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Autonomous Ground Vehicles (AGV) are mobile robotic platforms used in variety of appli-

cations to execute tasks which could be dangerous for humans to operate. Recently, autonomous

cars are discussed in carrying passengers from point to point without human interaction. Sophisti-

cated controllers are required to operate autonomous vehicles while responding to both normal and

hazardous driving conditions. Dangerous conditions which might be easily perceivable by sensors

in the system require controllers that can readily benefit from the new sensory information. In this

thesis, we address this problem by asserting that the design of controllers and corresponding cali-

bration and local planning methods are required to quickly adapt to changes in both the dynamic

model of vehicle as well as changes in environment. A full pipeline of calibration, local planner and

model predictive controller has been developed and tested in simulation and on physical platform.

Properties of a high fidelity model and a simpler model has been studied and their pros and cons

has been discussed. Also, a calibration algorithm has been developed to calibrate parameters of

dynamic models based on informativeness of robot’s motion. Next, A local planning algorithms

has been developed to plan vehicle’s reference path between consecutive waypoints and finally a

model predictive controller has been designed to stabilizes the vehicle to the reference path. A

theoretical proof for stability of proposed controller is given. One of the goals behind this work has

been design of an adaptive method in a sense that system can quickly adapt to changes in robot’s

model or environment.
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Chapter 1

Introduction

1.1 Autonomous Vehicle Control

Sophisticated controllers are required to operate autonomous vehicles while responding to

both normal and hazardous driving conditions. Dangerous conditions which might be easily per-

ceivable by sensors in the system require controllers that can readily benefit from the new sensory

information. In this thesis, we address this problem by asserting that the design of

controllers and corresponding calibration and local planning methods are required to

quickly adapt to changes in both the dynamic model of vehicle as well as changes

in environment. Furthermore, these dynamic changes can be directly perceived via unique and

well-tailored sensors on-board the vehicle.

Controlling a vehicle is about answering the question of ”Given the state of vehicle what

actions it needs to take in order to reach a desired goal?”. Answer to this question depends on

many parameters in the vehicle itself as well as the environment it interacts with. Different methods

has been developed in order to solve this problem where each can have its own benefits depending

on the performance measures that are expected from the system. As a human we deal with this

task in a daily basis, when we learn to drive a car our brain learns a complicated function which

can perceive the environment such as where we are located in the map, where we are located with

respect to road, road surface condition, signs and lights around the road and also vehicles and

pedestrians around us. Once we have a good perception of the environment we make a decision on

how to press the gas/brake pedals or how much to steer the vehicle such that we reach the goal
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successfully. Having a good perception of the environment always helps us take better actions but

if we don’t have a good understanding of the environment (lets say driving in a foggy/snowy day)

then we adjust our driving behavior to the condition. In another perspective, our driving skills

improve as we practice more, which means that our perception improves by being more aware of our

environment and also we learn how vehicle responds to braking or steering changes. When it comes

to rally motorsports, drivers train themselves to use their vehicle in the edge of its performance.

They learn how much they can steer the vehicle before it slides and gets out of their control.

An example which shows importance of learning vehicle dynamics can be seen in a video of the

professional rally driver Ken Block where he is asked to drive a different vehicle [?] with a welded

back differential (not common in rally vehicles) where he doesn’t have a good control of the vehicle

and hits most of the path cones on the track.

When it comes to automatic control of autonomous vehicles, we have the advantage to study

and understand the vehicle dynamics and design algorithms which can control the vehicle even in

its edge of performance. However, if uncertainties in the perception method are not considered,

then resulted actions can have catastrophic events.

In majority of proposed solutions for this problem, vehicles dynamics is considered on its

own in order to control the vehicle and environmental effects are assumed as disturbances to the

model but this assumption can put the vehicle in a state which might not be able to recover from

due to actuator saturations or other vehicle dynamics limitations. A vehicle’s dynamics not only

depend on the vehicle itself but also condition of its environment it interacts with. For this purpose

a solution which can take in the environment measurements when available is necessary.

