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Ivo Batković
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Autonomous driving technologies have been developed in the past decades
with the objective of increasing safety and efficiency. However, in order to
enable such systems to be deployed on a global scale, the problems and
concerns regarding safety must be addressed. The difficulty in providing safety
guarantees for autonomous driving applications comes from the fact that the
self-driving vehicle needs to be able to handle a diverse set of environments
and traffic situations. More specifically, it must be able to interact with other
road users, whose intentions cannot be perfectly known.

This thesis proposes a Model Predictive Control (MPC) approach to ensure
safe autonomous driving in uncertain environments. While MPC has been
widely used in motion planning and control for autonomous driving applications,
the standard literature cannot be directly applied to ensure safety (recursive
feasibility) in the presence of other road users, i.e., pedestrians, cyclists, and
other vehicles. To that end, this thesis shows how recursive feasibility can still
be obtained through a slight modification of the MPC controller design.
The results of this thesis build upon the assumption that the behavior of

the surrounding environment can be predicted to some extent, i.e., a future
motion trajectory with some uncertainty bound can be propagated. Then, by
postulating the existence of a safe set for the autonomous driving problem,
and requiring that the motion prediction models have a consistent structure,
safety guarantees can be derived for an MPC controller.

Finally, this thesis shows that the proposed MPC framework does not only
hold in theory and simulations, but that it can also be deployed on a real
vehicle test platform and operate in real-time, while still ensuring that the
conditions needed for the derived safety guarantees hold.

Keywords: Autonomous driving, model predictive control, uncertain envi-
ronments, robust constraint satisfaction
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CHAPTER 1

Introduction

A vast amount of time and resources have been spent in the last decade
on researching Autonomous Driving (AD) technologies with the objective of
increasing safety and efficiency of passengers and goods transportation [1].
Reports have already shown that over one million people are killed every
year in road traffic related accidents [2], [3]. Hence, it is envisioned that
the development of safe and robust autonomous systems can reduce the
number of fatal accidents by drastically decreasing the frequency of road
traffic accidents [4]. Consequently, the development of such systems is also
believed to be an enabler when it comes to making the transportation sector
more efficient. For instance, an automated system does not need to rest like
a human driver does, hence, transportation times and costs can be reduced
significantly. Furthermore, if robot taxi services become cost-effective and
widely available, the need for parking spaces in inner cities can be reduced.
However, it must be stressed that in order for self-driving systems to be
deployed on a global scale, the problems and concerns regarding safety must
be addressed, i.e., the AD problem must be solved safely.
Most of the AD features that are commercially available today consist of

Advanced Driving Assistance Systems (ADAS), and were first deployed in
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Chapter 1 Introduction

structured environments such as highway driving and low-speed parking [5].
However, more general settings, such as urban driving, pose arguably a greater
challenge due to the presence of other non-controllable, non-autonomous road
users, e.g., pedestrians, cyclists, and other vehicles. Hence, a self-driving vehicle
needs to have the capacity to reliably sense the surrounding environment but
also, more importantly, to interact safely with it. To that end, the challenges
arising from designing robust and reliable sensors (e.g., cameras, LIDARs,
radars, GPS, HD-maps) to the development of robust perception and motion
planning and control algorithms must be solved. Research is continuously
pushing the fields of localization [6], [7], object detection and tracking [8]–[10],
and planning [11]–[13], to move beyond the current state of the art. However,
how to ensure safe autonomous driving in complex environments still remains
an open problem, and is the main topic of this thesis.

1.1 Problem Formulation
The work presented in this thesis has in particular focused on the following
research questions:

Q1. What requirements need to be set on the sensor-suite and prediction
algorithms in order to enable safe autonomous driving?

Q2. How should a vehicle controller be designed in order for safety to be
proven by design?

Q3. Can a safe AD framework be deployed on a real test platform?

The answer to Q1 does not only provide some indication on the quality
of the information that the sensor system is expected to provide, but it also
sets requirements on the information extracted from the collected data, i.e.,
the sensor data must contain enough information so that the current state-
of-the-art algorithms can identify any static or dynamic obstacles present
in the environment. Models of the environment need to also be developed
in order for the vehicle to interpret the surrounding environment, i.e., the
environment evolves differently in a dense urban traffic situation compared
to a highway-like traffic scenario, hence the vehicle’s behavior should adjust
accordingly. We note, however, that a key problem that needs to be solved is
the prediction of how the environment is going to evolve over the next time

4



1.1 Problem Formulation

horizon. One can therefore see that the answer to Q2 relies partly on Q1,
since a self-driving vehicle needs to primarily ensure that no collisions with
other road users will occur. A self-driving vehicle needs to be able to interact
with the current environment, and make future plans depending on how the
environment evolves. Hence, the answer to Q1 can be used to impose some
structure when formulating a problem statement for Q2. Therefore, having a
clear understanding of the requirements that the sensor-suite and prediction
models are subject to can help in the design process of the controller. Finally,
Q3 answers whether the proposed solutions to answer Q1 and Q2 are sufficient
for a practical implementation of a safe autonomous driving framework.

In order to answer Q1-Q3, we propose to combine prediction models of road
users with optimization-based techniques. Therefore, Sections 1.1.1 and 1.1.2
mention some available methods in the literature, and the problems they solve.

1.1.1 Environment Prediction
With the rise of interest in the autonomous driving problems, several motion
prediction models have been developed for different purposes and are based on
different approaches. The work in [14] considered using different linearizations
of a unicycle model in order to predict pedestrian motions up to 2 s into
the future, while [15] used hybrid models that considered human gaits in
order to decide when to transition between different dynamical models. On
top of using models based on switching dynamics, situational awareness was
introduced in [16] to anticipate changes in pedestrian intent, which only proved
to be efficient for short prediction horizons. Learning dynamical models using
Gaussian processes have shown promising long-term prediction accuracies [17],
[18], but instead often come with high computational complexities [19].

A different class of prediction models are the ones that predict the behavior
of several agents and model their interactions. These so-called social force
models accurately predict pedestrian movements in crowded environments [20]–
[22] by using a potential function that either acts as an attractor or repellent
for the modeled agents. The models in [23]–[27] on the other hand assume
that each agent is moving stochastically along the shortest path to a set of
predefined goals. This is done by first incorporating environmental constraints,
e.g., regions that need to be avoided, and then solving for a value function
that yields optimal policies for each goal. By sampling the learned policy, one
can then predict how an agent would move towards a goal. As it was shown

5



Chapter 1 Introduction

in, e.g., [26], imposing some structure of the environment can not only help
improve the short-term prediction accuracy, but also the long-term accuracy.
To that end, the work in [28] introduced a model which incorporated areas
that pedestrians are expected to walk on (sidewalks and zebra crossings) in
the form of a graph-based network. With this graph, it was then possible to
predict the average future motion with an associated uncertainty.

More recent methods, based on Deep Neural Networks (DNNs) have shown
remarkable results in predicting the behavior evolution in more complex
environments, which include both pedestrians and other vehicles. For instance,
the work in [29] used DNNs to predict the future vehicle motion from birds-eye
view images alone. By rasterizing the input space, e.g., applying specific
color codes for different classes, the authors show that accurate multi-modal
predictions can be generated as well as an estimation of their corresponding
probabilities by only using 2D images. The work in [30] extends the results
of [29] to also generate predictions that are more likely to satisfy the underlying
motion kinematics. The work in [31] uses similar ideas based on [29], [30]
to predict the driver behavior in parking lots, an environment which is less
structured than typical road networks.

While methods based on DNNs manage to yield impressive results without
the need of over-engineering feature representations, it becomes difficult to
provide the guarantees that set-based prediction methods easily provide [32].
Indeed, the work from [32]–[34] rely on reachability analysis to formally express
uncertainty sets which have certain properties that can be used to prove that
a self-driving vehicle’s planned motions can remain safe [35], [36].

1.1.2 MPC Controller Design
Vehicle motion planning and vehicle control algorithms are of particular in-
terest for self-driving applications since they address the question of how to
control the vehicle. The existing literature on motion planning in dynamic
environments [12], [37] show that graph-based approaches have been rather
successful in generating paths or trajectories that are suitable to be followed or
tracked [38]–[40], where the Randomly Rapid Trees (RRT) and A* algorithms
are commonly used together with a model of the system dynamics [41] to
generate a general plan.
In structured autonomous driving settings, such as highway-driving and

urban driving, the reference path can in general be obtained by the sensor
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system, i.e., the center of the detected road lane, or a predefined map. In that
sense, the problem of “where” the vehicle should drive is generally solved, but
the problem of “how” the vehicle should drive is not, i.e., what velocity profile
should the vehicle have, what distance should it keep to the lead vehicle, when
should it yield to pedestrians, etc. It must be stressed, however, that the path
planning problem is still relevant in such settings, as the constant presence
of, e.g., road works and obstructing traffic, is not uncommon and will force
vehicles to deviate from the standard road infrastructure.

Optimization-based techniques, such as Model Predictive Control (MPC),
have been proven to be a favorable design tool when it comes to solving
the problem of “how” self-driving vehicles should behave. Many approaches
solve this problem from different point of views such as: energy consumption
minimization [42]–[45], optimal coordination [46]–[48], and planning [49]–
[59]. In most of these settings, a reference path is already given, and the
optimization problem is designed to minimize a performance criterion while
satisfying constraints that are either imposed by the internal system or by the
environment. Notable examples include: (a) the maneuvering of large vehicles
in highly constrained environments [41], [59], [60], (b) controlling vehicles in
an intersection safely and efficiently [42], [48], and (c) controlling a vehicle in
environments with uncontrollable moving obstacles [50], [58].

Indeed, the MPC framework offers well-known and well-established tools that
can provide closed-loop stability w.r.t. a reference trajectory, while ensuring
constraint satisfaction [61], [62]. However, a severe limitation is that these
results are based on assumptions that can be challenging, or impossible,
to satisfy for practical autonomous driving applications. More importantly,
ensuring that the self-driving vehicle will make safe decisions at all times, i.e.,
ensuring recursive feasibility of the MPC controller, remains an open problem
in environments where other road users are present. While the work in [48]
proved that it is possible to formulate conditions under which the optimal
coordination problem is safe for multiple vehicles, it relied on the fact that a
“coordinator” is able to influence when and how each vehicle should enter the
intersection. To that end, considering general autonomous driving settings,
where human-driven vehicles, cyclists and pedestrians are present, the approach
in [48] is not directly applicable.
The difficulty with ensuring recursive feasibility in uncertain environments

is that the vehicle needs to interact with road users that may appear almost
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anywhere and at any point in time within the sensor range. Hence, ensuring
that the motion planner can persistently ensure collision-free trajectories at
all times remains an open problem for such settings. This thesis aims to
address this remaining problem by proposing ways to enable recursive collision-
avoidance constraint satisfaction in the presence of pop-up or moving obstacles,
under the condition that the uncertainty on their predicted motion has a
consistent characterization. In other words, the uncertainty related to the
predicted motion of road users is not allowed to grow as new information about
the surrounding environment becomes available.

1.1.3 Scope
This thesis has focused on enforcing safety guarantees in MPC motion planning
and control algorithms for AD applications. Furthermore, we assume through-
out the thesis that the vehicle’s sensing capabilities only come from onboard
sensors, such as, e.g., cameras, LIDARs, radars, etc., and that state-of-the-art
methods are able to provide the vehicle with necessary information. Therefore,
sensor models and state-of-the-art methods for detecting objects from sensor
data lies outside the scope of this thesis.
In addition, all experiments related to this thesis have been performed in

gated controlled environments, where other road users have been simulated
due to safety concerns.

1.1.4 Contributions
The main contributions of this thesis are:

1. A computationally efficient model for pedestrian motion prediction, which
has been validated with an MPC framework on a real vehicle platform
(Chapter 3 and Paper A, B).

2. A flexible trajectory tracking framework called Model Predictive Flexible
trajectory Tracking Control (MPFTC), which relaxes the trajectory
tracking requirement and enables less aggressive tracking behaviors
(Chapter 2 and Paper D).

3. The derivation of conditions for persistent feasibility for a general MPC
controller in uncertain environments (Chapter 3 and Paper D).
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4. A control scheme which ensures robust constraint satisfaction with respect
to multi-modal uncertainties that stem from other road users’ behaviors
(Chapter 3 and Paper C).

5. Proving under which conditions infeasible reference trajectories can
be used while still ensuring tracking stability of the MPC controller
(Chapter 2 and Paper E).

6. Experimental verification of the proposed safety conditions using an
MPC framework on a real test setup (Chapter 4 and Paper F).

1.2 Thesis Outline
Part I of this thesis consists of six chapters, and serves as an introduction to
Part II. Chapter 1 introduces the motivation and scope of this thesis, while
Chapter 2 serves as a general introduction to MPC and some MPC-related
technical contributions (Paper D, Paper E). Chapter 3 puts the derived work of
this thesis in the setting of AD applications (Paper A, Paper B, Paper C) and
introduces conditions needed to safely apply MPC to AD applications, which
is instrumental to Part II. Chapter 4 provides simulation and experimental
validation of a safe MPC framework (Paper F). Finally, Chapter 5 provides
a summary of the included papers from Part II, while Chapter 6 concludes
Part I with final remarks and outlines future research directions.
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CHAPTER 2

Technical Background

In this chapter we give an overview of MPC in general and describe some of
the standard properties which are used in Part II of this thesis. Section 2.1
introduces the general MPC problem formulation and provides asymptotic
stability conditions w.r.t. a predefined reference trajectory. Section 2.2 extends
the tracking results to also infeasible reference trajectories, and proves that a
form of stability can still be ensured. Finally, Section 2.3 proposes an alternative
MPC framework which enables flexible tracking of reference trajectories.

2.1 Standard Model Predictive Control
This section introduces a standard discrete-time MPC formulation. For a
complete overview on the topic, we refer the interested reader to [61].

