
MINDiT: A Framework for Media Independent Access

to Things

Daniel Corujoa,∗, Marcelo Lebrea, Diogo Gomesa, Rui Aguiara

aUniversidade de Aveiro, Instituto de Telecomunicações, Campus Universitário de
Santiago, P-3810-193 Aveiro, Portugal

Abstract

Deploying Smart Environments often implies a plethora of co-existing de-
vices and services, each with their own set of features, requirements and
interfacing characteristics. These intricate scenarios are further exacerbated
when such devices are coupled with networking capabilities, globalizing their
interaction opportunities to create the so-called Internet of Things. In such
interconnected heterogeneous environments, the joint operation of entities
requires a flexible framework that enables and simplifies interfacing between
elements. In this paper, we propose MINDiT, a framework that provides
a common abstract interface towards the communication support with dif-
ferent entities. It incorporates cross-layer mechanisms inspired on the ex-
isting IEEE 802.21 technology, suitably modified to facilitate and optimize
deployment in scenarios featuring both high-level, and low-powered network-
restricted entities. MINDiT was validated through a prototype built over
an open-source IEEE 802.21 implementation. We further compared its sig-
naling impact against other solutions, and evaluated its performance over
a smart environment featuring a multimedia scenario with multiple devices
and services.

Keywords: Internet of Things (IoT), Media Independence (MI),
Heterogeneity, Smart Environments, IEEE802.21

∗Corresponding author
Email addresses: dcorujo@av.it.pt (Daniel Corujo), marcelolebre@av.it.pt

(Marcelo Lebre), dgomes@av.it.pt (Diogo Gomes), ruilaa@av.it.pt (Rui Aguiar)

Preprint submitted to Computer Communications December 29, 2011

1. Introduction

Evolutions on networking access technologies and protocols have created
a plethora of new connectivity scenarios featuring an ever-increasing amount
of devices and networking entities. In the Internet of Things (IoT) vision, the
traditional view of the Internet as a network for remote resource sharing has
evolved into an heterogeneous environment, where a multiplicity of devices
and services co-exist and use the Internet fabric to share their functionalities.
This vision creates immense possibilities, where real-world devices (both sen-
sors and actuators) and services deployed anywhere in the Internet can be
accessed and manipulated to interact with one another, jointly conceiving
and realizing Smart Environments able to impact and improve every aspect
of our everyday life.

This heterogeneity (considering the diversity of connectivity technologies
at pico, micro and macro level, as well as different services and interfacing
possibilities that are reachable on-line) raises complex interoperation issues:
different devices from different vendors, providing distinct features accessed
by diverse services using disparate protocols, standards and interfaces for ex-
ercising various kinds of behaviors, all pose a difficult canvas for the definition
and deployment of common-based scenarios.

Realizing this IoT vision requires a common interface that enables and
facilitates networking and control procedures. However, such interface must
be able to operate over specific technological functionalities and requirements
from high-level services (e.g., mechanisms supporting decision modules, man-
agement entities, service provisioning), as well as low cost constraints (e.g.,
low-powered sensors, fast versus slow links, mobile wireless environments).
It also has to take into consideration the way the Internet is evolving, with
users accessing services while on the move, and reports [1] heralding the
dominance of ubiquitous multimedia services and content.

To address these challenges, in this paper we propose and define MIN-
DiT, a framework able to provide a common abstract interface towards the
connectivity of agents wishing to interface with different entities in an IoT.
It provides a comprehensive and flexible approach towards the definition and
retrieval of interfaces for interacting with both services and devices. To ef-
ficiently cope with the different specific requirements posed by both higher
and lower layers of the network stack, we couple MINDiT with existing man-
agement concepts assisting the network: we evolved MINDiT over the Me-
dia Independent Handover (MIH) services concept introduced by the IEEE

2

802.21 [2] standard. Taking advantage of the MIH versatility, MINDiT en-
ables common interface mechanisms to operate in demanding mobile-aware
scenarios, as well as providing the flexibility for interface dissemination and
representation. The performance of our framework is evaluated through a
prototype built over an open-source implementation of the IEEE 802.21 stan-
dard, interfacing different devices and services.

The remainder of the paper is organized as follows. Section 2 identifies
related work on technologies for smart and ubiquitous services, followed by
Section 3 which describes our framework architecture. Section 4 presents a
functional and resource utilization comparison between MINDiT and major
Web Service-based frameworks. Next, Section 5 presents a multimedia smart
environment scenario which serves as a deployment example for our frame-
work, whose implementation performance results are presented in Section 6.
Finally, section 7 concludes the paper.

2. Related Work

The plethora of different smart devices and services that compose IoT
scenarios [3] [4] [5], have since long raised the associated challenge of hetero-
geneous interfacing [6]. A proposed solution is the deployment of middleware
that provides an intermediate software architecture and simplifies the access
to different kinds of sensor technologies [7]. Other approaches consider en-
hancing this middleware with dynamic programmable features [8] and sensor
clustering into virtual machines viewed as applications [9]. These solutions,
although enlarging the scope of interfaced sensor information sources, adopt
a vertical deployment approach that limit not only the adoption of new kinds
of devices, but also its extension to multiple target applications (e.g., Urban
Computing).

On the other hand, the differences in accessing low-powered devices and
application frameworks often results in isolated and dedicated systems, hin-
dering the design of new services or the support for new devices. To close
this gap, increased research and standardization efforts were made towards
the integration of small devices through service oriented architectures (SOA)
using Web technologies [10].

Works developed under the umbrella of projects such as Service Oriented
Device and Delivery Architecture (SODA) [11], Service-Oriented Cross-layer
infRAstructure for Distributed smart Embedded devices (SOCRADES) [12]
and Integrating the Physical with the Digital World of the Network of the

3

Future (SENSEI) [13], have explored frameworks deploying Web Services at
the device level, through the usage of the Devices Profile for Web Services
(DPWS1) protocol stack. This OASIS (Organization for the Advancement
of Structured Information Standards) standard provides services for discov-
ery, event processing, description and addressing. However, despite targeting
resource-constrained devices, the XML nature of the used SOAP messages
makes them large in size and requires devices to support HTTP. To counter
the former issue, solutions such as the Efficient XML Interchange (EXI2)
specifies XML encoding procedures that reduce this overhead. Neverthe-
less, such operations require computation resources that might not be easily
available in low-powered devices. Lastly, DPWS still requires its integration
with other services, such as Web Service Definition Language (WSDL3), to
describe the services running in devices.

A different web service device information access (and incrementally sup-
ported in several works related to SENSEI), the REpresentational State
Transfer (REST) approach provides lightweight means for accessing resources
as web services, using standard HTTP methods with Uniform Resource Iden-
tifiers (URIs). Frameworks employing REST [14] [15] allow direct access
from the Internet to the sensor network and minimize the overhead intro-
duced by the transport layer, when compared to XML and WSDL. Partic-
ularly, [16] considers that the lightweight nature of this approach is feasible
for low-powered nodes in terms of sensor data acquisition time and power
consumption. However, RESTful solutions also require a HTTP client and
server embedded in the device, and is also constrained by the size of the
XML-based data. Like in the DPWS case, the latter issue has motivated
the adoption of EXI-like solutions [17], demanding more processing from in-
volved devices, and requiring the usage of other protocols (such as Wired
Application Description Language, WADL4) for describing services.

Lastly, integrated frameworks tightening the connection between sensors
and IP mechanisms such as mobility, have also surfaced [18] [19]. However,
the availability of such features has to be made at a gateway or sink node
level (due to the demands they exert for their operation) creating different
“islands” of device access frameworks. In addition, many of the solutions

1DPWS Specification, http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
2EXI Specification, http://www.w3.org/XML/EXI/
3WSDL Specification, http://www.w3.org/TR/wsdl
4WADL Specification, http://www.w3.org/Submission/wadl/

4

require the deployment of different protocols for different mechanisms (i.e.,
device discovery and information querying), increasing the complexity of not
only the supported devices but also of its users.