Perception methods in the first stage of an autonomous vehicle are concerned with finding

state of the vehicle and its environment based on the measurements from set of sensors on the plat-

form. Simultaneous localization and mapping (SLAM) techniques are capable of finding location of

robotics platform based on measurements from laser scanners, cameras and IMUs. These methods

can also output a geometric map of the environment. Data from multiple sensors can be fused in

order to improve accuracy of the perception pipeline. In the vehicle model level, different sensors
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can be used to measure/estimate some internal states of the dynamics. Methods like Kalman fil-

ter and its extensions, extended kalman filter (EKF) and unscented kalman filter (UKF) has been

widely used for linear and nonlinear systems in order to get an estimate of internal state of dynamic

model. All these methods help with having a reasonably accurate understanding of current state

of model and its environment which can result in better performance of future stages in controlling

an autonomous vehicle.

1.2 Modeling

Both the perception and control methods depend on model of the vehicle in order to perform

their tasks. A model is basically a mathematical function which represents behavior of the actual

platform for some input signal. The depth in which one might want to model a physical system

depends on the questions that one might wanna ask from the system. For example if a vehicle is

supposed to drive in slow speeds where there is no sliding of wheels then a simple kinematic model

of the system is accurate enough to show how vehicle moves based on some steering and acceleration

inputs. On the other hand, if vehicle is supposed to drive in snowy roads and higher speeds then

vehicle’s tire model has more effect on how the system behaves and it should be included in the

model. Since autonomous vehicles are designed to operate in outdoors, their model needs to be

capable of showing how the physical vehicle would behave in different road conditions and using

simple models for both perception and control methods can result in taking wrong actions.

1.3 Calibration

Once a model is designed, It contains some parameters which need to be calibrated. Calibra-

tion is a major part of modeling effort since it can result in miss-prediction of system’s behavior.

Depending on the model, this task can be very cumbersome and might require doing extensive

tests in a lab environment. Even if one is capable of achieving a good calibration, parameter val-

ues can change as the vehicle operates. Environmental effects like air temperature and vibrations

applied from road can drastically change the model parameters. This raises the requirement for a
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calibration pipeline which can continuously run on the vehicle and estimate the parameters as they

change.

1.4 Layout

The primary contribution of this thesis is sketched by the discussions above and in following

chapters, detailed discussions of each part is given.

Chapter 2 give an overview of available methods which have been previously used in ap-

proaching the problems above and makes a comparison between different methods and my personal

judgment on how the solution needs to be approached. This conclusion has shaped the research

direction of this thesis and following chapters.

Chapter 3 introduces the mathematical framework for rest of the thesis and some of the

algorithms which are frequently used through rest of the chapters.

Chapter 4 discusses details of a robotic platform (Parkour Car) which has been designed to be

used in experiments of this research and multiple other researches. Parkour Car is frequently used

in experiments as the test platform in Autonomous Robotics And Perception Lab of University of

Colorado Boulder.

Chapter 5 gives a detailed explanation of a calibration pipeline which calibrates parameters

of the model based on motion of the vehicle and can be used with any dynamic model. This

method doesn’t suffer from calibration result getting biased toward a group of parameters and runs

in constant time.

Chapter 6 discusses a new approach of constructing a models predictive controller which can

use a physics engine as the underlying model which can take in effect of contact forces applied from

environment map to the vehicle model. This chapter also give a theoretical convergence proof for

the proposed method.

Chapter 7 introduces a new analytical model for a four wheel drive vehicle and discusses

achievable performance gains when it is used with MPC method of chapter 6.

Chapter 8 concludes this thesis by summarizing the contributions and proposing a future
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research direction.



Chapter 2

Background and Literature Review

2.1 History

Ground vehicles has been used for transportation since 18th century but advancement of

technology in transmitting wireless signals brought the idea of controlling different mechanical

platforms from distance. The first unmanned remotely controlled vehicle dates back to 1926 where

Houdina Radio Control demonstrated an unmanned vehicle equipped with electric motors attached

to vehicle controls and a person controlling the car with radio signals transmitted from a car

following the driverless vehicle [127]. At that point driver less cars seemed to be more of an

advertisement tool for car companies and other companies working in tech fields. They would

mostly be controlled by a remote operator or by adding electric lines to the road bed which would

vehicle the vehicle by following the magnetic field. It wasn’t until 1960s which universities and

car making companies started thinking of developing self driving vehicles as commercial products

