φ = 〈a〉[p1,p2]φ′ because the other cases are routine.
From s1 ∈ MPML∃,I [[〈a〉[p1,p2]φ′]] and
s2 6∈ MPML∃,I [[〈a〉[p1,p2]φ′]], it follows that:

– p1 ≤ D1(MPML∃,I [[φ
′]]) ≤ p2 for some D1 such that

s1
a−→D1.

– D2(MPML∃,I [[φ
′]]) < p1 or D2(MPML∃,I [[φ

′]]) > p2

for all D2 such that s2
a−→D2.

Since φ′ ∈ FiPML∃,I
, by the induction hypothesis

there exists G ∈ 2S/∼
i
PB,gbg,= such that

⋃
C∈G C =

MPML∃,I [[φ
′]]. Then:

– D1(
⋃
G) = q ∈ R[p1,p2].

– D2(
⋃
G) 6= q for all D2 such that s2

a−→D2.
Therefore s1 6∼i+1

PB,gbg,= s2.

(⇐=) If s1 6∼i+1
PB,gbg,= s2, then there are two cases:

• If s1 6∼iPB,gbg,= s2, then by the induction hypothesis
it holds that F iPML∃,I

(s1) 6= F iPML∃,I
(s2) and hence

F i+1
PML∃,I

(s1) 6= F i+1
PML∃,I

(s2).
• If s1 ∼iPB,gbg,= s2, then from s1 6∼i+1

PB,gbg,= s2 it follows
that there exist p ∈ R[0,1] and G ∈ 2S/∼

i
PB,gbg,= such that:

– D1(
⋃
G) = p for some D1 such that s1

a−→D1.
– D2(

⋃
G) 6= p for all D2 such that s2

a−→D2.
Let G1 = {C ∈ S/∼iPB,gbg,= | D1(C) > 0} and G2 =
{C ∈ S/ ∼iPB,gbg,= | ∃D2. s2

a−→D2 ∧ D2(C) > 0}.
Thanks to the assumptions of image finiteness and
minimal probability, both G1 and G2 are finite.
By the induction hypothesis, there exists a distinguishing
formula φ<C1,C2> ∈ FiPML∃,I

for all C1 and C2 in
S/∼iPB,gbg,= such that C1 6= C2, i.e.:

C1 ⊆MPML∃,I [[φ<C1,C2>]]
C2 ∩MPML∃,I [[φ<C1,C2>]] = ∅

Then:

φG =
∨
C∈G

( ∧
C1∈G1\{C}

φ<C,C1> ∧
∧

C2∈G2\{C}
φ<C,C2>

)
where

∨
i∈I φi = ¬

∧
i∈I ¬φi for I finite and∧

i∈I φi = true for I = ∅, yields a distinguishing
formula for s1 and s2 because:

– s1 ∈MPML∃,I [[〈a〉[p,p]φG ]].
– s2 6∈ MPML∃,I [[〈a〉[p,p]φG ]].

Since 〈a〉[p,p]φG ∈ Fi+1
PML∃,I

, we derive that
F i+1

PML∃,I
(s1) 6= F i+1

PML∃,I
(s2).

Proof of Thm. 4.8. The proof of the first result is similar
to the proof of Thm. 4.5 – based on Lemmata 4.6 and 4.7
– up to the use of ≤ in place of = when comparing the



probabilities of reaching a group of equivalence classes and
the use of ∼iPB,gbg,≤, F iPML∃,≥

,MPML∃,≥ , and 〈a〉p in place
of ∼iPB,gbg,=, F iPML∃,I

, MPML∃,I , and 〈a〉[p1,p2] wherever
necessary.
In particular, for the induction step of Lemma 4.7 we point
out that:
• In the (=⇒) part, from s1 ∈ MPML∃,≥ [[〈a〉pφ′]] and
s2 6∈ MPML∃,≥ [[〈a〉pφ′]], it follows that:

– D1(MPML∃,≥ [[φ′]]) ≥ p for some D1 such that
s1

a−→D1.
– D2(MPML∃,≥ [[φ′]]) < p for all D2 such that
s2

a−→D2.
Since φ′ ∈ FiPML∃,≥

, by the induction hypothesis

there exists G ∈ 2S/∼
i
PB,gbg,≤ such that

⋃
C∈G C =

MPML∃,≥ [[φ′]]. Then:
– D1(

⋃
G) ≥ p.

– D2(
⋃
G) < p for all D2 such that s2

a−→D2.
• In the (⇐=) part, if s1 ∼iPB,gbg,≤ s2, then there exist
p ∈ R[0,1] and G ∈ 2S/∼

i
PB,gbg,≤ such that:

– D1(
⋃
G) = p for some D1 such that s1

a−→D1.
– D2(

⋃
G) < p for all D2 such that s2

a−→D2.
The distinguishing formula in Fi+1

PML∃,≥
for s1 and s2 is

then 〈a〉pφG .
The proof of the second result is similar to the proof of
the first one up to the use of ≥ in place of ≤ and > in place
of < wherever necessary.

Proof of Thm. 5.3. Similar to the proof of Thm. 4.5 – based
on Lemmata 4.6 and 4.7 – up to the use of

⊔
and

d
in

place of individual values when comparing the probabilities
of reaching a group of equivalence classes and the use of
∼iPB,gbg,tu, F iPML∀,I

, and MPML∀,I in place of ∼iPB,gbg,=,
F iPML∃,I

, and MPML∃,I wherever necessary.
In particular, for the induction step of Lemma 4.7 we point
out that:
• In the (=⇒) part, from s1 ∈ MPML∀,I [[〈a〉[p1,p2]φ′]] and
s2 6∈ MPML∀,I [[〈a〉[p1,p2]φ′]], it follows that:

– s1
a−→ and p1 ≤ D1(MPML∀,I [[φ

′]]) ≤ p2 for all D1

such that s1
a−→D1.

– s2 6 a−→ or D2(MPML∀,I [[φ
′]]) < p1 or

D2(MPML∀,I [[φ
′]]) > p2 for some D2 such that

s2
a−→D2.

Since φ′ ∈ FiPML∀,I
, by the induction hypothesis

there exists G ∈ 2S/∼
i
PB,gbg,tu such that

⋃
C∈G C =

MPML∀,I [[φ
′]]. Then:

– s1
a−→ and

⊔
s1

a−→D1

D1(
⋃
G) = q′′,

d

s1
a−→D1

D1(
⋃
G) = q′ with q′, q′′ ∈ R[p1,p2]

such that q′ ≤ q′′.
– s2 6 a−→ or

⊔
s2

a−→D2

D2(
⋃
G) > q′′ or

d

s2
a−→D2

D2(
⋃
G) < q′.

• In the (⇐=) part, if s1 ∼iPB,gbg,tu s2, then there exist
p′1, p

′′
1 , p
′
2, p
′′
2 ∈ R[0,1] – with p′1 ≤ p′′1 and p′2 ≤ p′′2 – and

G ∈ 2S/∼
i
PB,gbg,tu such that:

– s1
a−→ and

⊔
s1

a−→D1

D1(
⋃
G) = p′′1 ,

d

s1
a−→D1

D1(
⋃
G) = p′1.

– s2 6 a−→ or
⊔

s2
a−→D2

D2(
⋃
G) = p′′2 6= p′′1 or

d

s2
a−→D2

D2(
⋃
G) = p′2 6= p′1.

Let G1 = {C ∈ S/ ∼iPB,gbg,tu | ∃D1. s1
a−→D1 ∧

D1(C) > 0} and G2 = {C ∈ S/ ∼iPB,gbg,tu |
∃D2. s2

a−→D2 ∧ D2(C) > 0}. The distinguishing for-
mula in Fi+1

PML∀,I
for s1 and s2 is then:

– 〈a〉[p′1,p′′1 ]φG if s2 6 a−→ or it is not the case that
p′1 ≤ p′2 and p′′2 ≤ p′′1 .

– 〈a〉[p′2,p′′2 ]φG if s2
a−→ and it is the case that p′1 ≤ p′2

and p′′2 ≤ p′′1 .

Proof of Thm. 5.5. The proof of the first result is similar to
the proof of Thm. 4.5 – based on Lemmata 4.6 and 4.7 – up
to the use of

⊔
in place of individual values when comparing

the probabilities of reaching a group of equivalence classes
and the use of ∼iPB,gbg,t, F iPML∀,≤

, and MPML∀,≤ in place
of ∼iPB,gbg,=, F iPML∃,I

, and MPML∃,I wherever necessary.
In particular, for the induction step of Lemma 4.7 we point
out that:
• In the (=⇒) part, from s1 ∈ MPML∀,≤ [[〈a〉pφ′]] and
s2 6∈ MPML∀,≤ [[〈a〉pφ′]], it follows that:

– s1
a−→ and D1(MPML∀,≤ [[φ′]]) ≤ p for all D1 such

that s1
a−→D1.