3. The MINDiT Framework

When addressing an IoT that encompasses entities of very distinct nature,
operation requirements have to be considered in diverse scenarios and meet
stringent demands. IoT goes beyond interfacing with sensors and actuators,
but also includes communication with other kinds of devices as well as inter-
facing with high-level services. This is where MINDiT aims to contribute:
providing a flexible common abstract interface for controlling and accessing
the information flow coming from both high-level services, as well as low cost
devices.

MINDiT is built exploring MIH concepts defined in the 802.21 standard
[2] as its base. Developed to facilitate and optimize handover procedures
in different wireless technologies, 802.21 provides an abstraction cross-layer
called the Media Independent Handover Function (MIHF). It provides a set
of core services (Events, Commands and Information) for media indepen-
dent control and information obtaining from different access technologies
(i.e., Ethernet, WLAN, WiMAX and 3GPP), through a common abstract
interface, which can be used locally or remotely via the MIH Protocol. En-
tities using this interface (dubbed MIH-Users) have their abstract requests
turned into technology specific primitives by the MIHF, which maps them to
existing Service Access Points (SAPs). MINDiT furthers this principle, not
only extending the interfacing with different devices and services in a media
independent way (e.g., beyond the wireless handover use case of the stan-
dard), but also introducing a series of enhancements to the base standard,
enabling it to become a valuable asset in operating IoT scenarios. MINDiT
goes beyond the static interfacing nature of 802.21, and provides mechanisms
that allow dynamic interface definition and retrieval based on the needs of re-
questing consumers. MINDiT also introduces MIH Protocol enhancements,
allowing our framework to efficiently operate with both demanding high-level
services, and low cost devices.

3.1. General Architecture

The objective of MINDiT is to facilitate and generalize access by agents
aiming to control or obtain information from services and devices in IoT en-

5

vironments. To allow that, entities containing services or devices available
for interfacing are coupled with the MINDiT Media Independent Function
(MMIF) as well as a specific SAP. The MMIF provides a set of enhance-
ments over the 802.21 MIHF, but maintaining its behavior as an abstraction
and interaction layer, enabling such entities to exchange both L2 and/or L3
enhanced MIH Protocol messages. The SAP provides the necessary defi-
nition in MIH format, of the primitives and parameters made available by
services and devices. In addition, the MMIF and enhanced MIH Protocol
allow MINDiT entities to reuse the service management mechanisms of the
802.21 standard, for entity discovery, registration and event configuration, as
defined in [2].

802.21 MIH-Users become MINDiT Media Independent-Users (MMI-Users)
which are high-level entities wishing to interface with such devices, accord-
ing to supported SAPs. Contrary to the base 802.21 framework and the
MIHF, MINDiT does not consider that the MMIF comes deployed with a
pre-defined set of SAPs. As shown in Fig. 1, MINDiT allows MMI-Users
to identify the necessary SAPs for interfacing with discovered devices (Step
1), and request their specification from a SAP repository. This repository
is an enhanced version of the Media Independent Information Server (MIIS)
(which we call the Information Domain MIIS, or IDMIIS), which can be
queried using the MIH Protocol (Step 2). The requested SAP is sent back
towards the MMI-User (Step 3), providing it with the information required
to assess and create the necessary MIH Protocol commands for interfacing
with the respective IoT device (Step 4). In this way, the MMI-User is able
to obtain the necessary interfaces for interacting with virtually any kind of
device and service, allowing a generic IoT interfacing environment.

To further support this vision, MINDiT provides a set of important evo-
lutions over the base 802.21 mechanisms, comprising the support of dynamic
SAPs (other than just specific link access technologies as in 802.21), the def-
inition of a single purpose action primitive to interact with entities based
on retrieved SAPs, an enhanced MIIS server allowing for the query of SAPs,
and the support of integrated communications using different communication
models, including a proxy mechanism.

3.2. Dynamic Plug-in of Device/Service Interfaces

To support the usage of different SAPs, the MMIF required the enhance-
ment of the MIHF to couple, in a plug-in manner, with different SAPs in a

6

Figure 1: The MINDiT Framework Generic Architecture

dynamic way. We call this new ability ”Dynamic SAPs”, where we decou-
pled the SAPs from the MMIF, as shown in Fig. 2. Instead of implementing
SAPs as a software API towards the link layers using specific driver calls,
we cloned the MIH Protocol used in remote communications between peer
MMIFs, and reused it in local communications between MMI-Users and the
MMIF, as well as between the link layer modules and the MMIF. In this way,
developers of different services and devices can create their own SAP, and
couple it to the MMIF via usual MIH Protocol definitions.

Figure 2: Decoupled SAP architecture for the MINDiT framework

3.3. Interfacing with Devices and Services

Interfacing between MMI-Users and a large number of different devices
and services raises the need for an adaptive mechanism allowing access to

7

different primitives from different SAPs, using the same generic MIH proto-
col. The standard MIH Protocol defines header and payload formats, using
Type-Length-Value (TLV) encoding. The payload includes the Source MMIF
identifier TLV, the Destination MMIF identifier TLV and MIH service spe-
cific TLVs. The header contains, amongst others, a Service identifier (e.g.,
events, commands or information), an Operation code (e.g., request, response
or indication) and an Action identifier (e.g., specific command identifier),
which are filled according to the primitives supported by the MIH Protocol.
The base 802.21 framework features a fixed set of MIH primitives, used for
service management, handover and link control.

However, with MINDiT allowing the flexible coupling of new and differ-
ent SAPs, a more generic MIH Protocol is required, supporting a different
number of primitives from distinct entities. To support this, we defined a
new generic MIH Action message that, through the inclusion of a SAP Iden-
tifier, is able to specify which actions to execute on an entity, as shown in
Fig. 3. Each SAP has its own identifier, and each of its supported primitives
is accessed by indicating a specific Action identifier.

M
M

IF

MINDiT Device

D
ev

ic
e

SA
P

M
M

I-U
se

r

MINDiT Agent

M
M

IF Destination
Identifier

MIH
Header

Source
Identifier SAP Identifier Action

Identifier
Action
Value

MINDiT MIH Action Message

Figure 3: New Generic MIH Action Message

The Action Value parameter (which specifies how the action should oper-
ate) can be simple or complex. For simple situations, such as turning on/off
an actuator, the parameter is composed by one single element/datatype,
whereas in more complex situations, sequences of parameters can be pro-
vided. This generic approach allows MMI-Users to use a common message
to operate the different actions supported by receiving devices and services.
The definition of what each action procedure does in each device is provided
by its specific SAP, which is obtainable from the IDMIIS, defined next.

3.4. Information Domain MIIS

By retaining the base mechanisms of the original MIH Information Server,
the IDMIIS provides a queryable MMI-User that is composed by Information
Elements (IEs) organized in containers reflecting a network’s topology. IEs

8

provide details about the operator, network and Points of Attachment (PoAs)
which can be used for optimizing network selection and network interface pre-
configuration. IEs can be represented in either binary form, allowing TLV
queries, or using a Resource Description Framework (RDF) that is queryable
through the SPARQL Protocol and RDF Query Language (SPARQL). The
base MIIS also provides filtering mechanisms, allowing the definition of a
maximum query response size and prioritizing some IEs over others.

Our proposed IDMIIS evolves the standard MIIS, fulfilling the added
role of SAP repository. The process of obtaining access interfaces towards
the different elements present in the network is performed by querying the
IDMIIS (as shown in Fig. 1).

3.4.1. Representation of Things - Technology, Phenomena and Primitives

In order to facilitate the definition of SAPs and primitives, we developed
a simple tri-partite model that defines the relationship between devices, phe-
nomena and primitives. Tags are used as identifiers for combinations of such
relationships, aiding in querying and identifying intended behavior. In this
way, it becomes possible and simpler to define the things, their actions and
over which phenomena they operate (Fig. 4). For example, an agent can
query an IDMIIS indicating that it is interested in interacting with sensors
for obtaining temperature (respectively using these names as the tags for
identifying the technology and the phenomena). The IDMIIS would then re-
ply with a list of possible primitives related to temperature sensors, or even
provide a whole SAP as response.