[127]. Solutions like embedding electronic devices in roadway were proposed but soon these solutions

turned to be very expensive if not impossible. By 1980 silicon based sensors and processors had

enough advancement to be used in sensing the environment and making decisions. Mercedes-Benz

developed its first vision-guided robotic van and achieved a speed of 39 miles per hour on streets

without traffic. This vehicle used four cameras to perceive the environment. Analog video feeds

were routed to A/D s and then to 60-70 processors to do the road lane detection, obstacle detection,

signal light detection and also calculating controls for keeping the vehicle in the road. This attracted

attention of more companies and universities to join the competition.
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At the mean time AGV’s were designed with similar technologies to carry equipment or

heavy loads in factory environments which helped reducing space required for maneuvering [126].

Different types of sensors and stronger processors helped accelerate development of this technology.

Technology of self driving vehicles got very hight attention with introduction of DARPA Grand

Challenge in 2004 where competing teams were expected to design autonomous vehicle capable

of driving a 150 mile route without human intervention. None of the robot vehicles made it to

the finish line at the time. This contest was held for another year, but this time multiple teams

finished the contest. In 2007 Urban Challenge was hold where self-driving vehicles had to drive

in an urban environment while obeying street rules. Last challenge was a success and that jump

started self-driving cars. AGV’s had also been used in exploring volcanic sites [119] or explore other

planet surfaces [110].

Autonomous part of all these platforms depend on two major parts. First, robots need to

be aware of their environment. This could be the road condition for a self-driving car, position

of a magnetic stripe on the floor of a factory environment or stiffness of a hill for a mars rover to

ride on without getting stuck. Second part is, given measurements from environment what actions

are needed to be taken such that the robot achieves a predefined goal. In this paper, literature

review of the later part is discussed and assumptions under which the proposed techniques work

has been represented. In section two, different modeling techniques which have been used for AGVs

is discussed. In section three, different approaches of controlling AGVs inputs and their pros and

cons is presented. Finally, a comparison of Models and also Controllers is made to show advantages

of some class of underlying techniques.

2.2 Models

Modeling different dynamical platforms depends on questions one might want to ask about

the system. Meaning that, what are our expectations from the system under study? for example,

behavior of a car operating in nice weather condition in slow speeds on flat streets might not be very

different than behavior of a unicycle but if the same car is supposed to operate on frozen street beds
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Figure 2.1: VAMORS [74] was one of the first self driving vehicles designed by Ernst Dickmanns
and his team in late 1980. This van used two front looking and two back looking cameras and
about sixty processors to drive the vehicle on traffic less street.

it would show significant difference compared to a unicycle. In this section different approaches in

modeling AGVs under proposed conditions of operation is discussed. Models are generally divided

into two categories, kinematic models and dynamic models. first category is generally used in

applications where AGV is expected to move in low speeds and kinematic constraints of the system

are good representation of its general behavior, but in cases where forces applied to the body of

AGV has significant affect on its behavior then the second category is considered.

2.2.1 Unicycle Model

A simple way to model behavior of an AGV is to represent it as a single non-holonomic

wheel with a velocity and torque and a steering signal directly applied to the wheel [73]. In this

simple kinematic model as well as other kinematic models its assumed that wheel will roll without

slipping. kinematic unicycle model is presented as follows

ẋ = vsin(θ)

ẏ = vcos(θ)

θ̇ = ω

(2.1)

where x and y are coordinates of center of AGV in two dimensional plane, θ is heading angle,

ω is steering rate input and v is linear velocity input. Becker et al. [10] use a unicycle model in

designing an ensemble controller which globally stabilizes the robotic platform to given coordinates.
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Figure 2.2: Unicycle kinematic model. Forward linear velocity v is normally modeled as average of
left and right wheels rotational speed multiplied by wheel radius r. figure from [66].

Figure 2.3: Differential drive model assumes two wheels on sides of AGV with speed inputs on each
wheel. figure from [9].

Aicardi et al. [4] give a ”polar-like” description of this model in order to prevent brockett’s [17]

negative result and design a time invariant control law for asymptotically stabilizing the model.