MPC is an optimization-based control technique where an Optimal Control
Problem (OCP) is repeatedly solved over a receding limited time horizon,
starting from the current system state. In particular, for every time instance,
a mathematical model of the controlled system is used to simulate the future
states over a finite horizon, while a sequence of control inputs are selected and
optimized given an objective cost function. The first element in the sequence
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Chapter 2 Technical Background

of control inputs is then applied to the real system, and a new OCP with an
updated state is solved at the next time instance.

2.1.1 Notation
In order to formulate the OCP, we assume that the system we want to control
can be expressed by the following discrete-time nonlinear dynamical model

xk+1 = f(xk,uk) (2.1)

where k is the current time instance, xk ∈ Rnx is state of the system, uk ∈ Rnu

is the control input, i.e., how the system is actuated, and the system dynamics
are given by the function f(xk,uk) : Rnx × Rnu → Rnx . The state and
input are in general subject to constraints that are known a-priori and are
expressed as hk(x,u) : Rnx ×Rnu → Rnh , i.e., the state and input must satisfy
h(x,u) ≤ 0, where the inequalities are defined element-wise.
Throughout the remainder of this thesis, we will use the notation xn|k to

denote a predicted state (or a function) at time n, given the current time k.
Hence, using the system (2.1), a predicted finite sequence of control inputs
Uk = {uk|k,uk+1|k, ...uk+N−1|k} yield the corresponding sequence of predicted
states Xk = {xk|k,xk+1|k, ...,xk+N |k}, where xn+1|k = f(xn|k,un|k) for all
n ≥ k. Moreover, in the case that h(x,u) is time-varying, we note that
hn|k(x,u) := hn(x,u) holds ∀k by definition. In addition, to denote a set of
integers, we use Iba := {a, a+ 1, ..., b}.

2.1.2 Problem Description
In standard MPC formulations, the goal is to design a controller that steers
the system towards a reference which might either be a setpoint rx ∈ Rnx ,
ru ∈ Rnu , or a parameterized reference trajectory r(τ) := (rx(τ), ru(τ)). In
the most common settings, the reference parameter τ is selected to be time, so
that its natural dynamics are given by

τk+1 = τk + ts, (2.2)

where ts is the sampling time for sampled-data systems and ts = 1 in the
discrete-time framework.
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The objective of tracking the given reference r(τ), is formulated as the
minimization of the following performance criterion

V (xk, τk) =
k+N−1∑
n=k

qr(xn|k,un|k, τn) + pr(xn|k, τk+N ), (2.3)

which is minimized for (xn|k,un|k) = (rx(τn), ru(τn)), i.e., the minimum for
qr and pr is attained at the reference r(τ). Therefore, in order to select the
sequence of control inputs un|k that give the best performance criterion, i.e.,
the sequence that is closest to the reference trajectory r(τ), we formulate the
following OCP

V (xk, τk) := min
x,u

k+N−1∑
n=k

qr(xn|k,un|k, τk+n) + pr(xk+N |k, τk+N ) (2.4a)

subject to (s.t.) xk|k = xk, (2.4b)
xn+1|k = f(xn|k,un|k), n ∈ Ik+N−1

k ,(2.4c)
hn(xn|k,un|k) ≤ 0, n ∈ Ik+N−1

k ,(2.4d)
xk+N |k ∈ X f

r (τk+N ), (2.4e)

where N is the prediction horizon. In tracking MPC, typical choices for the
costs qr and pr are given by

qr(xn|k,un|k, τn) :=
[

xn|k − rx(τn)
un|k − ru(τn)

]>
W

[
xn|k − rx(τn)
un|k − ru(τn)

]
, (2.5)

pr(xn|k, τn) := (xn|k − rx(τn))>P (xn|k − rx(τn)), (2.6)

where the matrices W ∈ R(nx+nu)×(nx+nu) and P ∈ Rnx×nx are symmetric
positive-definite. Furthermore, we note that the cost functions qr and pr
depend on τ only through the reference trajectory. Note that in the case of
reference set points, the costs qr and pr are time invariant. As mentioned above,
the predicted state and controls are defined as xn|k and un|k, respectively,
and are subject to constraints (2.4b)-(2.4e). Constraint (2.4b) initializes
the state prediction to the current system state xk, (2.4c) imposes that the
predicted states satisfy the system dynamics, and (2.4d) enforces constraints
stemming from, e.g., physical actuator limitations and reference trajectory
bounds. Finally, (2.4e) is a terminal set constraint which, differently from
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Figure 2.1: Illustration of the receding horizon strategy.

standard formulations, depends on the auxiliary state τk+N relative to the
reference parameter.
Solving Problem (2.4) at time k, yields the optimal sequence of inputs

U?k = {u?k|k,u?k+1|k, ...,u?k+N−1|k} and states X?k = {x?k|k,x?k+1|k, ...,x?k+N |k}.
While these sequences minimize the performance criterion (2.4a) subject to
constraints (2.4b)-(2.4e), an MPC controller does not entirely apply U?k to the
real system, instead, the sequence U?k is applied to the system in a receding
horizon fashion which can be summarized with the following steps

1. obtain the current measurement (or estimate) of xk at time instance k;

2. solve OCP (2.4) with the (estimated) state xk and obtain U?k;

3. apply u?k|k to the real system; and

4. wait until tk + ts and go to step 1.

This strategy allows MPC to use the system model (2.1) to form predictions
over a finite time horizon, and compute the optimal actions U?k at each time
instance k. In order to obtain a state-feedback policy, only the first input u?k|k
is applied, and the same process is repeated at time k + 1. This introduces
feedback in the MPC scheme and makes it possible to compensate for model
mismatch and disturbances that the real system is subject to. An illustration
of these operating principles is given in Figure 2.1.

MPC can be computationally demanding, since it requires that an optimiza-
tion problem is solved every sampling time instance. To that end, it is clear
that MPC relies heavily on optimization techniques that enable sufficiently
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fast solutions of the underlying OCP (2.4). Although a detailed discussion
on the variety of customized optimization techniques is outside the scope of
this thesis, we note the following. For convex (quadratic/linear costs, linear
dynamics, convex constraint sets) MPC problems, the OCP can be formulated
as a Quadratic Program (QP) and efficient solvers [63]–[65] are used to solve
the underlying OCP, while for nonlinear (nonlinear dynamics and constraints)
MPC problems, the Sequential Quadratic Programming (SQP) approach is
used, which sequentially approximates the nonlinear problem into a QP. For a
detailed discussion on optimization techniques specifically intended for MPC,
the reader is referred to [66], [67].

In the next section we recall standard MPC results available in the literature
by introducing conditions under which the MPC controller is ensured to
track the predefined reference trajectory r(τ), while ensuring satisfaction of
constraint hk(xk,uk).

2.1.3 Reference Tracking
In order to prove that the MPC controller based on (2.4) ensures that the states
(xk,uk) track the user-provided parameterized reference trajectory (rx

k , ru
k ) :=

(rx(τk), ru(τk)), we must first recall the following standard assumptions, see
e.g., [62], [68].

Assumption 2.1 (System and cost regularity). The system model f is contin-
uous, and the stage cost qr : Rnx × Rnu × R → R≥0, and terminal cost
pr : Rnx × R → R≥0, are continuous at the reference (rx

k , ru
k ) and sat-

isfy qr(rx
k , ru

k , τk) = 0, and pr(rx
k , τk) = 0. Additionally, qr(xk,uk, τk) ≥

α1(‖xk − rx
k‖) for all feasible xk, uk, and pr(xk, τk) ≤ α2(‖xk − rx

k‖), where
α1 and α2 are K∞-functions.

This assumption is commonly seen in MPC [62], [68], where the MPC problem
is instead formulated as a setpoint stabilization problem. Furthermore, it can
be relaxed in case one wants to adopt “economic” costs, see, e.g., [69]–[76] for
a generic theory and [42], [76] for applications to autonomous driving.

Assumption 2.2 (Reference feasibility). The reference is feasible for the
system dynamics, i.e., rx(t+ ts) = f(rx(t), ru(t)), and the reference satisfies
the known constraints (2.4d), i.e., hn(rx(tn), ru(tn)) ≤ 0, for all n ∈ I∞0 .
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Assumption 2.3 (Stabilizing Terminal Conditions). There exists a parametric
stabilizing terminal set X f

r (t) and a terminal control law κf
r(x, t) yielding:

xκ+ = f(x, κf
r(x, t)), t+ = t+ ts,

such that pr(xκ+, t+) − pr(x, t) ≤ − qr(x, κf
r(x, t), t), and x ∈ X f

r (t) ⇒ xκ+ ∈
X f

r (t+), and hn(x, κf
r(x, t)) ≤ 0, for all n, k ∈ I∞0 .

Assumptions 2.1-2.3 make it possible to derive the following standard stability
result.

Proposition 2.1 (Nominal Asymptotic Stability). Suppose that Assump-
tions 2.1, 2.2, and 2.3 hold, and that the initial state (xk, τk) at time k belongs
to the feasible set of Problem (2.4). Then the system (2.1) in closed loop with
the solution of (2.4) applied in receding horizon is an asymptotically stable
system.

Proof. The proof follows from standard arguments, see, e.g., [61], [62].

Proposition 2.1 recalls well-known stability results from the existing literature
which apply to tracking MPC schemes. We emphasize that the design procedure
resulting from Proposition 2.1 requires one to precompute a feasible reference
trajectory (rx

k , ru
k ) that satisfies Assumption 2.2. However, in practice, it may

be convenient to use a reference trajectory that is infeasible w.r.t. the system
dynamics, but simpler to define. For example, when designing a motion planner
and controller for an autonomous vehicle, it would be convenient to use just
use the available lane centerline as a reference trajectory, even if it would not
in general be feasible for kinematic or dynamic vehicle models.
In the next section, we will show that Assumption 2.2 can be relaxed by

resorting to Input-to-State Stability (ISS) analysis.

2.2 Infeasible References
In [77] stability with respect to an unreachable set point was studied, however,
the approach therein only applies to time-invariant infeasible references. In
order to overcome such a limitation and extend the results, we next consider a
setting where the reference can be time-varying, but does not need to satisfy
Assumption 2.2, and the terminal conditions (2.4e) do not need to hold for the
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reference trajectory r(τ), but in a neighborhood around it. To state the main
result of this section (Theorem 2.2), we first must introduce a few preliminary
results.

2.2.1 Economic MPC Formulation
Consider the optimal state and input trajectories obtained from the infinite-
horizon OCP

(xr,ur) := lim
M→∞

arg min
ξ,ν

M−1∑
n=0

qr(ξn,νn, τn) + pr(ξM , τn) (2.7a)

s.t. ξ0 = x0, (2.7b)
ξn+1 = f(ξn,νn), n ∈ IM−1

0 , (2.7c)
h(ξn,νn) ≤ 0, n ∈ IM−1

0 , (2.7d)

and let yr := (xr,ur) denote the solution of (2.7), and its multipliers as λr

and µr. Hereafter we will refer to yr as the feasible reference, as it now is
ensured to satisfy Assumption 2.2.
The result in Theorem 2.2 builds upon the stability theory for economic

MPC schemes, where the cost is not of tracking type. In this section we only
recall that the main difference between economic and tracking MPC schemes
is in the cost function. For tracking schemes, the cost function satisfies

qr(xr
k,ur

k, τk) = 0, qr(xk,uk, τk) > 0, ∀ xk 6= xr
k, uk 6= ur

k, (2.8)

but not in economic ones. For an in-depth review of the stability analysis tools
for economic MPC, we refer the reader to [69], [73], [78], [79]. An MPC scheme
that satisfies Assumption 2.2 is by construction of tracking type. However, if
the reference trajectory is infeasible with respect to the system dynamics, an
economic cost is instead obtained, i.e., qr(xr

k,ur
k, τk) 6= 0 and pr(xr

k, τk) 6= 0.
In order to retrieve a tracking cost from the economic one, we introduce the

following rotated costs

q̄r(xn|k,un|k, τn) := qr(xn|k,un|k, τn)− qr(xr
n,ur

n, τn)
+ λr>

n (xn|k − xr
n)− λr>

n+1(fn(xn|k,un|k)− fn(xr
n,ur

n)),
(2.9)

p̄r(xn|k, τn) := pr(xn|k, τn)− pr(xr
n, τn) + λr>

n (xn|k − xr
n), (2.10)
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that are commonly used in economic MPC. The idea behind the rotated
cost is to adjust the stage and terminal costs qr and pr such that the mini-
mum is attained at the feasible reference (xr,ur), i.e., q̄r(xr

k,ur
k, τk) = 0, and

p̄r(xr
k, τ

r
k) = 0. To ensure this, a requirement is set on the rotated costs to

remain positive definite. Hence, we must assume that the dynamics are linear
time-varying (LTV) as in Assumption 2.4.

Assumption 2.4. The system dynamics f are linear time-varying, i.e.,

xk+1 = fk(xk,uk) = Akxk +Bkuk. (2.11)

This assumption is rather technical and in practice it is expected that the
results can be extended to the fully nonlinear case. Next, we show that if
suitable terminal conditions are applied, an MPC scheme using an infeasible
reference can still be asymptotically stabilized towards a neighborhood of the
optimal trajectory xr.

2.2.2 Ideal Formulation
In order to track the feasible reference obtained by solving the infinite-
horizon (2.7), we formulate the following ideal problem

V i(xk, τk) = min
x,u

k+N−1∑
n=k

qr(xn|k,un|k, τn) + pỹr(xk+N |k, τk+N ) (2.12a)

s.t. (2.4b)− (2.4d), xk+N |k ∈ X f
yr(τk+N ), (2.12b)

where

ỹr
k := arg min

x
pyr(x, τk)− λr>

k (x− xr
k). (2.13)

We refer to this formulation as ideal since it uses terminal conditions that
cannot in general be known, unless one solves the OCP (2.7).

