7 research outputs found

    MINDiT: A framework for media independent access to things

    Get PDF
    Deploying smart environments often implies a plethora of co-existing devices and services, each with their own set of features, requirements and interfacing characteristics. These intricate scenarios are further exacerbated when such devices are coupled with networking capabilities, globalizing their interaction opportunities to create the so-called Internet of Things. In such interconnected heterogeneous environments, the joint operation of entities requires a flexible framework that enables and simplifies interfacing between elements. In this paper, we propose MINDiT, a framework that provides a common abstract interface towards the communication support with different entities. It incorporates cross-layer mechanisms inspired on the existing IEEE 802.21 technology, suitably modified to facilitate and optimize deployment in scenarios featuring both high-level, and low-powered network-restricted entities. MINDiT was validated through a prototype built over an open-source IEEE 802.21 implementation. We further compared its signaling impact against other solutions, and evaluated its performance over a smart environment featuring a multimedia scenario with multiple devices and services

    Virtual Mobility Domains - A Mobility Architecture for the Future Internet

    Get PDF
    The advances in hardware and wireless technologies have made mobile communication devices affordable by a vast user community. With the advent of rich multimedia and social networking content, an influx of myriads of applications, and Internet supported services, there is an increasing user demand for the Internet connectivity anywhere and anytime. Mobility management is thus a crucial requirement for the Internet today. This work targets novel mobility management techniques, designed to work with the Floating Cloud Tiered (FCT) internetworking model, proposed for a future Internet. We derive the FCT internetworking model from the tiered structure existing among Internet Service Provider (ISP) networks, to define their business and peering relationships. In our novel mobility management scheme, we define Virtual Mobility Domains (VMDs) of various scopes, that can support both intra and inter-domain roaming using a single address for a mobile node. The scheme is network based and hence imposes no operational load on the mobile node. This scheme is the first of its kind, by leveraging the tiered structure and its hierarchical properties, the collaborative network-based mobility management mechanism, and the inheritance information in the tiered addresses to route packets. The contributions of this PhD thesis can be summarized as follows: · We contribute to the literature with a comprehensive analysis of the future Internet architectures and mobility protocols over the period of 2002-2012, in light of their identity and handoff management schemes. We present a qualitative evaluation of current and future schemes on a unified platform. · We design and implement a novel user-centric future Internet mobility architecture called Virtual Mobility Domain. VMD proposes a seamless, network-based, unique collaborative mobility management within/across ASes and ISPs in the FCT Internetworking model. The analytical and simulation-based handoff performance analysis of the VMD architecture in comparison with the IPv6-based mobility protocols presents the considerable performance improvements achieved by the VMD architecture. · We present a novel and user-centric handoff cost framework to analyze handoff performance of different mobility schemes. The framework helps to examine the impacts of registration costs, signaling overhead, and data loss for Internet connected mobile users employing a unified cost metric. We analyze the effect of each parameter in the handoff cost framework on the handoff cost components. We also compare the handoff performance of IPv6-based mobility protocols to the VMD. · We present a handoff cost optimization problem and analysis of its characteristics. We consider a mobility user as the primary focus of our study. We then identify the suitable mathematical methods that can be leveraged to solve the problem. We model the handoff cost problem in an optimization tool. We also conduct a mobility study - best of our knowledge, first of its kind - on providing a guide for finding the number of handoffs in a typical VMD for any given user\u27s mobility model. Plugging the output of mobility study, we then conduct a numerical analysis to find out optimum VMD for a given user mobility model and check if the theoretical inferences are in agreement with the output of the optimization tool

    Mobile IP movement detection optimisations in 802.11 wireless LANs

    Get PDF
    The IEEE 802.11 standard was developed to support the establishment of highly flexible wireless local area networks (wireless LANs). However, when an 802.11 mobile node moves from a wireless LAN on one IP network to a wireless LAN on a different network, an IP layer handoff occurs. During the handoff, the mobile node's IP settings must be updated in order to re-establish its IP connectivity at the new point of attachment. The Mobile IP protocol allows a mobile node to perform an IP handoff without breaking its active upper-layer sessions. Unfortunately, these handoffs introduce large latencies into a mobile node's traffic, during which packets are lost. As a result, the mobile node's upper-layer sessions and applications suffer significant disruptions due to this handoff latency. One of the main components of a Mobile IP handoff is the movement detection process, whereby a mobile node senses that it is attached to a new IP network. This procedure contributes significantly to the total Mobile IP handover latency and resulting disruption. This study investigates different mechanisms that aim to lower movement detection delays and thereby improve Mobile IP performance. These mechanisms are considered specifically within the context of 802.11 wireless LANs. In general, a mobile node detects attachment to a new network when a periodic IP level broadcast (advertisement) is received from that network. It will be shown that the elimination of this dependence on periodic advertisements, and the reliance instead on external information from the 802.11 link layer, results in both faster and more efficient movement detection. Furthermore, a hybrid system is proposed that incorporates several techniques to ensure that movement detection performs reliably within a variety of different network configurations. An evaluation framework is designed and implemented that supports the assessment of a wide range of movement detection mechanisms. This test bed allows Mobile IP handoffs to be analysed in detail, with specific focus on the movement detection process. The performance of several movement detection optimisations is compared using handoff latency and packet loss as metrics. The evaluation framework also supports real-time Voice over IP (VoIP) traffic. This is used to ascertain the effects that different movement detection techniques have on the output voice quality. These evaluations not only provide a quantitative performance analysis of these movement detection mechanisms, but also a qualitative assessment based on a VoIP application

