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Abstract We study discrete curvatures computed from nets of curvature lines on a
given smooth surface and prove their uniform convergence to smooth principal curva-
tures. We provide explicit error bounds, with constants depending only on properties
of the smooth limit surface and the shape regularity of the discrete net.

Keywords Discrete curvatures · Polyhedral surfaces · Cotangent formula ·
Curvature lines

1 Introduction

The field of discrete differential geometry has brought to light intriguing discrete
counterparts of classical differential geometric concepts and efficient geometric algo-
rithms (see, e.g., [6, 14]). One aspect of this theory is convergence: classical smooth
notions should arise in the limit of refinement. Recently, several convergence results
have been obtained for curvatures and differential operators defined on polyhedral
surfaces. Roughly, one may distinguish three approaches: (i) polynomial surface ap-
proximation (see, e.g., [7, 17]), (ii) geometric measure theory (see, e.g., [8, 13]), and
(iii) finite element analysis (see, e.g., [11, 15]). Among these, (i) provides pointwise
convergent curvatures for many, but not all, discrete meshes. In contrast, (ii) and
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Fig. 1 A discrete net of
curvature lines on an ellipsoid

(iii) consider generalizations of integrated, or total, curvatures and yield convergence
in the sense of measures or appropriate Sobolev norms, respectively.

Given the convergence of curvatures studied by approaches (ii) and (iii) in an in-
tegrated sense, it is natural to ask whether these curvatures can be shown to also
converge in a pointwise manner. An affirmative answer can be obtained in some spe-
cial cases, such as polyhedral surfaces with vertices on the unit 2-sphere [23]. In
general, however, the answer to this question is negative: it was observed in [24] that
for general irregular polyhedral surfaces, there exist no k-local definitions of discrete
curvatures that are pointwise convergent. Here, by k-locality we mean that the defi-
nition of curvatures associated with a vertex p of a polyhedral surface only depends
on the k-star of p, i.e., those vertices that are connected to p by a path of at most k

edges. The concept of k-locality is motivated by the smooth setting, where the defin-
ition of curvatures and differential operators only depends on local properties of the
underlying Riemannian manifold.

Uniform Convergence from Nets of Curvature Lines We provide an affirmative an-
swer to the above question of pointwise convergence of curvatures for a special class
of discrete meshes: discrete nets of curvature lines on a given smooth surface M that
is immersed into Euclidean space E

3 (see Fig. 1). To obtain approximations (k1, k2)

of principal curvatures (κ1, κ2) on M , we follow a three-step approach. We consider
(a) local polyhedral approximations to nets of curvature lines, to which we apply (b)
well-known 1-local integrated notions of discrete curvatures, such as those based on
normal cycles (see, e.g., [8]) or those based on the so-called cotangent formula (see,
e.g., [19]), followed by (c) dividing the resulting integrated curvatures by appropriate
area terms. The resulting pointwise curvature approximations k1, k2 : V → R are at
first only defined on the vertex set V of the underlying net. However, we may regard
these curvature approximations as functions ki : M → R by extending them from V

in a piecewise constant manner to the intrinsic Voronoi regions of the set V on M .
Assuming this extension, we show:

Theorem 1 Let M be a smooth compact oriented surface without boundary1 im-
mersed into E

3. Consider a discrete net of curvature lines on M such that at each
vertex the sampling condition (10) is satisfied. Let ε be an upper bound for the edge
lengths of the net such that additionally the intrinsic ε-balls around vertices cover all

1Surfaces with nonempty boundary can be treated with minor technical modifications.



800 Discrete Comput Geom (2010) 43: 798–823

of M . Then

sup
p∈M

∣
∣ki(p) − κi(p)

∣
∣ ≤ Cε, i = 1,2,

where C depends only on properties of M and the shape regularity (9) of the net of
curvature lines.

A few remarks seem pertinent before proceeding:

• Uniform pointwise convergence of principal curvatures obtained by a 1-local con-
struction from nets of curvature lines is somewhat surprising since in general
1-local polyhedral curvatures may not even converge in L2, even if the mesh ver-
tices reside on the smooth limit surface [15].

• Our pointwise curvature approximations arise from dividing integrated “Steiner-
type” curvatures by associated area terms. For example, the integrated mean cur-
vature of an interior edge of a polyhedral surface may be defined as the product
between the length of that edge and the signed angle between the normals of its
adjacent faces—a definition that arises from Steiner’s view of considering offset
surfaces. To obtain pointwise curvature approximations from discrete integrated
curvatures, we divide by so-called circumcentric areas. While this approach is not
new, see, e.g., [9], our convergence result may be interpreted as a justification of
this construction, provided that the edges of a polyhedral surface well approximate
the principal curvature directions of a smooth limit surface. We prove uniform
lower and upper bounds for edge-based circumcentric areas that may be of interest
in their own right.

• For our result to hold, we require the explicit knowledge of positions of the vertices
of a net of curvature lines on a smooth surface and the combinatorics of this net.
More precisely, our curvature approximations at a vertex p require the position of
p and the positions of its direct neighbors (with respect to the combinatorics of the
net). Note that we do not require the knowledge of the entire net, though. (Given
such an entire smooth net, it would be trivial to compute the principal curvatures
at its vertices.) It would be desirable to drop from our approach the requirement of
the exact knowledge of vertex positions of a smooth net of curvature lines. Here,
one avenue for further study might be to consider discrete analogues of curvature
line nets, so-called principle contact element nets, see [5].

Our uniform convergence result given in Theorem 1 is a consequence of the corre-
sponding local error estimate given in Theorem 2. This error estimate holds up to and
including umbilical points, where singularities in the curvature line pattern arise. Us-
ing a refinement sequence for each of the three surfaces shown in Fig. 2, we observed
numerically that although the shape regularity of the net may blow up near umbilics,
linear convergence with respect to the maximum edge length ε remains valid in these
cases. Our experiments also indicate that linear convergence is optimal.

Alternative Approaches An alternative point of departure for establishing pointwise
convergence of discrete curvatures is to give up k-locality and to allow for k → ∞
as the mesh refinement increases. In fact, the above-mentioned convergence results
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Fig. 2 The three generic patterns of curvature lines near an umbilical point, called lemon, star, and mon-
star by Berry and Hannay [2]

of (ii) and (iii) may be interpreted in this way: by decreasing the diameter of the
domains over which discrete curvatures are integrated (measured), while simultane-
ously increasing the mesh refinement inside these domains at a sufficiently fast rate,
one recovers classical pointwise notions of smooth curvatures in the limit. In a sim-
ilar fashion, Belkin et al. [1] proposed a discrete Laplace operator based on the heat
kernel. This operator converges in a pointwise manner if the kernel is scaled down
while the mesh resolution is increased sufficiently fast relative to the scaling of the
kernel. In contrast to these works, which need to allow for k → ∞ to establish point-
wise convergence, our result is obtained by working with the simplest and most local
definition: k = 1.

2 Discrete Curvatures from Nets of Curvature Lines

In order to motivate our definition of discrete curvatures for nets of curvature lines,
we recall some important notions of curvature for polygonal curves and polyhedral
surfaces. For a similar discussion, we refer to [21].

