150 research outputs found

    Performance analysis of contention based bandwidth request mechanisms in WiMAX networks

    Get PDF
    This article is posted here with the permission of IEEE. The official version can be obtained from the DOI below - Copyright @ 2010 IEEEWiMAX networks have received wide attention as they support high data rate access and amazing ubiquitous connectivity with great quality-of-service (QoS) capabilities. In order to support QoS, bandwidth request (BW-REQ) mechanisms are suggested in the WiMAX standard for resource reservation, in which subscriber stations send BW-REQs to a base station which can grant or reject the requests according to the available radio resources. In this paper we propose a new analytical model for the performance analysis of various contention based bandwidth request mechanisms, including grouping and no-grouping schemes, as suggested in the WiMAX standard. Our analytical model covers both unsaturated and saturated traffic load conditions in both error-free and error-prone wireless channels. The accuracy of this model is verified by various simulation results. Our results show that the grouping mechanism outperforms the no-grouping mechanism when the system load is high, but it is not preferable when the system load is light. The channel noise degrades the performance of both throughput and delay.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/G070350/1 and by the Brunel University’s BRIEF Award

    Unsaturated Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Effects

    Full text link
    In this paper, we provide a throughput analysis of the IEEE 802.11 protocol at the data link layer in non-saturated traffic conditions taking into account the impact of both transmission channel and capture effects in Rayleigh fading environment. The impact of both non-ideal channel and capture become important in terms of the actual observed throughput in typical network conditions whereby traffic is mainly unsaturated, especially in an environment of high interference. We extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel, along with a state characterizing the system when there are no packets to be transmitted in the buffer of a station. Finally, we derive a linear model of the throughput along with its interval of validity. Simulation results closely match the theoretical derivations confirming the effectiveness of the proposed model.Comment: To appear on IEEE Transactions on Wireless Communications, 200

    Performance Evaluation of Wireless Medium Access Control Protocols for Internet of Things

    Get PDF
    The Internet of Things makes the residents in Smart Cities enjoy a more efficient and high-quality lifestyle by wirelessly interconnecting the physical and visual world. However, the performance of wireless networks is challenged by the ever-growing wireless traffic data, the complexity of the network structures, and various requirements of Quality of Service (QoS), especially on the Internet of Vehicle and wireless sensor networks. Consequently, the IEEE 802.11p and 802.11ah standards were designed to support effective inter-vehicle communications and large-scale sensor networks, respectively. Although their Medium Access Control protocols have attracted much research interest, they have yet to fully consider the influences of channel errors and buffer sizes on the performance evaluation of these Medium Access Control (MAC) protocols. Therefore, this thesis first proposed a new analytical model based on a Markov chain and Queuing analysis to evaluate the performance of IEEE 802.11p under imperfect channels with both saturated and unsaturated traffic. All influential factors of the Enhanced Distributed Channel Access (EDCA) mechanism in IEEE 802.11p are considered, including the backoff counter freezing, Arbitration Inter-Frame Spacing (AIFS) defers, the internal collision, and finite MAC buffer sizes. Furthermore, this proposed model considers more common and actual conditions with the influence of channel errors and finite MAC buffer sizes. The effectiveness and accuracy of the developed model have been validated through extensive ns-3 simulation experiments. Second, this thesis proposes a developed analytical model based on Advanced Queuing Analysis and the Gilbert-Elliot model to analyse the performance of IEEE 802.11p with burst error transmissions. This proposed analytical model simultaneously describes transmission queues for all four Access Categories (AC) queues with the influence of burst errors. Similarly, this presented model can analyse QoS performance, including throughputs and end-to-end delays with the unsaturated or saturated load traffics. Furthermore, this model operates under more actual bursty error channels in vehicular environments. In addition, a series of simulation experiments with a natural urban environment is designed to validate the efficiency and accuracy of the presented model. The simulation results reflect the reliability and effectiveness of the presented model in terms of throughput and end-to-end delays under various channel conditions. Third, this thesis designed and implemented a simulation experiment to analyse the performance of IEEE 802.11ah. These simulation experiments are based on ns-3 and an extension. These simulation experiments' results indicate the Restricted Access Window (RAW) mechanism's influence on the throughputs, end-to-end delays, and packet loss rates. Furthermore, the influences of channel errors and bursty errors are considered in the simulations. The results also show the strong impact of channel errors on the performance of IEEE 802.11ah due to urban environments. Finally, the potential future work based on the proposed models and simulations is analysed in this thesis. The proposed models of IEEE 802.11p can be an excellent fundamental to optimise the QoS due to the precise evaluation of the influence of factors on the performance of IEEE 802.11p. Moreover, it is possible to migrate the analytical models of IEEE 802.11p to evaluate the performance of IEEE 802.11ah