We have created our IDMIIS extensions in a way that enables deploy-
ers to define the specific mechanism used to implement this model. In our
tests (and the mechanisms presented in the next subsections), we used a sim-
ple XML schema, but relational databases or more advanced semantic and
ontology schemes based on Semantic Markup for Web Services (OWL-S5)
or Web Service Modeling Ontology (WSMO6), using descriptions in WSDL
and XML, can be devised. The important factor here is to retain the SAP
definition according to our extensions defined over the MIH Protocol format.

In this way, MMI-Users can query the interfacing information to interact
with different devices and services based on simple behavior representation.

5OWL-S Specification, http://www.w3.org/Submission/OWL-S/
6Web Service Modeling Ontology, http://www.wsmo.org/

9

THING

Items

Primitives
Events

Commands

Technologies

Industry

Communications

House
Appliances

Management Context

TV

...

...

802
.11 ...

Figure 4: Tri-Partite representation

Moreover, since this process only involves the interfacing agent at the services
invocation and the IDMIIS, no processing or memory restrictions are imposed
from the devices represented by the SAPs.

3.4.2. Accessing Interfaces

The process of linking the semantic and syntactic description for inter-
facing with an entity is typically called grounding. Fig. 5 illustrates the full
MINDiT grounding procedure, showing the involved entities and exchanged
messages, composed by three phases. In phase 1, a MultiMedia Agent
(MMAgent) acting as a MMI-User, after discovering a MINDiT-enabled de-
vice, queries a IDMIIS for obtaining the necessary interfacing information.
In phase 2, the IDMIIS replies with the necessary interfacing information.
Lastly, in phase 3, the MMAgent builds a action command based on the in-
terfacing information received from the IDMIIS, allowing it to interact with
the device. For simplicity, the figure only shows part of the messages payload.

During the query phase, through a MIH Get Information request message,
the querying MMI-User provides tags and attributes in the form of a list,
as shown in phase 1 of Fig. 5. Each tag can be accompanied by various
attributes that facilitate the identification of the intended interface. When
the IDMIIS receives a query in this format, it transforms this list into an

10

MMI-User

IDMIIS
MMIF

Header Payload
(Tag Query)

MIH Query Message
Header Payload

(Result XML)

Header Payload
(Action)

ActionID=2,ActionValue=12

MIH Query Response

MIH_Action.request

… <primitives> <commands>
<primitive AID=”12" OPCODE=”1" SID=”3"

message=”MIH_Action.request” name=”record”>
<parameter datatype=”UINT(1)” label=”actionID”>
2 </parameter> </primitive> ...

M
M

I-U
er

M
M

IF

MMAgent
SA

P

M
M

IF

Figure 5: Grounding procedure for obtaining a SAP using a IDMIIS

XML Path Language (XPATH7), and applies it to the main XML Database,
retrieving and sending the result, as shown in phase 2 of Fig. 5.

When the requesting agent entity receives the query results obtained from
the IDMIIS, the first step is to retrieve the data regarding intended primitives
from the XML (e.g., the OPCODE, SID, and AID values) to construct the
MIH Header of the MIH Action message (as shown part 3 of Fig. 5). All
entities of the resulting XML can provide tags that may be used as guidelines
for the grounding or to simply provide extra information on the parameter.

3.4.3. Querying Support Mechanisms

As implied before, our framework also extends the filtering mechanism
supporting queries, allowing the requesters to send queries with different
degrees of detail. It enables querying agents to execute phased queries, using
the information obtained from responses to refine sequential queries, with the
aim of better pinpointing the intended interfacing primitives. Considering
the example depicted in Fig. 5, instead of asking directly for elements present
in the network that comply with the three tags at once, we could divide the
query into three separated messages. In this case, first the MMA would search

7XML Path Language Specification, http://http://www.w3.org/TR/xpath/

11

for all available primitives and, depending on the ones discovered from the
corresponding response, it could create another query message to retrieve all
available commands for a specific technology. Again, through the received
results, it could create one last query specifying the required SAP.

An often overlooked procedure is how interfaces are added to servers pro-
viding them. The IDMIIS is able to have definitions of new SAPs pushed
into its information structure, using a modified MIH Push Information re-
quest message. In its original 802.21 form, this message is only available for
the operator to push network information towards a user terminal. We have
enhanced it to allow service providers, manufacturers and other parties, to
push SAPs into the IDMIIS.

3.5. Dissemination Models

In 802.21, MIH Protocol messages are exchanged between peer MIHF,
enabling a MIH-User in one entity to interface with the SAP existing at
another. However, low cost devices might have hardware limitations, and
might not be able to include a full MIHF and/or SAP module in their stack.

By decoupling the SAPs from the MMIF (as identified in section 3.2),
MINDiT explores the exchange of remote information between these two
modules, allowing the deployment of Gateway nodes which contain a MMIF,
and interface remotely with devices which are only capable of incorporating a
simple SAP. Through the realization of discovery and registration procedures,
the Gateway node can discover SAP-enabled devices, and act as a serving
MMIF on their behalf and simplifying their design.

Considering even more stringent device deployments (e.g., devices with
closed APIs, or legacy devices), MINDiT is able to employ a SAP module in
the Gateway node, enabling it to translate the MIH Protocol into whatever
API or protocol necessary to interface with the target device. In this way,
the MINDiT framework is able to encompass different scenarios, according
to the capacities of the involved devices and services. [20] provides details
on the deployment of such dissemination models.

3.6. Proxied Actions

IoT environments provide different connectivity deployments and oppor-
tunities for the devices and agents operating therein. It is possible that some
types of devices are connected to a specific infrastructure, while others are
made available in ad-hoc manner. Considering these matters, we extended

12

our dissemination models to provide the means for MINDiT to support prox-
ying. Our design allows MMI-Users to send commands to third-party entities
(after gaining knowledge of them through the proxy entity), using the proxy
node as an intermediary. For this procedure we introduce a Proxied Desti-
nation Identifier header, which allows the receiver of the message to forward
it towards other entity, and then retrieve its response back to the original
source (exemplified in Fig. 6).

Entity A

MMI-User MMIF

MIH_Action.req

Entity B

MMIF MMI-User

MIH_Action.req
MIH_Action.req

MIH_Event_Subscribe.req

MIH_Event_Subscribe.req

MIH_Event_Subscribe.rsp

MIH_Event_Subscribe.rsp

MIH_Action.rsp
MIH_Action.rsp

MIH_Action.req

Entity C

MMIF Generic SAP

MIH_Event_Subscribe.req

MIH_Event_Subscribe.rsp

Figure 6: Sequence Diagram of Action Message for Proxy

The proxying mechanism design presented here focuses on the connec-
tivity provisioning mechanism (in deployments of this framework, security
and authentication considerations are important). For simpler deployments,
the execution of the proxying mechanism can be dependent of configuration
parameters of the MMIF and Proxy MMI-User: MMIFs can be configured
to support access from all proxy requests, or ignore them. Also, the exe-
cution of MIH Protocol procedures can be integrated and occur only after
specific link access technology security and authentication procedures (e.g.,
802.1X) have been executed. The 802.21 standard itself does not provide
any considerations regarding secured and authenticated interactions between
peer MIHFs (such efforts are currently being pursued in a new amendment,
802.21b). Although we do not address the deployment of such procedures
for our framework in this paper, we argue that its flexible design is able
to encompass the definition of secure and authenticated communications at
the MMIF level, incorporating them into discovery and capability exchange
procedures.

13

4. Comparison with Other Frameworks

The deployment of solutions providing access to different kinds of de-
vices and services in IoT environments have almost naturally resulted in
SOA-based architectures using Web Services for the realization of necessary
procedures. In this section, we highlight the features provided by MINDiT,
identifying them as the evolutions made over base 802.21 mechanisms for
the enablement of such functions, and compare them with traditional Web
Services based technologies.

4.1. Functional Comparison

Table 1 presents a functional comparison on the features provided by
the base 802.21, our MINDiT framework and generic Web Services based
frameworks.