2.1 Discrete Curvatures of “Steiner-Type”

Integrated Curvatures for Polygonal Curves Generalizations of classical smooth
notions of curvature date at least back to Steiner [20], who considered parallel offsets
of convex hypersurfaces, relating integrated or total curvatures to changes in length,
area, and enclosed volume. For example, for a convex curve γ ⊂ E

2, one of Steiner’s
formulas reads

l(γε) = l(γ ) + ε

∫

γ

κ(s) ds, (1)

where l is the length functional, κ denotes the curve’s curvature, and γε is the offset
curve obtained by displacing γ along its normals by some constant amount ε.

Steiner’s offset formula can be extended to the nonsmooth and nonconvex case
[12, 22, 25]. In particular, various notions for curvatures of polygonal curves may be
interpreted using Steiner’s framework. Consider, e.g.,

kp ∈
{

θp,2 sin
θp

2
,2 tan

θp

2

}

, (2)
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Fig. 3 Applying Steiner’s formula (1) to the three depicted definitions of offset curves for a given polyg-
onal curve leads to the three discrete curvatures in (2)

where p denotes an inner vertex of a polygonal curve, and θp is the turning angle be-
tween the two line segments incident to p. These notions arise by applying (1) to the
three different types of offsets depicted in Fig. 3. Among these, the first notion is the
one considered by Steiner, the second corresponds to a finite element discretization
using piecewise linear functions, and the third also arises in the theory of discrete
integrable systems [4, 16].

Integrated Curvatures for Polyhedral Surfaces By a polyhedral surface, we mean
a piecewise linear immersion of a compact simplicial surface into E

3. Extending the
notions of discrete curvatures from polygonal curves to oriented polyhedral surfaces
leads to the following edge-based definitions of integrated normal curvature:

ke ∈
{

θe‖e‖,2 sin
θe

2
‖e‖,2 tan

θe

2
‖e‖

}

. (3)

Here θe ∈ (−π,π) is the signed angle between the normals of the two flat faces
incident to the edge e. Notice that ke measures curvature orthogonal to e, since there
is no curvature along e itself. Integrated mean curvature is accordingly defined as
He = ke

2 .
In the planar limit (θe → 0), the definitions in (3) agree up to second order in the

angle variable. Therefore, as it turns out, it suffices to prove convergence of one of
these definitions in order to obtain convergence for all of them. Convergence of the
first definition in (3) in the sense of measures was investigated in [8, 13].

For completeness, we remark that the above edge-based definitions give rise to
vertex-based notions of integrated mean curvatures by adding the mean curvatures
over all edges emanating from a given vertex p, i.e.,

Hp = 1

2

∑

e∼p

He. (4)

The factor 1
2 takes the meaning of distributing the normal curvature of each edge

equally among its two adjacent vertices.
Finally, the scalar-valued definitions considered so far can be extended to corre-

sponding vector-valued notions. In the edge-based case, we obtain normal curvature
vectors ke by multiplying ke with the angle-bisecting unit normal vector at e (see
Fig. 4, left), and similarly for mean curvatures. Analogously to (4), we then obtain
vertex-based mean curvature vectors. We remark that for ke = 2 sin θe

2 ‖e‖, the result-
ing mean curvature vector coincides with the surface area gradient at p when restrict-
ing to piecewise linear surface variations (yielding the so-called cotangent formula,
see [19]). Its convergence in the sense of Sobolev norms was studied in [15].
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Fig. 4 Edge-based quantities. Left: dihedral angle θe and discrete curvature vector ke . Right: dual edge �e
and circumcentric area Ae

From Integrated to Pointwise Curvatures In order to obtain pointwise curvatures,
we divide the above integrated curvatures by corresponding area terms. Intuitively,
these areas can be thought of as the domain of integration from which integrated cur-
vatures were obtained. Whether or not one obtains convergent curvatures depends on
a careful choice of these areas. It turns out that for triangulated polyhedral surfaces,
one good choice are the so-called circumcentric areas, such as considered in [9]. For
each edge e, we define

Ae = 1

2
sgn(�e)‖e‖‖�e‖, (5)

where ‖�e‖ denotes the intrinsic length of the circumcentric dual edge �e. This dual
edge intrinsically connects the circumcenters C1 and C2 of the two triangles T1 and T2
incident to e. Here, intrinsic means that one can think of T1 and T2 as being unfolded
onto the plane (see Fig. 4, right). The sign sgn(�e) is positive if along the direction of
the ray from C1 through C2, triangle T1 lies before T2, and negative otherwise. Note
that sgn(�e) ≤ 0 (and therefore Ae ≤ 0) iff αe + βe ≥ π , where αe and βe are the
angles opposite to e in the triangulation (see Fig. 4, right). Consequently, we require
lower bounds that ensure positivity of circumcentric areas. For nets of curvature lines,
we provide such bounds in Sect. 3.1.

Similar to vertex-based integrated curvatures, we obtain vertex-based circumcen-
tric areas from the edge-based case via

Ap = 1

2

∑

e∼p

Ae, (6)

where the sum is taken over all edges emanating from a given vertex p. If all edges
e incident to a vertex p are intrinsically Delaunay (compare [3]), then Ap coincides
with the intrinsic Voronoi area of p and is therefore positive. However, as pointed out
in [10], Ap might become negative in general, and a bound similar to the edge-based
case is not possible. Therefore, we will not treat vertex-based pointwise curvatures
based on Ap .

2.2 A Local Error Estimate for Discrete Curvatures

In this section, we state our main local error estimate (Theorem 2), from which we
derive our global uniform convergence result (Theorem 1).
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Fig. 5 The triangulated vertex
star at a vertex p is a polyhedral
surface approximating the
(curved) discrete net of
curvature lines at p

Throughout we assume that M is a smooth compact oriented surface without
boundary immersed into E

3. By a discrete net on M we mean a cellular decom-
position of M such that all attaching maps are homeomorphisms and the intersection
of any two cells is either empty or a single cell. As usual, we denote by E the set
of edges and by V the set of vertices. We also assume that all edges are smoothly
embedded. In a discrete net of curvature lines on M , all edges are additionally re-
quired to be segments of curvature lines, nonumbilical vertices are required to have
valence four, and umbilical vertices are required to have valence greater than two. In
a completely umbilical region (such as S

2), any net in the above sense serves as a net
of curvature lines for our purposes.

In order to be able to apply the concepts of discrete curvatures on polyhedral
surfaces to nets of curvature lines, we require local polyhedral approximations of
smooth curvature line nets.

Local Polyhedral Approximation In the sequel, the letters e, f, and g will be reserved
for (curved) edges in the edge set E, incident to a common vertex p, while the cor-
responding bold face letters, e, f, and g, will denote the straight edge vectors in E

3

obtained by connecting the endpoints of e, f , and g, respectively, by straight lines
(see Fig. 5). We additionally assume that these edge vectors are oriented so that they
point away from p. For each disjoint edge pair (e, f ) incident to p and contained
in a common 2-cell, we consider the flat triangle spanned by e and f. The union of
these triangles forms the triangulated vertex star of p, denoted by st(p). Whenever
we consider the triple (e, f,g), we will always assume that the pairs (e, f) and (e,g)

span two triangles in st(p), so that e is their common edge. Finally, as later justified
by our sampling condition (10) and Corollary 9, we may assume that n · (e × f) > 0
and n · (e × g) < 0, where n denotes the normal of M at p.