– s2 6
a−→ or D2(MPML∀,≤ [[φ′]]) > p for some D2 such

that s2
a−→D2.

Since φ′ ∈ FiPML∀,≤
, by the induction hypothesis

there exists G ∈ 2S/∼
i
PB,gbg,t such that

⋃
C∈G C =

MPML∀,≤ [[φ′]]. Then:

– s1
a−→ and

⊔
s1

a−→D1

D1(
⋃
G) ≤ p.

– s2 6
a−→ or

⊔
s2

a−→D2

D2(
⋃
G) > p.

• In the (⇐=) part, if s1 ∼iPB,gbg,t s2, then there exist
p ∈ R[0,1] and G ∈ 2S/∼

i
PB,gbg,t such that:

– s1
a−→ and

⊔
s1

a−→D1

D1(
⋃
G) = p.

– s2 6
a−→ or

⊔
s2

a−→D2

D2(
⋃
G) = q 6= p.

Let G1 = {C ∈ S/ ∼iPB,gbg,t | ∃D1. s1
a−→D1 ∧

D1(C) > 0} and G2 = {C ∈ S/ ∼iPB,gbg,t |
∃D2. s2

a−→D2 ∧ D2(C) > 0}. The distinguishing for-
mula in Fi+1

PML∀,≤
for s1 and s2 is then:

– 〈a〉pφG if s2 6
a−→ or p < q.

– 〈a〉qφG if s2
a−→ and q < p.



The proof of the second result is similar to the proof of the
first one up to the use of

d
in place of

⊔
, ≥ in place of ≤,

< in place of >, and > in place of < wherever necessary.

Proof of Thm. 5.6. Let U = (S,A,−→) be an NPLTS and
s1, s2 ∈ S:

1) The fact that s1 ∼PB,dis s2 implies s1 ∼PB,gbg,= s2
is a straightforward consequence of the fact that a
class-distribution probabilistic bisimulation is trivially a
=-group-by-group probabilistic bisimulation.
Suppose now that s1 ∼PB,gbg,= s2. This means that
there exists a =-group-by-group probabilistic bisimula-
tion B over S such that (s1, s2) ∈ B. In other words,
whenever (s′1, s

′
2) ∈ B, then for all a ∈ A and G ∈ 2S/B:

• If s′1
a−→D1, then s′2

a−→D2 such that D1(
⋃
G) =

D2(
⋃
G).

• If s′2
a−→D2, then s′1

a−→D1 such that D2(
⋃
G) =

D1(
⋃
G).

This means that, whenever (s′1, s
′
2) ∈ B, then for all

a ∈ A and G ∈ 2S/B:
• If s′1

a−→, then s′2
a−→ with

⋃
s′1

a−→D1

{D1(
⋃
G)} ⊆⋃

s′2
a−→D2

{D2(
⋃
G)}.

• If s′2
a−→, then s′1

a−→ with
⋃

s′2
a−→D2

{D2(
⋃
G)} ⊆⋃

s′1
a−→D1

{D1(
⋃
G)}.

Equivalently, if both s′1 and s′2 have at least one
outgoing a-transition, then:⋃

s′1
a−→D1

{D1(
⋃
G)} =

⋃
s′2

a−→D2

{D2(
⋃
G)}

and hence: ⊔
s′1

a−→D1

D1(
⋃
G) =

⊔
s′2

a−→D2

D2(
⋃
G)

d

s′1
a−→D1

D1(
⋃
G) =

d

s′2
a−→D2

D2(
⋃
G)

Therefore, B is also a tu-group-by-group probabilistic
bisimulation, i.e., s1 ∼PB,gbg,tu s2.

2) Suppose that s1 ∼PB,gbg,≤ s2. This means that there
exists a ≤-group-by-group probabilistic bisimulation B
over S such that (s1, s2) ∈ B. In other words, whenever
(s′1, s

′
2) ∈ B, then for all a ∈ A and G ∈ 2S/B:

• If s′1
a−→D1, then s′2

a−→D2 such that D1(
⋃
G) ≤

D2(
⋃
G).

• If s′2
a−→D2, then s′1

a−→D1 such that D2(
⋃
G) ≤

D1(
⋃
G).

This means that, whenever (s′1, s
′
2) ∈ B, then for all

a ∈ A and G ∈ 2S/B:
• If s′1

a−→, then s′2
a−→ with

⊔
s′1

a−→D1

D1(
⋃
G) ≤⊔

s′2
a−→D2

D2(
⋃
G).

• If s′2
a−→, then s′1

a−→ with
⊔

s′2
a−→D2

D2(
⋃
G) ≤⊔

s′1
a−→D1

D1(
⋃
G).

Equivalently, if both s′1 and s′2 have at least one
outgoing a-transition, then:⊔

s′1
a−→D1

D1(
⋃
G) =

⊔
s′2

a−→D2

D2(
⋃
G)

Therefore, B is also a t-group-by-group probabilistic
bisimulation, i.e., s1 ∼PB,gbg,t s2.
The reverse implication holds too when the NPLTS U
is image finite. In fact, this property guarantees that the
following two sets:⋃

s′1
a−→D1

{D1(
⋃
G)} and

⋃
s′2

a−→D2

{D2(
⋃
G)}

are finite. In turn, the finiteness of those two sets ensures
that their suprema respectively belong to the two sets
themselves. As a consequence, starting from:⊔

s′1
a−→D1

D1(
⋃
G) =

⊔
s′2

a−→D2

D2(
⋃
G)

or equivalently:⊔
s′1

a−→D1

D1(
⋃
G) ≤

⊔
s′2

a−→D2

D2(
⋃
G)

⊔
s′2

a−→D2

D2(
⋃
G) ≤

⊔
s′1

a−→D1

D1(
⋃
G)

when both s′1 and s′2 have at least one outgoing
a-transition, the following holds:
• If s′1

a−→D′1, then s′2
a−→D′2 with D′1(

⋃
G) ≤

D′2(
⋃
G) because we can take D′2 such that

D′2(
⋃
G) =

⊔
s′2

a−→D2

D2(
⋃
G).

• If s′2
a−→D′2, then s′1

a−→D′1 with D′2(
⋃
G) ≤

D′1(
⋃
G) because we can take D′1 such that

D′1(
⋃
G) =

⊔
s′1

a−→D1

D1(
⋃
G).

3) Similar to the previous proof up to the use of ≥ in place
of ≤ and u in place of t wherever necessary.

4) Suppose that s1 ∼PB,gbg,t s2. This means that there
exists a t-group-by-group probabilistic bisimulation B
over S such that (s1, s2) ∈ B. In other words, whenever
(s′1, s

′
2) ∈ B, then for all a ∈ A and G ∈ 2S/B it holds

that s′1
a−→ implies s′2

a−→ with:⊔
s′1

a−→D1

D1(
⋃
G) =

⊔
s′2

a−→D2

D2(
⋃
G)

Then B must be a u-group-by-group probabilistic
bisimulation as well and hence s1 ∼PB,gbg,u s2. In
fact, if this were not the case, then there would exist
a′ ∈ A and G′ ∈ 2S/B such that s′1

a′−→, s′2
a−→, and:d

s′1
a′−→D1

D1(
⋃
G′) 6=

d

s′2
a′−→D2

D2(
⋃
G′)

As a consequence, denoting by G′′ the group of all the
equivalence classes not in G′, it would hold that s′1

a′−→,
s′2

a−→, and:⊔
s′1

a′−→D1

D1(
⋃
G′′) = 1−

d

s′1
a′−→D1

D1(
⋃
G′)

6= 1−
d

s′2
a′−→D2

D2(
⋃
G′)

=
⊔

s′2
a′−→D2

D2(
⋃
G′′)

thus contradicting the fact that B is a t-group-by-group



probabilistic bisimulation.
By proceeding in a similar way, we can prove that
s1 ∼PB,gbg,u s2 implies s1 ∼PB,gbg,t s2. Therefore,
∼PB,gbg,t and ∼PB,gbg,u coincide.
Finally, we prove that ∼PB,gbg,tu and ∼PB,gbg,t
coincide. If s1 ∼PB,gbg,tu s2, then s1 ∼PB,gbg,t s2
because a tu-group-by-group probabilistic bisimulation
is trivially a t-group-by-group probabilistic
bisimulation. Suppose now that s1 ∼PB,gbg,t s2. This
means that there exists a t-group-by-group probabilistic
bisimulation B over S such that (s1, s2) ∈ B. Since
B must also be a u-group-by-group probabilistic
bisimulation, whenever (s′1, s

′
2) ∈ B, then for all a ∈ A

and G ∈ 2S/B it holds that s′1
a−→ implies s′2

a−→ with:⊔
s′1

a−→D1

D1(
⋃
G) =

⊔
s′2

a−→D2

D2(
⋃
G)

d

s′1
a−→D1

D1(
⋃
G) =

d

s′2
a−→D2

D2(
⋃
G)

This means that B is also a tu-group-by-group
probabilistic bisimulation, i.e., s1 ∼PB,gbg,tu s2.