Theorem 2.1. Suppose that

1. Assumption 2.1 holds,

2. Problem (2.7) is feasible,

3. Assumption 2.3 holds for q̄r and p̄ỹr , with terminal set X f
yr , and
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4. Assumption 2.4 holds for the system dynamics.

Then, the system (2.1) in closed-loop with the ideal MPC (2.12) is asymptoti-
cally stabilized to the optimal trajectory xr.

Proof. See proof in [80] (Paper E).

Theorem 2.1 establishes the first steps towards proving Theorem 2.2, by
proving that an MPC problem, which uses an infeasible reference (rx

k , ru
k ), can

stabilize the system (2.1) to the feasible reference obtained by solving (2.7).
However, we note that in order to be able to formulate Problem (2.12), one
must express the terminal set X f

yr(τk+N ) as a positive invariant set (point
3 in Theorem 2.1) containing xr, and a terminal control law that stabilizes
system (2.1) to xr. In other words, one has to solve Problem (2.7).
On the other hand, if we express the terminal conditions on the infeasible

reference rx, asymptotic stability (in the sense of Proposition 2.1) cannot be
proven anymore. We therefore resort to Input-to-State Stability (ISS) analysis
for the closed-loop system, where the considered input will be a terminal
reference yf = (xf ,uf) satisfying the following assumption.

Assumption 2.5 (Approximate feasibility of the reference). The reference yf

satisfies the constraints (2.4d), i.e., h(xf
n,uf

n) ≤ 0, n ∈ Ik+N−1
k , for all k ∈ N+.

Additionally, recursive feasibility holds for both Problem (2.4) and (2.12) when
the system is controlled in closed-loop using the feedback from Problem (2.4).

Assumption 2.5 sets a rather mild requirement from a practical standpoint.
Using an infeasible reference, yet simple to obtain, or approximating the system
dynamics to capture the most relevant dynamics of the system (‖xf

n+1 −
fn(xf

n,uf
n)‖ ≤ ε, for some small ε) is not uncommon in practice. In particular,

in a practical setting we can select yf = r(tk+N ), or in an ideal setting
yf = yr(tk+N ). To that end, we define the following closed-loop dynamics

xk+1(yf) = fk(xk,uMPC(xk,yf)) = f̄k(xk,yf), (2.14)

where uMPC is obtained as u?k|k solving Problem (2.4) in case yf = r; and as
ui
k|k solving the ideal Problem (2.12) in case yf = yr.
We are now ready to state the main results of this section.

Theorem 2.2. Suppose that
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1. Problem (2.7) is feasible,

2. Assumptions 2.1 and 2.3 hold for the reference yr with costs q̄r and p̄ỹr

and terminal set Xyr ,

3. Problem (2.4) and Problem (2.12) are feasible at time k with initial state
(xk, tk), and

4. the reference yf , with terminal set X f
yf , satisfies Assumption 2.5.

Then, system (2.14) obtained from (2.1) in closed-loop with MPC formula-
tion (2.4) is ISS.

Proof. See the proof in [80](Paper E).

This theorem proves that if an infeasible reference is used, system (2.1) does
not converge exactly to the (unknown) optimal trajectory from OCP (2.7), but
to a neighborhood around it which depends on how inaccurate the terminal
reference is. However, as was proven in [73], [79], the effect that the terminal
conditions have on the closed-loop system decreases as the prediction horizon
increases.
To illustrate the derived results, we consider next an illustrative example

using a robotic arm manipulator.

2.2.3 Results
To illustrate the results of Theorems 2.1 and 2.2, we consider the planar robot
with two degrees of freedom presented in [81] with dynamics

ẋ =
[
ẋ1
ẋ2

]
=
[

x2
B−1(x1)(u− C(x1, x2)x2 − g(x1))

]
, (2.15)

where x1 = (q1, q2) are the joint angles, and x2 = (q̇1, q̇2) are the joint velocities.
The matrices and vectors B, C, and g are given by

B(x1) :=
[

200 + 50 cos(q2) 23.5 + 25 cos(q2)
23.5 + 25 cos(q2) 122.5

]
, (2.16a)

C(x1, x2) := 25 sin(q2)
[

q̇1 q̇1 + q̇2
−q̇1 0

]
, (2.16b)

g(x1) :=
[

784.8 cos(q1) + 245.3 cos(q1 + q2)
245.3 cos(q1 + q2)

]
, (2.16c)
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and the system is assumed to be subject to the following constraints

‖x2‖∞ ≤ 3/2π, ‖u‖∞ ≤ 4000. (2.17)

Applying the following transformation

u = C(x1, x2)x2 + g(x1) +B(x1)v, (2.18)

we can rewrite system (2.15) into the linear system[
ẋ1
ẋ2

]
=
[
x2
v

]
, (2.19)

subject to the non-linear input constraint

‖C(x1, x2)x2 + g(x1) +B(x1)v‖∞ ≤ 4000. (2.20)

Defining the reference path

p(θ) =
(
θ − π

3 , 5 sin
(

0.6
(
θ − π

3

)))
, (2.21)

and timing law

θ(t0) = −5.3, θ̇(t) = vref(t)
‖∇θρ(θ(t))‖2

, vref(t) =
{

1 if θ < 0
0 otherwise ,

with t0 = 0 s, we obtain the following reference trajectory

rx(t) =
[
p(θ(t)) ∂p

∂θ θ̇(t)
]>
, ru(t) =

[
∂2p
∂θ2 θ̇

2 + ∂p
∂θ θ̈

]>
, (2.22)

which has a discontinuity at θ = 0.
For the stage cost we use W = blockdiag(Q,R) with

Q = diag(10, 10, 1, 1), R = diag(1, 1),

and the terminal cost matrix is computed using an LQR controller with the
cost defined by Q and R and is given by

P =


290.34 0 105.42 0

0 290.34 0 105.42
105.42 0 90.74 0

0 105.42 0 90.74

 .
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Figure 2.2: Closed-loop simulation for the initial time k = 167 and initial condi-
tion (x1, x2) = (−4.69,−1.62, 0, 0). The reference trajectory r(τ) =
(rx(τ), ru(τ)) is represented by the gray lines, while the feasible refer-
ence trajectory yr is represented by the black lines. The orange lines
show the closed-loop trajectories for the practical formulation (2.4)
while the blue trajectories show the closed-loop behavior of the ideal
formulation (2.12).

The corresponding terminal set is given by

X f
r (tn) = {x | (x− rx

n)>P (x− rx
n) ≤ 61.39}.

For detailed derivations of the terminal cost and terminal set, we refer the
reader to the Appendix in [36], [81] (Paper D).
Since the reference in (2.22) is clearly infeasible, we obtain the feasible

reference yr = (xr,ur), by approximating the infinite horizon OCP (2.7) with
a prediction horizon of M = 1200, and use a sampling time of ts = 0.03 s to
discretize the problem. For the closed-loop simulations, we use the control
input obtained from formulations (2.4) and (2.12) with horizon N = 10. Note
that both problems were formulated using the linear system (2.19).
Figure 2.2 shows the closed-loop trajectories for the initial time k = 167

and initial condition (x1, x2) = (−4.69,−1.62, 0, 0). The infeasible reference
r = (rx, ru) is denoted by the gray lines, while the black lines denote the
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2.3 Model Predictive Flexible Trajectory Tracking Control

optimal reference yr = (xr,ur) from (2.7). The closed-loop trajectories from
the practical MPC formulation (2.4) are shown with the orange lines, while
the closed-loop trajectories from the ideal formulation (2.12) are shown with
the black lines. For times t < 5 s both the practical MPC (orange lines) and
the ideal MPC (blue lines) stabilize towards the reference r. However, between
times 5 s ≤ t ≤ 9 s, the discontinuity (infeasibility) of the reference trajectory
affects how the two formulations behave. The ideal formulation successfully
tracks the optimal reference (black line), while the practical MPC struggles.
After the discontinuity, the rest of the reference trajectory is feasible, enabling
both formulations to track the reference.

2.3 Model Predictive Flexible Trajectory Tracking
Control

Thus far, we have considered a standard tracking MPC scheme, in which, the
reference trajectory evolves through its natural time dynamics. However, in
many practical settings, the presence of constraints might force the system to
deviate from the reference trajectory by either forcing the system to slow down
or completely stop, i.e., Assumption 2.2 does not hold due to the constraints
h(x,u). Therefore, if the reference trajectory is not adjusted in such settings,
one typically faces aggressive tracking behaviors if the reference manages to
get far away from the system state.

The established Model Predictive Path-Following Control (MPFC) proposed
in [81]–[86] alleviates such issues by penalizing deviations from a path, rather
than a reference trajectory. By introducing additional variables to the problem
formulation, the MPFC framework is able to control the position along the
reference path, instead of blindly tracking a reference trajectory. However,
one difficulty with this approach is the need to select an appropriate output
function and to define a path, which typically is a dimension lower than the
system state space nx. While MPFC is a valid technique for tackling this
problem, an alternative approach called Model Predictive Flexible trajectory
Tracking Control (MPFTC) has been proposed in [36], where based on ideas
similar to MPFC, auxiliary variables are introduced to artificially modify the
time derivative of the reference trajectory in a time-warping fashion. As noted
earlier, while the main difficulty in MPFC is to establish a suitable output and
define a path, the main difficulty in MPFTC is to precompute a parameterized
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feasible reference trajectory.
To avoid aggressive behaviors which can be caused by constraints h(x,u) ≤ 0,

we adapt the dynamics of the reference trajectory by the means of the parameter
τ , which can be seen as a fictitious time with dynamics given by

τk+1 = τk + ts + vk, (2.23)

where vk is an auxiliary control input, and τk becomes an auxiliary state. It
is important to stress that the dynamics in (2.23) do not affect the system
dynamics (2.1), but only how the reference dynamics evolve in time.
The MPFTC problem is then formulated as follows

V (xk, τk) := min
x
τ ,

u
v

k+N−1∑
n=k

qr(xn|k,un|k, τn|k) + wv2
n|k

+ pr(xk+N |k, τk+N |k)

(2.24a)

s.t. xk|k = xk, τk|k = τk, (2.24b)
xn+1|k = f(xn|k,un|k), n ∈ Ik+N−1

k , (2.24c)
τn+1|k = τn|k + ts + vn|k, n ∈ Ik+N−1

k , (2.24d)
hn(xn|k,un|k) ≤ 0, n ∈ Ik+N−1

k , (2.24e)
xk+N |k ∈ X f

r (τk+N |k), (2.24f)

where, differently to Problem (2.4), constraint (2.24d) enforces the evolution
of the fictitious time dynamics, and w > 0 is the weight defining the cost
associated with the auxiliary input vn|k, which can take any real value. We
define qr and pr according to (2.5) for simplicity, but note that the proposed
framework can accommodate more general cost definitions. Furthermore, this
formulation faces an increased computational complexity, since an additional
state and control variable have been introduced, however, such an increase is
typically small since these variables have decoupled linear dynamics.

Remark 2.1. If the constraint vn|k = 0 is added, a standard MPC formulation
is obtained. The terminal set X f

r can therefore be designed as in standard MPC,
where one assumes that the reference trajectory evolves according to its natural
dynamics (2.2).

Using the same assumptions as in Section 2.1, and that w > 0, we can also
prove that asymptotic stability also holds for MPFTC.
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2.3 Model Predictive Flexible Trajectory Tracking Control

Theorem 2.3 (MPFTC Asymptotic Stability). Suppose that Assumptions
2.1, 2.2, and 2.3 hold, and that the initial state (xk, τk) at time k belongs to
the feasible set of Problem (2.24). Then the system (2.1),(2.23) in closed loop
with the solution of (2.24) applied in receding horizon is an asymptotically
stable system.

Proof. The first part of the proof follows standard arguments used to prove
stability for MPC for some τk, while the second part of the proof, which is
non-standard, shows that limk→∞ vk|k = 0. See [36] (Paper D) for the full
derivation.

Remark 2.2. Assumption 2.2 can be relaxed to only require the reference to
be feasible for an unspecified τ0 = t0. In this case, the system will be stabilized
to the reference with a time shift which is an integer multiple of the sampling
time ts. If, instead, feasibility holds for all initial times, then the time shift
can be any real number. As opposed to MPFTC, in standard MPC the time
shift is 0 by construction.

Remark 2.3. Note that the initial constraint τk|k = τk is not necessary, and
Theorem 2.3 holds also in case the initial auxiliary state τk|k is free to be
selected by the optimizer.

Next, we consider a simple simulation example, which highlights the differ-
ences between normal MPC and MPFTC when constraints hk(x,u) ≤ 0 force
the system to temporarily deviate from the reference trajectory.

2.3.1 Results
We consider the following double integrator dynamics to illustrate in the
simplest fashion the main difference between MPC and MPFTC. The state
and control are defined as x = [p, ṗ]>, ṗ ≥ 0 and u = a ∈ [−5, 5], respectively,
with reference trajectories rx(τ) = [4τ, 4]>, ru(τ) = 0. For the stage cost we
use W = blockdiag(Q,R) with

Q = diag(10, 10), R = 1, w = 1,

while the terminal cost matrix P is obtained from the LQR cost corresponding
to QLQR = diag(1, 1), RLQR = 10, with the corresponding terminal set X f

r (t) =
{x | −K(x− rx(t)) ∈ [−5, 5]}.

25
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Figure 2.3: Closed-loop trajectories of the double integrator example in Section 2.3.1.
The red box denotes the constraint h(x,u) ≤ 0, while the gray lines
denote the reference trajectories.