Each triangulated vertex star st(p) thus yields the requisite local polyhedral ap-
proximation,2 which forms the basis for our curvature approximations. As outlined
in the previous section, our definition of pointwise curvatures relies on the division
by certain circumcentric areas, which may become zero or negative in general. This
motivates, for a given principal direction, to choose the associated edge vector with
maximal circumcentric area.

2Observe that we do not require that our local polyhedral approximations yield a consistent global one.
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Fig. 6 A discrete net of
curvature lines, with the two
families of directions depicted
as solid and dotted lines,
respectively, together with the
circumcentric areas (gray and
white diamonds) per edge

Definition 1 (Area maximizing edge) Consider a vertex p in a discrete net of curva-
ture lines. If p is umbilical, we call an edge vector e area maximizing if it maximizes
the circumcentric area among all edges emanating from p in the local polyhedral
approximation. If p is nonumbilical, let v1 be the principal direction canonically
associated with an edge vector e. We call e area maximizing if it maximizes the cir-
cumcentric area among the two edge vectors associated with v1.

We show in Sect. 3.1 that area maximizing edges always have circumcentric areas
that are bounded away from zero.

Definition 2 (Principal curvature approximations) Consider a vertex p in a discrete
net of curvature lines and let e be an area maximizing edge (associated with a princi-
pal direction v1 if p is nonumbilical). Then

k2(p) := ke

2Ae

defines the principal curvature approximation of κ2(p), where κ2 refers to the princi-
pal curvature corresponding to v2 if p is nonumbilical and refers to the unique normal
curvature if p is umbilical. Here ke is one of the edge-based integrated polyhedral
curvatures defined in (3).

The fact that in the above definition the edge vector e is associated with v1 while
ke

2Ae
approximates κ2 is not an oversight: ke measures curvature orthogonal to e.

The intuitive reason for dividing by twice the circumcentric area in the above de-
finition may (at least qualitatively) be explained as follows. Consider Fig. 6, where
one set of principal curvature directions, say those associated with v1, is depicted
by solid lines, while the direction corresponding to v2 is represented by dotted ones.
Likewise, the circumcentric areas corresponding to v1-directions are drawn as gray
diamonds, while the circumcentric areas corresponding to v2-directions are repre-
sented as white diamonds. Roughly, the gray diamonds cover only half of the total
surface. Hence, taking only the gray diamonds as regions of support for our (inte-
grated) principal curvature approximations corresponding to κ1, would mean to be
roughly missing a factor of two. This motivates, for each edge along a given prin-
cipal direction, to consider twice its circumcentric area as the domain of integra-
tion.
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Global Constants For each p ∈ M , let S(p) denote the shape (or Weingarten) oper-
ator. Our estimates depend on both S and its covariant derivative, ∇S. Accordingly,
we define

K := max
p

∥
∥S(p)

∥
∥

op and K′ := max
p

(

max
‖v‖=1

∥
∥∇vS(p)

∥
∥

op

)

, (7)

where ‖ · ‖op denotes the usual norm for linear operators. Note that K is an upper
bound for the normal curvatures of M , whereas K′ provides an upper bound for di-
rectional derivatives ∇v(κi) of principal curvatures κi .

Local Constants We also consider local constants—shape regularity ρ and maxi-
mum edge length ε—that are specific for each vertex in the net of curvature lines.
The reason for introducing local constants is that a high aspect ratio at one vertex
should not affect the sampling condition (see below) at another vertex. In the follow-
ing, we assume an arbitrary but fixed vertex p.

We let ε denote the largest intrinsic edge length over all (curved) edges e ∈ E

emanating from p ∈ V (denoted by e ∼ p),

ε = max
e∼p

l(e). (8)

Notice that the length of every edge vector emanating from p in st(p) is thus also
bounded above by ε.

Our estimates also depend on shape regularity, or aspect ratio. We define ρ ≥ 1 to
be the smallest number such that for all pairs (e, f) of edge vectors emanating from
p and forming a triangle in st(p), one has

ε

ρ
≤ ‖e‖ and

‖e‖‖f‖
‖e × f‖ ≤ ρ. (9)

The former inequality implies 1
ρ

≤ ‖e‖
‖f‖ ≤ ρ, while the latter means sin∠(e, f) ≥ 1

ρ
.

Sampling Condition In addition to the above definitions of maximum (local) edge
length and (local) shape regularity, we assume the (local) sampling condition

ε ≤ 1

16Kρ2
. (10)

In some of our estimates, it will suffice to work with weaker sampling conditions,
such as ε ≤ 1

2Kρ
or ε ≤ 1

2K , both of which are implied by (10).

Theorem 2 (Local error estimate) Let M be a smooth compact oriented surface with-
out boundary immersed into E

3. Consider a vertex p ∈ V in a discrete net of curva-
ture lines on M and assume the sampling condition (10). Let (k1(p), k2(p)) denote
the approximations of the smooth principal curvature (κ1(p), κ2(p)) as in Defini-
tion 2. Then

∣
∣ki(p) − κi(p)

∣
∣ ≤ Cε, i = 1,2. (11)
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The constant C = C(K, K′, ρ) depends only on the curvature bounds (7) and the
shape regularity (9).

Remark Equivalent estimates can be obtained when replacing the scalar-valued quan-
tities in (11) by their corresponding vector-valued counterparts (for definitions, see
Sect. 2). Proofs remain nearly identical.

Our global uniform convergence theorem stated in the introduction is a direct con-
sequence of our local error estimate.

Proof of Theorem 1 Let f : M → V be defined by mapping each p ∈ M to its nearest
point in the vertex set V , i.e., dM(p,f (p)) = dM(p,V ), where dM denotes the in-
trinsic distance on M . We extend our curvature approximations (initially only defined
on V ) to functions ki : M → R via p �→ ki(f (p)). By the assumptions of Theorem 1,
ε was globally chosen such that dM(p,f (p)) ≤ ε for all p ∈ M . This implies

∣
∣κi(p) − κi

(

f (p)
)∣
∣ ≤ K′ε.

