605 research outputs found

    Uniform convergence of discrete curvatures from nets of curvature lines

    Get PDF
    We study discrete curvatures computed from nets of curvature lines on a given smooth surface, and prove their uniform convergence to smooth principal curvatures. We provide explicit error bounds, with constants depending only on properties of the smooth limit surface and the shape regularity of the discrete net.Comment: 21 pages, 8 figure

    Shape selection in non-Euclidean plates

    Full text link
    We investigate isometric immersions of disks with constant negative curvature into R3\mathbb{R}^3, and the minimizers for the bending energy, i.e. the L2L^2 norm of the principal curvatures over the class of W2,2W^{2,2} isometric immersions. We show the existence of smooth immersions of arbitrarily large geodesic balls in H2\mathbb{H}^2 into R3\mathbb{R}^3. In elucidating the connection between these immersions and the non-existence/singularity results of Hilbert and Amsler, we obtain a lower bound for the LL^\infty norm of the principal curvatures for such smooth isometric immersions. We also construct piecewise smooth isometric immersions that have a periodic profile, are globally W2,2W^{2,2}, and have a lower bending energy than their smooth counterparts. The number of periods in these configurations is set by the condition that the principal curvatures of the surface remain finite and grows approximately exponentially with the radius of the disc. We discuss the implications of our results on recent experiments on the mechanics of non-Euclidean plates

    Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets

    Full text link
    The edges of torn plastic sheets and growing leaves often display hierarchical buckling patterns. We show that this complex morphology (i) emerges even in zero strain configurations, and (ii) is driven by a competition between the two principal curvatures, rather than between bending and stretching. We identify the key role of branch-point (or "monkey-saddle") singularities in generating complex wrinkling patterns in isometric immersions, and show how they arise naturally from minimizing the elastic energy.Comment: 6 pages, 6 figures. This article supersedes arXiv:1504.0073

    Constructing solutions to the Bj\"orling problem for isothermic surfaces by structure preserving discretization

    Get PDF
    In this article, we study an analog of the Bj\"orling problem for isothermic surfaces (that are more general than minimal surfaces): given a real analytic curve γ\gamma in R3{\mathbb R}^3, and two analytic non-vanishing orthogonal vector fields vv and ww along γ\gamma, find an isothermic surface that is tangent to γ\gamma and that has vv and ww as principal directions of curvature. We prove that solutions to that problem can be obtained by constructing a family of discrete isothermic surfaces (in the sense of Bobenko and Pinkall) from data that is sampled along γ\gamma, and passing to the limit of vanishing mesh size. The proof relies on a rephrasing of the Gauss-Codazzi-system as analytic Cauchy problem and an in-depth-analysis of its discretization which is induced from the geometry of discrete isothermic surfaces. The discrete-to-continuous limit is carried out for the Christoffel and the Darboux transformations as well.Comment: 29 pages, some figure

    Distributed branch points and the shape of elastic surfaces with constant negative curvature

    Full text link
    We develop a theory for distributed branch points and investigate their role in determining the shape and influencing the mechanics of thin hyperbolic objects. We show that branch points are the natural topological defects in hyperbolic sheets, they carry a topological index which gives them a degree of robustness, and they can influence the overall morphology of a hyperbolic surface without concentrating energy. We develop a discrete differential geometric (DDG) approach to study the deformations of hyperbolic objects with distributed branch points. We present evidence that the maximum curvature of surfaces with geodesic radius RR containing branch points grow sub-exponentially, O(ecR)O(e^{c\sqrt{R}}) in contrast to the exponential growth O(ecR)O(e^{c' R}) for surfaces without branch points. We argue that, to optimize norms of the curvature, i.e. the bending energy, distributed branch points are energetically preferred in sufficiently large pseudospherical surfaces. Further, they are distributed so that they lead to fractal-like recursive buckling patterns.Comment: 59 pages, 20 figures. Major revisions including new proofs with weakened hypotheses, expanded discussion and additional references. Some images are not at their original resolution to keep them at a reasonable size. Comments are very welcome and much appreciate

    Optimization of gridshell bar orientation using a simplified genetic approach

    Get PDF
    Gridshells are defined as structures that have the shape and rigidity of a double curvature shell but consist of a grid instead of a continuous surface. This study concerns those obtained by elastic deformation of an initially flat two-way grid. This paper presents a novel approach to generate gridshells on an imposed shape under imposed boundary conditions. A numerical tool based on a geometrical method, the compass method, is developed. It is coupled with genetic algorithms to optimize the orientation of gridshell bars in order to minimize the stresses and therefore to avoid bar breakage during the construction phase. Examples of application are shown
    corecore