Proof of Thm. 5.7. Let U = (S,A,−→) be an NPLTS and
s1, s2 ∈ S:

1) Since an ordinary transition is a special case of com-
bined transition in which a single transition is taken with
weight 1, it trivially holds that (i) a class-distribution
probabilistic bisimulation is a class-distribution
ct-probabilistic bisimulation and (ii) a =-group-by-
group probabilistic bisimulation is a =-group-by-group
ct-probabilistic bisimulation.

2) The inclusion of ∼PB,gbg,. in ∼ct
PB,gbg,. is a straightfor-

ward consequence of the fact that an ordinary transition
is a special case of combined transition in which a single
transition is taken with weight 1. We now prove the
reverse inclusions:
• Suppose that s1 ∼ct

PB,gbg,≤ s2. This means that
there exists a ≤-group-by-group ct-probabilistic
bisimulation B over S such that (s1, s2) ∈ B.
In other words, whenever (s′1, s

′
2) ∈ B, then for

all a ∈ A and G ∈ 2S/B it holds that s′1
a−→D1

implies s′2
a−→cD2 such that D1(

⋃
G) ≤ D2(

⋃
G).

On the side of s′2, this means that there exist
n ∈ N>0, {pi ∈ R]0,1] | 1 ≤ i ≤ n}, and
{s′2

a−→D2,i | 1 ≤ i ≤ n} such that
∑n
i=1 pi = 1

and
∑n
i=1 pi · D2,i = D2. As a consequence:

D2(
⋃
G) ≤

n∑
i=1

pi · max
1≤i≤n

D2,i(
⋃
G)

= max
1≤i≤n

D2,i(
⋃
G) ·

n∑
i=1

pi

= max
1≤i≤n

D2,i(
⋃
G)

and hence there exists D′2 such that s′2
a−→D′2 with

D1(
⋃
G) ≤ D′2(

⋃
G). This means that B is also a

≤-group-by-group probabilistic bisimulation, i.e.,
s1 ∼PB,gbg,≤ s2.

• The proof that s1∼ct
PB,gbg,≥ s2 =⇒ s1∼PB,gbg,≥ s2

is similar to the previous proof up to the use of ≥

in place of ≤ and min in place of max wherever
necessary.

• Suppose that s1 ∼ct
PB,gbg,tu s2. This means that

there exists a tu-group-by-group ct-probabilistic
bisimulation B over S such that (s1, s2) ∈ B. In
other words, whenever (s′1, s

′
2) ∈ B, then for all

a ∈ A and G ∈ 2S/B it holds that s′1
a−→ implies

s′2
a−→ with:⊔
s′1

a−→cD1

D1(
⋃
G) =

⊔
s′2

a−→cD2

D2(
⋃
G)

d

s′1
a−→cD1

D1(
⋃
G) =

d

s′2
a−→cD2

D2(
⋃
G)

Given a ∈ A, G ∈ 2S/B, and s ∈ S having at least
one outgoing a-transition, when U is image finite
it holds that:⊔

s
a−→cD

D(
⋃
G) =

⊔
s

a−→D
D(
⋃
G)

d

s
a−→cD

D(
⋃
G) =

d

s
a−→D
D(
⋃
G)

because the supremum and the infimum on the
left are respectively achieved by two ordinary
a-transitions of s. In fact, let Dt (resp. Du)
be the target of an a-transition of s assigning
the maximum (resp. minimum) value to

⋃
G

among all the a-transitions of s and consider
an arbitrary convex combination of a subset
{s a−→Di | 1 ≤ i ≤ n} of those transitions, with
weights p1, . . . , pn and n ∈ N>0. Then:
n∑
i=1

pi · Di(
⋃
G) ≤

n∑
i=1

pi · Dt(
⋃
G) = Dt(

⋃
G)

n∑
i=1

pi · Di(
⋃
G) ≥

n∑
i=1

pi · Du(
⋃
G) = Du(

⋃
G)

As a consequence, whenever (s′1, s
′
2) ∈ B, then

for all a ∈ A and G ∈ 2S/B it holds that s′1
a−→

implies s′2
a−→ with:⊔

s′1
a−→D1

D1(
⋃
G) =

⊔
s′2

a−→D2

D2(
⋃
G)

d

s′1
a−→D1

D1(
⋃
G) =

d

s′2
a−→D2

D2(
⋃
G)

This means that B is also a tu-group-by-group
probabilistic bisimulation, i.e., s1 ∼PB,gbg,tu s2.

• The proof that s1∼ct
PB,gbg,ts2 =⇒ s1∼PB,gbg,ts2

is similar to the proof that s1 ∼ct
PB,gbg,tu s2 =⇒

s1 ∼PB,gbg,tu s2.
• The proof that s1∼ct

PB,gbg,us2 =⇒ s1∼PB,gbg,us2
is similar to the proof that s1 ∼ct

PB,gbg,tu s2 =⇒
s1 ∼PB,gbg,tu s2.

3) The fact that s1 ∼ct
PB,dis s2 implies s1 ∼ct

PB,gbg,= s2 is
a straightforward consequence of the fact that a class-
distribution ct-probabilistic bisimulation is trivially a
=-group-by-group ct-probabilistic bisimulation.

4) Suppose that s1 ∼ct
PB,gbg,= s2. This means that there

exists a =-group-by-group ct-probabilistic bisimulation
B over S such that (s1, s2) ∈ B. In other words,
whenever (s′1, s

′
2) ∈ B, then for all a ∈ A and G ∈ 2S/B:

• If s′1
a−→D1, then s′2

a−→cD2 such that D1(
⋃
G) =

D2(
⋃
G).



• If s′2
a−→D2, then s′1

a−→cD1 such that D2(
⋃
G) =

D1(
⋃
G).

This implies that, whenever (s′1, s
′
2) ∈ B, then for all

a ∈ A and G ∈ 2S/B:
• If s′1

a−→cD1, then s′2
a−→cD2 such that

D1(
⋃
G) = D2(

⋃
G).

• If s′2
a−→cD2, then s′1

a−→cD1 such that
D2(

⋃
G) = D1(

⋃
G).

This means that, whenever (s′1, s
′
2) ∈ B, then for all

a ∈ A and G ∈ 2S/B:
• If s′1

a−→, then s′2
a−→ with

⋃
s′1

a−→cD1

{D1(
⋃
G)} ⊆⋃

s′2
a−→cD2

{D2(
⋃
G)}.

• If s′2
a−→, then s′1

a−→ with
⋃

s′2
a−→cD2

{D2(
⋃
G)} ⊆⋃

s′1
a−→cD1

{D1(
⋃
G)}.

Equivalently, if both s′1 and s′2 have at least one
outgoing a-transition, then:⋃

s′1
a−→cD1

{D1(
⋃
G)} =

⋃
s′2

a−→cD2

{D2(
⋃
G)}

and hence:⊔
s′1

a−→cD1

D1(
⋃
G) =

⊔
s′2

a−→cD2

D2(
⋃
G)

d

s′1
a−→cD1

D1(
⋃
G) =

d

s′2
a−→cD2

D2(
⋃
G)

Therefore, B is also a tu-group-by-group
ct-probabilistic bisimulation, i.e., s1 ∼ct

PB,gbg,tu s2.
Suppose now that s1 ∼ct

PB,gbg,tu s2. This means
that there exists a tu-group-by-group ct-probabilistic
bisimulation B over S such that (s1, s2) ∈ B. Given
a ∈ A and G ∈ 2S/B, assume that there exists
s1

a−→D1 such that D1(
⋃
G) = p. Since (s1, s2) ∈ B

and the NPLTS is image finite, there exist s2
a−→cD′2

such that D′2(
⋃
G) = p′ ≤ p and s2

a−→cD′′2 such
that D′′2 (

⋃
G) = p′′ ≥ p. If p′ = p (resp. p′′ = p),

then s1
a−→D1 is trivially matched by s2

a−→cD′2
(resp. s2

a−→cD′′2 ) with respect to ∼ct
PB,gbg,= when

considering G.
Assume that p′ < p < p′′ and note that
s2

a−→c (x · D′2 + y · D′′2 ) for all x, y ∈ R]0,1]

such that x+y = 1. Indeed, directly from the definition
of combined transition, we have that:
• Since s2

a−→cD′2, there exist n ∈ N>0, {p′i ∈
R]0,1] | 1 ≤ i ≤ n}, and {s2

a−→ D̂′i | 1 ≤ i ≤ n}
such that

∑n
i=1 p

′
i = 1 and

∑n
i=1 p

′
i · D̂′i = D′2.