    Towards Seamless Mobility: An IEEE 802.21 Practical Approach

    Get PDF
    In the recent years, mobile devices such as cell phones, notebook or ultra mobile computers and videogame consoles are experiencing an impressive evolution in terms of hardware and software possibilities. Elements such a wideband Internet connection allows a broad range of possibilities for creative developers. Many of these possibilities can include applications requiring continuity of service when the user moves form a coverage area to another. Nowadays, mobile devices are equipped with one or more radio interfaces such as GSM, UMTS, WiMax or Wi‐ Fi. Many of these technologies are ready to allow transparent roaming within their own coverage areas, but they are not ready to handle a service transfer between different technologies. In order to find a solution to this issue, the IEEE has developed a standard known as Media Independent Handover (MIH) Services with the aim of easing seamless mobility between these technologies. The present work has been centered in developing a system capable to enable a service of mobility under the terms specified in the stated standard. The development of a platform aiming to provide service continuity is mandatory, being a cross‐layer solution based in elements from link and network layers supplying a transparent roaming mechanism from user’s point of view. Two applications have been implemented in C/C++ language under a Linux environment. One application is designed to work within a mobile device, and the other one in the network access point. The mobile device basically consists in a notebook equipped with two Wi‐Fi interfaces, which is not a common feature in commercial devices, allowing seamless communication transfers aided by the application. Network access points are computers equipped with a Wi‐Fi interface and configured to provide Internet wireless access and services of mobility. In order to test the operation, a test‐bed has been implemented. It consists on a pair of access points connected through a network and placed within partially overlapped coverage areas, and a mobile device, all of them properly set. The mobile detects the networks that are compatible and gets attached to the one that provides better conditions for the demanded service. When the service degrades up to certain level, the mobile transfers the communication to the other access point, which offers better service conditions. Finally, in order to check if the changes have been done properly, the duration of the required actions has been measured, as well as the data that can have been lost or buffered meanwhile. The result is a MIH‐alike system working in a proper way. The discovery and selection of a destination network is correct and is done before the old connection gets too degraded, providing seamless mobility. The measured latencies and packet losses are affordable in terms of MIH protocol, but require future work improvements in terms of network protocols that have not been considered under the scope of this work

    An integrated approach to QoS and security in future mobile networks using the Y-Comm framework

    Get PDF
    Future networks will comprise a wide variety of wireless networks. Users will expect to be always connected from anywhere and at any time as connections will be switched to available networks using vertical handover techniques. However, different networks have different Qualities-of-Service (QoS) so a QoS framework is needed to help applications and services deal with this new environment. In addition, since these networks must work together, future mobile systems will have an open, instead of the currently closed, architecture. Therefore new mechanisms will be needed to protect users, servers and network infrastructure. This means that future mobile networks will have to integrate communications, mobility, quality-of-service and security. However, in order to achieve this integration without affecting the flexibility of future networks, there is a need for novel methods that address QoS and security in a targeted manner within specific situations. Also, there is a need for a communication framework wherein these methods along with the communication and handover mechanisms could be integrated together. Therefore, this research uses the Y-Comm framework, which is a communication architecture to support vertical handover in Next Generations Networks, as an example of future communication frameworks that integrate QoS, security, communication and mobility mechanisms. Within the context of Y-Comm, research has been conducted to address QoS and security in heterogeneous networks. To preserve the flexibility of future network, the research in this thesis proposes the concept of Targeted Models to address security and QoS in specific scenarios: to address the QoS issue, a new QoS framework is introduced in this thesis, which will define targeted QoS models that will provide QoS in different situations such as connection initiation and in the case of handover. Similarly, to deal with the security side, targeted security models are proposed to address security in situations like connection initiation and handover. To define the targeted models and map them to actual network entities, research has been conducted to define a potential structure for future networks along with the main operational entities. The cooperation among these entities will define the targeted models. Furthermore, in order to specify the security protocols used by the targeted security models, an Authentication and Key Agreement framework is introduced to address security at different levels such as network and service levels. The underlying protocols of the Authentication and Key Agreement protocol are verified using Casper/FDR, which is a well-known, formal methods- based tool. The research also investigates potential methods to implement the proposed security protocols. To enable the implementation of some of the targeted security models, the research also proposes major enhancements to the current addressing, naming and location systems