In order to simulate a constraint that does not satisfy Assumption 2.2, we
introduce a static obstacle at position

pobs
n :=

{
20 for n ≤ 75
∞ otherwise

(2.25)

and formulate the constraint

hn(xn|k,un|k) := pn|k − pobs
n ≤ 0, (2.26)

which upper bounds the position for a finite amount of time.
Figure 2.3 shows the difference in tracking between a standard MPC con-

troller based on (2.4) and the MPFTC controller based on (2.24) which both
start from the initial states xk = [0, 0]> and τk = 0. Both controllers were
formulated with a sampling time ts = 0.2 s and used a prediction horizon of
N = 10. Since the MPC controller starts from standstill, we can see that
it is aggressive and tries to “catch up” with the reference trajectory, i.e., it
overshoots the velocity reference since the position is also being tracked. The
MPFTC controller instead adapts the reference parameter τ and therefore does
not cause an overshoot. The need for a reference trajectory adaptation is seen
more clearly after t = 15 s. Here, MPFTC tracks the reference nicely, while
MPC on the other hand tries to catch up with all the “lost time” and reach
the reference position that moved far away. Figure 2.4 shows the closed loop
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Figure 2.4: The standard MPC (black lines) does not adjust its reference time
parameter, and therefore introduces the aggressive tracking shown
in Figure 2.3. MPFTC (yellow line) on the other hand adjusts the
reference time τ and manages to avoid aggressive tracking behaviors.

trajectories of τk and vk, where it is visible that MPFTC halts the evolution
of τ between times t ∈ [10, 15] s.

2.4 Discussion
This chapter has provided a general overview of MPC while recalling a few
commonly used technical results. Indeed, we have shown that for standard
MPC settings, where the constraints are assumed to be known a-priori and a
reference trajectory that satisfies the system dynamics is available, a controller
based on MPC can guarantee robust constraint satisfaction, while converging
to a reference trajectory. However, requiring that the reference trajectory
satisfies the system dynamics can in practice be a tedious task. To that end,
using infeasible reference trajectories, in the sense that they do not satisfy
the system dynamics, is of great interest in MPC-based motion planning and
control algorithms, due to the convenience and simplicity they offer. We
have discussed how the use of such reference trajectories affect the closed-loop
behavior of the system, and proposed in Section 2.2 sufficient conditions for
stability to hold. Additionally, we introduced the so-called MPFTC framework,
which relaxes the trajectory tracking requirement, while still inheriting the
standard MPC stability guarantees. In particular, the main idea behind the
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MPFTC framework is to reduce potentially aggressive tracking behaviors when
the reference trajectory cannot be freely tracked due to active constraints.

To conclude this chapter we note that while the results presented here hold
in theory, one must question the validity of the necessary assumptions. The
assumption that a-priori constraints always satisfy the reference dynamics may
very well hold true in confined controllable settings where no other agents,
or sudden changes in the environment can occur. However, in settings where
one needs to control a system which is subject to an environment that is
uncontrollable, e.g., typical AD situations, the required assumptions in this
chapter become difficult to verify.

In the next chapter, we consider an MPC formulation specifically intended
for such uncertain situations, and formulate mild conditions which ensure
safety of the controlled system, i.e., the self-driving vehicle.
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CHAPTER 3

Model Predictive Control for Autonomous Driving

Chapter 2 provided an overview of MPC, where the reference trajectory is
assumed to be feasible at all times with respect to constraints h(x,u) that are
assumed to be known at all times. However, in practical scenarios, especially
those typical in AD applications, not all constraints can be known beforehand.
In particular, a self-driving vehicle must identify online, e.g., pedestrians that
want to cross the road and other vehicles that need to perform lane changes.
To that end, ensuring recursive feasibility, and stability, cannot be done by
naively applying the results presented in Chapter 2.

In order to clearly distinguish between the class of constraints that are known
a-priori, versus constraints that model, e.g., moving obstacles present in the
environment, we introduce a new group of constraints we refer to as: a-priori
unknown constraints. More formally, we denote by g(x,u) : Rnx ×Rnu → Rng
the unknown constraint, and use the notation gn|k(x,u) ≤ 0 to denote g at
time n given the current available information at time k. The real constraint
is defined as gn(x,u) := gn|∞(x,u) since gn 6= gn|k in general. On the other
hand, we note that for the a-priori known constraints hn|k(x,u) := hn(x,u)
holds by construction.

In order to use MPC for AD settings, our first and most essential objective
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is to ensure safety of the controlled system (2.1), which is formally defined as

Definition 3.1 (Safety). A controller is said to be safe in a given set S ⊆ Rnx

if ∀x ∈ S it generates control inputs U = {u0,u1, ...,u∞} and correspond-
ing state trajectories X = {x0,x1, ...,x∞} such that hk(xk,uk) ≤ 0 and
gk(xk,uk) ≤ 0, ∀k ≥ 0.

The secondary objective is to control the system (2.1) such that it tracks a
predefined reference trajectory r(τ), as closely as safety allows. To that end,
the underlying OCP one needs to solve can be written as

V (xk, τk) := min
x
τ ,

u
v

k+N−1∑
n=k

qr(xn|k,un|k, τn|k) + wv2
n|k

+ pr(xk+N |k, τk+N |k)

(3.1a)

s.t. xk|k = xk, τk|k = τk, (3.1b)
xn+1|k = f(xn|k,un|k), n ∈ Ik+N−1

k , (3.1c)
τn+1|k = τn|k + ts + vn|k, n ∈ Ik+N−1

k , (3.1d)
hn(xn|k,un|k) ≤ 0, n ∈ Ik+N−1

k , (3.1e)
gn|k(xn|k,un|k) ≤ 0, n ∈ Ik+N−1

k , (3.1f)

xk+N |k ∈ X f
r (τk+N |k). (3.1g)

Note that the only difference between Problem (3.1) and (2.24) lies in the fact
that Problem (3.1) also considers the a-priori unknown constraints gn|k.

Stability and safety (recursive feasibility) guarantees can also be proven for
this problem, however, it requires the introduction of the following (restrictive)
assumptions

Assumption 3.1 (Reference feasibility). Under its natural time dynamics, the
reference is feasible for the system dynamics, i.e., rx(t+ ts) = f(rx(t), ru(t)),
and:

a) the reference satisfies the known constraints (3.1e), i.e.,
hn(rx(tn), ru(tn)) ≤ 0, for all n ∈ I∞0 ;

b) the reference satisfies the unknown constraints (3.1f), i.e.,
gn|k(rx(tn), ru(tn)) ≤ 0, for all n, k ∈ I∞0 .
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Assumption 3.1b is indeed a strong assumption since it assumes that the
predefined reference trajectory r(τ) should always be feasible with respect to
the unknown constraints. Therefore, Assumption 3.1a, which coincides with
Assumption 2.2, serves as a relaxed version that is more realistic and will be
used later on to drop Assumption 3.1b.

Assumption 3.2 (Stabilizing Terminal Conditions). There exists a parametric
stabilizing terminal set X f

r (t) and a terminal control law κf
r(x, t) yielding:

xκ+ = f(x, κf
r(x, t)), t+ = t+ ts,

such that pr(xκ+, t+)− pr(x, t) ≤ − qr(x, κf
r(x, t), t), and

a) x ∈ X f
r (t)⇒ xκ+ ∈ X f

r (t+), and hn(x, κf
r(x, t)) ≤ 0, for all n, k ∈ I∞0 ;

b) x ∈ X f
r (t)⇒ gn|k(x, κf

r(x, t)) ≤ 0, for all n, k ∈ I∞0 .

Similarly to Assumption 3.1b, Assumption 3.2b is also difficult to verify
due to the unknown constraints. Hence, the relaxed version Assumption 3.2a,
which is standard in MPC settings (see, e.g., Assumption 2.3), will be used
later on to drop Assumption 3.2b.

Finally, we introduce the following assumption, imposing some structure on
gn|k which is needed in order to ensure that the feasibility of a solution does
not become jeopardized between consecutive time instances.

Assumption 3.3 (Unknown constraint dynamics). The a-priori unknown
constraint functions satisfy gn|k+1(xn|k,un|k) ≤ gn|k(xn|k,un|k), for all n ≥ k.

This assumption essentially requires the availability of a consistent charac-
terization of the a priori unknown constraints, as we will further detail in the
next section.

Proposition 3.1. Suppose that Assumptions 2.1, 3.1, 3.2, and 3.3 hold, and
that the initial state (xk, τk) at time k belongs to the feasible set of Problem
(3.1). Then the system (2.1) and (2.23) in closed loop with the solution of (3.1)
applied in receding horizon is an asymptotically stable system.

Proof. The proof follows the same steps as in Theorem 2.3 since Assump-
tions 3.1b and 3.3 are assumed to hold for the reference trajectory r(τ). For
further details, the reader is referred to the proof in [36] (Paper D).

31



Chapter 3 Model Predictive Control for Autonomous Driving

Figure 3.1: The top panel shows the sets Wn|k for n ∈ Ik+3
k representing the

predicted positions of the pedestrian at time k, while the middle and
bottom panel show predictions made at time k + 1. A model that
satisfies Assumption 3.3 is expected to provide sets that are captured
by the middle panel, while a model that does not satisfy Assumption 3.3
can instead predict sets that are not contained at the next time instance.

Proposition 3.1 solves in theory the problem of applying MPC to settings
in uncertain environments. However, we note that Assumptions 3.1b, 3.2b,
and 3.3 are difficult to enforce in practice, since they require feasibility with
respect to constraints that are unknown.
The next sections will therefore show how Assumptions 3.1b and 3.2b can

be replaced with more realistic ones, and how Assumption 3.3 can be verified.

32



3.1 Predictive Collision Avoidance

3.1 Predictive Collision Avoidance
This section aims to provide a discussion on how constraint gn|k can be
constructed so that Assumption 3.3 is satisfied. While Figure 3.1 provides a
visual interpretation of Assumption 3.3, it is natural to wonder how g should
be constructed. In order to answer this question, we first provide a formal
description of how g can be constructed, and then provide an example of how
a pedestrian model can be derived and used together with a collision-avoiding
MPC scheme.

We consider a function γ(x,u,w) : Rnx × Rnu × Rnw → Rng together with
the uncertain variable wn|k which models the predicted states of, e.g., other
road users. We assume that this variable belongs to a set wn|k ∈ Wn|k ⊆ Rnw

that gathers all uncertainties related to the a-priori unknown constraints as
depicted in Figure 3.1. With the knowledge of such a set, it is possible to
formulate the constraint gn|k in the following way

gn|k(xn|k,un|k) := max
wn|k∈Wn|k

γn|k(xn|k,un|k,wn|k), (3.2)

which by construction also implies robust constraint satisfaction, i.e.,

gn|k(xn|k,un|k) ≤ 0 ⇔
{
γn|k(xn|k,un|k,wn|k) ≤ 0,
∀ wn|k ∈ Wn|k.

(3.3)

However, in order to construct gn|k in accordance to (3.2), we rely on the
availability of sets Wn|k that express the uncertainty of an obstacle. In a
general setting, we can select wk to be a state of the dynamical system

wk+1 = ω(wk,ηk,xk,uk), (3.4)

where the function ω describes the dynamics, and ηn|k ∈ E ⊆ Rnη is an associ-
ated control input which can either model process noise or some underlying
policy/intent that controls the state wk, while the inclusion of xk, and uk allow
the possibility to model interactions between the state wk and system (2.1).
For instance, a road user will most likely approach an intersection cautiously if
a vehicle drives with a high velocity and shows no indication of slowing down.
The remaining question to answer is, however, how to derive a dynamical

system like the one proposed in (3.4). In the next section we provide an
example of how a pedestrian prediction model can be constructed and then
show how it can be used in a collision-avoiding MPC scheme in Section 3.1.2.
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Figure 3.2: An illustration of a graph-based map which connects the different
walkable segments together. Each edge i is associated with a walking
reference rped

i .

3.1.1 Pedestrian Prediction Model
A self-driving vehicle needs to be able to consistently detect the surrounding
environment and update its belief about how the environment can change.
To that end, modeling how road users behave in traffic, e.g., predicting their
most likely behavior, is of great importance and needs to be computationally
efficient, but also sufficiently accurate without being overly conservative. In
this section, we present a pedestrian model [28] (Paper A), and discuss some
of its benefits and limitations.