Related with feature (1), MINDiT facilitates information inter-exchange
by generalizing it into events, commands and information elements. It in-
herits the base structure from 802.21, but enhances it with the ability to go
beyond handover-related operations, and a static set of SAPs. Our extensions
on 802.21 bring it closer to the interface dissemination mechanisms such as
WSDL in web services-based deployments. It actually goes one step further
by providing a common protocol for both accessing the interfaces and using
them, unlike web services which can require different protocols and XML
structures, potentially hindering deployment.

About (2), MINDiT reutilizes L2 and L3 discovery mechanisms from
802.21, providing for capability interexchange using the same protocol. Web-
service based frameworks supports discovery using specific protocols (such as
the Universal Description Discovery and Integration (UDDI8), thus requiring
the additional support of yet another protocol by the framework.

Feature (3) is also supported by all three frameworks, with MINDiT en-
hancing the 802.21 event service beyond-handover features. This allows it
to have an uniform way of reaching for events in IoT devices and services,
as well as defining thresholds and period for event reporting. Web Services
handle this information inter-exchange in a P2P fashion: each device (or
other services) needs to implement the means for its integration with the
event registration and dissemination mechanism of the framework, whereas
MINDiT is able to use the same event service over all SAPs.

8UDDI Specification, http://www.uddi.org/pubs/uddi_v3.htm

14

Num. Feature Description IEEE802.21 MINDiT Web Services

1 Defines a uniform description for information dissem-
ination as well as entity interfacing

– ++ +

2 Provides the means for discovering, determining ca-
pabilities and registering at other framework-enabled
entities

+ + +

3 Allows the subscription of events, directly at the ser-
vices and devices providing them, allowing threshold
and period for event reporting

+ ++ ++

4 Remote interaction is able to be sent either via L2 or
L3 protocols

++ ++ –

5 Provides abstracted services to higher layers, interfac-
ing them with both other higher-layer services (e.g.,
context and content servers) as well as lower layer
technologies (e.g., sensors and actuators)

– ++ +

6 Different dissemination models – + ++
7 Integrates proxying mechanisms to extend access to

other framework-enabled entities beyond the discov-
ery range

– ++ +

8 Provides a uniform protocol, able to be used for both
service management/control, as well as operating en-
tities according to the obtained interfaces

– ++ +

9 Flexible enough to support different interface defini-
tion schemes

– ++ ++

10 Supports Energy-Efficient operation + ++ –

Table 1: Functional comparison between base IEEE802.21, MINDiT and Web Services
based frameworks (“plus” is better)

Feature (4) refers to the transport capabilities for remote interaction.
The MIH Protocol used in MINDiT can be transported over different L2
(e.g.,Data and Management frames) and L3 (e.g., UDP, TCP and others)
transport mechanisms. By supporting L2, MINDiT is able to reach non-IP
devices, whereas Web Services provide application level protocols only.

(5) highlights a major feature, where the base 802.21 abstractions are
extended in MINDiT to access not only different link layers, but also different
high-level services. This is in fact an evolution over the web services approach
as well, since their realization requires device support of application protocols
and mechanisms required by web services (which can hinder deployment in
low cost devices).

Feature (6) highlights the enhancements done over 802.21 by MINDiT
allowing not only the interaction between peer-MMIF entities, but between
entities acting as gateways for low-powered devices. Web Services do not
impose any dissemination model.

In (7) MMI-Users in MINDiT can obtain the interfaces and operate other
services or devices through entities working as proxies, unlike 802.21 and Web
Services architectures. The last ones, however, can achieve this behavior by
introducing special mechanisms in combination with HTTP proxies. How-
ever, there are no specific definitions of proxy mechanisms at web service

15

level, that enable reaching the procedures of third-party nodes.
(8) highlights the extension of the MIH Protocol to support IoT interac-

tion, in an uniform way: the MIH Protocol in MINDiT is an adaptative mech-
anism, working as a transport mechanism between the framework-enabled
entities, allowing their management and operation. Web Service frameworks
can use different SOAP-based protocols, but these produce varied flavors for
interacting with entities (e.g., the XML structure of the different protocols
involved).

In terms of supporting the grounding for the interfaces of different entities,
feature (9) shows that although MINDiT has been tested with a simple XML
definition of a tag-based tri-partite definition of technologies, phenomena and
devices existing in a IoT, more refined methods can also be employed (e.g.,
OWL, relational databases). This represents an important evolution made
over 802.21 for the support of IoT scenarios. This feature is also a core
concept of web-based solutions.

Lastly, (10) concerns with operating in environments where low-power
consumption is important. In multi-interface battery-powered devices, both
802.21 and our framework allows obtaining information about different tech-
nologies, without having to power up the respective interface, by querying
the MIIS. MINDiT also supports optimized energy-aware L2 transport. Web
Services based frameworks do not possess any intrinsic support for this, thus
being less energy-efficient than MINDiT.

4.2. Impact on Device Procedures Comparison

To further analyze the effectiveness of the generic interfacing capabilities
provided by the MINDiT framework, we developed a comprehensive study
focusing on the signaling size impact on a sensor device, against a set of
Web Services based frameworks: DPWS, REST and DPWS featuring EXI
encoded messages. A simple testbed was assembled, featuring a Sun SPOT9

mote connected via USB to a Linux Laptop, acting as Gateway. Sun SPOT
devices contain a JAVA programmable embedded microprocessor and have
simple networking capabilities using 802.15.4, with limited processing capa-
bilities (512KB SRAM, 4MB Flash and a 400MHz ARM 926ej-S processor).
It contains various kinds of sensors, providing information on luminance,
accelerometer and temperature. We simulated a scenario where the Sun

9Sun SPOT World, Oracle Labs, http://http://www.sunspotworld.com/

16

SPOT mote randomly accesses one of the sensors, encapsulates that infor-
mation according to the format of the underlying framework, and sends it
over the wireless interface with different event number generation rates. For
each framework, we implemented the necessary event messaging format di-
rectly in the sensor, according to that framework specification. In the case of
MINDiT, this evaluation was done using a prototype implementation built
over ODTONE10 [21], an open-source IEEE 802.21 implementation. For all
frameworks, we analyzed in the sensor the amount of time for sending the
messages, the battery consumption and memory usage. As a guideline, we
also compare these values when sending this information using raw sensor
data, to verify the impact caused by the Java Event Device Drivers in oper-
ating the devices. Each execution set of multiple events was run 100 times,
a trade-off between execution time and confidence intervals. Tab. 2 presents
the size of the messages used by each framework. Take into consideration
that string-based frameworks vary the message size depending on the the
value being measured (i.e., more bytes allocated for extra characters).

Framework Message Size (bytes) Total Allocated Memory (Kbytes)

Sun SPOT Raw 3 206.013

MINDiT 60 213

DPWS 551-553 209

DPWS w/ EXI 377 226

REST 219-221 214

Table 2: Message Size and Memory Utilization per Framework

4.2.1. Average Time for Sensor Event Dissemination

These results account for the average wireless utilization time taken by
the sensor to send an event message through its wireless interface. As shown
in part a) of Fig. 7, results are impacted by the different framework mes-
sage sizes, when the event generation rate is increased. The most impacted
framework was DPWS with an average time of 576ms, followed by DPWS
using EXI (431ms), REST (292ms), MINDiT (105ms) and raw (98ms) (in
this order and for the case of 10 events being sent). Compared to the other

10ODTONE - Open Dot Twenty ONE, http://atnog.av.it.pt/odtone

17

frameworks, MINDiT has a very low wireless utilization time to send the
same event. In average for the different rates of event generation, MINDiT
requires less 83% wireless utilization time than DPWS, as well as 77% and
66% for DPWS using EXI and REST. In fact, it only requires a marginal
increase of 6.6% more time than the raw SUN SPOT information to be sent.

0.008

0.013

0.018

0.023

0.028

1 2 3 4 5 6 7 8 9 10

B
at

te
ry

 C
on

su
m

pt
io

n
(m

A
h)

Number of Events per Transmission

b) Battery Impact

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

U
til

iz
at

io
n

Ti
m

e
(m

s)

Number of Events Per Transmission

a) Wireless Utilization Time

RAW MINDiT DPWS EXI REST

Figure 7: Average Wireless Interface Utilization Time and Battery Consumption

Due to its relatively small message size requirement, MINDiT is able to
send its events and free its wireless resources faster. This not only allows for
the next message to be sent sooner, but also requires the wireless interface
to be active for a lower amount of time, saving energy.