• Since s2
a−→cD′′2 , there exist m ∈ N>0, {p′′j ∈

R]0,1] | 1 ≤ j ≤ m}, and {s2
a−→ D̂′′j | 1 ≤ j ≤ m}

such that
∑m
j=1 p

′′
j = 1 and

∑m
j=1 p

′′
j · D̂′′j = D′′2 .

Hence, (x · D′2 + y · D′′2 ) can be obtained from the
appropriate combination of:
{s2

a−→ D̂′i | 1 ≤ i ≤ n} ∪ {s2
a−→ D̂′′j | 1 ≤ j ≤ m}

with coefficients:
{x · p′i ∈ R]0,1] | 1 ≤ i ≤ n} ∪ {y · p′′j ∈ R]0,1] | 1 ≤ j ≤ m}

If we take x = p′′−p
p′′−p′ and y = p−p′

p′′−p′ , then

s2
a−→c

(
p′′−p
p′′−p′ · D

′
2 + p−p′

p′′−p′ · D
′′
2

)
with:(

p′′−p
p′′−p′ · D

′
2 + p−p′

p′′−p′ · D
′′
2

)
(
⋃
G)

= p′′−p
p′′−p′ · D

′
2(
⋃
G) + p−p′

p′′−p′ · D
′′
2 (
⋃
G)

= p′′−p
p′′−p′ · p

′ + p−p′
p′′−p′ · p

′′

= p′·p′′−p·p′+p·p′′−p′·p′′
p′′−p′

= p · p
′′−p′
p′′−p′

= p = D1(
⋃
G)

Due to the generality of (s1, s2) ∈ B, a ∈ A, and
G ∈ 2S/B, it turns out that B is also a =-group-by-group
ct-probabilistic bisimulation, i.e., s1 ∼ct

PB,gbg,= s2.



B: MULTISTEP VARIANTS INSPIRED BY ∼B

We start by introducing the multistep variant of ∼B and
proving that it coincides with ∼B itself.

Definition A.1: Let (S,A,−→) be an NPLTS in which the
target of each transition is a Dirac distribution. A relation B
over S is a multistep bisimulation iff, whenever (s1, s2) ∈ B,
then for all traces α ∈ A∗:
• If s1

α=⇒ δs′1 , then s2
α=⇒ δs′2 such that (s′1, s

′
2) ∈ B.

• If s2
α=⇒ δs′2 , then s1

α=⇒ δs′1 such that (s′1, s
′
2) ∈ B.

We denote by ∼B,m the largest multistep bisimulation.
Theorem A.2: Let (S,A,−→) be an NPLTS in which the

target of each transition is a Dirac distribution. Let s1, s2 ∈ S.
Then:

s1 ∼B,m s2 ⇐⇒ s1 ∼B s2
Proof: Suppose that s1 ∼B,m s2. This means that there

exists a multistep bisimulation B over S such that (s1, s2) ∈ B.
As a consequence, it holds in particular that for all (s′1, s

′
2) ∈ B

and a ∈ A:
• If s′1

a=⇒ δs′′1 , then s′2
a=⇒ δs′′2 such that (s′′1 , s

′′
2) ∈ B.

• If s′2
a=⇒ δs′′2 , then s′1

a=⇒ δs′′1 such that (s′′1 , s
′′
2) ∈ B.

Since a=⇒ coincides with a−→, we have that B is also a
bisimulation and hence s1 ∼B s2.
Suppose now that s1 ∼B s2. This means that there exists a
bisimulation B over S such that (s1, s2) ∈ B. We prove that
B is also a multistep bisimulation, so that s1 ∼B,m s2 will
follow. Given s′1, s

′
2 ∈ S such that (s′1, s

′
2) ∈ B and α ∈ A∗,

we proceed by induction on |α|:
• If |α| = 0, then s′1

α=⇒ δs′1 and s′2
α=⇒ δs′2 are the only

possible computations from s′1 and s′2 labeled with α,
hence the result trivially holds.

• Let |α| = n ∈ N>0 and suppose that the result holds
for all traces of length n − 1. Assume α = aα′.
Since (s′1, s

′
2) ∈ B and B is a bisimulation, it holds

that s′1
a−→ δs′′′1 implies s′2

a−→ δs′′′2 – and symmetrically
s′2

a−→ δs′′′2 implies s′1
a−→ δs′′′1 – with (s′′′1 , s

′′′
2 ) ∈ B.

Suppose that s′1
α=⇒ δs′′1 with s′1

a−→ δs′′′1 and s′′′1
α′=⇒ δs′′1 .

Then s′2
a−→ δs′′′2 with (s′′′1 , s

′′′
2 ) ∈ B and by the induction

hypothesis we have that s′′′2
α′=⇒ δs′′2 with (s′′1 , s

′′
2) ∈ B.

As a consequence, s′2
α=⇒ δs′′2 with (s′′1 , s

′′
2) ∈ B.

Symmetrically, with a similar argument we derive that
s′2

α=⇒ δs′′2 implies s′1
α=⇒ δs′′1 with (s′′1 , s

′′
2) ∈ B.

We now provide the ∼B,m-inspired definition of each of the
probabilistic bisimilarities considered in this paper and prove
that it coincides with the original one-step equivalence. The
ct-variants of the ∼B,m-inspired probabilistic bisimilarities can
be defined similarly and satisfy an analogous coincidence
property with respect to the original one-step ct-equivalences.

Definition A.3: Let (S,A,−→) be an NPLTS. An
equivalence relation B over S is a multistep class-
distribution probabilistic bisimulation iff, whenever
(s1, s2) ∈ B, then for all traces α ∈ A∗ it holds that
s1

α=⇒D1 implies s2
α=⇒D2 such that, for all equivalence

classes C ∈ S/B, D1(C) = D2(C). We denote by
∼PB,dis,m the largest multistep class-distribution probabilistic
bisimulation.

Theorem A.4: Let (S,A,−→) be an NPLTS and s1, s2 ∈ S.
Then:

s1 ∼PB,dis,m s2 ⇐⇒ s1 ∼PB,dis s2
Proof: Suppose that s1 ∼PB,dis,m s2. This means that

there exists a multistep class-distribution probabilistic bisim-
ulation B over S such that (s1, s2) ∈ B. As a consequence, it
holds in particular that for all (s′1, s

′
2) ∈ B and a ∈ A, when-

ever s′1
a=⇒D1, then s′2

a=⇒D2 such that, for all C ∈ S/B,
D1(C) = D2(C). Since a=⇒ coincides with a−→, we have
that B is also a class-distribution probabilistic bisimulation
and hence s1 ∼PB,dis s2.
Suppose now that s1 ∼PB,dis s2. This means that there exists
a class-distribution probabilistic bisimulation B over S such
that (s1, s2) ∈ B. We prove that B is also a multistep class-
distribution probabilistic bisimulation, so that s1 ∼PB,dis,m s2
will follow. Given s′1, s

′
2 ∈ S such that (s′1, s

′
2) ∈ B and

α ∈ A∗, we proceed by induction on |α|:
• If |α| = 0, then s′1

α=⇒ δs′1 and s′2
α=⇒ δs′2 are the only

possible computations from s′1 and s′2 labeled with α
and for all C ∈ S/B it holds that:

δs′1(C) = δs′2(C) =
{

1 if {s′1, s′2} ⊆ C
0 if {s′1, s′2} ∩ C = ∅

because (s′1, s
′
2) ∈ B and C is an equivalence class with

respect to B.
• Let |α| = n ∈ N>0 and suppose that the result holds

for all traces of length n − 1. Assume α = aα′. Since
(s′1, s

′
2) ∈ B and B is a class-distribution probabilistic

bisimulation, it holds that s′1
a−→D′1 implies s′2

a−→D′2
such that, for all C ∈ S/B, D′1(C) = D′2(C).
Suppose that s′1

α=⇒D1 with s′1
a−→D′1, s′′1

α′=⇒D1, and
D′1(s′′1) > 0. Then there exists s′2

a−→D′2 such that, for
all C ∈ S/B, D′1(C) = D′2(C). If we take s′′2 such
that (s′′1 , s

′′
2) ∈ B and D′2(s′′2) > 0, by the induction

hypothesis there exists s′′2
α′=⇒D2 such that, for all C ∈

S/B, D1(C) = D2(C). As a consequence, there exists
s′2

α=⇒D2 such that, for all C ∈ S/B, D1(C) = D2(C).