    Snapshot : friend or foe of data management - on optimizing transaction processing in database and blockchain systems

    Get PDF
    Data management is a complicated task. Due to a wide range of data management tasks, businesses often need a sophisticated data management infrastructure with a plethora of distinct systems to fulfill their requirements. Moreover, since snapshot is an essential ingredient in solving many data management tasks such as checkpointing and recovery, they have been widely exploited in almost all major data management systems that have appeared in recent years. However, snapshots do not always guarantee exceptional performance. In this dissertation, we will see two different faces of the snapshot, one where it has a tremendous positive impact on the performance and usability of the system, and another where an incorrect usage of the snapshot might have a significant negative impact on the performance of the system. This dissertation consists of three loosely-coupled parts that represent three distinct projects that emerged during this doctoral research. In the first part, we analyze the importance of utilizing snapshots in relational database systems. We identify the bottlenecks in state-of-the-art snapshotting algorithms, propose two snapshotting techniques, and optimize the multi-version concurrency control for handling hybrid workloads effectively. Our snapshotting algorithm is up to 100x faster and reduces the latency of analytical queries by up to 4x in comparison to the state-of-the-art techniques. In the second part, we recognize strict snapshotting used by Fabric as a critical bottleneck, and replace it with MVCC and propose some additional optimizations to improve the throughput of the permissioned-blockchain system by up to 12x under highly contended workloads. In the last part, we propose ChainifyDB, a platform that transforms an existing database infrastructure into a blockchain infrastructure. ChainifyDB achieves up to 6x higher throughput in comparison to another state-of-the-art permissioned blockchain system. Furthermore, its external concurrency control protocol outperforms the internal concurrency control protocol of PostgreSQL and MySQL, achieving up to 2.6x higher throughput in a blockchain setup in comparison to a standalone isolated setup. We also utilize snapshots in ChainifyDB to support recovery, which has been missing so far from the permissioned-blockchain world.Datenverwaltung ist eine komplizierte Aufgabe. Aufgrund der vielfältigen Aufgaben im Bereich der Datenverwaltung benötigen Unternehmen häufig eine anspruchsvolle Infrastruktur mit einer Vielzahl an unterschiedlichen Systemen, um ihre Anforderungen zu erfüllen. Dabei ist Snapshotting ein wesentlicher Bestandteil in nahezu allen aktuellen Datenbanksystemen, um Probleme wie Checkpointing und Recovery zu lösen. Allerdings garantieren Snapshots nicht immer eine gute Performance. In dieser Arbeit werden wir zwei Facetten des Snapshots beleuchten: Einerseits können Snapshots enorm positive Auswirkungen auf die Performance und Usability des Systems haben, andererseits können sie bei falscher Anwendung zu erheblichen Performanceverlusten führen. Diese Dissertation besteht aus drei Teilen basierend auf drei unterschiedlichen Projekten, die im Rahmen der Forschung zu dieser Arbeit entstanden sind. Im ersten Teil untersuchen wir die Bedeutung von Snapshots in relationalen Datenbanksystemen. Wir identifizieren die Bottlenecks gegenwärtiger Snapshottingalgorithmen, stellen zwei leichtgewichtige Snapshottingverfahren vor und optimieren Multi- Version Concurrency Control f¨ur das effiziente Ausführen hybrider Workloads. Unser Snapshottingalgorithmus ist bis zu 100 mal schneller und verringert die Latenz analytischer Anfragen um bis zu Faktor vier gegenüber dem Stand der Technik. Im zweiten Teil identifizieren wir striktes Snapshotting als Bottleneck von Fabric. In Folge dessen ersetzen wir es durch MVCC und schlagen weitere Optimierungen vor, mit denen der Durchsatz des Permissioned Blockchain Systems unter hoher Arbeitslast um Faktor zwölf verbessert werden kann. Im letzten Teil stellen wir ChainifyDB vor, eine Platform die eine existierende Datenbankinfrastruktur in eine Blockchaininfrastruktur überführt. ChainifyDB erreicht dabei einen bis zu sechs mal höheren Durchsatz im Vergleich zu anderen aktuellen Systemen, die auf Permissioned Blockchains basieren. Das externe Concurrency Protokoll übertrifft dabei sogar die internen Varianten von PostgreSQL und MySQL und erreicht einen bis zu 2,6 mal höhren Durchsatz im Blockchain Setup als in einem eigenständigen isolierten Setup. Zusätzlich verwenden wir Snapshots in ChainifyDB zur Unterstützung von Recovery, was bisher im Rahmen von Permissioned Blockchains nicht möglich war
    corecore