Tab. 2 also presents the impact that the different signaling formats place
over the Sun SPOT motes. The amount of allocated memory was mea-
sured in the device after each message transmission. It was verified that the
message generated rate did not impact the results. Values include the Sun
SPOT SQUAWK Java Virtual Machine footprint. These show that the most
memory-demanding signaling scheme is DPWS with EXI, which requires
more 10.2% allocated memory and 15.5% freed memory, when compared to
Sun SPOT raw. This is followed by MINDiT (3.4% and 5.7%), REST (4%
and 6.3%) and DPWS (2% and 3%), in this order respectively. In this way,
MINDiT is able to reduce its signaling size, making its memory utilization
on-par with other XML-used SOA approaches, while requiring less memory
resources than binary-format SOA mechanisms.

18

4.2.2. Battery Consumption

Regarding battery consumption, results show very small variations con-
sidering the battery total capacity of 720mAh. Focusing on the consumption
differences between frameworks, as can be seen in part b) of Fig. 7 (confi-
dence intervals varied between 0.003 and 0.004 mAh and were removed from
the figure to improve readability), greater event generation rates show an
increase in battery consumption for all frameworks. The SUN SPOT raw
provides the lowest consumption of all and, with a low variation of 0.002
mAh between its maximum and minimum consumption values, and provides
an indication bound for the different rates. It is interesting to notice that
up to 5 events generated, the different formats are able to exercise a simi-
lar or lower battery consumption, when compared to MINDiT (in average,
DPWS, DPWS with EXI and REST consume less 7.5%, 11.7% and 0.9%
respectively, between 1 and 4 events sent). Past this point, DPWS consump-
tion reaches to 0.026 mAh, in the case of 10 events generated, (more 22.5%
and 42.1% consumption than MINDiT and raw, respectively), whereas MIN-
DiT becomes the least consuming of the four frameworks with 0.019 mAh
(more 25.4% than raw). Thus, for greater event rates, the lower message size
from MINDiT not only allows for a lower wireless utilization time, but lower
battery usage as well.

5. Scenario Test Case

This section presents a deployment scenario for MINDiT, considering a
multimedia musical concert for the grand opening of a major shopping mall.
The location has the latest technology in ambient intelligence and assisted
living, integrating sensors (e.g., light, temperature), actuators (e.g., mechan-
ical window shades), devices (e.g., surveillance cameras) and services (e.g.,
shop advertising), all interconnected by our connectivity framework. The
mall owners have decided to cover the concert by their own news report
team, allowing them access to all the devices and services of that area. The
crew has got a camera, but also have a MultiMedia Agent (MMA) able to
connect to our framework, for controlling the video production with the aim
of generating a high-quality news coverage of the event.

5.1. Phase 1 - Discovery

In the first part of Fig. 8, the MMA accesses MINDiT to discover and
dynamically learn how to use the devices and services in its surrounding,

19

finding input for the news cover. The unit is deployed in the concert hall and
the discovery mechanisms of our framework alert it to the existence of several
smartphones from the mall personnel (coupled with multimedia abilities), as
well as the cameras from closed-circuit television (CCTV). The MMA is
programmed to discover the capabilities of the devices by broadcasting a
MIH Capabilities Discover request message, to which entities within range
respond providing their capabilities.

5.2. Phase 2 - Grounding
After learning the capabilities, the MMA obtains the necessary SAPs

to interface with the cameras of the smartphones and the CCTV, with the
objective of activating them and obtaining different perspectives and video-
effects for covering the concert. As shown in the second part of Fig. 8,
this is achieved via a query to the IDMIIS, providing tags existing in the
MMA routines, related to VideoCamera (e.g., the technology), Picture (e.g.,
the phenomena) and Record (e.g., the primitive), included in a MIH Get
Information request message. Upon receiving this, the IDMIIS is able to
process the received query message (as defined in 3.4.3) identify the proper
interfacing SAP, providing it to the MMA in a query response.

MMA

MMI-User MMIF

MIH_Capabilities_Discover.req

IDMIIS

MMIF MMI-User

MIH_Capabilities_Discover.req (broadcast)

Android\CCTV

MMIF MMI-User MM SAP

Discovery Phase 1

MIH_Capabilities_Discover.rsp

MIH_Capabilities_Discover.rsp

Grounding Phase

MIH_Get_Information.req

MIH_Get_Information.req

MIH_Get_Information.req

MIH_Get_Information.rsp

MIH_Get_Information.rsp

MIH_Get_Information.rsp

1

2

Figure 8: Discovery and Grounding Phases (Phase 1 and 2)

5.3. Phase 3 - Smartphone and CCTV Interface Access and Usage
With the received SAP, the MMA agent is able to create the necessary

MIH Action request primitive to interface with the CCTV, and request it to
start recording and send the feed back to the MMA agent, as shown in Fig.
9.

20

MMA

MMI-User MMIF

MIH_Action.req

IDMIIS

MMIF MMI-User

MIH_Action.req

Android\CCTV

MMIF MMI-User MM SAP

Action Phase 1 – Capture Movie at Default ISO

MIH_Action.rsp

MIH_Action.rsp

3

MIH_Action.req

MIH_Action.rsp

Figure 9: Action for Capturing Movie at Default Quality (Phase 3)

5.4. Phase 4 - Proxy Device Discovery

While experimenting with the video feed, the news crew verifies that
the lighting multimedia system used for special effects during the concert is
very dynamic, and can potentially hinder the quality of the video shooting.
Since the CCTV cameras are spread in different spots of the concert hall,
the lighting parameters can be different for the distinct devices. The MMA
determined, in the discovery phase, that certain smartphones also possessed
a proxy-dedicated MMI-User. With this, the MMA agent is able to interface
with services and devices beyond its connectivity range, and instructs the
proxy to do a device discover in their surroundings, learning that some of
the smartphones are within range of the shopping complex luminance sensors.
To achieve this, the MMA sends a MIH Action request message to issue a
proxy broadcasted MIH Capability Discover request to have the smartphones
execute a discovery in their surrounding, as shown in Fig. 10. The respective
response provides the MMA with a list of found devices with the ability to
be controlled as luminance sensors.

5.5. Phase 5 - Proxy Sensor Event Subscription

By using the smartphones as a proxy, the MMA uses the generic MIH pro-
tocol service management primitives to subscribe to luminance events on the
detected sensors, as shown in the first part of Fig. 11. There, a MIH Event
Subscribe request message allows for the definition of a threshold, indicat-
ing the luminance value that is configured in the Sensor SAP for triggering
the event. In this way, our framework is able to optimize network usage,
by allowing the event information to be sent at a specific time, instead of
periodically or requiring a constant query/response approach.

21

MMA

MMI-User MMIF

MIH_Action.req

MIH_Action.req

Android\CCTV

MMIF MMI-User MM SAP

Proxy Phase

4

MIH_Action.req

Sensor Gateway

MMIF

Sensor Node

Sensor SAP

Discovery Phase 2 (Proxy)

MIH_Capabilities_Discover.req

MIH_Capabilities_Discover.req

MIH_Capabilities_Discover.rsp

MIH_Capabilities_Discover.rsp

MIH_Action.rsp

MIH_Action.rsp

MIH_Action.rsp

Figure 10: Proxy Discovery (Phase 4)

5.6. Phase 6 - Proxy Sensor Event Triggering and Dissemination

When the sensors obtain a luminance value that crosses the pre-defined
threshold, an MIH event is sent towards the smartphones. The event is then
proxied towards the MMA, as seen in the second part of Fig. 11.