Definition A.5: Let (S,A,−→) be an NPLTS and the re-
lational operator ./∈ {=,≤,≥}. An equivalence relation B
over S is a multistep ./-group-by-group probabilistic bisimu-
lation iff, whenever (s1, s2) ∈ B, then for all traces α ∈ A∗
and groups of equivalence classes G ∈ 2S/B it holds that
s1

α=⇒D1 implies s2
α=⇒D2 such that D1(

⋃
G) ./ D2(

⋃
G).

We denote by ∼PB,gbg,./,m the largest multistep ./-group-by-
group probabilistic bisimulation.

Theorem A.6: Let (S,A,−→) be an NPLTS, s1, s2 ∈ S,
and ./∈ {=,≤,≥}. Then:

s1 ∼PB,gbg,./,m s2 ⇐⇒ s1 ∼PB,gbg,./ s2
Proof: Suppose that s1 ∼PB,gbg,./,m s2. This means that

there exists a multistep ./-group-by-group probabilistic bisim-
ulation B over S such that (s1, s2) ∈ B. As a consequence,
it holds in particular that for all (s′1, s

′
2) ∈ B, a ∈ A, and



G ∈ 2S/B, whenever s′1
a=⇒D1, then s′2

a=⇒D2 such that
D1(

⋃
G) ./ D2(

⋃
G). Since a=⇒ coincides with a−→, we have

that B is also a ./-group-by-group probabilistic bisimulation
and hence s1 ∼PB,gbg,./ s2.
Suppose now that s1 ∼PB,gbg,./ s2. This means that there
exists a ./-group-by-group probabilistic bisimulation B over S
such that (s1, s2) ∈ B. We prove that B is also a mul-
tistep ./-group-by-group probabilistic bisimulation, so that
s1 ∼PB,gbg,./,m s2 will follow. Given s′1, s

′
2 ∈ S such that

(s′1, s
′
2) ∈ B, α ∈ A∗, and G ∈ 2S/B, we proceed by induction

on |α|:
• If |α| = 0, then s′1

α=⇒ δs′1 and s′2
α=⇒ δs′2 are the only

possible computations from s′1 and s′2 labeled with α
and it holds that:

δs′1(
⋃
G) = δs′2(

⋃
G) ={

1 if {s′1, s′2} ⊆ C for some C ∈ G
0 if {s′1, s′2} ∩ C = ∅ for all C ∈ G

because (s′1, s
′
2) ∈ B and G is a group of equivalence

classes with respect to B.
• Let |α| = n ∈ N>0 and suppose that the result holds

for all traces of length n − 1. Assume α = aα′. Since
(s′1, s

′
2) ∈ B and B is a ./-group-by-group probabilistic

bisimulation, for all G′ ∈ 2S/B it holds that s′1
a−→D′1

implies s′2
a−→D′2 such that D′1(

⋃
G′) ./ D′2(

⋃
G′).

Suppose that s′1
α=⇒D1 with s′1

a−→D′1, s′′1
α′=⇒D1, and

D′1(s′′1) > 0. Let G′ = {C ′} with C ′ being the equiv-
alence class containing s′′1 . Then there exists s′2

a−→D′2
such that D′1(

⋃
G′) ./ D′2(

⋃
G′). If we take s′′2 such that

(s′′1 , s
′′
2) ∈ B and D′2(s′′2) > 0 – it obviously exists in

the case that ./∈ {=,≤} because D′1(s′′1) > 0, and it
also exists in the case that ./ is ≥ because, if s′2 had no
a-transition reaching G′ with probability greater than 0,
then all a-transitions of s′2 would reach G′′ = 2S/B \ G′
with probability 1 and hence for the transition s′1

a−→D′1
we would have D′1(

⋃
G′′) = 1 − D′1(

⋃
G′) < 1 =

D′2(
⋃
G′′) for all transitions s′2

a−→D′2, i.e., B would
not be a ≥-group-by-group probabilistic bisimulation –
by the induction hypothesis there exists s′′2

α′=⇒D2 such
that D1(

⋃
G) ./ D2(

⋃
G). As a consequence, there exists

s′2
α=⇒D2 such that D1(

⋃
G) ./ D2(

⋃
G).

Definition A.7: Let (S,A,−→) be an NPLTS. An equiv-
alence relation B over S is a multistep tu-group-by-group
probabilistic bisimulation iff, whenever (s1, s2) ∈ B, then for
all traces α ∈ A∗ and groups of equivalence classes G ∈ 2S/B

it holds that s1
α=⇒ implies s2

α=⇒ with:⊔
s1

α
=⇒D1

D1(
⋃
G) =

⊔
s2

α
=⇒D2

D2(
⋃
G)

d

s1
α

=⇒D1

D1(
⋃
G) =

d

s2
α

=⇒D2

D2(
⋃
G)

We denote by ∼PB,gbg,tu,m the largest multistep tu-group-
by-group probabilistic bisimulation.

Theorem A.8: Let (S,A,−→) be an NPLTS and s1, s2 ∈ S.
Then:

s1 ∼PB,gbg,tu,m s2 ⇐⇒ s1 ∼PB,gbg,tu s2
Proof: Suppose that s1 ∼PB,gbg,tu,m s2. This means

that there exists a multistep tu-group-by-group probabilistic
bisimulation B over S such that (s1, s2) ∈ B. As a conse-
quence, it holds in particular that for all (s′1, s

′
2) ∈ B, a ∈ A,

and G ∈ 2S/B, whenever s′1
a=⇒, then s′2

a=⇒ with:⊔
s′1

a
=⇒D1

D1(
⋃
G) =

⊔
s′2

a
=⇒D2

D2(
⋃
G)

d

s′1
a

=⇒D1

D1(
⋃
G) =

d

s′2
a

=⇒D2

D2(
⋃
G)

Since a=⇒ coincides with a−→, we have that B is also
a tu-group-by-group probabilistic bisimulation and hence
s1 ∼PB,gbg,tu s2.
Suppose now that s1 ∼PB,gbg,tu s2. This means that there ex-
ists a tu-group-by-group probabilistic bisimulation B over S
such that (s1, s2) ∈ B. We prove that B is also a mul-
tistep tu-group-by-group probabilistic bisimulation, so that
s1 ∼PB,gbg,tu,m s2 will follow. Given s′1, s

′
2 ∈ S such that

(s′1, s
′
2) ∈ B, α ∈ A∗, and G ∈ 2S/B, we proceed by induction

on |α|:

• If |α| = 0, then s′1
α=⇒ δs′1 and s′2

α=⇒ δs′2 are the only
possible computations from s′1 and s′2 labeled with α
and it holds that:

δs′1(
⋃
G) = δs′2(

⋃
G) ={

1 if {s′1, s′2} ⊆ C for some C ∈ G
0 if {s′1, s′2} ∩ C = ∅ for all C ∈ G

because (s′1, s
′
2) ∈ B and G is a group of equivalence

classes with respect to B. Therefore:⊔
s′1

α
=⇒D1

D1(
⋃
G) = δs′1(

⋃
G) =

= δs′2(
⋃
G) =

⊔
s′2

α
=⇒D2

D2(
⋃
G)

d

s′1
α

=⇒D1

D1(
⋃
G) = δs′1(

⋃
G) =

= δs′2(
⋃
G) =

d

s′2
α

=⇒D2

D2(
⋃
G)

• Let |α| = n ∈ N>0 and suppose that the result holds
for all traces of length n − 1. Assume α = aα′. Since
(s′1, s

′
2) ∈ B and B is a tu-group-by-group probabilistic

bisimulation, for all G′ ∈ 2S/B it holds that s′1
a−→

implies s′2
a−→ with:⊔

s′1
a−→D′1

D′1(
⋃
G′) =

⊔
s′2

a−→D′2

D′2(
⋃
G′)

d

s′1
a−→D′1

D′1(
⋃
G′) =

d

s′2
a−→D′2

D′2(
⋃
G′)