To make qualified predictions of the future movements of pedestrians, one can
leverage the information that is provided by a map of the road configuration.
In particular, we consider all areas where pedestrians are expected to walk,
e.g., sidewalks and crosswalks, and construct a graph of connected edges
which cover all walkable pedestrian areas. Then, by assigning a reference
rped
i = (rx,ped

i , ru,ped
i ) for each edge i, a map like the one shown in Figure 3.2

can be obtained.
The pedestrian dynamics are modeled using the state and input vectors

w = [xped, yped, vped, θped]>, η = [aped, αped]>, (3.5)
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where (xped, yped) denote the position coordinates, vped the walking velocity,
and θped the orientation. The inputs aped and αped model the pedestrian
acceleration and angular velocity, respectively. With this state representation,
the pedestrian dynamics can be modeled with the following unicycle equations

ẇ =


ẋped

ẏped

v̇ped

θ̇ped

 =


vped cos θped

vped sin θped

aped

αped

+ ζ := ω(w,η) + ζ, (3.6)

where ζ := [ζx, ζy, ζv, ζθ]> represents some Gaussian process noise with zero
mean. For simplicity, the pedestrian model is linearized and discretized along
the reference edges (rx,ped

i , ru,ped
i ) to obtain the linear discrete-time model

∆wk+1 = Aped∆wk +Bped∆η + Epedζk. (3.7)

While (3.6) can in most cases model the pedestrian dynamics adequately, we
note that the difficulty lies in figuring out the underlying intent that drives the
dynamics, i.e., one must understand the structure of the control input η. It is
quickly realized that it becomes intractable to compute different intent policies
for different pedestrians, since all pedestrians follow their own preferences and
would most likely make different choices to reach the same goal. To that end,
by using model (3.6) we aim to predict the average behavior of the pedestrian,
and use some estimate on the covariance to address the uncertainty of the
predicted motion.
To capture the average motion behavior, we apply the following structure

on the control input
η = −Kped(wk − rx,ped

i ), (3.8)

where the feedback matrix Kped can easily be implemented using an LQR
formulation. Then, using the closed-loop model Aped

K = Aped − BpedKped,
one can easily compute the average error ∆w̄k := E[∆wk] and covariance
Σ := E[∆wk∆w>k ] as

∆w̄n+1|k = Aped
K ∆wn|k, Σn+1|k = AKΣn|kA>k + Z, (3.9)

where Z is the associated covariance matrix for the process noise ζ.
This structure allows for easy propagation of the uncertainty and average

behavior of the pedestrian motion along a reference edge. Since the edges are
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Figure 3.3: The predicted average positions are represented by the blue lines while
the corresponding 99-percentile ellipses are displayed in red. The
black dashed line represents the ground truth of actual pedestrian
measurements.

connected in a graph, we allow for the prediction to switch to the next edge
whenever it comes close to the neighboring node by using a simple distance-
based rule, e.g., when the prediction reaches the distance threshold di for node
i (see Figure 3.2). Furthermore, if more than one neighboring edge exists, i.e.,
there exists a bifurcation in the graph, the prediction can be propagated along
all the neighboring edges, such that a multi-modal prediction is obtained.
A clarifying example is shown in Figure 3.3, where the blue lines show the

average predictions, the red lines show the 99-percentile of the covariance
matrix Σ projected onto the xy-plane, and the black lines show actual ground
truth measurements of a pedestrian taken from [28]. The green asterisk denotes
the start of the prediction, while the black asterisks denote the place where a
switch in the reference edge occurred, i.e., the model switched from tracking
edge i to tracking edge j. Since Kped was designed using an LQR control with
tuning Qped = q · diag(1, 1, 1, 1) and Rped = r · diag(1, 1), it is evident that
the ratio q/r affect the predicted covariance and average position. Figure 3.3
shows that the overall average behavior manages to capture the actual motion
of the pedestrian well, and that the uncertainty can be tuned so that it always
captures the underlying ground truth trajectory.
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Figure 3.4: An example of prediction mismatch when a pedestrian does not fully
adhere to the assumptions of the prediction model. The color scheme
matches the one of Figure 3.3.

It is clear that this model has its limitations, since it is designed to predict
average behaviors only. Consider the situation presented in Figure 3.4 where a
pedestrian does not follow the underlying assumption. While the method is
able to accurately predict on a higher level that the pedestrian can cross the
road, the detailed prediction does not capture the true behavior well enough.

Next, we show how such a model can be incorporated in an MPC framework,
and applied to a real test vehicle.

3.1.2 Combining Pedestrian Prediction Models with MPC
In this section we provide an overview of the framework presented in [50],
with the main focus of illustrating how the constraint gn|k can be constructed
based on pedestrian predictions obtained from the previous section. For full
implementation details, the reader is referred to [50] (Paper B).
Consider the setting illustrated in Figure 3.5, where a self-driving vehicle

needs to perform a left turn in an intersection with crosswalks. In this setting,
the vehicle must be able to clear the intersection in a comfortable manner,
while avoiding collisions with any potential road user. In order to achieve
this, we formulate an MPC problem, similar to the formulations mentioned
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Figure 3.5: The vehicle needs to drive along its given path, while considering the
future motion of the pedestrian.

in Chapter 2, which tracks a predefined reference trajectory (orange line in
Figure 3.5), and satisfies actuation constraints hk(x,u) ≤ 0 and the a-priori
unknown constraints gn|k(x,u) ≤ 0 coming from the predicted pedestrian
positions. To construct gn|k we first use the information about the predicted
average position (xped

n|k , y
ped
n|k ) and the uncertainty Σn|k. Selecting a suitable

confidence level σ of the covariance matrix Σn|k, we can formulate the following
bounded region which, according to the prediction model, will most likely be
occupied by the pedestrian

Wn|k := {w |
[
xped − xped

n|k
yped − yped

n|k

]>
Σ̄−1
n|k

[
xped − xped

n|k
yped − yped

n|k

]
≤ σ2}, (3.10)

where Σ̄n|k is the uncertainty related to (xped
n|k , y

ped
n|k ), i.e.,

Σ̄n|k =
[

1 0 0 0
0 1 0 0

]
Σn|k

[
1 0 0 0
0 1 0 0

]>
,

and w := [xped, yped, vped, θped]> denotes the pedestrian state from Sec-
tion 3.1.1.
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3.1 Predictive Collision Avoidance

θ = 0 θ = π/6 θ = −π/6

Figure 3.6: Approximation of the self-driving vehicle bounding box from (3.11).

From a collision-avoidance point of view, it becomes natural that the self-
driving vehicle should avoid the regions that might be occupied by the pedes-
trian. More formally, the position component (x, y) of the self-driving vehicle
should not intersect with any position component (xped

n|k , y
ped
n|k ) ∈ Wn|k. Since

the dimensions of the vehicle must also be considered for collision avoidance, we
use the following ellipse to over-approximate the self-driving vehicle bounding
box [

x− xego

y − yego

]>
R(θ)

[
a−2 0
0 b−2

]
R(θ)>

[
x− xego

y − yego

]
= 1, (3.11)

where R(θ) : R → R2 × R2 denotes a two-dimensional rotation matrix,
(xego, yego) is the vehicle center, and a and b denote the ellipse axes. See
Figure 3.6 for a clarifying illustration. Using the ellipse (3.11) and the uncer-
tainty set (3.10), we can form the collision avoidance function γ as

γn|k(xn|k,un|k,wn|k) :=

1−
[
xn|k − xped

n|k
yn|k − yped

n|k

]>
R(θ)>

[
a−2 0
0 b−2

]
R(θ)

[
xn|k − xped

n|k
yn|k − yped

n|k

]
,

(3.12)

which allows us to formulate gn|k according to (3.2), i.e.,

gn|k(xn|k,un|k) := max
wn|k∈Wn|k

γn|k(xn|k,un|k,wn|k). (3.13)

Results and Discussion

An MPC controller which uses the predictions generated from Section 3.1.1
to form gn|k was implemented and validated at the Astazero1 test track

1https://astazero.com
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Figure 3.7: The blue and red lines denote the road boundary constraints, while
the black ellipse surrounding the vehicle box denotes the ellipsoidal
constraint (3.11). Projections of the reference rx

k and predicted open-
loop state xn|k are illustrated by the green and black lines, respectively,
while the predicted pedestrian states are depicted as red points, and
the uncertainties as black ellipses.

outside Gothenburg, Sweden. The proposed framework used ACADO [87]
and HPMPC [64] to formulate and solve the MPC problem using the SQP
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Figure 3.8: Closed-loop states from Figure 3.7. The first plot shows the velocity
profile and the second plot shows the steering angle (blue line), and the
steering angle setpoint (dashed brown line). The last two plots show
the acceleration request a and steering angle rate δ̇.

Real-Time Iteration (RTI) [88] scheme, and was applied to a real Volvo XC90
T6 petrol-turbo SUV. More details regarding the vehicle platform will be
provided in Chapter 4.
Figure 3.7 shows the open-loop predictions made by the MPC controller

and by the pedestrian predictor across four different time instances. Here, it is
visible how the vehicle approaches the intersection by slowing down and letting
the predicted pedestrian pass, while keeping a distance between itself (the
ellipse surrounding the vehicle bounding box) and the predicted pedestrian
positions (black ellipses centered around the red points). Figure 3.8 shows the
closed-loop evolution for some vehicle states. Here it is clear how the vehicle
starts from zero velocity, accelerates up to the intersection, and almost comes
to a complete stop while waiting for the pedestrian to pass. Only after the
pedestrian is predicted to have cleared the intersection, the vehicle is allowed
to accelerate again.

Evidently, it is possible to formulate a controller based on MPC that avoids
collisions with moving obstacles by predicting their future motion. However,
we note that this framework does not necessarily ensure recursive feasibility
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Chapter 3 Model Predictive Control for Autonomous Driving

since the prediction model based on Section 3.1.1 does not necessarily satisfy
Assumption 3.3, and obstacles may “suddenly appear” due to limitations in the
sensor system, e.g., a pedestrian or a cyclist may appear right behind a corner.
To that end, it is of great importance to have a consistent characterization on
gn|k, in order to avoid any “surprises” from the environment.
In the next section we discuss how Assumption 3.3 can be satisfied by

properly constructing the uncertainty sets Wn|k.

3.2 Consistent Characterization
In order to construct gn|k robustly, one needs to propagate the uncertainty
state wn|k. In other words, if one has access to the model (3.4) it is possible to
resort to reachability analysis tools to generate possible outer approximations
of the set Wn|k as

Wn+1|k(xn|k,un|k) :⊇ {ω(wn|k,ηn,xn|k,un|k) |
wn|k ∈ Wn|k, ∀ ζn ∈ E }

, (3.14)

for some initialWk|k = wk|k. As it was shown in Section 3.1.1, the propagation
of the uncertainty sets Wn|k allows one to model road users that (a) are
detectable by the sensors; and (b) are either beyond the onboard sensor range
or hidden by other obstacles as illustrated in Figure 3.9. For the case (a),
we must assume that the prediction model does not underestimate the set of
future states that can be reached by the road users, while for type (b), the
uncertainty model must predict that a road user might appear behind the
boundary of the sensor range at all times.

We now state the following result related to the structure of the constraint
gn|k, and Assumption 3.3.

Lemma 3.1. Suppose that gn|k is defined according to (3.2) with Wn|k satis-
fying (3.14). Then, Assumption 3.3 holds.

Lemma 3.1 essentially assumes that the uncertainty in gn|k cannot increase
as additional information becomes available. In addition, a direct consequence
of Lemma 3.1 is that if gn|k(rx(tn), ru(tn)) ≤ 0⇒ gn|k+1(rx(tn), ru(tn)) ≤ 0,
which partly satisfies Assumption 3.1b. Since Lemma 3.1 and Assumption 3.3
play a central part in the deriving the safety guarantees, we provide next
clarifying examples to provide more intuition around them.
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3.2 Consistent Characterization

Figure 3.9: A sensor system can only measure objects that are directly visible
within the sensing range.

Figure 3.1 illustrates the difference in the propagated sets Wn|k when
Lemma 3.1 is satisfied, versus when it is not. The middle panel shows that
predictions made at time k + 1 are a subset of the predictions made at time k,
while the bottom panel on the other hand does not have the same consistent
characterization and does not satisfy Lemma 3.1. We note that by ensuring that
the uncertainty sets have the propertyWn|k+1 ⊆ Wn|k one can conclude that if
(x?n|k,u?n|k) satisfy gn|k(x?n|k,u?n|k) ≤ 0 at time k, then gn|k+1(x?n|k,u?n|k) ≤ 0
also holds at time k + 1. In other words, the solution obtained at time k is
also ensured to hold at time k + 1.
Figure 3.9 illustrates a setting where all road users cannot be detected

due to occlusions caused from the environment. Hence, in order to satisfy
Assumption 3.3 at all times, it is a necessity to model the possibility that a
road user might appear at the boundary of the sensor range. In combination
with a limited sensing range, that also make it impossible to detect obstacles
which are too far away, one can adopt a worst-case approach which ensures that
the planned trajectory xn|k never leaves the sensor range. A visual example of
this is shown in Figure 3.10.
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Figure 3.10: The planned trajectory {xk|k,xk+1|k, ...,xk+N|k} is forced to remain
within the sensor range due to limited sensing capabilities.

3.3 Multi-Modal Uncertainties

In practical settings the predicted setWn|k can represent a collection of disjoint
sets, i.e.,Wn|k = Oin|k

⋂
Ojn|k, that model some underlying intention. Consider,

e.g., the situation presented in Figure 3.11 where a pedestrian is approaching
an intersection. In this situation it becomes natural for the prediction model
to consider two possibilities: either the pedestrian crosses the road, or it does
not; based on each choice, the resulting predicted behavior changes drastically.
Assuming that the number of modes are finite, i.e., i ∈ IL1 , and that the

probability βi for each mode could be estimated, it would be natural to
consider this in the construction of gn|k, but also in the MPC Problem (3.1).
For instance, a human-driver in the situation presented in Figure 3.11 would
most likely drive with a higher speed if it was believed that mode i had a low
probability, compared to if mode i had a high probability. In that sense, using
a controller based on (3.1), with constraints gn|k modeled as (3.13), can yield
conservative behaviors since this amounts to a robust tube formulation, i.e.,
all uncertainties in Wn|k are considered at the same time.
An alternative to such a robust tube formulation, is to instead consider a

formulation where the feedback policy is a function of the predicted obstacle
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3.3 Multi-Modal Uncertainties

Figure 3.11: Example of a setting where the predicted set Wn|k can be split up
into two distinct prediction modes Oin|k and Oj

n|k.

mode i, which is rather similar to the principles presented in [89]. This would
allow the controller to pick different control actions uin|k for each mode i if it
can be distinguished from the other modes, i.e., uin|k = ujn|k for all n < n̄ij
where

n̄ij := min
n
n, s.t. Oin|k

⋂
Ojn|k = ∅, ∀ n ≥ k. (3.15)

The resulting MPC controller would then be able to be formulated as

V (xk, τk) := min
xi,ui,τ i,vi

i∈IL1

L∑
i=1

βi
( k+N−1∑

n=k
qr(xin|k,uin|k, τ in|k) + w(vin|k)2

+ pr(xik+N |k, τ
i
k+N |k)

) (3.16a)

s.t. xik|k = xk, τ ik|k = τk, i ∈ IL1 , (3.16b)

xin+1|k = f(xin|k,uin|k), i ∈ IL1 , n ∈ Ik+N−1
k , (3.16c)

τ in+1|k = τ in|k + ts + vin|k, i ∈ IL1 , n ∈ Ik+N−1
k , (3.16d)

hn(xin|k,uin|k) ≤ 0, i ∈ IL1 , n ∈ Ik+N−1
k , (3.16e)

gin|k(xin|k,uin|k) ≤ 0, i ∈ IL1 , n ∈ Ik+N−1
k , (3.16f)

uin|k = ujn|k, n < n̄ij , i, j ∈ IL1 , (3.16g)

xik+N |k ∈ X
f
r (τ ik+N |k), i ∈ IL1 , (3.16h)
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where the constraint gin|k is now instead defined w.r.t. to each mode i, i.e.,

gin|k(xn|k,un|k) := max
wn|k∈Oin|k

γn|k(xn|k,un|k,wn|k). (3.17)

Note that formulation (3.16) does not optimize over L separate trajectories
for L different scenarios. On the contrary, it groups L scenarios together in
the same problem, where the control input ties together the scenarios and
trajectories through constraint (3.16g). Furthermore, since βi denotes the
probability for each mode i, i.e.,

∑L
i=1 βi = 1, the cost function (3.16a) is

an approximation of the expected cost. For a more detailed discussion on
Problem (3.16) the reader is referred to [49] (Paper C).