MMA

MMI-User MMIF

MIH_Action.req

MIH_Action.req

Android\CCTV

MMIF MMI-User MM SAP

Subscription and Event (Proxy)

5

MIH_Action.req

Sensor Gateway

MMIF

Sensor Node

Sensor SAP

MIH_Event_Subscribe.req

MIH_Event_Subscribe.req

MIH_Event_Subscribe.rsp

MIH_Event_Subscribe.rsp

MIH_Action.rsp

MIH_Action.rsp

MIH_Action.rsp

MIH_Event_Subscribe.req

MIH_Event_Subscribe.rsp

Event
Generation

MIH_Event.ind

MIH_Event.ind

MIH_Event.ind

MIH_Event.ind

MIH_Event.ind

MIH_Event.ind

6

Figure 11: Proxy Subscription and Event (Phases 5 and 6)

22

5.7. Phase 7 - Optimal Multimedia Configuration using Sensor Information

Using the event information related to the luminance perceived by the
sensors, the MMA is able to instruct the camera recording configuration to
dynamically adjust video parameters (e.g., type of environmental lighting,
ISO, etc.), and optimize the recorded video quality. For this purpose a new
MIH Action request message is sent towards the CCTV cameras (as shown
in Fig. 12) with new video recording parameters.

MMA

MMI-User MMIF

MIH_Action.req

MIH_Action.req

Android\CCTV

MMIF MMI-User MM SAP

Action Phase 2 – Optimize ISO on On-Going Movie Capture

7
MIH_Action.req

MIH_Action.rsp

MIH_Action.rsp

MIH_Action.rsp

Figure 12: Proxy Action Optimizing Movie Capture (Phase 7)

6. MINDiT Framework Results

This section evaluates the performance of our framework when subjected
to the operations defined in the scenario presented in section 5. Even though
MINDiT supports multiple scenarios, we present the footprint placed by our
approach in this example, focusing on its flexibility aspects by deploying its
mechanisms in different kinds of devices. As such, we measure time duration
and size of the signaling, considering the different phases on the scenario,
and their impact in the complete scenario. We further explore the scalability
of our framework, by evaluating its behavior and signaling impact in the
different devices, when subjected to different message generation rates.

6.1. Testbed Implementation

Beyond the implementation of the MIH extensions defined in section 3
and compared in section 4.2, we have also implemented different MMI-Users
and SAPs to operate with different devices, as well as a IDMIIS to provide
SAP querying.

Fig. 13 shows our scenario testbed composed by two laptops connected
via a Wi-Fi infrastructure to a Linksys WRT54G wireless router, and a desk-
top PC connected via Ethernet. All entities are coupled with our MMIF, ex-
cept the wireless router which only provides connectivity between the nodes.

23

Sensor Gateway

IDMIIS
(Desktop PC)

MMAgent
(MacBook)

Android
(Galaxy Tab)

Asus Laptop
SunSPOT

Basestation

Sensor Node
(SunSPOT)

IEEE
802.15.4

Ethernet

Figure 13: Testbed deployment

The first wireless laptop is a Apple Macbook (2.4GHz CPU and 2GB RAM)
coupled with a MMI-User acting as a MMA. The desktop PC connected
via Ethernet (Pentium 4 3.2GHz CPU and 1GB RAM) is coupled with a
MMI-User acting as a IDMIIS. A Samsung Galaxy Tab (1GHz ARM Cortex
A8 CPU, 512MB RAM, 2.2 Android Froyo firmware, 2.6.32.9 kernel version)
coupled with a Proxy MMI-User and a Multimedia SAP allows media in-
dependent access to its video camera controls. This device fulfills the role
performed by the smartphones identified in the scenario. Finally, our second
laptop connected to the Wi-Fi infrastructure (T5450 Intel Centrino Duo CPU
and 2GB RAM) is coupled with an USB Sun SPOT Basestation, connected
to a Sun SPOT sensor via IEEE802.15.4. All the MINDiT entities defined
in this testbed operate under the signaling defined in section 5. To simplify
the scenario deployment, the Android device doubles as the proxying entity
as well as the CCTV, due to its camera and processing capabilities.

6.2. Signaling Footprint

For each scenario phase, we measured the time taken by the internal
procedures of each entity involved in the information exchange. In Tab. 3,
we present these local results per entity, as well as the total amount taken
by the local and remote procedures. We also present the total time taken
by the procedures of each entity for the duration of the phases, and the
whole scenario, as well as total local and remote times. Results presented

24

reflect average values taken from executing the scenario ten times, presenting
confidence intervals calculated at 95%.

Phase
Entity

Total Local Remote Total Time
MMA IDMIIS Android Sensors

1 29.4±3.26 0.0±0.0 21.5±4.53 0.0±0.0 50.9±5.95 145.2±37.97 196.1±40.24
2 4.1±0.35 17.73±2.88 0.0±0.0 0.0±0.0 21.9±3.10 3.3±0.51 25.20±3.19
3 61.5±16.46 0.0±0.0 2411.7±118.75 0.0±0.0 2473.2±120.75 147.1±91.1 2620.3±118.94
4 3.0±0.29 0.0±0.0 21.8±8.15 2.50±0.33 27.3±8.25 26.20±10.6 53.5±8.79
5 3.0±0.41 0.0±0.0 25.0±6.98 283.7±10.41 311.7±11.95 286.8±58.86 598.50±62.81
6 1.1±0.20 0.0±0.0 49.4±3.33 263.0±57.75 2313.5±116.43 139.7±57.86 2453.2±121.72
7 61.5±16.46 0.0±0.0 2411.7±118.75 0.0±0.0 2473.2±120.75 147.1±91.1 2620.3±118.94

Total 163.6 17.73 4941.1 549.2 5671.63 2894.8 8567.1

Table 3: Scenario Delay in milliseconds with totals calculated using the average values

We can verify that the total amount of time taken by phases 4 to 7 is twice
as much that from phases 1 to 3, composing almost two thirds of the total
scenario duration of 8.5 seconds (in average). Further analysis also reveals
that, in average, each phase sees 66.2% of its duration dedicated for local
processing, with the remaining time for remote message sending over the air
(the smallest and largest values are respectively 26% for phase 1, and 94% for
phases 3 and 7). Three main points have to be considered: i) phases 3 and
7 involve accessing the video camera functionalities of the Android device,
ii) phases 4 to 7 contain proxy behavior whose communications have to pass
through the proxy entity, (whereas phases 1 to 3 are done in an end-to-end
manner) and iii) interfacing with the Sun SPOT sensors is done over 802.15.4
which are operations that take a considerable amount of time.

In fact, when analyzing the impact in time duration per entity, the An-
droid device is the most solicited entity, being involved in 58% of the dura-
tion of all the phases in the scenario, when considering local processing times
(85.6% of its time in phases from 1 to 3, which are end-to-end). This is quite
a large amount of time when compared with the local processing in other en-
tities (e.g., 2% for the MMA, 0.2% for the IDMIIS and 6.4% for the sensors
in total scenario duration). We investigated further the amount of time in-
volving the Android device, and discovered that the main impact factor was
the activation of the video procedures (e.g., these interactions take about
92% of the time duration of phases 3 and 7). We did separate experimenting
with the primitives available by the Android Software Development Kit on
the Samsung Galaxy Tab, and, from the local processing values obtained by
that device in phases 3 and 7 (which took over 2 seconds), around 95% of
the time was dedicated to Android-specific processes involved in activating

25

and starting the recording in the video camera of the device. As such, in
those phases, the time taken for actual MIH processing was around 131ms,
and 147.1ms for remote message sending and receiving.

We have also analyzed another source of delay in the scenario, which was
the time taken to produce the event sent by the sensors, with the luminance
information. In fact, the local procedures belonging to phase 6 took around
94% of the total phase duration. Due to erratic values being obtained by the
luminance sensors, we analyzed the internal hardware procedures provided
by the sensor available on the Sun SPOT board and verified that accessing
the sensor values took (in average) 39ms. However, in order to allow an
accurate value to be sent to the MMA, the pre-defined threshold configured
at the sensor SAP required an assessment of the average luminance value of
the past two seconds. When this average value crossed the defined threshold,
the event would be triggered and sent. This was, however, a design decision
implemented to deal with the specificities of the values produced by the Sun
SPOT sensors and is independent of our framework. In fact, MINDiT is
flexible enough to allow such case-by-case implementations to be included in
the SAP, to better integrate with the diversity of devices and technologies,
allowing for different results if other kind of sensors were used.