Suppose that s′1
α=⇒ with s′1

a−→D′1, s′′1
α′=⇒, and

D′1(s′′1) > 0. Let G′ = {C ′} with C ′ being the
equivalence class containing s′′1 . Then s′2

a−→ with:⊔
s′1

a−→D′1

D′1(
⋃
G′) =

⊔
s′2

a−→D′2

D′2(
⋃
G′)

d

s′1
a−→D′1

D′1(
⋃
G′) =

d

s′2
a−→D′2

D′2(
⋃
G′)

If we take s′′2 and D′2 such that (s′′1 , s
′′
2) ∈ B, D′2(s′′2) > 0,

and s′2
a−→D′2, by the induction hypothesis we have that

s′′2
α′=⇒ with:



⊔
s′′1

α′
=⇒D1

D1(
⋃
G) =

⊔
s′′2

α′
=⇒D2

D2(
⋃
G)

d

s′′1
α′

=⇒D1

D1(
⋃
G) =

d

s′′2
α′

=⇒D2

D2(
⋃
G)

As a consequence, s′2
α=⇒ with:⊔

s′1
α

=⇒D1

D1(
⋃
G) =

⊔
s′2

α
=⇒D2

D2(
⋃
G)

d

s′1
α

=⇒D1

D1(
⋃
G) =

d

s′2
α

=⇒D2

D2(
⋃
G)

Definition A.9: Let (S,A,−→) be an NPLTS and sym-
bol # ∈ {

⊔
,
d
}. An equivalence relation B over S is

a multistep #-group-by-group probabilistic bisimulation iff,
whenever (s1, s2) ∈ B, then for all traces α ∈ A∗ and groups
of equivalence classes G ∈ 2S/B it holds that s1

α=⇒ implies
s2

α=⇒ with:
#

s1
α

=⇒D1

D1(
⋃
G) = #

s2
α

=⇒D2

D2(
⋃
G)

We denote by ∼PB,gbg,#,m the largest multistep #-group-by-
group probabilistic bisimulation.

Theorem A.10: Let (S,A,−→) be an NPLTS, s1, s2 ∈ S,
and # ∈ {

⊔
,
d
}. Then:

s1 ∼PB,gbg,#,m s2 ⇐⇒ s1 ∼PB,gbg,# s2

Proof: Similar to the proof of Thm. A.8. With regard to
the induction step of the proof that s1 ∼PB,gbg,# s2 implies
s1 ∼PB,gbg,#,m s2, we observe that s′′2 and D′2 such that
(s′′1 , s

′′
2) ∈ B, D′2(s′′2) > 0, and s′2

a−→D′2 obviously exist in
the case that # is t because D′1(s′′1) > 0. They also exist in the
case that # is u because, if s′2 had no a-transition reaching G′
(the group composed only of the equivalence class containing
s′′1 ) with probability greater than 0, then all a-transitions of s′2
would reach G′′ = 2S/B \ G′ with probability 1 and hence we
would have:d

s′1
a−→D′1

D′1(
⋃
G′′) < 1 =

d

s′2
a−→D′2

D′2(
⋃
G′′)

i.e., the considered relation B would not be a u-group-by-
group probabilistic bisimulation

We conclude by showing that all the considered
∼B,m-inspired probabilistic bisimilarities collapse into ∼B,m

when restricting attention to fully nondeterministic processes.
An analogous result holds for their ct-variants.

Theorem A.11: Let (S,A,−→) be an NPLTS in which the
target of each transition is a Dirac distribution. Let s1, s2 ∈ S
and ◦ ∈ {=,≤,≥,tu,t,u}. Then:
s1 ∼PB,dis,m s2 ⇐⇒ s1 ∼PB,gbg,◦,m s2 ⇐⇒ s1 ∼B,m s2

Proof: Since every multistep transition of this specific
NPLTS can reach with probability greater than 0 a single state
and hence a single class of any equivalence relation – which
are thus reached with probability 1 – the reflexive, symmetric,
and transitive closure of a multistep bisimulation is triv-
ially a multistep class-distribution probabilistic bisimulation,
a multistep =-group-by-group probabilistic bisimulation, a
multistep ≤-group-by-group probabilistic bisimulation, a mul-
tistep ≥-group-by-group probabilistic bisimulation, a multi-
step tu-group-by-group probabilistic bisimulation, a multistep

t-group-by-group probabilistic bisimulation, and a multistep
u-group-by-group probabilistic bisimulation.



C: MULTISTEP VARIANTS INSPIRED BY ∼PB

We start by introducing the multistep variant of ∼PB

and proving that it coincides with ∼PB itself. Given an
NPLTS (S,A,−→) in which the transitions of each state
have different labels and given s ∈ S, α ∈ A∗, and S′ ⊆ S,
we inductively define the multistep probability of reaching a
state in S′ from s via α as follows:

probm(s, α, S′) =



∑
s′∈S
D(s′) · probm(s′, α′, S′)

if α = aα′ and s a−→D

1 if α = ε and s ∈ S′

0 if α = aα′ and s 6 a−→
or α = ε and s /∈ S′

Definition A.12: Let (S,A,−→) be an NPLTS in which the
transitions of each state have different labels. An equivalence
relation B over S is a p-multistep probabilistic bisimulation
iff, whenever (s1, s2) ∈ B, then for all traces α ∈ A∗ and
equivalence classes C ∈ S/B it holds that s1

α=⇒ implies
s2

α=⇒ with:
probm(s1, α, C) = probm(s2, α, C)

We denote by ∼PB,pm the largest p-multistep probabilistic
bisimulation.

Theorem A.13: Let (S,A,−→) be an NPLTS in which the
transitions of each state have different labels. Let s1, s2 ∈ S.
Then:

s1 ∼PB,pm s2 ⇐⇒ s1 ∼PB s2

Proof: Suppose that s1 ∼PB,pm s2. This means that there
exists a p-multistep probabilistic bisimulation B over S such
that (s1, s2) ∈ B. As a consequence, it holds in particular that
for all (s′1, s

′
2) ∈ B, a ∈ A, and C ∈ S/B, whenever s′1

a=⇒,
then s′2

a=⇒ with:
probm(s′1, a, C) = probm(s′2, a, C)

Since a=⇒ coincides with a−→ and for all s ∈ S such that
s

a−→D it holds that:
probm(s, a, C) =

∑
s′∈C
D(s′) = D(C)

we have that s′1
a−→D1 implies s′2

a−→D2 with D1(C) =
D2(C). In other words, B is also a probabilistic bisimulation
and hence s1 ∼PB s2.
Suppose now that s1 ∼PB s2. This means that there exists a
probabilistic bisimulation B over S such that (s1, s2) ∈ B. We
prove that B is also a p-multistep probabilistic bisimulation,
so that s1 ∼PB,pm s2 will follow. Given s′1, s

′
2 ∈ S such that

(s′1, s
′
2) ∈ B, α ∈ A∗, and C ∈ S/B, we proceed by induction

on |α|:
• If |α| = 0, then s′1

α=⇒ δs′1 and s′2
α=⇒ δs′2 are the only

possible computations from s′1 and s′2 labeled with α
and it holds that:

probm(s′1, α, C) = probm(s′2, α, C) ={
1 if {s′1, s′2} ⊆ C
0 if {s′1, s′2} ∩ C = ∅

because (s′1, s
′
2) ∈ B and C is an equivalence class with

respect to B.
• Let |α| = n ∈ N>0 and suppose that the result holds

for all traces of length n − 1. Assume α = aα′. Since

(s′1, s
′
2) ∈ B and B is a probabilistic bisimulation, for

all C ′ ∈ S/B it holds that s′1
a−→D1 implies s′2

a−→D2

such that D1(C ′) = D2(C ′).
Given s ∈ S such that s α=⇒ with s a−→D, it holds that:
probm(s, α, C) =

∑
s′∈S
D(s′) · probm(s′, α′, C)

=
∑

C′∈S/B

∑
s′∈C′

D(s′) · probm(s′, α′, C)

=
∑

C′∈S/B

∑
s′∈C′

D(s′) · probm(sC′ , α′, C)

=
∑

C′∈S/B
probm(sC′ , α′, C) ·

∑
s′∈C′

D(s′)

=
∑

C′∈S/B
probm(sC′ , α′, C) · D(C ′)

where sC′ ∈ C ′ and the factorization of
probm(sC′ , α′, C) stems from the application of
the induction hypothesis on α′ to all states of each
equivalence class C ′. Since s′1

a−→D1 implies s′2
a−→D2

such that D1(C ′) = D2(C ′) for all C ′ ∈ S/B –
remember that the quantification over C ′ can be
equivalently anticipated or postponed in the absence
of internal nondeterminism – we derive that, whenever
s′1

α=⇒, then s′2
α=⇒ with:

probm(s′1, α, C) = probm(s′2, α, C)

When considering an arbitrary NPLTS (S,A,−→), internal
nondeterminism comes into play and hence there might be
several computations labeled with the same trace belonging
to different resolutions of nondeterminism. In that case, their
multistep probabilities have to be kept separate, otherwise their
multistep probabilities can be summed up like in the case of
reactive probabilistic processes.