3.3.1 Results
The difference in performance for a controller based on (3.1) and (3.16) can
be evaluated for the scenario illustrated in Figure 3.11. By assuming a simple
pedestrian walking model that upon reaching the intersection can cross with
probability γ or keep on walking with probability γ−1, one can obtain through
simulations the expected cost (average performance) for the two controllers.
Figure 3.12 shows the expected cost for this simple setting, where a prescient
MPC, i.e., an MPC controller which knows all uncertain constraints a-priori, is
included to show the lower bound on the expected cost. Here it is visible that
the scenario-based MPC (3.16) on average performs better than a robust MPC
based on (3.1). Clearly, the idea to leverage the probability information for
each mode i pays-off on average, especially for situations where the crossing
probability is low. However, while formulation (3.16) seems to outperform (3.1),
we note that it comes with a computational complexity that increases with
the number of total modes L.

3.4 Safety Guarantees
So far, we have shown how gn|k can be constructed so that Assumption 3.3
holds for practical settings. However, ensuring that safety (according to
Definition 3.1) holds for system (2.1) requires the controller based on the
MPC problem (3.1) to be recursively feasible. This places requirements on the
terminal constraint (3.1g), which needs to be designed in a way that guarantees

46



3.4 Safety Guarantees

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

Prescient

Robust

Scenario

Figure 3.12: Expected cost for a prescient MPC, robust tube MPC, and scenario
MPC (3.16) for different crossing probabilities γ.

satisfaction of constraints hn and gn|k for all future times. In other words, the
terminal region must ensure that the vehicle will never violate any constraints.
The problem with this is that constraints (3.1f), i.e., gn|k can grow unbounded
in time, such that no state after a certain amount of time remains safe, see
e.g., Figure 3.13. To solve this issue, one alternative is to design the terminal
set (3.1g) by assuming that there exists a safe set where the constraints hn
and gn|k are guaranteed to be satisfied regardless. With this approach, one
can rely on the standard ideas found in MPC [61], [90], [91] which are based
on the existence of robust invariant sets.
More formally, we assume that the safe set has the following properties.

Assumption 3.4 (Safe set). There exists a robust invariant set denoted
Xsafe(τn|k) ⊆ Rnx such that for all xn|k ∈ Xsafe(τn|k) there exists a safe control
set Usafe(xn|k, τn|k) ⊆ Rnu+1 entailing that f(xn|k,usafe) ∈ Xsafe(τn|k + ts +
vsafe), and hn(xn|k,usafe) ≤ 0, for all (usafe, vsafe) ∈ Usafe(xn|k, τn|k) and
for all n ≥ k. Moreover, for all xn|k ∈ Xsafe(τn|k) the a-priori unknown
constraints can never be violated, i.e., by construction gn|k(xn|k,usafe) ≤ 0 for
all xn|k ∈ Xsafe(τn|k) and (usafe, vsafe) ∈ Usafe(xn|k, τn|k).

At first glance, this assumption might seem strong, however, it only postu-
lates the existence of known safe configurations for system (2.1). In particular,
we stress that if no such configurations exist, then a controller based on the
MPC Problem (3.1) is intrinsically unsafe. On the contrary, if such a set does
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Figure 3.13: Given enough time, prediction models can predict that a pedestrian
can be anywhere, such that no state is safe.

exist, then it is non-empty and must, by construction, be invariant. We provide
next an example of a safe set for practical settings.

Example 3.1. Many practical settings where safety is emphasized consider
a system to be safe at steady-state, in which case the safety set Xsafe can be
formulated as

Xsafe(τk) := {x |x = f(x,u), hk(x,u) ≤ 0, mk(x,u) ≤ 0 }, (3.18)

where function mk defines additional constraints which might be needed in
the set definition. A notable example for automotive settings is that a vehicle
parked in a safe configuration, e.g., a parking lot, emergency lane or any other
safe environment that can be modeled by mk, is not responsible for collisions
with other road users. This reasoning can be applied to the setting illustrated
in Fig. 3.13, where the uncertainty grows such that the only safe thing to do is
to force the vehicle to a complete stop.

A safe set based on Assumption 3.4 makes it possible to drop the restrictive
Assumption 3.2b, and enables us to build an approach based on standard
strategies in MPC [61], [90], [91], which relies on stabilizing terminal control
laws κs

r(x, t) and sets X s
r (t) that satisfy Assumption 3.2a. With this in mind,
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the following terminal set is proposed

X f
r (τk+N |k) := {xk+N |k | ∃ un|k, vn|k, (3.19a)

τn+1|k = τn|k + ts + vn|k, (3.19b)
xn+1|k = f(xn|k,un|k), (3.19c)
hn(xn|k,un|k) ≤ 0, (3.19d)
gn|k(xn|k,un|k) ≤ 0, (3.19e)

xn|k ∈ X s
r (τn|k), (3.19f)

xk+M |k ∈ Xsafe(τk+M |k) ⊆ X s
r (τk+M |k), (3.19g)

(3.19a)− (3.19f), ∀n ∈ Ik+M−1
k+N }, (3.19h)

where M ≥ N serves as a degree of freedom, and by construction implies that
Xsafe(τ) ⊆ X s

r (τ),∀τ > 0. We note that if (3.19) is non-empty, then there exist
control inputs uk and vk for all xk ∈ X f

r (τk) that steer xk to the safe set.
The control law associated to set (3.19) can in practice be designed by

first designing a stabilizing control law κs
r as one would do in standard MPC

formulations. This is done by, i.e., ignoring the a-priori unknown constraints
gn|k and by forcing the evolution of τ to evolve according to its natural
dynamics. Then, using the standard stabilizing control law κs

r, one can define
the terminal control law (κf

r(xk+N |k, τk+N |k), νf
r(xk+N |k, τk+N |k)) for (3.19) as

the solution of

min
u,ν

‖u− κs
r(xk+N |k, τk+N |k)‖2 + ν2 (3.20a)

s.t. f(xk+N |k,u) ∈ X f
r (τk+N |k + ts + ν), (3.20b)

hk+N (xk+N |k,u) ≤ 0, (3.20c)
gk+N |k(xk+N |k,u) ≤ 0. (3.20d)

Terminal set (3.19) is essentially a backwards reachable set from Xsafe(t),
since it ensures that for any x ∈ X f

r (t), the state x can reach the safe set
Xsafe in the finite amount of time M −N , while remaining inside the standard
stabilizing set X f

r and satisfying constraints hn and gn|k. In that sense M
is a parameter that can be used to tune X f

r . In particular, if M = N the
terminal set coincides with the safe set, and possibly limits the capabilities
of the terminal control law, i.e., κf

r(x, τ) 6= κs
r and vf

r 6= 0. Consequently, if
M >> N , then the computational complexity of X f

r can become excessive.
We are now ready to state the main result of this section.
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Theorem 3.1 (Recursive Feasibility). Suppose that Assumptions 2.1, 3.1a,
3.2a, 3.3, and 3.4 hold, and that Problem (2.24) is feasible for the initial state
(xk, τk), with terminal set and terminal controllers given by (3.19) and (3.20),
respectively. Then, system (2.1),(2.23) in closed loop with the solution of (3.1)
applied in receding horizon is safe (recursively feasible) at all times.

Proof. The full proof is presented in [36] (Paper D).

We note that the presence of obstacles make it difficult to discuss closed-loop
stability, as the reference trajectory no longer is assumed to always be feasible
w.r.t. gn|k. However, whenever the a-priori unknown constraints become
inactive, the proposed formulation yields nominal asymptotic stability in the
sense of Theorem 2.3.
The next chapter uses Theorem 3.1 to implement and verify a safe MPC

controller based on the results presented in this chapter.
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CHAPTER 4

Experimental Validation of Safe MPC

Chapter 2 laid out an overview of the MPC theory, while Chapter 3 proposed
ways of implementing it safely in autonomous driving settings. This chapter
will present a practical implementation of an MPC formulation that satisfies
Theorem 3.1 for a real vehicle. In particular, we will show in practice how a safe
MPC framework can be deployed in a real vehicle approaching an intersection
with moving pedestrians.

In order to present the experimental results in this chapter, we must first
introduce the following preliminaries: the considered vehicle model, how
consistent constraints can be generated for an AD setting, the computation of
the terminal set in practice, and the vehicle platform.

4.1 Vehicle Model

We consider a single-track vehicle kinematics model, which well describes the
vehicle motion of typical speeds in urban driving scenarios (i.e., less than
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60 kph). We use the following model

ẋ

ẏ

ψ̇

δ̇

α̇

v̇

ȧ


=



v cosψ
v sinψ

vL−1 tan δ
α

w2
0(δsp − δ)− 2w0w1α

a

td(areq − a)


, (4.1)

where x, y denote the position coordinates in a global frame, v is the velocity,
ψ is the orientation angle, L is the vehicle wheelbase length, δ is the steering
angle, α is the steering rate, and a is the acceleration. The control inputs to the
system are defined as δsp and areq which denote a steering angle setpoint and
an acceleration request. As mentioned in the previous chapters, the objective
of the self-driving vehicle is to track a reference trajectory as safely as possible.
Hence, assuming a predefined reference trajectory r(τ), it is possible to derive
the following vehicle kinematics in the frame of the reference path [54]

ṡ

ėy
ėψ
δ̇

α̇

v̇

ȧ


=



v cos(eψ)(1− κr(s)ey)−1

v sin(eψ)
vL−1 tan(δ)− ṡL−1 tan(δr(s))

α

w2
0(δsp − δ)− 2w0w1α

a

td(areq − a)


,

x =
[
ey eψ δ α v a

]>
, u =

[
areq δsp ]> .

(4.2)

In this setting, s represents the longitudinal position along the path, κr is the
path curvature, ey and eψ are the lateral and yaw errors w.r.t. the reference
r, and δr is the reference steering angle. The parameter values for (4.2) are:
L = 2.9, w0 = 20, w1 = 0.9, and td = 1.8. Since the dynamics depend on
the reference curvature κr and steering reference δr, which in turn depend on
the position s, we parameterize the reference trajectory in the longitudinal
position, i.e., r(s) = (rx(s), ru(s)). Hence, in this setting, we consider s to
be an auxiliary state and only track the velocity instead of the longitudinal
position (as opposed to τ in the MPFTC framework).
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4.2 Consistent Pedestrian Prediction Model

We consider that the system (4.1) is subject to the following a-priori known
state constraints

‖ey‖ ≤ 0.4 m, ‖eψ‖ ≤ 0.61 rad, ‖δ‖ ≤ 0.53 rad, (4.3)
0 ≤ v ≤ 55/3.6 m/s, −5 ≤ a ≤ 2 m/s2, ‖α‖ ≤ 0.35 rad/s, (4.4)

while the constraints gn|k must be formed by, e.g., considering the future
predicted states of a road user. Since the pedestrian model in Section 3.1.1
does not necessarily satisfy Assumption 3.3, we propose a different model by
slightly modifying the one in Section 3.1.1.

4.2 Consistent Pedestrian Prediction Model
The work in [28] (Paper A) showed that by using a map of the road configura-
tion, e.g., Figure 3.2, it is possible to capture the average walking behavior at
intersections. To that end, we propose to model the pedestrian dynamics along
each edge i of the graph network. However, instead of considering the unicycle
kinematics, we consider a simpler two-dimensional single integrator model that
is expressed in the longitudinal and lateral directions of the reference edge.
More formally, we assume that the pedestrian states wk := [wlon

k , wlat
k ]> ∈ R2

model the longitudinal and lateral position along a reference edge rped, and
that η is the associated control input that relates to the walking speed in the
longitudinal and lateral direction. Similarly to Section 3.1.1, one can then
apply a feedback law

ηk = [rped,v −Kpedwlat
k ]>, (4.5)

where rped,v denotes the longitudinal walking speed reference along an edge.
Using the feedback law above, we can then write the closed-loop model as

wk+1 = ω(wk, ζ) =
[

1 0
0 1− tsKped

]
wk +

[
ts
0

]
rped,v +

[
ts 0
0 ts

]
ζ,

(4.6)
where ζ ∈ Z ⊆ R2 is assumed to be some bounded noise. Similarly to
Section 3.1.1, the nominal predicted motion can be propagated using

wn+1|k =
[

1 0
0 1− tsKped

]
wn|k +

[
ts
0

]
rped,v, (4.7)

53



Chapter 4 Experimental Validation of Safe MPC

∆
s

d

i

l

z

j

Figure 4.1: An example setting where the future motion of four pedestrians is
predicted. The future motion can be translated into collision-avoidance
sets Cn|k which need to be avoided, see e.g., Figure 4.2.

for an initial wk|k = wk. By resorting to reachability analysis tools [92], [93],
the uncertainty sets Wn|k can easily be propagated for this system along each
reference edge rped

i . In the case that a prediction wn|k reaches the final node
of edge i, the future predictions can be propagated along all new neighboring
edges j, similarly to [28], by using some distance-based rule.
According to Lemma 3.1, constructing the sets Wn|k based on reachability

analysis makes it is possible to construct a collision-avoidance function γ that
satisfies Assumption 3.3. We next provide an example how γ can be designed
in an AD setting.

