58 research outputs found

    Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments.

    Full text link
    The ability to navigate in everyday environments is a fundamental and necessary skill for any autonomous mobile agent that is intended to work with human users. The presence of pedestrians and other dynamic objects, however, makes the environment inherently dynamic and uncertain. To navigate in such environments, an agent must reason about the near future and make an optimal decision at each time step so that it can move safely toward the goal. Furthermore, for any application intended to carry passengers, it also must be able to move smoothly and comfortably, and the robot behavior needs to be customizable to match the preference of the individual users. Despite decades of progress in the field of motion planning and control, this remains a difficult challenge with existing methods. In this dissertation, we show that safe, comfortable, and customizable mobile robot navigation in dynamic and uncertain environments can be achieved via stochastic model predictive control. We view the problem of navigation in dynamic and uncertain environments as a continuous decision making process, where an agent with short-term predictive capability reasons about its situation and makes an informed decision at each time step. The problem of robot navigation in dynamic and uncertain environments is formulated as an on-line, finite-horizon policy and trajectory optimization problem under uncertainty. With our formulation, planning and control becomes fully integrated, which allows direct optimization of the performance measure. Furthermore, with our approach the problem becomes easy to solve, which allows our algorithm to run in real time on a single core of a typical laptop with off-the-shelf optimization packages. The work presented in this thesis extends the state-of-the-art in analytic control of mobile robots, sampling-based optimal path planning, and stochastic model predictive control. We believe that our work is a significant step toward safe and reliable autonomous navigation that is acceptable to human users.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120760/1/jongjinp_1.pd

    Optimal path planning for surveillance with temporal-logic constraints

    Full text link
    In this paper we present a method for automatically generating optimal robot paths satisfying high-level mission specifications. The motion of the robot in the environment is modeled as a weighted transition system. The mission is specified by an arbitrary linear temporal-logic (LTL) formula over propositions satisfied at the regions of a partitioned environment. The mission specification contains an optimizing proposition, which must be repeatedly satisfied. The cost function that we seek to minimize is the maximum time between satisfying instances of the optimizing proposition. For every environment model, and for every formula, our method computes a robot path that minimizes the cost function. The problem is motivated by applications in robotic monitoring and data-gathering. In this setting, the optimizing proposition is satisfied at all locations where data can be uploaded, and the LTL formula specifies a complex data-collection mission. Our method utilizes Büchi automata to produce an automaton (which can be thought of as a graph) whose runs satisfy the temporal-logic specification. We then present a graph algorithm that computes a run corresponding to the optimal robot path. We present an implementation for a robot performing data collection in a road-network platform.This material is based upon work supported in part by ONR-MURI (award N00014-09-1-1051), ARO (award W911NF-09-1-0088), and Masaryk University (grant numbers LH11065 and GD102/09/H042), and other funding sources (AFOSR YIP FA9550-09-1-0209, NSF CNS-1035588, NSF CNS-0834260). (N00014-09-1-1051 - ONR-MURI; W911NF-09-1-0088 - ARO; LH11065 - Masaryk University; GD102/09/H042 - Masaryk University; FA9550-09-1-0209 - AFOSR YIP; CNS-1035588 - NSF; CNS-0834260 - NSF

    Enabling Safe Autonomous Driving in Uncertain Environments

    Get PDF
    Autonomous driving technologies have been developed in the past decades with the objective of increasing safety and efficiency. However, in order to enable such systems to be deployed on a global scale, the problems and concerns regarding safety must be addressed. The difficulty in providing safety guarantees for autonomous driving applications comes from the fact that the self-driving vehicle needs to be able to handle a diverse set of environments and traffic situations. More specifically, it must be able to interact with other road users, whose intentions cannot be perfectly known.This thesis proposes a Model Predictive Control (MPC) approach to ensure safe autonomous driving in uncertain environments. While MPC has been widely used in motion planning and control for autonomous driving applications, the standard literature cannot be directly applied to ensure safety (recursive feasibility) in the presence of other road users, i.e., pedestrians, cyclists, and other vehicles. To that end, this thesis shows how recursive feasibility can still be obtained through a slight modification of the MPC controller design.The results of this thesis build upon the assumption that the behavior of the surrounding environment can be predicted to some extent, i.e., a future motion trajectory with some uncertainty bound can be propagated. Then, by postulating the existence of a safe set for the autonomous driving problem, and requiring that the motion prediction models have a consistent structure, safety guarantees can be derived for an MPC controller.Finally, this thesis shows that the proposed MPC framework does not only hold in theory and simulations, but that it can also be deployed on a real vehicle test platform and operate in real-time, while still ensuring that the conditions needed for the derived safety guarantees hold
    • …
    corecore