Furthermore, ε was globally chosen such that it maximizes global edge length. Hence
Theorem 2 implies that there exists a constant C̃ such that

∣
∣ki

(

f (p)
) − κi

(

f (p)
)∣
∣ ≤ C̃ε

for all p ∈ M . Additionally, note that the constant C in Theorem 2, besides depending
on K and K′, is monotonically increasing with respect to shape regularity. (This will
become evident in the proof of Theorem 2.) Hence, C̃ depends only on K, K′, and
the largest local shape regularity constant ρ. This, together with an application of the
triangle inequality,

∣
∣ki(p) − κi(p)

∣
∣ = ∣

∣ki

(

f (p)
) − κi(p)

∣
∣

≤ ∣
∣ki

(

f (p)
) − κi

(

f (p)
)∣
∣ + ∣

∣κi

(

f (p)
) − κi(p)

∣
∣,

implies the claim. �

3 Proof of Local Error Estimate

The proof of Theorem 2 proceeds in several steps. First, we provide uniform lower
and upper bounds for the edge-based circumcentric areas by which we divide inte-
grated curvatures to obtain pointwise notions (Sect. 3.1). In a second step, we provide
estimates for edge-based integrated curvatures by using their corresponding discrete
curvature vector. We establish that for each vertex p in a net of curvature lines, the
projection of these vectors onto the tangent plane TpM is negligible. Furthermore,
we show that the remaining normal component leads to the error estimate in Theo-
rem 2 up to a certain error term (Sect. 3.2). While for general meshes, the resulting
error term cannot be controlled (and indeed causes failure of pointwise convergence),
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we provide bounds for this error term for the specific case of nets of curvature lines
(Sect. 3.3).

Basic Assumptions In order to avoid excessive repetition, we summarize our ba-
sic assumptions and notation. We write p for a nonboundary vertex of a polyhedral
surface, with vertex star denoted by st(p). We assume that ε is an upper bound for
the length of the (straight) edges emanating from p, and we let ρ denote the shape
regularity as defined in (9). If st(p) arises from the local polyhedral approximation
of a net of curvature lines, then ε is defined by (8), i.e., as the maximum edge length
of the curved edges emanating from p. Throughout, we assume the sampling condi-
tion (10). As before, we denote curved edges by e, f , and g, and their corresponding
straight edge vectors by e, f, and g.

3.1 Uniform Bounds for Circumcentric Areas

In this section we prove upper and lower bounds for the circumcentric areas of area
maximizing edges in the sense of Definition 1.

Proposition 3 Consider a vertex p in a discrete net of curvature lines and let e be an
area maximizing edge vector at p. Then our basic assumptions imply the existence of
some C > 0 such that

1

C
ε2 ≤ Ae ≤ Cε2,

where C only depends on the shape regularity constant ρ.

Note that for nonumbilical vertices, this result implies the existence of an edge
with positive circumcentric area for each of the two principal curvature directions.

The remainder of this section is concerned with proving Proposition 3. First ob-
serve that

Ae = 1

4
(cotαe + cotβe)‖e‖2 = sin(αe + βe)

4 sinαe sinβe
‖e‖2,

where αe and βe are the angles opposing e in the two triangles meeting at e, respec-
tively. The requisite upper bound on Ae is relatively straightforward to obtain.

Lemma 4 (Upper bound) Let p be a vertex in a discrete net of curvature lines on M .
Then our basic assumptions imply that each edge e emanating from p satisfies

Ae ≤ ρ4ε2.

Proof Clearly, we have

Ae ≤ ‖e‖2

4 sinαe sinβe
.
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Let f be the edge vector emanating from p such that αe belongs to the triangle formed
by e and f. Then the definition of shape regularity (9) implies

sinαe = ‖(f − e) × f‖
‖(f − e)‖‖f‖ ≥ ‖e × f‖

(ρ + 1)‖e‖‖f‖ ≥ 1

(ρ + 1)ρ
≥ 1

2ρ2
. (12)

A similar estimate holds for βe. Hence, Ae ≤ ρ4‖e‖2 ≤ ρ4ε2. �

Similarly, we obtain a lower bound for at least one edge emanating from p.

Lemma 5 (Lower bound) Let p be a vertex in a discrete net of curvature lines on M .
Then our basic assumptions imply that there exists an edge vector e emanating from
p such that

Ae ≥ 1

4ρ3
ε2.

Proof Let e be the shortest edge emanating from p, let f be the straight edge em-
anating from p such that αe belongs to the triangle formed by e and f, and define
γ := ∠(e, f). Since ‖e‖ ≤ ‖f‖, it follows that 2αe ≤ (π − γ ). Since in particular
0 < αe < π

2 , it follows that cotαe > π
2 − αe. By (9) we have sinγ ≥ 1

ρ
, and hence

cotαe >
π

2
− αe ≥ γ

2
≥ sinγ

2
≥ 1

2ρ
.

Applying similar arguments, we obtain cotβe > 1
2ρ

. Together, this yields

Ae = 1

4
(cotαe + cotβe)‖e‖2 ≥ 1

4ρ
‖e‖2 ≥ 1

4ρ3
ε2. �

Lower Bounds for Vertices of Valence Four The above lower bound on the circum-
centric area of at least one edge suffices for umbilical vertices. However, it does not
suffice at nonumbilical ones, since we require lower bounds for edges associated with
each of the two principal directions. We achieve this by showing that for each vertex
of valence four, there are at least three edges that satisfy the required lower bound.
Hence, for each vertex in a net of curvature lines, we have at least one good edge per
principal direction.

We note that some of the following results (in particular, Corollary 9) are also
valid for vertices of valence different from four.

As before, we let αe and βe denote the angles opposing the straight edge e in the
two triangles meeting at e, respectively. If αe ≥ δ, βe ≥ δ, and αe + βe ≤ π − δ for
some δ > 0, then

Ae ≥ sin δ‖e‖2

4
, (13)

which provides a useful lower bound if δ can be bounded away from zero. Accord-
ingly, we introduce the notion of δ-Delaunay edges, a nomenclature that is borrowed
from the classical case of Delaunay triangulations (corresponding to δ = 0).
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Definition 3 (δ-Delaunay) Let αe and βe be the angles opposing an edge e in the two
triangles meeting at e, respectively. Then e is called δ-Delaunay if there exists δ ≥ 0
such that αe ≥ δ, βe ≥ δ, and αe + βe ≤ π − δ.

Assume for the moment that p has valence four and that st(p) is planar. Assume
further that all of the eight angles opposing the four edges emanating from p are
bounded from below by δ. Then it is straightforward to verify that at least three among
the four edges incident to p are δ-Delaunay. In general, however, st(p) is not planar,
and we have to account for Gaussian curvature. As usual, we define discrete Gauss
curvature at a vertex p of a polyhedral surface as the angle defect, i.e., by Kp =
2π − ∑

i γi , where γi are the intrinsic angles meeting at p. We obtain:

Lemma 6 Let p be a nonboundary vertex of valence four on a triangulated polyhe-
dral surface, and let αi,βi denote the pairs of angles opposing the four edges ema-
nating from p. Assume that αi ≥ δ and βi ≥ δ for all i = 1, . . . ,4 and that Kp < 2δ.
Then at least three among the four edges meeting at p are δ-Delaunay.

Proof Using Kp = −2π + ∑4
i=1(αi + βi), the result follows from a straightforward

calculation. �

We now show that our basic assumptions imply the assumptions of Lemma 6 when
setting δ := 1

2ρ2 . To see this, first observe that with the above notation, αe ≥ sinαe ≥ δ

by (12), and analogously for βe. It remains to check the condition Kp < 2δ for the
discrete Gauss curvature. The requisite bound will be established in Lemmas 7 and 8.
The resulting consequence for the existence of δ-Delaunay edges is summarized in
Lemma 10. Finally, Lemma 11 establishes the lower bound for Ae.