Kanayama et al. [54] finds a parameterized Liapunov function and a control law accordingly which

shows global stability of system which also is capable of assessing if system can be under-damped

with some set of tuning parameters. The controller is also experimentally tested on Yamabico-11

robot. lee et al. [69] show that this model can be used in problems with saturation constraints and

they propose a control law which globally stabilizes the AGV to any path specified with strait line,

circle or a path approaching the origin using a single controller. Their experiments also show that

this can be used in applications like parallel parking. Benefits of using unicycle kinematic model

could be its low number of state variables and less complications in the model which allow design

of asymptotically stable controllers but this is under the assumption that system avoids any side

slips and is not affected with forces generated from uneven surfaces which vehicle can drive on.

Kinematics of robot can also be modeled as a differential drive system (Figure.2.3). In this
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Figure 2.4: Single track (bicycle) model schematic. Red axes shows the center of mass AGV frame
axes. Figure from [35]

model its assumed that two wheels on two sides of chassis apply linear and rotational velocities to

the chassis. Chassis is assumed to be constrained (maybe with passive wheels) such that it is always

parallel to ground plane. In most cases differential drive models are transfered to unicycle model

by averaging rotational speeds of both wheels and to get a single wheel speed and a rotational

speed of ω = 1
2b(vr−vl) and the model is again simplified to the Equation.2.1 form. Chwa [23] uses

this method to model AGV and designing tracking control using a feedback linearization method,

Indiveri et al. [49] uses this model with bounds on wheel speeds to design a path following controller.

This models also has been used in path planning approaches which require a simplified model due

to computational complexity of planning algorithms [9].

2.2.2 Single Track (Bicycle) Model

Single track or bicycle model is one of the favorite models for both controls and planning

applications. Single track models make assumption of driving on a plane (2D) and are used in both

kinematic and dynamic form. Figure 2.4 shows a schematic of this model where a back wheel is

mostly responsible of applying forward acceleration without steering while front wheel is capable

of steering but it is a passive wheel. [20, 65, 39, 68, 48, 35]. Similar to unicycle case kinematic

bicycle model can be used in kinematic form with neglecting AGV’s mass but this model would

not be able to account for wheel drifts. Peppy et al. [94] make a comparison of kinematic vs

dynamic bicycle models for planning purposes. Kinematic model is also referred as non-holonomic

constraint since wheels are not allowed to move side ways (drift), however adding mass to the body
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of vehicle and wheels, requires the model to have side forces applied to the wheels. Kritayakirana

et al. [65] show a bicycle model in which tire dynamics discover the amount of forces that wheels

can generate. These forces can result in calculation of maximum amount of accelerations that a

vehicle can create based on tire properties. Rucco et al. [106] uses a single track model with both a

simplified linear (relation between lateral force and side slip is linear) tire model [79, 41, 37] and a

Pacejka’s magic tire model [90, 8] to extract vehicle’s equilibrium manifolds. Other tire models also

has been proposed at [28, 18, 89]. Falcone et al. [35] design a MPC controller based on model shown

at Figure 2.4 which is capable of following trajectories on slippery roads at the highest possible

entry speed. This model has also been used in linearized parameter varying form under stochastic

disturbances to design robust trajectory tracking controllers [20].

The dynamic single track models has also been used in planning algorithms. Hwan Jeon

et al. [48] use a dynamic version of this model in order to implement a RRT* based optimal motion

planning algorithm to be used in high-speed driving. Lee et al. [68] use this model in design of a

planning algorithm for parking assist of a vehicle.

Mostly when modeling dynamics of an AGV, geometric dimensions of the chassis of AGV are

not considered. This problem is not studied very well but in some researches collision avoidance

has been included in the system by considering bounding boxes around the model and adding

constraints to the problem which avoids collisions between convex shapes [20].

Single track model seems to be the most popular model when it comes to modeling behavior

of an AGV since it has a good balance between model complexity and accuracy.

2.2.3 Tricycle Model

This model assumes two back wheels where each wheel could have different velocity and

torque and a single virtual steering wheel in front which is assumed to have the average steering

angle of each left and right front wheels (Figure 2.5). Kodagoda et al. [62] use a dynamic model of

tricycle to design a fuzzy PD-PI controller to control the AGV on a reference trajectory. Bom et al.