    Fair Coexistence of Scheduled and Random Access Wireless Networks: Unlicensed LTE/WiFi

    Get PDF
    We study the fair coexistence of scheduled and random access transmitters sharing the same frequency channel. Interest in coexistence is topical due to the need for emerging unlicensed LTE technologies to coexist fairly with WiFi. However, this interest is not confined to LTE/WiFi as coexistence is likely to become increasingly commonplace in IoT networks and beyond 5G. In this article we show that mixing scheduled and random access incurs and inherent throughput/delay cost, the cost of heterogeneity. We derive the joint proportional fair rate allocation, which casts useful light on current LTE/WiFi discussions. We present experimental results on inter-technology detection and consider the impact of imperfect carrier sensing.Comment: 14 pages, 8 figures, journa

    Max-min Fairness in 802.11 Mesh Networks

    Get PDF
    In this paper we build upon the recent observation that the 802.11 rate region is log-convex and, for the first time, characterise max-min fair rate allocations for a large class of 802.11 wireless mesh networks. By exploiting features of the 802.11e/n MAC, in particular TXOP packet bursting, we are able to use this characterisation to establish a straightforward, practically implementable approach for achieving max-min throughput fairness. We demonstrate that this approach can be readily extended to encompass time-based fairness in multi-rate 802.11 mesh networks

    Enhanced Collision Resolution for the IEEE 802.11 Distributed Coordination Function

    Get PDF
    The IEEE 802.11 standard relies on the Distributed Coordination Function (DCF) as the fundamental medium access control method. DCF uses the Binary Exponential Backoff (BEB) algorithm to regulate channel access. The backoff period determined by BEB depends on a contention window (CW) whose size is doubled if a station suffers a collision and reset to its minimum value after a successful transmission. BEB doubles the CW size upon collision to reduce the collision probability in retransmission. However, this CW increase reduces channel access time because stations will spend more time sensing the channel rather than accessing it. Although resetting the CW to its minimum value increases channel access, it negatively affects fairness because it favours successfully transmitting stations over stations suffering from collisions. Moreover, resetting CW leads to increasing the collision probability and therefore increases the number of collisions. % Quality control editor: Please ensure that the intended meaning has been maintained in the edits of the previous sentence. Since increasing channel access time and reducing the probability of collisions are important factors to improve the DCF performance, and they conflict with each other, improving one will have an adverse effect on the other and consequently will harm the DCF performance. We propose an algorithm, \gls{ECRA}, that solves collisions once they occur without instantly increasing the CW size. Our algorithm reduces the collision probability without affecting channel access time. We also propose an accurate analytical model that allows comparing the theoretical saturation and maximum throughputs of our algorithm with those of benchmark algorithms. Our model uses a collision probability that is dependent on the station transmission history and thus provides a precise estimation of the probability that a station transmits in a random timeslot, which results in a more accurate throughput analysis. We present extensive simulations for fixed and mobile scenarios. The results show that on average, our algorithm outperformed BEB in terms of throughput and fairness. Compared to other benchmark algorithms, our algorithm improved, on average, throughput and delay performance
    corecore