Lemma 7 Let p be a nonboundary vertex of an oriented polyhedral surface. Assume
that the normals of the triangles incident to p make an angle no greater than φ ∈
[0,π) with some fixed direction in E

3. Then the discrete Gauss curvature associated
with p satisfies Kp ≤ 2π(1 − cosφ).

Proof The lemma is a consequence of the Gauss–Bonnet theorem. Let n1,n2, . . . ,nl

denote the unit normals of the triangles T1, T2, . . . , Tl incident to p, ordered accord-
ing to the orientation of the polyhedral surface. Each ni represents a point on S

2.
Connecting consecutive pairs (ni ,ni+1) by geodesic arcs on S

2 yields a spherical
polygon P (possibly with intersecting edges). For each i, the exterior angle of P at
ni is then equal to the interior angle of the Euclidean triangle Ti at p. In particular,
the sum 
 of the exterior angles of P satisfies 
 = 2π − Kp .

Moreover, by assumption we have φ ∈ [0,π), so all ni lie on the same hemisphere.
We can hence consider the spherical convex hull P̃ of n1,n2, . . . ,nl , i.e., the small-
est spherical polygon that contains all ni and that is convex with respect to shortest
geodesic arcs. Let 
̃ denote the sum of exterior angles of P̃ . It is easy to verify that

̃ ≤ 
. Hence Kp ≤ 2π − 
̃ = area(P̃ ), where the last equality follows from the
Gauss–Bonnet theorem. Since φ ∈ [0,π), the polygon P̃ is contained in a geodesic
disk of radius φ, the area of which is 2π(1 − cosφ). This proves the claim. �
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In order to make use of the previous lemma, we seek a bound on the angle φ

between the surface normal at p ∈ M and the normals to the triangles incident to p.
Note that our basic assumptions, and in particular our sampling condition, imply
ε ≤ 1

2K , where K is our curvature bound. Hence we can infer from [18, Sect. 3,
Corollary 1]:

Lemma 8 Let p be a vertex (umbilical or not) in a net of curvature lines on M .
Given our basic assumptions, st(p) can be oriented so that the maximum angle φ ∈
[0,π) between the surface normal at p ∈ M and the normals to the triangles in
st(p) satisfies sinφ ≤ (4ρ + 2)Kε, where ρ is the shape regularity. In particular,
sinφ ≤ 3

8 .

Corollary 9 Under the assumptions of Lemma 8, st(p) can be oriented so that the
orthogonal projection of st(p) onto TpM is injective and orientation-preserving.

Note that our assumptions are slightly different from those used in [18]; in fact,
our assumptions are stricter. While their sampling condition bounds the maximal
extrinsic distance between two neighboring vertices, we consider the intrinsic length
on the smooth surface, which is always larger. Additionally, in [18] it is assumed that
the distance between the discrete and the smooth surface is less than the reach of the
smooth one. This assumeption is implicitly fulfilled locally by the sampling condition
ε ≤ 1

2K , since the reach of a surface patch formed by an intrinsic ε-disk around p is
nothing but the minimal radius of curvature of that surface patch.

Lemma 10 In addition to the assumptions of Lemma 8, assume that p is of valence
four. Let δ := 1

2ρ2 , where ρ is the shape regularity. Then at least three edges incident
to p are δ-Delaunay.

Proof Using that (1 − cosφ) ≤ sin2 φ for φ ∈ [0, π
2 ], Lemmas 7 and 8 show that the

discrete Gauss curvature at p satisfies

Kp ≤ 2π (4ρ + 2)2 K2ε2 ≤ (16Kρε)2.

Setting δ = 1
2ρ2 , the sampling condition (10) implies Kp ≤ 2δ. Moreover, (12) im-

plies αi ≥ δ and βi ≥ δ for all pairs of angles αi,βi opposing the four straight edges
emanating from p. Finally, Lemma 6 implies the claim. �

Lemma 11 (Lower bound for valence four) Under the assumptions of Lemma 10,
there exist at least three straight edges among the four edges emanating from p

such that

Ae ≥ 1

16ρ4
ε2

for each edge e among these three.



812 Discrete Comput Geom (2010) 43: 798–823

Proof Observe that (13) implies 4Ae ≥ sin δ‖e‖2 for all δ-Delaunay edges. Applying
Lemma 10 and using sin

( 1
2ρ2

) ≥ 1
4ρ2 gives

Ae ≥ 1

4
sin

(
1

2ρ2

)

‖e‖2 ≥ ‖e‖2

16ρ2
≥ 1

16ρ4
ε2. �

Proof of Proposition 3 Lemma 4 provides an upper bound for both umbilical and
nonumbilical vertices. Lemma 5 provides the requisite lower bound for umbilical
vertices. Finally, Lemma 11 provides the lower bound for nonumbilical ones, since it
implies the existence of at least one edge per principal direction with circumcentric
area bounded from below. �

3.2 Estimates for Discrete Integrated Curvatures

In this section, we establish a bound for the difference between the edge-based in-
tegrated curvatures ke and (an appropriately scaled version of) the smooth princi-
pal curvatures of M . Specifically, for a given edge e in our polyhedral approxima-
tion, we work with the discrete integrated curvature ke = 2 sin θe

2 ‖e‖ introduced in
Sect. 2.1.

Darboux Frames For our purposes, it turns out to be useful to express vectors
in frames that are locally adapted to the geometry of the surface M . Specifically,
a Darboux frame at a nonumbilical point p ∈ M is an adapted frame given by
(v1,v2,n), where v1 and v2 are (normalized) principal directions of M at p, and
n = v1 × v2 is the surface normal (induced by the orientation of M). For umbilical
points, any adapted (i.e., v1,v2 ∈ TpM) and orthonormal (i.e., ‖v1‖ = ‖v2‖ = 1 and
n = v1 × v2) frame may be considered a Darboux frame. Throughout, we employ the
notation

e = (e1, e2, en)

to represent a vector e in the coordinates given by a Darboux frame. In the sequel,
we assume a fixed Darboux frame at every vertex p of our discrete net of curvature
lines. If p is nonumbilical, then each edge vector emanating from p is canonically
associated to exactly one of the principal directions v1 or v2. If p is umbilical, we
additionally require an explicit association of each edge vector with one of either
v1 or v2. In order to state the main result of this section, we require the notion of
tangential deviation of an edge vector with respect to a Darboux frame.

Definition 4 (Tangential deviation) Let p be a vertex in a discrete net of curvature
lines on M and let (v1,v2,n) be the Darboux frame at p. If an edge vector e is
associated with the principal direction v1, we call ed = |e2| its tangential deviation,
see Fig. 7. Likewise, if e is associated with v2, we let ed = |e1|.
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Fig. 7 The tangential
deviation ed of a straight edge e

The following proposition summarizes the main result of this section.