4.2.1 Constraint Generation

Consider a setting where there are O road users in the environment that the
sensor system can detect, and where the future states for each road user i ∈ IO1
are predicted in a setWi

n|k by a prediction model that satisfiesWi
n|k+1 ⊆ W

i
n|k.

In order to formulate a collision-avoidance constraint, we only need to consider
road users that may interact with the planned trajectory that the vehicle will
track, i.e., the reference trajectory r(s). This can be done by computing the
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s

prediction time n

k+1 k+2 k+3k

Ci
n|k Cl

n|k

Cj
n|k

Planned trajectories

Figure 4.2: Illustration of the collision avoidance sets that are obtained from the
setting shown in Figure 4.1.

closest distance of the uncertainty Wi
n|k w.r.t. the reference, i.e.,

din|k(wi
n|k) := min

s
‖Tx(rx(s))− Tw(wi

n|k)‖2, (4.8)

where Tx : Rnx → R2 and Tw : Rnw → R2 map the position components
of the reference and the uncertainty set into a common global frame. The
solution to (4.8) is denoted as σin|k(wn|k), which represents the longitudinal
position along the reference.
By computing the metrics dn|k and σn|k, it becomes convenient to only

consider settings where the uncertainty Wi
n|k enters a driving corridor ∆

around the reference r, see Figure 4.1. Hence, to consider collision-avoidance
with road user i at prediction time n, we collect the lateral and longitudinal
distances din|k(wi

n|k) and σin|k(wi
n|k) in the following sets

Sin|k := {σin|k(wi
n|k) | ∀wi

n|k ∈ W
i
n|k}, (4.9)

Di
n|k := {din|k(wi

n|k) | ∀wi
n|k ∈ W

i
n|k}, (4.10)

and then formulate the following avoidance set

Cin|k :=
{
Sin|k if |dn|k(wi

n|k)| ≤ ∆ for any wi
n|k ∈ W

i
n|k,

∅ otherwise,
(4.11)
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which corresponds to all longitudinal positions that the vehicle should avoid
at prediction time n. Figure 4.2 shows an illustration of the set (4.11) for the
situation presented in Figure 4.1. Here, four pedestrians are present in the
scene, but only three of them are predicted to be intersecting with the vehicle
path (orange line). For instance, pedestrian i is only on the crosswalk at the
initial prediction time k, while pedestrians l and j enter the intersection at
time k + 2. In this particular situation the collision avoidance constraint can
be constructed in multiple ways, i.e., the vehicle can either: (a) stop for all
pedestrians, (b) yield to pedestrian j but not to pedestrian l, or (c) yield only
to pedestrian i. The dashed line in Figure 4.2 illustrates these options.

Indeed, for each road user i, the vehicle needs to make a decision whether it
should yield to it or drive ahead. Hence, the collision avoidance function γi
for road user i can be constructed as
γin|k(sn|k,un|k,wi

n|k) :=
sn|k − σin|k(wi

n|k) if |dn|k(wi
n|k)| ≤ ∆ and yielding

σin|k(wi
n|k)− sn|k if |dn|k(wi

n|k)| ≤ ∆ and not yielding
∞ otherwise

, (4.12)

and the resulting a-priori unknown constraint can be written as

gin|k(sn|k,un|k) := max
wi
n|k∈W

i
n|k

γin|k(sn|k,un|k,wi
n|k). (4.13)

Remark 4.1. The combinatorics of deciding for whom the vehicle should yield
to increases significantly with the number of road users that are predicted to
interact with the vehicle. In order to alleviate this issue, the prediction layer
could instead use clustering techniques to simplify the decision in the controller.

As mentioned in Remark 4.1, in order to reduce the combinatorics arising
from (4.13), we use a simple strategy that only considers the combinatorics of
the closest intersection and yields to road users further away. For the example
presented in Figure 4.1, this would translate to always yield for pedestrian
j and try to: (i) drive ahead of pedestrian i; (ii) yield for pedestrian i but
drive ahead of road user l; or (iii) yield for road user i and l. In other words,
the introduction of constraint (4.13) to Problem (3.1) yields a mixed-integer
programming problem that needs to be solved online.

Furthermore, as it was mentioned in Section 3.2, in order for constraint gn|k
to satisfy Assumption 3.3, it needs to also consider that not all road users
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can be directly measured as it was illustrated in Figure 3.9. To address this
issue, we deploy a similar strategy as in [33], where virtual road users are
placed wherever the sensor system detects that a potential occlusion may occur.
For each such virtual road user, the same prediction model is applied, and
constraints (4.12)-(4.13) can be formed.

4.3 Terminal Set Computation
Much of the derived theory in Chapters 2 and 3 require certain properties on
the terminal conditions. In this section we will provide a brief overview of how
such a set can be derived for system (4.2) and Problem (3.1), while referring
the reader to Paper F for the full details.
We consider the quadratic stage and terminal costs from (2.5), i.e.,

qr(xn|k,un|k, sn|k) =
[

xn|k − rx(sn|k)
un|k − ru(sn|k)

]>
W

[
xn|k − rx(sn|k)
un|k − ru(sn|k)

]
, (4.14)

pr(xn|k, sn|k) =
[

xn|k − rx(sn|k)
]>
P
[

xn|k − rx(sn|k)
]
, (4.15)

where W = blockdiag(Q,R), Q = diag(1, 1, 10, 1, 1, 1), R = diag(4, 10), and
P = blockdiag(Plat, Plon). In order to express the terminal cost P , we must
first construct the stabilizing terminal set X s

r (s) for system (4.2), which can
be done by decoupling the longitudinal and lateral kinematics.

4.3.1 Longitudinal Kinematics
Since the longitudinal kinematics are given by[

v̇

ȧ

]
=
[

0 1
0 −td

] [
v

a

]
+
[

0
td

]
areq, (4.16)

and the reference trajectory is assumed to satisfy the system dynamics, we can
express the longitudinal kinematics in the following error frame[

ėv
ėa

]
=
[

0 1
0 −td

] [
ev
ea

]
+
[

0
td

]
eareq , (4.17)

where the error states and inputs are defined as

ev := v − vr(s), ea := ėv = a− ar, eareq := areq − ar,req. (4.18)
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Then, by designing an LQR controller with costs QLQR
lon = diag(5 × 10−3, 1)

and RLQR
lon = 1, we obtain a feedback gain Klon that stabilizes (4.17). Using

the Multi-Parametric Toolbox (MPT) [94] we can finally compute a positive
invariant set for the longitudinal dynamics

X lon
r (s) := {v, a | Hlon

[
v − vr(s)
a− ar(s)

]
≤ blon}, (4.19)

where Hlon ∈ R6×2 and blon ∈ R6, and vr(s) and ar(s) denote the velocity and
acceleration components of the reference. The corresponding terminal cost can
be obtained by solving the following Linear Matrix Inequalities (LMIs)

Plon := min
P

trace(P )

s.t. P � 0,
(Alon −BlonKlon)>P (Alon −BlonKlon)− P ≺

−Qlon −K>lonRlonKlon,

(4.20)

where Alon and Blon are obtained through zero-order hold discretization
of (4.17), and Qlon and Rlon correspond to the longitudinal contributions
of Q and R in (4.14), i.e., Qlon = diag(1, 1) and Rlon = 4. Using YALMIP [95]
and the SDPT solver [96], we solve (4.20) and obtain

Plon =
[

210.78 80.19
80.19 38.29

]
. (4.21)

4.3.2 Lateral kinematics
The decoupled lateral kinematics of (4.2) can be written as

ėy
ėψ
δ̇

α̇

 =


v sin eψ

vL−1(tan δ − tan β)
α

w2
0(δsp − δ)− 2w0w1α

 , (4.22)

where we define β := arctan(ṡ/v tan(δr(s))) and treat the velocity v as an
uncertain parameter in the range of v ∈ [1, 55/3.6] m/s. To account for the
nonlinear terms in (4.22), we introduce parameters

εψ := sin eψ
eψ

, εδ := tan δ − tan β
δ − β

, (4.23)
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and rewrite (4.22) to the following form
ėy
ėψ
δ̇

α̇

 =


vεψeψ

vL−1εδ(δ − β)
α

w2
0(δsp − δ)− 2w0w1α

 . (4.24)

Then, by denoting the steering error and steering error rate as

eδ := δ − β, eα = ėδ = δ̇ − β̇ = α− β̇, (4.25)

we rewrite the first three lines of (4.24) as ėy
ėψ
ėδ

 =

 vεψeψ
vL−1εδeδ

eα

 . (4.26)

Finally, in order to deal with the last equation we change the control input
from δsp to

ρ := δsp − β − 2w−1
0 w1β̇ − w−2

0 β̈, (4.27)

and define νψ := vεψ, νδ := vL−1εδ, to obtain the Linear Parameter Vary-
ing (LPV) system

ė =


ėy
ėψ
ėδ
ėα

 =


νψeψ
νδeδ
eα

w2
0(ρ− eδ)− 2w0w1eα

 , e =


ey
eψ
eδ
eα

 (4.28)

with state e, input ρ, and parameters ν := [νψ, νδ]>, which implicitly depend
on v, εψ, and εδ. Since the bounds on the longitudinal velocity v are known,
and the reference trajectory is known beforehand, we can compute worst-case
realizations of ν and contain all such combinations in the polyhedron P with
corresponding vertices V = {ν1,ν2, ...,ν6}.
Now, in order to compute an invariant set for the LPV system (4.28) we

consider the following polytopic approximation of (4.28)

Γ := {(Alat, Blat) | Alat = A(ν), Blat = B(ν), ∀ν ∈ V}, (4.29)

where A(ν) and B(ν) are obtained through zero-order hold discretization
of (4.28). Using the feedback gain Klat from an LQR controller for sys-
tem (A(νnom), B(νnom)) with νnom = [13.89, 4.79]> and tuning QLQR

lat =
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diag([1, 500, 1, 0.1]) and RLQR
lat = 10−4, we can stabilize the polytopic system

Γ for all vertices ν ∈ V. Then, similarly to Section 4.3.1, we use the Multi-
Parameteric Toolbox [94] to obtain the following invariant set for the lateral
kinematics

X lat
r (s) = {ey, eψ, δ, α | Hlat[ey, eψ, eδ, eα]>≤ blat}, (4.30)

(4.31)

where X lat
r consists of 16 hyper planes, i.e., Hlat ∈ R16×4, blat ∈ R16.

Finally, in order to compute a suitable terminal cost for the lateral kinematics,
we can use Finsler’s lemma to write the LMI

Plat := min
P

trace(P )

s.t. P � 0, (4.32)[
P −Qlat −K>latRlatKlat Alat,cl(ν)>P>

PAlat,cl(ν) P

]
� 0, ∀ν ∈ V,

where Alat,cl(ν) := A(ν) − B(ν)Klat, and Qlat and Rlat correspond to the
lateral contributions of Q and R in (4.14), i.e., Qlat = diag(1, 1, 10, 1) and
Rlat = 10. Then, using YALMIP and the SDPT3 solver we obtain the terminal
cost

Plat =


325.51 593.13 97.32 1.46
593.13 6091.11 1979.43 29.75
97.32 1979.43 1159.47 17.15
1.46 29.75 17.15 1.28

 . (4.33)

4.3.3 Terminal set
Having computed X lon

r (s) and X lat
r (s), we can now express the stabilizing set

X s
r (s) := {x | [v, a]> ∈ X lon

r (s), [ey, eψ, δ, α]> ∈ X lat
r (s)}, (4.34)

and the terminal cost P = blockdiag(Plat, Plon).
In order to construct the terminal set X f

r presented in (3.19), we must also
specify a safe set. Similar to Example 3.1, we consider the safe set to be given
when the vehicle is fully stopped, i.e.,

Xsafe(s) = {x | v = 0}. (4.35)
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Figure 4.3: Test vehicle from the Chalmers Resource for Vehicle Research (Revere)
Lab.

We note that the set description (4.35) may not always be a suitable safe set
for general autonomous driving and that it may be beneficial to formulate it
differently in other settings. However, for the urban driving experiment that is
presented in this chapter, we consider the set (4.35) to be sufficient. Selecting
the prediction horizon to be N = 65 and M = 100, we use (4.34) and (4.35)
to construct the final terminal set (3.19) implicitly. This is done by extending
the prediction horizon in Problem (3.1) to M , but only keeping an associated
cost up to prediction time N . The reader is referred to [36] (Paper D) for full
details on this practical approach.

4.4 Implementation Details
We implement the safe MPC controller in the full-scale Volvo XC90 T6 petrol-
turbo SUV seen in Figure 4.3, which offers an actuation interface that accepts
longitudinal acceleration and steering angle setpoint requests. The vehicle
CAN bus and sensor system are interfaced through the open source software
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OpenDLV1, and the middleware library Cluon2, which enable the reading of
sensor data and the sending of actuation requests through the vehicle CAN
bus.