Considering the impact produced by remote MIH message signaling, phase
5 takes the longest time. This is due to the fact that it consists of a proxy
command being sent by the MMA, proxied by the Android device and acted
upon the sensors, which send a response indicating the command execution
result all the back to the origin (also, through proxying). This means that,
in total, six remote message exchanges were executed (including the 802.15.4
path between the Sun SPOT basestation and sensors), for a total of 286.6ms.

An important factor to note is that the SAP querying (e.g., Phase 2)
requirements in terms of time are quite low (around 4.1ms for the MMA and
17.73ms for the IDMIIS, for a total time of 25.20ms). This highlights the
feasibility of MINDiT to adopt more powerful (and of course more demand-
ing) methods and mechanisms for the definition and querying of device and
services interfacing, as pointed out in section 3.4.

6.3. Data Footprint

According to the results presented in Table 3, the largest verified perfor-
mance impact was the local processing of device-specific controlling aspects
(e.g., camera activation in the Android Tab and erratic sensor values). Re-
mote signaling times have been minimal, despite the different wireless and

26

wired technologies involved. Considering this, we analyzed the amount of
signaling information exchanged by each node and in each phase, presenting
the results in Table 4.

Phase
Entity

Total
MMA IDMIIS Android Sensors

1 72 0 37 0 109

2 347 80 0 0 427

3 70 0 34 0 104

4 49 0 93 37 179

5 70 0 80 46 196

6 51 0 51 0 102

7 70 0 34 0 104

Total 729 80 329 83 1221

Table 4: Amount of information remotely received in bytes during the scenario

The total amount of information received over the air using the MIH
protocol in this scenario was 1221 bytes, considering only MIH Protocol sizes.
The entity most involved in this message exchange was the MMA, which was
responsible for 60% of the information received. Of that information, 67%
was related to phases from 1 to 3. In fact, phase 2 was the most data
consuming procedure, involving 347 bytes from the MMA and 80 bytes from
the IDMIIS, highlighting the importance of the query for obtaining the SAP.

In contrast, the sensor device was the second least entity involved in the
message signaling exchange (6.8% against 6.6% of the IDMIIS). This empha-
sizes the feasibility and flexibility of MINDiT in interfacing in different ways
with low cost devices. In this particular case, the usage of MIH mechanisms
allowed the definition of a threshold value to trigger the sending of an event
with luminance information towards the MMA, only when such threshold
value was crossed.

The second most involved entity in the signaling exchange was the An-
droid device, participating in 27% of the overall remote information. Of
these, 78% belonged to the set of phases from 4 to 7, indicating that this
message amount is due to the proxy mechanism. But even so, the Android
device was only involved in sending 258 bytes of information in that group
of phases, which is a small value for a device with its capabilities.

Not considering the query phase with the IDMIIS, the average amount of

27

information exchanged per phase is 132 bytes. This is more predominant in
the set of phases from 4 to 7, due to the proxy behavior between the MMA
and the sensors, using the Android as a proxy.

6.4. Performance Evaluation

We submitted the different nodes involved in the previous scenario to a
command message being generated at different rates. The objective is to an-
alyze the framework impact over the different kinds of nodes, in increasingly
stringent conditions. For these tests, the MMA transmits 100 MIH Action
request messages towards the sensor node, which sends a respective response
message (both using the Android as proxy).

6.4.1. Average time per packet

Fig. 14 presents the average packet reception rate of the packets received
by the nodes. Results highlight that both the request (Fig. 14-a) and the
response (Fig. 14-b) reception rate are slightly affected by the different mes-
sage intervals. Part a) of the figure distinguishes the performance of the
WLAN network involving the MMA, the Android and the GW (39.13 ms
in average), and the 802.15.4 network (679.12 ms in average). This clearly
identifies the sensor communication as the most limiting factor in terms of
message reception rate. This is further emphasized by part b) of the figure,
where the delay caused by the sensor reception rate of the request message,
is propagated all the way back towards the MMA for the reception of the re-
sponse message (average reception rates of 672.02 ms for the gateway, 684.36
ms for the Android and 701.70 ms for the MMA).

6.4.2. Incomplete Transactions

We measured the percentage of incomplete transactions (due to packet
loss), in terms of unsuccessful exchanges of request and response messages
between each pair of nodes involved. Fig. 15 shows that incomplete transac-
tions are only verified between two entities that share the WLAN medium:
the MMA and the Android. We can see that the values start high (46% for
the MMA and 24.3% for the Android) for low message intervals. These de-
crease considerably for larger message intervals, stabilizing at 25 ms interval
time (11.75% for the MMA and 4.16% for the Android). It is interesting to
note that there are no incomplete transactions with the sensor node or the
gateway. With some of the messages between the MMA and the Android

28

0
100
200
300
400
500
600
700
800

10 15 20 25 30 35 40 45 50 55 60

R
eq

ue
st

 R
ec

ep
tio

n
R

at
e

(m
s)

Message Interval (ms)

a) Request Reception Rate

600
620
640
660
680
700
720
740
760
780

10 15 20 25 30 35 40 45 50 55 60R
es

po
ns

e
R

ec
ep

tio
n

R
at

e
(m

s)

Message Interval (ms)

b) Response Reception Rate

MMA Android Gateway Sensor Node

0
25
50
75

10 20 30 40 50 60

Figure 14: Average Packet Reception Rate

being lost, the rate at which they arrive to the gateway decreases. Consid-
ering the slow sensor network response verified in section 6.4.1, the rate at
which the response messages reach the gateway is even lower. This means
that there are not only fewer messages on the way back, but they are also
slower. We performed evaluations on the scenario regarding the amount of
lost packets on the return path, confirming that these never raised above 4
packets per test.

0
5

10
15
20
25
30
35
40
45
50

10 15 20 25 30 35 40 45 50 55 60

In
co

m
pl

et
e

Tr
an

sa
ct

io
ns

 (
%

)

Message Interval (ms)

Incomplete Transactions

MMA

Android

Gateway

Sensor Node

Figure 15: Percentage of Incomplete Transactions

29

6.4.3. Amount of Packets Exchanged

Fig. 16 shows the direct consequence of the incomplete transactions af-
fecting this metric: with fewer requests reaching the gateway, fewer responses
also are returned. This provides an approximate difference of 86 bytes be-
tween the amount of data received by the MMA/Android and the gate-
way/Sensor pairs. Like in the previous case, it is noticeable that the values
start to stabilize past the 25 ms message rate. Results also indicate that, with
shorter message intervals, the amount of packet loss reduces the amount of
data received by the MMA, which can impact its utilization of the devices
interfaced.

40

60

80

100

120

140

160

180

200

10 15 20 25 30 35 40 45 50 55 60

N
um

be
r o

f P
ac

ke
ts

Message Interval (ms)

Received Packets

MMA Android Gateway Sensor Node

40

60

80

100

120

140

160

180

200

10 15 20 25 30 35 40 45 50 55 60

N
um

be
r o

f P
ac

ke
ts

Message Interval (ms)

Sent Packets

Figure 16: Amount of Sent and Received Packets

6.5. Handling Incomplete Transactions

Motivated by the number of incomplete transmissions, we devised a sim-
ple reliability mechanism similar to the one defined by 802.21: when the
response fails to be received by the source of the original request message
within a timer-defined window, the later is re-sent. For simplicity, we eval-
uated this mechanism only at the MMA, which is the original sender of the
command. Fig. 17 shows the total number of necessary retransmissions for
obtaining 100 successful transactions, as well as the number of received, sent
and lost messages. Results show that all metrics gradually decrease their
value as the timer duration increases, stabilizing at 800 ms. Past this timer
configuration, the number of retransmissions drops to nearly zero, which also
reduces the other metrics.