Proposition 12 Using the notation of Definition 4, let the edge vector e emanating
from a vertex p be associated with v1, and let its directly neighboring edges f and g
be associated with v2. Then our basic assumptions imply that

|ke − 2Aeκ2| ≤ C
(∣
∣δκ(ed + fd + gd)

∣
∣ε + ε3),

where κ2 denotes the principal curvature of M in direction v2, δκ = κ2 − κ1 (with
δκ = 0 in the umbilical case), and C = C(K, K′, ρ).

Remark We point out that the estimates in this section are not entirely specific for
nets of curvature lines. In fact, they hold in the more general setting of arbitrary
smooth nets embedded in M , as long as we require bounded shape regularity and
the sampling condition ε ≤ 1

2K , where ε is the maximum intrinsic edge length of
the net and K denotes our usual curvature bound. As a consequence, the estimates
of the current section do not suffice to establish our main error estimate. Indeed, to
obtain uniform convergence, we require that the term δκ(ed + fd + gd) appearing
in Proposition 12 is of order ε2. However, this is false for general nets (and causes
failure of uniform convergence) but is true for nets of curvature lines as we will
show in Sect. 3.3. For clarity, though, we have decided to restrict the discussion of
the current section to nets of curvature lines and rely on our (rather strong) basic
assumptions set forth in the beginning of Sect. 3.

Proposition 12 is proven in several steps. We commence by estimating the normal
component en of the straight edge vector e (Lemma 13 and Corollary 14). Then we
turn to the edge-based curvature vector ke corresponding to ke. We show that its
tangential component is negligible (Lemma 15). The final proof of Proposition 12
is given at the end of this section, where we show that the normal component of ke
yields the desired estimate.

Lemma 13 Let p be a vertex of a discrete net of curvature lines on M . Consider
an edge e ∈ E emanating from p with corresponding straight edge vector e. Writing
e = (e1, e2, en) with respect to a Darboux frame centered at p, our basic assumptions
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imply that

|en| ≤ Ke2 ≤ Kε2.

Furthermore, if P(x, y) = κ1
2 x2 + κ2

2 y2 denotes the osculating paraboloid, then

∣
∣en − P(e1, e2)

∣
∣ ≤ Cε3,

where C only depends on our global curvature bound K and the bound on curvature
derivatives K′.

Proof Using a Darboux frame at p, the surface M can locally be parameterized by
a height function h(x, y) over the tangent plane TpM . In the coordinates of the Dar-
boux frame, we have e = (e1, e2, en), with en = h(e1, e2). We let d = ‖(e1, e2)‖,
where throughout this proof ‖ · ‖ denotes the Euclidean norm in the parameter do-
main. Furthermore, we consider the constant vector field v(x, y) = (e1, e2)/d in the
parameter domain.

Let Di
vh denote the ith iteration of the directional derivative of h along v, i.e.,

D1
vh = Dvh and Di

v = Dv(D
i−1
v h), and let Dih denote the ith total derivative with

respect to the standard Euclidean metric in the parameter domain. Observe that
h(0) = Dh(0) = 0, and hence

en = h(e1, e2) =
∫ d

0

∫ t

0
D2

vh(τv) dτ dt. (14)

Consequently, in order to prove the first part of the lemma, we seek an upper bound
on |D2

vh| in terms of K.
Let S denote the shape operator, and let I(·, ·) and II(·, ·) = I(S·, ·) be the first and

second fundamental forms of M , respectively, with respect to the local parameteriza-
tion induced by h. From

I(u,v) = uT
(

Id + DhDhT
)

v (15)

and

κv = II(v,v)

I(v,v)
= I(Sv,v)

I(v,v)
= D2

vh
√

1 + ‖Dh‖2I(v,v)
(16)

we obtain the estimate

∣
∣D2

vh
∣
∣ = |κv|

√

1 + ‖Dh‖2I(v,v) ≤ K
(

1 + ‖Dh‖2)
3
2 . (17)

In order to bound ‖Dh‖, first observe that our sampling condition implies ε ≤ 1
2K .

This, in turn, provides a bound on the (positive) angle between the surface normal np

at p and the surface normal nq at any point q on the (curved) edge e ⊂ M incident
to p in the given net of curvature lines on M . To see this, consider an arc-length
parameterized curve γ : [0, ξ ] → M with γ (0) = p and γ (ξ) = q . Notice that our
basic assumptions imply that γ can be chosen such that ξ ≤ ε. The Gauss image
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γ̃ = n ◦ γ of γ is a curve on the unit sphere. The length of γ̃ is therefore bounded
from below by ∠(np,nq), i.e., the length of the minimizing geodesic joining np and
nq on S

2. The tangent vector of γ̃ at a point γ̃ (s), s ∈ [0, ξ ], is given by Sγ ′(s), and
the norm of this vector is therefore bounded above by K. Hence,

∠(np,nq) ≤
∫ ξ

0

∥
∥Sγ ′(s)

∥
∥ds ≤ Kξ ≤ Kε ≤ 1

2
.

Writing q = (q1, q2, qn) with respect to the Darboux frame centered at p = (0,0,0),
it follows that

∥
∥Dh(q1, q2)

∥
∥ = tan∠(np,nq) ≤ tan

1

2
. (18)

Plugging this into (17), we find that |D2
vh| ≤ 2K, which, together with (14), yields

the first part of the lemma.
In order to prove the second part, we first note that D2h(0) = D2P(0) and that

D2P is constant. Hence,

∣
∣h(e1, e2) − P(e1, e2)

∣
∣ =

∣
∣
∣
∣

∫ d

0

∫ t

0

∫ τ

0
D3

vh(σv) dσ dτ dt

∣
∣
∣
∣
. (19)

We consequently seek a bound for |D3
vh| in terms of K and K′. Considering (16) and

taking another derivative with respect to v yields

D3
vh = Dv(κv)

√

1 + ‖Dh‖2I(v,v)

+ κvDv
(
√

1 + ‖Dh‖2
)

I(v,v)

+ κv

√

1 + ‖Dh‖2Dv
(

I(v,v)
)

. (20)

We bound the terms appearing on the right-hand side one by one. To treat the first
term, we use (16) and ∇I ≡ 0, where ∇ denotes covariant differentiation with respect
to the metric induced by I, to derive

Dvκv = I((∇vS)v,v) + 2I(Sv,∇vv) − 2κvI(v,∇vv)

I(v,v)
. (21)

Let u(x, y) = u be a constant vector field in the parameter domain. Using the Koszul
formula for the Levi–Civita connection and applying (15) yields

2I(∇vv,u) = 2v
(

I(v,u)
) − u

(

I(v,v)
) = 2D2

vhDuh.