4.4.1 Platform Limitations

For each time instance k, we read measurements from the onboard Real-Time
Kinematic (RTK) GPS unit and the built-in vehicle IMU sensors to form an
estimate of the initial state xk. No real-time corrections were available at
the time of testing, which resulted in a lowered accuracy in the positioning.
Furthermore, we noticed that the interface between OpenDLV and the vehicle
exhibited a delay of 150 ms when sending signals to the steering actuator, but
also when reading from it. Since the steering dynamics were fast, and already
considered in the system model (4.1), we used dead-reckoning to estimate both
the steering wheel angle δ and the steering wheel angle rate α. Furthermore,
to account for the delay, the state space vector in (4.2) was augmented with
additional time-delayed states for the steering angle to model the input delay,
similarly to [50].
The vehicle interface was equipped with a safety feature that limited the

steering wheel actuator for different velocities. To model this limitation, an
additional constraint of the following form was added

|δk| ≤ (104(1 + e0.5v)−1 + 40)16.8π
180 rad. (4.36)

Finally, while the vehicle was equipped with cameras, it did not have access
to a computer vision software stack at the time of testing, i.e., any detection
of the environment, the drivable road, and other road users was not possible.
We therefore relied solely on GPS to localize the vehicle w.r.t to the reference
path, and simulated a surrounding environment including moving pedestrians.
While this resulted in a somewhat limited experimental scope, we note that
the experiments on the other hand could be conducted safely, while still testing
the controller performance in a real vehicle.

1See https://opendlv.org/ for more information.
2See https://github.com/chrberger/libcluon for more information.
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Figure 4.4: The vehicle is being controlled by solving an OCP on a laptop com-
puter, and sending the actuation requests through a network connection
through OpenDLV.

4.4.2 Controller Details

We formulate the MPC OCP (3.1) in the multiple shooting framework using a
sampling time of ts = 0.05 s, prediction horizons N = 65 and M = 100, and
obtain the discretized dynamics of (4.1) using a fourth order Runge-Kutta
integrator with 5 steps per control interval. The OCP was then solved using
Acados [97] together with the HPIPM solver [65] in a Real Time Iteration (RTI)
SQP scheme [88]. A C++ interface was written to connect Acados and HPIPM
with the OpenDLV framework, and the resulting controller was deployed on a
Linux laptop (i9 2.4 GHz, 32 GB RAM) as seen in Figure 4.4.

The mixed-integer problem introduced by the constraints presented in Sec-
tion 4.2.1 was addressed by formulating and solving an OCP for each constraint
configuration, e.g., one OCP is solved where the vehicle considers to yield for
a pedestrian, while another OCP is solved where the vehicle considers to drive
ahead of a pedestrian. Then, the control action corresponding to the OCP
with best cost value was selected and applied to the vehicle. To make this
setup real-time feasible, the written C++ wrapper therefore included parallel
execution of all OCPs for each time instance.
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Figure 4.5: The vehicle bounding box is illustrated by the blue box, while the
predicted pedestrian motion is illustrated by the red regions for the real
pedestrians and gray regions for the virtual pedestrians. The opaque
box represents the terminal state xk+M|k, and the line connecting the
vehicle bounding box and the opaque box illustrate the predicted open-
loop solution. Finally, the blue and red lines denote the travelled history
of the vehicle and measured pedestrians, respectively.
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4.5 Results

Figure 4.6: Closed-loop states from Figure 4.5. The gray lines represent the ref-
erence trajectory, while the black and blue lines show the states and
inputs. The red lines denote the state and input constraints.

4.5 Results
We evaluated the safe MPC framework in a four-way intersection, with moving
pedestrians. Indeed, while a more general setting would include other road
users, we consider only pedestrians for simplicity and to be able to clearly
illustrate the results.
Figure 4.5 shows the open-loop solutions across different time instants for

the controller. Here, the grayed out region denotes the uncertainty from the
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virtual pedestrians that are expected to be behind the corner, while the red
region denotes the predicted uncertainty from the two measured pedestrians.
The blue box represents the vehicle’s position at the current time instance,
while the opaque box denotes the final predicted state, i.e., xk+M |k ∈ Xsafe,
which is at standstill. The line connecting the blue box with the opaque box,
represents the open-loop solution projected onto the xy-plane and the color
coding represents the predicted velocity, i.e., higher velocities are green while
lower are red. The blue line behind the vehicle shows the position history,
and the red lines behind the pedestrians show the history of their measured
position.
It is visible from Figure 4.5 that the vehicle cautiously approaches the

intersection and yields to first the pedestrian. Only when the pedestrian is
predicted to be far enough from the intersection, the vehicle accelerates up to
the next intersection. Upon reaching close enough, it realizes that it can clear
the intersection without colliding with the oncoming pedestrian and therefore
drives past the intersection.

Figure 4.6 shows the corresponding closed-loop trajectories of the vehicle for
the intersection shown in Figure 4.5. It is visible that the vehicle accelerates
from the start and tries to reach the reference velocity. Around time t = 7 s, it
starts deviating from the reference trajectory since it needs to avoid a collision
with the first crossing pedestrian. After t = 15 s the vehicle is allowed to drive
again, and starts accelerating up to the next intersection, where after t = 20 s
it realizes that it can cross the final intersection safely, and continues to track
the reference freely.

4.6 Conclusions
In this chapter we have shown how a real-time capable controller can be
designed for urban AD settings using the results presented in this thesis. In
particular, we have shown how the MPC formulation can be designed such that
the safety guarantees from Theorem 3.1 can be used, and implemented it in a
real vehicle platform. While only (simulated) pedestrians were considered in
this chapter, the framework can generalize to any other road user as long as the
prediction model can be predicted consistently in the sense of Assumption 3.3.
Future work will therefore aim to further verify the framework by considering
situations with non-simulated road users.
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4.6 Conclusions

Indeed, part of the safety argumentation relies on models that generate
consistent predictions in the sense of Assumption 3.3. Therefore, future research
needs to consider deriving models that are acceptable for general AD settings,
i.e., they cannot rely on the road users always being rational and abide by the
road code. We note that while conservative methods will be able to capture
all worst-case behaviors, they may also result in more conservative driving
behaviors.
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CHAPTER 5

Summary of included papers

This chapter provides a summary of the included papers.

5.1 Paper A
Ivo Batković, Nils Lübbe, Mario Zanon, and Paolo Falcone
A Computationally Efficient Model for Pedestrian Motion Prediction
Published in 2018 European Control Conference (ECC),
pp. 374–379, Jun. 2018.
©2018 IEEE DOI: 10.23919/ECC.2018.8550300.

This paper proposes a computationally efficient pedestrian prediction model
that can propagate an estimate on the average position together with the
uncertainty in the form of a covariance matrix. The method relies on a graph-
based map of the road topology, i.e., it considers how sidewalks and zebra
crossings are connected, which is then used to predict the future movement.
With this information, an LQR controller is used to guide the predictions,
while making the assumption of rational pedestrian behavior. This prediction
strategy therefore allows for efficient computations of the future motion through
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simple Kalman predict steps. The model was compared to the state-of-the-art
at that time, and discussed its accuracy and limitations both in simulations
but also in comparison to real data.

The thesis author contributed to the problem formulation, data preparation,
implementation and evaluation of the models, and writing the paper.

5.2 Paper B
Ivo Batković, Mohammad Ali, Mario Zanon, and Paolo Falcone
Real-Time Constrained Trajectory Planning and Vehicle Control for
Proactive Autonomous Driving With Road Users
Published in 2019 European Control Conference (ECC),
pp. 256–262, Jun. 2019.
©2019 IEEE DOI: 10.23919/ECC.2019.8796099.

Motion planning and control algorithms for autonomous vehicles need to
consider the future actions of the road users in efforts to remain safe and
proactive. This paper presents a vehicle motion planning and control frame-
work based on MPC that accounts for moving obstacles in the environment.
It assumes that all measured pedestrian states are fed into a prediction layer,
which generates future pedestrians motions that the MPC problem can con-
sider. Simulations and experimental validation were performed with simulated
crossing pedestrians to show the performance of the framework.

The thesis author contributed with the problem formulation, simulation and
experimental implementation, and the writing of the paper.

5.3 Paper C
Ivo Batković, Ugo Rosolia, Mario Zanon, and Paolo Falcone
A Robust Scenario MPC Approach for Uncertain Multi-Modal Obstacles
Published in IEEE Control Systems Letters,
vol. 5, no. 3, pp. 3263–3268, Jul. 2020.
©2020 IEEE DOI: 10.1109/LCSYS.2020.3006819.

This paper presents a control scheme based on MPC which ensures robust
constraint satisfaction when the uncertainty is multi-modal and stems from
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5.4 Paper D

other road users’ behaviors. By combining ideas from tube-based and scenario-
based MPC strategies, we show that it is possible to guarantee robust state
and input constraint satisfaction, while taking less conservative actions. In
particular, we design a feedback policy that is a function of the disturbance
mode, and approximate the expected cost by leveraging the associated mode
probability.

The thesis author contributed to the problem formulation, implementation
of the framework, and writing of the paper.

5.4 Paper D
Ivo Batković, Mohammad Ali, Paolo Falcone, and Mario Zanon
Safe Trajectory Tracking in Uncertain Environments
Provisionally accepted in IEEE Transactions on Automatic Control.

This paper considers settings where reference trajectories can become infea-
sible due to a-priori unknown constraints. Such settings may cause the loss
of recursive feasibility guarantees, and aggressive tracking whenever the state
is far away from the reference trajectory. To alleviate these issues, we first
propose a new framework called Model Predictive Flexible trajectory Tracking
Control (MPFTC) which relaxes the trajectory tracking requirement, i.e., it
reduces aggressive tracking behaviors. Additionally, we discuss and prove
sufficient conditions which guarantee constraint satisfaction at all times under
the presence of a-priori unknown constraints which might render the reference
trajectory infeasible.

The thesis author contributed to the problem formulation, framework imple-
mentation and writing of the paper.

5.5 Paper E
Ivo Batković, Mohammad Ali, Paolo Falcone, and Mario Zanon
Model Predictive Control with Infeasible Reference Trajectories
Submitted to IEEE Transactions on Automatic Control.

Asymptotic stability cannot be guaranteed in the standard sense when a ref-
erence trajectory is not feasible with respect to the system dynamics. Through
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the use of economic MPC tools we show that asymptotic stability can be
obtained with respect to an optimal reference trajectory if proper terminal
conditions are used. However, since obtaining such terminal conditions are
not practical, we show that Input-to-State (ISS) holds when the terminal
conditions are instead based on suboptimal ones

The thesis author contributed to the problem formulation, theoretical deriva-
tion, implementation and paper writing.

5.6 Paper F
Ivo Batković, Ankit Gupta, Paolo Falcone, and Mario Zanon
Experimental Validation of Safe MPC for Autonomous Driving in Uncer-
tain Environments
To be submitted to IEEE Transactions on Control Systems Technology.

In this paper we used the derived theory from Paper D and applied it to
the setting of autonomous vehicles. We show that a vehicle motion controller
based on MPC can be implemented in real-time for practical autonomous
driving settings, while satisfying conditions needed to ensure safety. Through
simulations, and experiments with a real test vehicle, we show that the MPC
framework is able to safely and comfortably control a vehicle through an
intersection with moving pedestrians.

The thesis author contributed with the problem formulation, simulation and
experimental implementation, and the writing of the paper.
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CHAPTER 6

Concluding Remarks and Future Work

While trying to answer the three research questions presented in Section 1,
this thesis introduced a set of different MPC formulations intended for AD
applications. In particular, we introduced MPC in a general sense in Chapter 2,
and discussed why the standard results available in the literature cannot be
directly applied to ensure safety in AD applications.

Indeed, in order for a self-driving vehicle to become safe, it must be able to
sense and predict its surrounding environment. Chapter 3 therefore introduced
an efficient pedestrian prediction model (Paper A) and specified a requirement
on prediction properties (Assumption 3.3) that proves to be fundamental in
ensuring safety (research question Q1).

Assuming that the environmental prediction models have a specific structure,
we then show that safety guarantees could be enforced by the introduction
of a safe set (Paper D). In other words, designing an MPC controller that
is safe by design is possible (research question Q2). However, since MPC
is an optimization-based technique, and can in general be computationally
demanding, we show in Chapter 4 that it is still possible to deploy a safe MPC
framework in a real vehicle platform (Paper B, Paper F), while satisfying the
safety guarantees in Theorem 3.1 (research question Q3).
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Even though this thesis presented an approach to ensure safety for AD
applications, it is far from being a “silver bullet” that solves all problems
related to autonomous driving. Therefore, we will next comment on some
possible extensions and also outline future research directions.

6.1 Future Work
While the results in Theorem 3.1 guarantee safety, i.e., recursive feasibility, of
the controller, it does not prove asymptotic stability when the a-priori unknown
constraints are active. A promising future research direction, can therefore be
to first expand the ISS results from Paper E to general nonlinear systems, and
then show some sort of ISS results also for Theorem 3.1 by considering the road
users as an input. Furthermore, while Paper E showed that using infeasible
references can still yield some stability results, it may be quite limiting to
always use a pre-defined reference trajectory. To that end, it would also be
interesting to combine the proposed framework with some form of re-planning
or online learning, e.g., updating the reference velocity in the presence of road
users that make the pre-defined reference infeasible.

Paper C showed that multi-modal prediction models could be used to improve
the overall performance of the system. However, the results relied partly on the
availability of such models, but also on a probability estimate for each predicted
mode. Indeed, to be able to use these results more widely, a future direction
would be to use some learning-based methods to estimate such probabilities
from real data. In addition, since the predictability of the environment plays
a large part in enabling safe autonomous driving applications, it is necessary
to also direct research attention towards deriving models that can accurately
represent the surrounding environment.
Finally, in order to further strengthen the results presented in this thesis,

future work aims to implement the framework from Paper F to a more general
autonomous driving setting, where road users are not simulated, but measured
and predicted in real-time.
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