30

0
2
4
6
8
10
12
14
16
18
20

0

50

100

150

200

250

300

350

500 600 700 800 900 1000

Tr
an

sm
itt

ed
 D

at
a

(K
B

)

N
um

be
r o

f M
es

sa
ge

s

Conf igured Timer Interval (ms)

Number of Retransmissions

Retransmits
Sent Msgs
Received Msgs
Lost Msgs
Sent Data
Received Data

Figure 17: Number of Retransmissions

Fig. 18 follows the trend of the previous metric, indicating that the aver-
age time for receiving a response with reliability active stabilizes at a 800 ms
configured timer. Moreover, these last two metrics indicate that retransmis-
sion timers below that value tend not only to generate more transmissions
but also larger average time. Timer configuration is thus an important factor
to be considered in these heterogeneous environments: its incorrect configu-
ration can lead to over-zealous side-effects, where a small timer can trigger a
request re-send while the response is still in transit, originating superfluous
retransmissions and overhead.

7. Conclusions

In this paper, we presented MINDiT a novel framework whose features
enable the operation of IoT scenarios for ubiquitous smart environments.

Our framework relies on a set of profound evolutions from the standard-
ized IEEE 802.21 MIH (Media Independent Handovers) framework and its
services, expanding them for the facilitation and optimization of media in-
dependent access to IoT devices and services.

We proposed the concept of Dynamic Service Access Points (SAPs) that
allow the definition of interfaces towards different devices and services using
a unique communication procedure, based on an unified and enhanced MIH
Protocol from the IEEE 802.21 standard. We have defined an Information

31

0
200
400
600
800

1000
1200
1400
1600
1800

500 600 700 800 900 1000

R
es

po
ns

e
D

el
ay

 (m
s)

Conf igured Timer Interval (ms)

Average Time for Reception

Average Time

Figure 18: Average Time for Successful Response

Domain Media Independent Information Service (IDMIIS) server, with the
ability to store SAPs from different devices and services, allowing for the
integration of different query mechanisms for accessing interfaces (ranging
from simple XML query procedures to powerful high-level semantics and on-
tologies). To allow its deployment in a broad set of cases (ranging from
interfacing with sophisticated services residing in powerful mainframes us-
ing optical wired connections, to low cost devices using simple wireless net-
working stacks) we have defined a proxy mechanism aiming to increase the
interfacing opportunities with different kinds of devices and services.

To validate the benefits of our proposal, we implemented a prototype
based on an existing open-source IEEE 802.21 implementation (ODTONE).
The message signaling mechanisms from MINDiT were compared to other
SOA-based frameworks using Web Services (also implemented), showing that
its lower message size required less resources utilization. To illustrate its flexi-
bility, MINDiT was also deployed in a multimedia-enabled smart environment
scenario featuring agents, mobile terminals in wireless environments and sen-
sor technologies. The footprint imposed by our mechanisms was evaluated
in terms of interfacing procedures, and information exchange requirements.
Furthermore, to analyze the scalability, we studied the framework response
when subjected to different rates of signaling generated.

Results demonstrated that our framework does support a broad range of

32

features while requiring a significant low amount of information. This has the
benefit of facilitating and optimizing its deployment in scenarios featuring low
cost devices with stringent requirements (both in terms of processing power
as well as wireless networking capabilities), which are currently increasing in
availability (e.g., sensors in mobile phones and smart environments), with-
out hindering flexible interactions with high-level services (e.g., through L3
transport protocols and broad support of information definition).

Acknowledgements

This work bas been partially funded by the European Community’s Sev-
enth Framework Programme (FP7-ICT-2009-5) under grant agreement no.
258053 (MEDIEVAL project) and by the Portuguese Innovation Agency /
National Strategic Reference Framework (AdI/QREN) under grant agree-
ment no. 2011/021580 (APOLLO project).

References

[1] Cisco visual networking index: Global mobile data traffic forecast up-
date, http://www.cisco.com/en/US/solutions/collateral/ns341/

ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf/, 2011.

[2] IEEE, IEEE Standard for Local and Metropolitan Area Networks- Part
21: Media Independent Handover, IEEE Std 802.21-2008 (2009).

[3] J. Lertlakkhanakul, S. Hwang, J. Choi, Developing spatial information
framework for urban computing environment: A socio-spatial computing
framework for smart urban environment, in: Management and Service
Science, 2009. MASS ’09. International Conference on, pp. 1 –5.

[4] E. Aarts, Ambient intelligence: a multimedia perspective, Multimedia,
IEEE 11 (2004) 12 – 19.

[5] G. Kortuem, F. Kawsar, D. Fitton, V. Sundramoorthy, Smart objects
as building blocks for the Internet of things, Internet Computing, IEEE
14 (2010) 44 –51.

[6] S. Karnouskos, V. Villasen andor Herrera, M. Haroon, M. Handte,
P. Marro andn, Requirement considerations for ubiquitous integration
of cooperating objects, in: New Technologies, Mobility and Security
(NTMS), 2011 4th IFIP International Conference on, pp. 1 –5.

33

[7] W. Masri, Z. Mammeri, Middleware for wireless sensor networks: A
comparative analysis, in: Network and Parallel Computing Workshops,
2007. NPC Workshops. IFIP International Conference on, pp. 349 –356.

[8] S. González-Valenzuela, M. Chen, V. C. Leung, Programmable mid-
dleware for wireless sensor networks applications using mobile agents,
Mob. Netw. Appl. 15 (2010) 853–865.

[9] Y. We, D. Bein, S. Phoha, Middleware for heterogeneous sensor net-
works in urban scenarios, in: Information Technology: New Generations
(ITNG), 2010 Seventh International Conference on, pp. 654 –659.

[10] C. Thiede, C. Tominski, H. Schumann, Service-oriented information vi-
sualization for smart environments, in: Proceedings of the 2009 13th
International Conference Information Visualisation, IEEE Computer So-
ciety, Washington, DC, USA, 2009, pp. 227–234.

[11] ITEA EU project SODA, http://www.soda-itea.org///, 2011.

[12] L. M. S. de Souza, P. Spiess, D. Guinard, M. Khler, S. Karnouskos,
D. Savio, Socrades: A web service based shop floor integration infras-
tructure., in: C. Floerkemeier, M. Langheinrich, E. Fleisch, F. Mattern,
S. E. Sarma (Eds.), IOT, volume 4952 of Lecture Notes in Computer
Science, Springer, 2008, pp. 50–67.

[13] H. Abangar, M. Ghader, A. Gluhak, R. Tafazolli, Improving the perfor-
mance of web services in wireless sensor networks, in: Future Network
and Mobile Summit, 2010, pp. 1 –8.

[14] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos, K. Kim,
TinyREST: A protocol for integrating sensor networks into the inter-
net, Citeseer.

[15] A. Castellani, N. Bui, P. Casari, M. Rossi, Z. Shelby, M. Zorzi, Architec-
ture and protocols for the internet of things: A case study, in: Pervasive
Computing and Communications Workshops (PERCOM Workshops),
2010 8th IEEE International Conference on, pp. 678 –683.

[16] D. Yazar, A. Dunkels, Efficient application integration in ip-based sensor
networks, in: Proceedings of the First ACM Workshop on Embedded

34

Sensing Systems for Energy-Efficiency in Buildings, BuildSys ’09, ACM,
New York, NY, USA, 2009, pp. 43–48.

[17] A. Castellani, M. Gheda, N. Bui, M. Rossi, M. Zorzi, Web services
for the internet of things through coap and exi, in: Communications
Workshops (ICC), 2011 IEEE International Conference on, pp. 1 –6.

[18] S. Hong, D. Kim, M. Ha, S. Bae, S. J. Park, W. Jung, J.-E. Kim, SNAIL:
an IP-based wireless sensor network approach to the Internet of Things,
Wireless Communications, IEEE 17 (2010) 34 –42.

[19] M. Chen, S. Mao, Y. Xiao, M. Li, V. C. M. Leung, IPSA - a novel
architecture design for integrating ip and sensor networks, Int. J. Sen.
Netw. 5 (2009) 48–57.

[20] D. Corujo, M. Lebre, D. Gomes, R. Aguiar, A framework for flexible
sensor information dissemination, in: Distributed Computing in Sensor
Systems and Workshops (DCOSS), 2011 International Conference on,
pp. 1 –6.

[21] D. Corujo, C. Guimarães, B. Santos, R. Aguiar, Using an open-source
IEEE 802.21 implementation for network-based localized mobility man-
agement, Communications Magazine, IEEE 49 (2011) 114 –123.

35