The last equality only depends on the value of u(x, y) at the point (x, y) and therefore
holds for any field u in the parameter domain. From (17), (18), and ‖v‖ = 1 we obtain

∣
∣I(∇vv,u)

∣
∣ ≤ C ‖u‖
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Fig. 8 The discrete curvature
vector ke is the sum of Jfe (the
rotation of e by π

2 about the axis
e × f) and Jge (the rotation of e
by π

2 about the axis e × g)

with C = C(K). This can be used in (21), together with our bounds on the norms of S

and ∇S in terms of K and K′, respectively, to obtain an upper bound for the first term
in (20) by C(K, K′). Bounds for the remaining two terms in (20) can be obtained
in a similar fashion using (15) and (16), proving the estimate |D3

vh| ≤ C(K, K′).
Using (19) and d ≤ ε then implies the claim of the second part in the statement of the
lemma. �

Corollary 14 With the same assumptions as in Lemma 13 and by defining δκ =
κ2 − κ1, we obtain

en = κ1

2
e2 + δκ

2
e2

2 + O
(

ε3) = κ2

2
e2 − δκ

2
e2

1 + O
(

ε3)

with |O(ε3)| ≤ C(K, K′)ε3.

Proof From the second part of Lemma 13 and simple algebraic manipulations we
deduce that

en = κ1

2
e2 − κ1

2
e2
n + δκ

2
e2

2 + O
(

ε3) = κ1

2
e2 + δκ

2
e2

2 + O
(

ε3).

The last equality follows from Lemma 13 and the sampling condition ε ≤ 1
2K (which

is implied by our basic assumptions), which together ensure that e2
n ≤ K2ε4 ≤ K

2 ε3.
The second equation in the statement of the corollary follows analogously. �

For the following discussion, it will be useful to work with the curvature vector
ke corresponding to the discrete integrated curvature ke = 2 sin θe

2 ‖e‖ (see Sect. 2.1).
With our usual notions, consider the two edge vectors f and g directly neighboring e
in st(p) (see Fig. 8). Recall from Corollary 9 that we may assume that (e × f) · n > 0
and (e × g) · n < 0, where n is the normal of M at p. A straightforward calculation
reveals that we can express the discrete curvature vector by

ke = Jfe + Jge, (22)

where Jf and Jg denote the rotations by π
2 around the axes e× f and e×g, respectively

(see Fig. 8). Consider now the splitting

ke = (ke)t + (ke)n
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of ke into its tangential and normal component with respect to TpM . We show that
the tangential component is negligible:

Lemma 15 Under the same assumptions as in Lemma 13, the projection of the dis-
crete curvature vector ke onto the tangent plane TpM satisfies ‖(ke)t‖ ≤ 10K2ρ2 ε3.

Proof With the notions and assumption of the preceding discussion, we first note that
a straightforward calculation reveals that

Jfe = e2f − (f · e)e
‖e × f‖ , (23)

and analogously for Jge.
With respect to TpM , let et , ft , and gt denote the tangential components of the

vectors e, f, and g, respectively. Then, by assumption, we have (et × ft ) · n > 0 and
(et × gt ) · n < 0. The tangential part of the discrete curvature vector ke is given by
(ke)t = (Jge)t + (Jff)t , where we deduce from (23), using the coordinates of our fixed
Darboux frame at p, that

(Jfe)t = ‖e‖2ft − (f · e)et

‖e × f‖ = ‖et × ft‖
‖e × f‖ (−e2, e1,0) + e2

nft − enfnet

‖e × f‖
and similarly

(Jge)t = −‖et × gt‖
‖e × g‖ (−e2, e1,0) + e2

ngt − engnet

‖e × g‖ .

Using the first part of Lemma 13 and the definition of shape regularity (9), we obtain

‖e × f‖2 = ‖et × ft‖2 + (enf1 − e1fn)
2 + (enf2 − e2fn)

2

≤ ‖et × ft‖2 + 8
(

K‖e‖ ‖f‖ε)2

≤ ‖et × ft‖2 + 8K2ρ2ε2‖e × f‖2.

Therefore, we have

1 ≥ ‖et × ft‖
‖e × f‖ ≥ ‖et × ft‖2

‖e × f‖2
≥ 1 − 8K2ρ2ε2,

and similarly for g. It follows that the two terms in (Jfe+Jge)t containing (−e2, e1,0)

cancel up to a term bounded by (8K2ρ2)ε3, where the power of three is due to the
fact that the norm of (−e2, e1,0) is also bounded by ε. Moreover, we observe that the
first part of Lemma 13 and the definition of shape regularity (9) yield

‖e2
nft − enfnet‖

‖e × f‖ ≤ K2‖e‖4‖f‖ + K2‖e‖3‖f‖2

‖e × f‖ ≤ 2K2ρε3,
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and analogously for g. Therefore, we arrive at
∥
∥(ke)t

∥
∥ = ∥

∥(Jfe + Jge)t
∥
∥ ≤ (

10K2ρ2)ε3,

proving the claim. �

The above implies the main result of this section:

Proof of Proposition 12 To estimate the normal component (ke)n = (Jfe)n + (Jge)n
of the discrete curvature vector, we use (23) to obtain

(Jfe)n = e2fn − (f · e)en

‖e × f‖ ,

and analogously for (Jge)n.
We note that the circumcentric area of e can be expressed in a similar manner as a

sum Ae = Ae,f + Ae,g, where

Ae,f = f · (f − e)
4‖e × f‖ e2,

and analogously for Ae,g. Applying Corollary 14, we obtain

(Jfe)n = e2(κ2f2 − δκf 2
1 ) − f · e(κ2e2 − δκe2

1)

2‖e × f‖ + O
(

ε3)

= 2Ae,fκ2 − δκf 2
1

e2

2‖e × f‖ − δκ f · e
e2

1

2‖e × f‖ + O
(

ε3),

and analogously for (Jge)n, with |O(ε3)| ≤ C(K, K′, ρ)ε3. Applying the shape regu-
larity condition (9) yields

∣
∣(Jfe)n − 2Ae,fκ2

∣
∣ ≤ C

(∣
∣δκ

(

f 2
1 + f · e

)∣
∣ + ε3),

and similarly for the difference between (Jge)n and 2Ae,gκ2. According to the state-
ment of Proposition 12, we assume that e is associated with the direction v1, whereas
f and g are associated with v2. Using our notion of tangential deviation from Defini-
tion 4 and noting that |f · e| ≤ |e2 + f1|ε + O(ε4), we arrive at

∣
∣(ke)n − 2Aeκ2

∣
∣ ≤ C

(∣
∣δκ(ed + fd + gd)

∣
∣ε + ε3),

which implies the claim, since (ke)t is of order O(ε3) by Lemma 15. �

3.3 Estimates for Nonumbilical Vertices

As mentioned before, the results of the preceding section are not entirely specific
for nets of curvature lines but hold for a larger class of smoothly embedded nets.
As such, these results do not suffice to prove our main error estimate in Theorem 2,
due to the failure of uniform convergence of curvature approximations constructed
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in a 1-local manner for general nets. Indeed, assuming that e is associated with the
principal direction v1, we seek a bound of the form

|ke − 2Aeκ2| ≤ Cε3, (24)

from which we may derive the desired main error estimate by employing our results
on the existence of uniform lower and upper bounds of (sufficiently many) circum-
centric areas (see Sect. 3.1).

While a bound of the form (24) does not hold for general smooth nets, it is indeed
valid for nets of curvature lines. This is a consequence of the results of the preceding
section and the fact that for nets of curvature lines, we have

∣
∣δκ(p)ed

∣
∣ ≤ Cε2, (25)

which is trivially satisfied for umbilical vertices and true for nonumbilical ones, pro-
vided that we associate e with its canonical principal direction. This is precisely the
main result of this section.