[13] propose a controller in order to move a set of vehicles in platoon fashion and experimental
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Figure 2.5: Tricycle model of an AGV. Figure from [62]

platforms are modeled as tricycles. They also show that this non-linear model can be converted

into a so called chained form [109] which has a decoupling effect on state variables and hence two

global separate lateral and longitudinal controllers can be designed for the vehicle platoon.

Tricycle models in general does not seem to have any more benefit compared to bicycle model

explained in section 2.2.2 which explains non popularity of this model.

2.2.4 Two Track Model

Double track model is one of the most complete models of a four wheel AGV where all four

wheels are considered in the model. Center of gravity of the vehicle chassis is normally considered

in equations of motion of the vehicle as well as tire dynamics. Rucco et al. [105] propose a reduced

order two track model of a car vehicle includes lateral and longitudinal load transfer which captures

key features of vehicle dynamics for aggressive maneuvering of complex cars. Even though their

model doesn’t include suspension dynamics but this effect is modeled by applying normal forces

from all four contact points with the road to the chassis in the model. In another paper from Rucco

et al. [107], a two track model with tire dynamics and lat/long load transfer has been used to find

a trajectory of the car minimizing the traveling time subject to steering and tire limits. in addition

a constraint has been applied so that tires always keep contact with road surface.

Gao et al. [39] uses a two track model in order to formulate an obstacle avoidance problem
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Figure 2.6: Two Track model of an AGV. Figure from [105]

for semi-autonomous ground vehicles. Tire models are formulated as in [89] and calculated tire

forces are applied to the chassis as shown in Figure 2.6. This model is later used in design of a

controller in MPC fashion to avoid obstacles on the path of vehicle.

When it comes to planning and control of cars close to limits of its dynamics it seems that

two track model has the closest behavior to the actual system. However these models are still based

on the assumptions that vehicle is driving on a flat road and normal forces from road surface do

not change very frequently.

2.2.5 Lateral/Longitudinal Dynamics

In some cases lateral and longitudinal dynamics of the AGV are considered separately in

order to achieve specific goals. Longitudinal dynamics of the car can be used in designing a cruise

controller [95] and lateral dynamics of the vehicle can be used in design of controllers to do automatic

lane keeping [95, 96] . Sierra et al. [114] uses lateral dynamics of the of the vehicle in order to

estimate cornering stiffness of the vehicle. . In some cases vehicle might be modeled as single track
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model as explained in section 2.2.2 but this model can be linearized around its longitudinal speed

in order to be able to take benefit of linear controllers to stabilize the system [20].

System dynamics need to be decoupled in order to be able to treat lateral dynamics separate

from longitudinal dynamics but as discussed above in cases where one part of the model (ex. lateral

dynamics) is not affecting the behavior of the other part much (ex. longitudinal dynamics) then

they could be modeled separately. This method seems to be effective only in designing controllers

which are linear and locally stable in most cases.

2.2.6 Indirect Modeling

In this section we discuss more modern methods which do not require writing newtonian equa-

tions of motion in the sense described in previous sections. These approaches are more investigated

by computer science robotic community.

2.2.6.1 Data Driven Approaches

Accurate system modeling might not be easily possible and data driven approaches are con-

cerned with creating models by capturing input/output data of the platform and regressing the

data to an specific function. Moon et al. [81] design a adaptive cruise control system which in-

cludes human behavior in the model. To achieve this model they capture human inputs for speed

adjustments and some states from vehicle and they fit a first order and a second order regression

model to the captured data. This model is later used to adjust vehicle’s cruise controller response

such that it feels natural for the human driver.

Markov decision processes (MDPs) have also been used in order to model stochastic system

dynamics using their input/output data. Bethke et al. [11] proposes an online method for mod-

eling behavior of the system and adjusting the system control policy and shows its benefits over

static/offline approaches. Even though the approach by Bethke has been tested on a surveillance

airplane platform but it is applicable to AGV systems too.

Reinforcement learning as well as deep learning methods has been one of the choices for
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modeling and control of different robotic platforms in last couple of years among AI and robotics

researchers. Riedmiller et al. [104] shows a Q-learning based approach in controlling a vehicle.