Since preserving the connection between each computation
and the resolution of nondeterminism to which it belongs
is important to define a ∼PB,m-inspired multistep variant of
∼PB,dis, we formalize below the notion of resolution. We call
resolution of a state s of an NPLTS U any possible way of
resolving nondeterminism starting from s. Each resolution is
a tree-like structure whose branching points represent prob-
abilistic choices. This is obtained by unfolding from s the
graph structure underlying U and by selecting at each state a
single transition of U – deterministic scheduler – or a convex
combination of equally labeled transitions of U – randomized
scheduler – among all the transitions possible from that state.
A resolution of s can be formalized as an NPLTS Z rooted
at a state zs corresponding to s, in which every state has at
most one outgoing transition and hence function probm can
be safely applied.

Definition A.14: Let U = (S,A,−→) be an NPLTS and
s ∈ S. We say that an NPLTS Z = (Z,A,−→Z) is a
resolution of s obtained via a deterministic scheduler iff there
exists a state correspondence function corr : Z → S such that
s = corr(zs), for some zs ∈ Z, and for all z ∈ Z:
• If z

a−→Z D, then corr(z) a−→D′ with D(z′) =
D′(corr(z′)) for all z′ ∈ Z.

• If z a1−→Z D1 and z a2−→Z D2, then a1 = a2 and D1 = D2.



We denote by Res(s) the set of resolutions of s.
On the basis of the notion above, we provide a ∼PB,pm-

inspired definition of ∼PB,dis and show that it coincides
with ∼PB,dis itself. The ct-variant of the ∼PB,pm-inspired
equivalence can be defined similarly and satisfies an analogous
property with respect to the original one-step ct-equivalence.

Definition A.15: Let (S,A,−→) be an NPLTS. An equiv-
alence relation B over S is a p-multistep class-distribution
probabilistic bisimulation iff, whenever (s1, s2) ∈ B, then
for all traces α ∈ A∗ it holds that zs1

α=⇒ in a resolution
Z1 ∈ Res(s1) implies zs2

α=⇒ in a resolution Z2 ∈ Res(s2)
such that for all equivalence classes C ∈ S/B:

probm(zs1 , α, corr
−1
Z1

(C)) = probm(zs2 , α, corr
−1
Z2

(C))
We denote by ∼PB,dis,pm the largest p-multistep class-
distribution probabilistic bisimulation.

Theorem A.16: Let (S,A,−→) be an NPLTS and
s1, s2 ∈ S. Then:

s1 ∼PB,dis,pm s2 ⇐⇒ s1 ∼PB,dis s2

Proof: Suppose that s1 ∼PB,dis,pm s2. This means that
there exists a p-multistep class-distribution probabilistic bisim-
ulation B over S such that (s1, s2) ∈ B. As a consequence,
it holds in particular that for all (s′1, s

′
2) ∈ B and a ∈ A,

whenever zs1
a=⇒ in a resolution Z1 ∈ Res(s1), then zs2

a=⇒
in a resolution Z2 ∈ Res(s2) such that for all C ∈ S/B:

probm(zs1 , a, corr
−1
Z1

(C)) = probm(zs2 , a, corr
−1
Z2

(C))
Since a=⇒ coincides with a−→ and for all s ∈ S such that
zs

a−→D in a resolution Z ∈ Res(s) it holds that:
probm(zs, a, corr−1

Z (C)) =
=

∑
zs′∈corr

−1
Z (C)

D(zs′) = D(corr−1
Z (C))

we have that s′1
a−→D1 implies s′2

a−→D2 such that, for
all C ∈ S/B, D1(C) = D2(C). In other words, B is
also a class-distribution probabilistic bisimulation and hence
s1 ∼PB,dis s2.
Suppose now that s1 ∼PB,dis s2. This means that there exists
a class-distribution probabilistic bisimulation B over S such
that (s1, s2) ∈ B. We prove that B is also a p-multistep class-
distribution probabilistic bisimulation, so that s1∼PB,dis,pm s2
will follow. Given s′1, s

′
2 ∈ S such that (s′1, s

′
2) ∈ B and

α ∈ A∗, we proceed by induction on |α|:
• If |α| = 0, then zs′1

α=⇒ δzs′1
and zs′2

α=⇒ δzs′2
are the only

possible computations labeled with α in any resolution
Z1 ∈ Res(s′1) and any resolution Z2 ∈ Res(s′2),
respectively, and for all C ∈ S/B it holds that:

probm(zs′1 , α, corr
−1
Z1

(C)) = probm(zs′2 , α, corr
−1
Z2

(C)) ={
1 if {s′1, s′2} ⊆ C
0 if {s′1, s′2} ∩ C = ∅

because (s′1, s
′
2) ∈ B and C is an equivalence class with

respect to B.
• Let |α| = n ∈ N>0 and suppose that the result holds

for all traces of length n − 1. Assume α = aα′. Since
(s′1, s

′
2) ∈ B and B is a class-distribution probabilistic

bisimulation, it holds that s′1
a−→D1 implies s′2

a−→D2

such that, for all C ∈ S/B, D1(C) = D2(C).
Given s ∈ S such that zs

α=⇒ with zs
a−→D in a

resolution Z ∈ Res(s), for all C ∈ S/B it holds that:
probm(zs, α, corr−1

Z (C)) =
=

∑
zs′∈Z

D(zs′) · probm(zs′ , α′, corr−1
Z (C))

=
∑

C′∈S/B

∑
zs′∈corr

−1
Z (C′)

D(zs′) · probm(zs′ , α′, corr−1
Z (C))

=
∑

C′∈S/B

∑
zs′∈corr

−1
Z (C′)

D(zs′) · probm(zsC′ , α
′, corr−1

Z (C))

=
∑

C′∈S/B
probm(zsC′ , α

′, corr−1
Z (C)) ·

∑
zs′∈corr

−1
Z (C′)

D(zs′)

=
∑

C′∈S/B
probm(zsC′ , α

′, corr−1
Z (C)) · D(corr−1

Z (C ′))

where sC′ ∈ C ′ and the factorization of
probm(zsC′ , α

′, corr−1
Z (C)) stems from the application

of the induction hypothesis on α′ to all states of each
equivalence class C ′. Since s′1

a−→D1 implies s′2
a−→D2

such that, for all C ′ ∈ S/B, D1(C ′) = D2(C ′), we derive
that, whenever zs′1

α=⇒ in a resolution Z1 ∈ Res(s′1),
then zs′2

α=⇒ in a resolution Z2 ∈ Res(s′2) such that for
all C ∈ S/B:
probm(zs′1 , α, corr

−1
Z (C)) = probm(zs′2 , α, corr

−1
Z (C))

Using the notion of resolution, we can also provide a
∼PB,pm-inspired definition of each of the six group-by-group
probabilistic bisimilarities. The ct-variants of the six ∼PB,pm-
inspired group-by-group probabilistic bisimilarities can be
defined similarly.

Definition A.17: Let (S,A,−→) be an NPLTS and the
relational operator ./∈ {=,≤,≥}. An equivalence relation
B over S is a p-multistep ./-group-by-group probabilistic
bisimulation iff, whenever (s1, s2) ∈ B, then for all traces
α ∈ A∗ and groups of equivalence classes G ∈ 2S/B it holds
that zs1

α=⇒ in a resolution Z1 ∈ Res(s1) implies zs2
α=⇒ in

a resolution Z2 ∈ Res(s2) with:
probm(zs1 , α, corr

−1
Z1

(
⋃
G)) ./ probm(zs2 , α, corr

−1
Z2

(
⋃
G))

We denote by ∼PB,gbg,./,pm the largest p-multistep ./-group-
by-group probabilistic bisimulation.