Observe that there is a simple case where (25) is obviously fulfilled: let M be a
paraboloid, and let p be its apex. Consider the four edge vectors emanating from
p in a local polyhedral approximation of a net of curvature lines containing p as
a vertex. Then the tangential deviation of each of these edges vanishes, so (25) is
clearly satisfied.

The main difference between nets of curvature lines on arbitrary smooth sur-
faces and the specific case of a paraboloid is the fact that curvature lines usually
have nonzero geodesic curvature κg . While the tangential deviation ed can always be
bounded by Cε2, with C = C(K, κg), this does not suffice for a uniform error bound,
since κg may blow up at umbilical points. Perhaps surprisingly, though, the product
|δκ(p)ed | can be bounded for nets of curvature lines:

Proposition 16 Let e be an edge vector emanating from a nonumbilical vertex p in
a local polyhedral approximation of a discrete net of curvature lines on M . If e is
associated with its canonical principal direction, then our basic assumptions imply

∣
∣δκ(p)ed

∣
∣ ≤ (

K2 + 4K′)ε2,

where ed is the tangential deviation of e, and K, K′ denote our usual bounds on
normal curvatures and their derivatives, respectively.

The intuition behind this statement is as follows. Roughly, ed is proportional to
the geodesic curvature of the curvature line corresponding to e. This geodesic curva-
ture, in turn, is inversely proportional to δκ , as the next lemma shows. Therefore, the
product δκed can be uniformly bounded.

Lemma 17 At any nonumbilical point of M , the geodesic curvature κ
g

1 of the prin-
cipal curvature line along v1 satisfies

κ
g

1 = ∇v2κ1

κ1 − κ2
and thus

∣
∣κ

g

1

∣
∣ ≤ K′

|κ1 − κ2| ,
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where κ1 and κ2 denote the principal curvatures corresponding to the principal di-
rections v1 and v2, respectively.

Proof Since v1 and v2 are orthonormal eigenvectors of the shape operator S, we have
Sv1 · v2 = 0. We use the Frenet formulas

∇v1v1 = κ
g

1 v2, ∇v1 v2 = −κ
g

1 v1,

∇v2v1 = κ
g

2 v2, and ∇v2 v2 = −κ
g

2 v1

and the Codazzi–Mainardi equation

(∇uS)v = (∇vS)u

to obtain

0 = ∇v1(Sv1 · v2) = ∇v1(Sv2 · v1)

= (∇v1S)v2 · v1 + S(∇v1 v2) · v1 + Sv2 · ∇v1 v1

= (∇v2S)v1 · v1 + S
(−κ

g

1 v1
) · v1 + Sv2 · (κg

1 v2
)

= (∇v2S)v1 · v1 + κ
g

1 (−κ1v1 · v1 + κ2v2 · v2)

= ∇v2(Sv1 · v1) − S(∇v2 v1) · v1 − Sv1 · ∇v2 v1 + κ
g

1 (κ2 − κ1)

= ∇v2(Sv1 · v1) − S
(

κ
g

2 v2
) · v1 − Sv1 · κg

2 v2 + κ
g

1 (κ2 − κ1)

= ∇v2κ1 + κ
g

1 (κ2 − κ1),

proving the first part. The second part follows from the definition of K′. �

Proof of Proposition 16 Let γ : [0, ε] → M be the curvature line that is canonically
associated with e, parameterized by arc-length and passing through p = γ (0). By
definition, ed is bounded above by the maximum distance from γ to the tangent line
passing trough γ ′(0). Since γ is parameterized by arc-length, we obtain

ed ≤ Kγ

2
ε2, (26)

where Kγ denotes the maximum curvature of γ as a space curve. Decomposing the
curvature vector of γ into its normal and geodesic components, and denoting by Kn

γ

and Kg
γ the respective maxima of the norms of these components, Lemma 17 yields

Kγ ≤ Kn
γ + Kg

γ ≤ K + max
s∈[0,ε]

K′

|δκ(γ (s))| , (27)

since Kn
γ ≤ K by the definition of K. Consequently, we seek a lower bound for

|δκ(γ (s))|. To do so, first observe that by the definition of K′ the derivatives of κ1
and κ2 are bounded by K′. Hence, the function δκ is Lipschitz with constant 2K′, i.e.,

∣
∣δκ(p) − δκ(q)

∣
∣ ≤ 2K′dM(p,q)

for every point q ∈ M .
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We now distinguish two cases: (i) |δκ(p)| < 4K′ε and (ii) |δκ(p)| ≥ 4K′ε. In the
first case, we immediately obtain

∣
∣δκ(p)ed

∣
∣ ≤ 4K′ε2,

which already proves the claim of the lemma. In the second case, we observe that for
all s ∈ [0, ε], we have

∣
∣δκ

(

γ (s)
)∣
∣ ≥ ∣

∣δκ(p)
∣
∣ − 2K′ε ≥ 1

2

∣
∣δκ(p)

∣
∣.

Plugging this into (27) gives

Kγ ≤ K + 2K′

|δκ(p)| .

Together with (26), this yields

∣
∣δκ(p)ed

∣
∣ ≤ ∣

∣δκ(p)
∣
∣

( K
2

+ K′

|δκ(p)|
)

ε2 ≤ (

K2 + K′)ε2,

completing the proof. �

3.4 Combining the Strings

We are now in the position to prove Theorem 2.
To this end, assume that the edge e in our local polyhedral approximation is asso-

ciated with the principal direction given by v1, and let this be the canonical direction
if p is not umbilical. Furthermore, let ke = 2 sin θe

2 ‖e‖ be the discrete integrated cur-
vature introduced in Sect. 2.1. Then Propositions 12 and 16 imply that there exists a
constant C = C(K, K′, ρ) such that

|ke − 2Aeκ2| ≤ Cε3. (28)

Assume additionally that e is chosen such that it maximizes the circumcentric
area Ae. (There are exactly two choices for nonumbilical vertices.) Proposition 3
shows that this choice leads to lower and upper bounds for Ae by (1/C)ε2 and Cε2,
respectively, with C = C(ρ). Therefore, we can divide (28) by 2Ae to obtain

∣
∣
∣
∣

ke

2Ae
− κ2

∣
∣
∣
∣
≤ Cε

with C = C(K, K′, ρ).
Finally, in order to prove our error estimate for the two other edge-based integrated

discrete curvatures, ke = 2 tan θe
2 ‖e‖ and ke = θe‖e‖, we infer from Lemma 8 and a

simple application of Taylor’s theorem that there exists a constant C = C(K, ρ) such
that

∣
∣
∣
∣
θe − 2 sin

θe

2

∣
∣
∣
∣
≤ Cε3 and

∣
∣
∣
∣
θe − 2 tan

θe

2

∣
∣
∣
∣
≤ Cε3,
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which can be used to obtain the requisite bound (28) for the other two discrete curva-
ture definitions as well. This completes the proof of Theorem 2.
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