Michels et al. [78] show that a reinforcement learning method can be used in order to control a

model car at high speeds through unstructured outdoor environments by proposing a method in

which, supervised learning is used to estimate depth from a monocular camera and later directly

learns controls policies using policy search method in a simulated environment. In this method

control signals can be directly calculated from vision system output. In some methods input/output

model and corresponding control signal can be learned to a gaussian process (GP) function [97].

In one effort, Bojarski et al. [12] show that raw image pixels from single fron-facing camera

can be mapped directly to steering commands using a convolutional neural network (CNN). An

autonomous car can drive using this end-to-end method with minimum data from humans in traffic

on local roads with or without lane markings and on highways. Similar approach has been used in

[92].

Other methods with combination of deep learning and reinforcement learning has also been

proposed [70, 32], in which some even show human level performance [80].

Methods explained here are mostly capable of including some more information from the

environment and in end-to-end control case the perception and local planning (or maneuver reg-

ulation) task is abstracted in the process. Almost all of these methods would not have any prior

information about structure of the model under study and they get better at modeling or con-

trolling the robotic platform as they gather more input/output data pair. Another problem with

these approaches is that non of the parameters of actual system directly correlate to the model

parameters in the underlying model. That means that if there are any changes in system dynamics,

then the previous model needs to be scratched and a new model needs to be learned. One other

concern with these methods is lack of theoretical guarantees. Even if a large amount of data is used

in order to learn a model, if state of the system falls in a region which there hasn’t been enough

data to train the model then model might show a completely different output compared to actual

system.
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Figure 2.7: Universal architecture of a physics engine according to modular design described in
[34, 116]

2.2.6.2 Physics Engines

Physics engine is a name mostly used in computer game industry which refers to simulating

behaviors of objects in computer games. They normally use simplified mathematical models and

algorithms to mimic behavior of an actual objects in a 3D world. These algorithms are mostly

optimized to run in very high speed on consumer computers and have a realistic simulation results.

The actual design of different physics engines would obviously differ but a generic architecture

of a physics engine is given in figure 2.7. There are generally two main modules in this model, A

collision detection module and a simulation module. Collision detection (CD) module is concerned

with geometries of objects and simulation module is concerned with mathematical modeling of

motion.

Bullet physics engine [25, 24] is an open source library which does contact modeling as well as

other newtonian dynamics calculations and is used both in games and robotic applications. Keivan

et al. [57] samples steering control signal at a given state and uses the model designed by this

simulation library in order to generate trajectories of vehicle and later chooses the closest control

candidate based on some heuristic. Using this method they are capable of driving an actual model

car with agile motion trajectories through a rough terrain. Mujoco [120] is another example of
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physics engines which has been used for modeling high speed ground vehicles. Williams et al. [130]

uses a physics engine in order to sample control signals and simulate thousands of motion samples

in short horizon to adjust vehicles behavior accordingly. Other researches use this physics engine

as underlying dynamical model aswell [129, 128, 131].

Stkepien [116] has detailed explanation of underlying techniques for most of these methods

in his thesis which interested reader could refer to. Also a detailed review of simulation tools for

model-based robotics between four different physics engines has been done in [33].

2.3 Controllers

In this section different control methods which have been used in stabilizing autonomous

ground vehicles is discussed.

2.3.1 Linear Controllers

Linear control techniques are mostly used methods in industry in order to stabilize dynamical

systems [16, 52] but they are used on systems with linear dynamics or in linearized models around

an specific point in state space of system. In the context of autonomous ground vehicles, there aren’t

many applications of using this method since dynamics of a ground vehicle can be highly non-linear

however in a work by Divelbiss et al. [31] they design a linear quadratic regulator (LQR) controller

by linearizing vehicle dynamics around a given trajectory and in another research, Normey et al.

[87] designs a PID controller for a mobile robot for path tracking application.

Linear controllers like [31] are normally stabilizing in a small neighborhood of the reference

trajectory and if there are large perturbations of state then there is no guarantee on converging

back to the state. Raksincharoensak et al. [96] uses a two wheeled linear vehicle dynamics in order

to design a lane keeping controller. The controller is designed to to keep the vehicle in between

lanes while there are no stability guarantees.

Linear controllers with local stabilizing properties can be useful in some cases. Tedrake et al.