Definition A.18: Let (S,A,−→) be an NPLTS. An equiv-
alence relation B over S is a p-multistep tu-group-by-group
probabilistic bisimulation iff, whenever (s1, s2) ∈ B, then for
all traces α ∈ A∗ and groups of equivalence classes G ∈ 2S/B

it holds that s1
α=⇒ implies s2

α=⇒ with:⊔
Z1∈Res(s1) s.t. zs1

α
=⇒

probm(zs1 , α, corr
−1
Z1

(
⋃
G)) =

⊔
Z2∈Res(s2) s.t. zs2

α
=⇒

probm(zs2 , α, corr
−1
Z2

(
⋃
G))

d

Z1∈Res(s1) s.t. zs1
α

=⇒
probm(zs1 , α, corr

−1
Z1

(
⋃
G)) =

d

Z2∈Res(s2) s.t. zs2
α

=⇒
probm(zs2 , α, corr

−1
Z2

(
⋃
G))

We denote by ∼PB,gbg,tu,pm the largest p-multistep
tu-group-by-group probabilistic bisimulation.

Definition A.19: Let (S,A,−→) be an NPLTS and sym-
bol # ∈ {

⊔
,
d
}. An equivalence relation B over S is a

p-multistep #-group-by-group probabilistic bisimulation iff,
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Fig. 6. Two models related by ∼PB,gbg,= that are distinguished by ∼PB,gbg,=,pm

whenever (s1, s2) ∈ B, then for all traces α ∈ A∗ and groups
of equivalence classes G ∈ 2S/B it holds that s1

α=⇒ implies
s2

α=⇒ with:
#

Z1∈Res(s1) s.t. zs1
α

=⇒
probm(zs1 , α, corr

−1
Z1

(
⋃
G)) =

#
Z2∈Res(s2) s.t. zs2

α
=⇒

probm(zs2 , α, corr
−1
Z2

(
⋃
G))

We denote by ∼PB,gbg,#,pm the largest p-multistep #-group-
by-group probabilistic bisimulation.

The six ∼PB,pm-inspired group-by-group probabilistic
bisimilarities can be alternatively defined without making
explicit use of the notion of resolution. Given s ∈ S, α ∈ A∗,
and S′ ⊆ S, we inductively define the set of multistep
probabilities of reaching a state in S′ from s via α as follows:

probsetm(s, α, S′) =

⋃
s

a−→D
{
∑
s′∈S
D(s′) · ps′ | ps′ ∈ probsetm(s′, α′, S′)}

if α = aα′ and s a−→
{1} if α = ε and s ∈ S′

{0} if α = aα′ and s 6 a−→
or α = ε and s /∈ S′

Since probsetm(s, α, S′) = {probm(zs, α, corr−1
Z (S′)) |

Z ∈ Res(s)}, it is easy to see that in Defs. A.17
to A.19 we could have used probsetm(si, α,

⋃
G) in place

of probm(zsi , α, corr
−1
Zi (
⋃
G)) for i = 1, 2. This is not

possible in Def. A.15 because the use of probsetm causes
the connection between each computation and the resolution
to which it belongs to be broken.

Each of the six ∼PB,pm-inspired group-by-group probabilis-
tic bisimilarities is contained in the corresponding original
one-step equivalence. The ct-variants of the six ∼PB,pm-
inspired group-by-group probabilistic bisimilarities satisfy an
analogous inclusion property with respect to the original one-
step ct-equivalences.

Theorem A.20: Let (S,A,−→) be an NPLTS, s1, s2 ∈ S,
and ◦ ∈ {=,≤,≥,tu,t,u}. Then:

s1 ∼PB,gbg,◦,pm s2 =⇒ s1 ∼PB,gbg,◦ s2

Proof: Let ◦ = ./∈ {=,≤,≥} and suppose that
s1 ∼PB,gbg,./,pm s2. This means that there exists a
p-multistep ./-group-by-group probabilistic bisimulation B
over S such that (s1, s2) ∈ B. As a consequence, it holds in
particular that for all (s′1, s

′
2) ∈ B, a ∈ A, and G ∈ 2S/B,

whenever zs′1
a=⇒ in a resolution Z1 ∈ Res(s′1), then zs′2

a=⇒
in a resolution Z2 ∈ Res(s′2) with:
probm(zs′1 , a, corr

−1
Z1

(
⋃
G)) ./ probm(zs′2 , a, corr

−1
Z2

(
⋃
G))

Since a=⇒ coincides with a−→ and for all s ∈ S such that
zs

a−→D in a resolution Z ∈ Res(s) it holds that:
probm(zs, a, corr−1

Z (
⋃
G)) =

=
∑

zs′∈corr
−1
Z (

S
G)
D(zs′) = D(corr−1

Z (
⋃
G))

we have that s′1
a−→D1 implies s′2

a−→D2 with
D1(

⋃
G) ./ D2(

⋃
G). In other words, B is also a

./-group-by-group probabilistic bisimulation and hence
s1 ∼PB,gbg,./ s2.
Suppose now that s1 ∼PB,gbg,tu,pm s2. This means that
there exists a p-multistep tu-group-by-group probabilistic
bisimulation B over S such that (s1, s2) ∈ B. As a
consequence, it holds in particular that for all (s′1, s

′
2) ∈ B,

a ∈ A, and G ∈ 2S/B, whenever s′1
a=⇒, then s′2

a=⇒ with:⊔
Z1∈Res(s′1) s.t. zs′1

a
=⇒

probm(zs′1 , α, corr
−1
Z1

(
⋃
G)) =

⊔
Z2∈Res(s′2) s.t. zs′2

a
=⇒

probm(zs′2 , α, corr
−1
Z2

(
⋃
G))

d

Z1∈Res(s′1) s.t. zs′1
a

=⇒
probm(zs′1 , α, corr

−1
Z1

(
⋃
G)) =

d

Z2∈Res(s′2) s.t. zs′2
a

=⇒
probm(zs′2 , α, corr

−1
Z2

(
⋃
G))

Since a=⇒ coincides with a−→ and for all s ∈ S such that
zs

a−→D in a resolution Z ∈ Res(s) it holds that:



probm(zs, a, corr−1
Z (
⋃
G)) =

=
∑

zs′∈corr
−1
Z (

S
G)
D(zs′) = D(corr−1

Z (
⋃
G))

we have that s′1
a−→ implies s′2

a−→ with:⊔
s′1

a−→D1

D1(
⋃
G) =

⊔
s′2

a−→D2

D2(
⋃
G)

d

s′1
a−→D1

D1(
⋃
G) =

d

s′2
a−→D2

D2(
⋃
G)

In other words, B is also a tu-group-by-group probabilistic
bisimulation and hence s1 ∼PB,gbg,tu s2.
Finally, the proof that s1 ∼PB,gbg,#,pm s2 implies
s1 ∼PB,gbg,# s2 for # ∈ {t,u} is similar to the proof that
s1 ∼PB,gbg,tu,pm s2 implies s1 ∼PB,gbg,tu s2.

Unlike Thm. A.16, the reverse implication of Thm. A.20
does not hold in general. For example, in Fig. 6 we have
that s1 ∼PB,gbg,= s2 but s1 6∼PB,gbg,=,pm s2 because, for
α = a b c and G containing all the states with no outgoing
transitions, it turns out that the multistep probability of reach-
ing G via α in the maximal resolution of s1 starting with the
rightmost a-transition – which is 0.1·0.7+0.9·0.6 = 0.61 – is
not matched by any of the multistep probabilities of reaching
G via α in the three maximal resolutions of s2 starting with
the three a-transitions – which are 0.8 · 0.7 + 0.2 · 0.6 = 0.68,
0.1 · 0.7 = 0.07, and 0.9 · 0.6 = 0.54.

We conclude by showing that all the considered ∼PB,pm-
inspired probabilistic bisimilarities collapse into ∼PB,pm when
restricting attention to reactive probabilistic processes. An
analogous result holds for their ct-variants.

Theorem A.21: Let (S,A,−→) be an NPLTS in which the
transitions of each state have different labels. Let s1, s2 ∈ S
and ◦ ∈ {=,≤,≥,tu,t,u}. Then:
s1 ∼PB,dis,pm s2 ⇐⇒ s1 ∼PB,gbg,◦,pm s2 ⇐⇒ s1 ∼PB,pm s2

Proof: Since every state of this specific NPLTS has at
most one transition labeled with a certain action, a p-multistep
probabilistic bisimulation is trivially a p-multistep =-group-
by-group probabilistic bisimulation, a p-multistep ≤-group-
by-group probabilistic bisimulation, a p-multistep ≥-group-
by-group probabilistic bisimulation, a p-multistep tu-group-
by-group probabilistic bisimulation, a p-multistep t-group-by-
group probabilistic bisimulation, and a p-multistep u-group-
by-group probabilistic bisimulation.
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