[118, 117, 102] designed LQR trees algorithm in which it synthesizes many locally stabilizing LQR
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controllers to cover some bounded region of the state space. These local controllers are stored in

a table and depending on the state of the system a local control gain is used from the table. This

method despite being powerful and generic has some disadvantages. System requires high amount

of processing in order to synthesize the controllers and model changes would require the algorithm

to recalculate all local controllers from scratch.

2.3.2 Non-Linear Controllers

Non-Linear controllers are concerned with stabilizing non-linear dynamics of the system with-

out any linearization. These techniques can result in a very powerful feedback law in the sense that

they stabilize the system in whole space. But this comes with some drawbacks. It is very difficult

in general to find a stabilizing control law for non linear systems. for this purpose some specific

techniques has been developed for some class of non-linear systems [60]. Direct feedback control

laws for autonomous ground vehicles has been designed for very simplified models. Kanayama

et al. [54] uses a kinematic model of the vehicle similar to the one in section 2.2.1 and defines an

error function between the vehicle and the path and comes up with a tracking control law using a

Liapunov function [123].This controller will be stabilizing as long as the vehicle stays in the limits

of the model used to design the controller.

2.3.2.1 Feedback Linearization

Feedback linearization is another techniques used in nonlinear control design. This approach

involves design of a function which transforms non-linear system into an equivalent linear system

through a change of variables and maybe choosing different set of control inputs. Once a control

input transformation function is developed then a linear control strategy can be used to stabilize

the underlying model. This method has mostly used in SISO systems but MIMO versions of it also

exist. Chwa [23] uses this method on a differential drive model (similar to Figure 2.3) to design a

non-linear controller for a non-holonomic vehicle. Feedback linearization method tries to stabilize

the system by canceling non-linear dynamics of the system and a controller designed by this method
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might fail if the underlying controlled system doesn’t match the assumed model. To eliminate this

method there has been more advancement in developing robust feedback linearization techniques

[43, 6] but they haven’t been used in context of autonomous ground vehicles.

2.3.2.2 Optimal Control Methods

Optimal control theory has techniques for both linear and non-linear dynamics. One of the

major non-linear optimal control methods is the receding horizon approach. In this approach at

every given state, a set of future states are considered to have some convergence to the goal state.

This horizon can be limited or infinite size. finding an infinite horizon control law which results in

a feedback law is not an easy task (opposite of LQR controller for linear dynamics). For a limited

horizon however an optimization problem can be constructed where control signals for all future

steps up to horizon, get calculated and only the first value is actually applied to the system at

current time and rest of the controls are discarded. In next time step a new cost function for the

optimization problem needs to be constructed and optimized. It should be mentioned that another

name for this method is model predictive control (MPC). Model predictive controllers in general

has higher processing cost since they need to solve an optimization problem at every time step.

Due to this problem this method was normally used in SISO systems which did not require high

bandwidth on control loop. Chemical reactions were one of the major systems which took benefit

of these controllers and other systems could not use this method due to low speed of processors in

the past. A complete review of using receding horizon approaches before year 2000 is given at [76].

However, with the development of faster processors, this method could be used in robotic platforms

in realtime.

Different formulations of MPC are proposed for autonomous ground vehicles. Gao [39] formu-

lates a MPC problem which uses non-linear dynamics in section 2.2.2 and shows that the optimiza-

tion problem can be solved with a sequential quadratic programming approach. Their proposed

solution also includes obstacle avoidance which is very unique. In another similar work, Carvalho

et al. [19] designs an MPC controller which can track a center line in a lane while avoiding collisions
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with obstacles. In this method nonlinear dynamics of the system are linearized around states and

inputs at each iteration and a solution for the optimization problem is calculated. Falcone et al.

[35] proposes two MPC formulations in which one uses the nonlinear model and other one uses a

local linearized LTV model in order to calculate control signals. This paper shows effectiveness of

both method but high computational costs of nonlinear method has been concerning.

In order to have a robust controller, some stochastic predictive control techniques has also

been developed. Carvalho et al. in [20] develop a chance-constrained MPC problem where the

trade-off between risk and conservativeness is managed by a risk factor. In this method a linear

time varying model of vehicle is formulated and calculated online. Proposed method also includes

a probabilistic model of the environment. In order to avoid collisions a signed distance function is

considered which reports existence of collisions between rigid bodies. This method avoids collisions

similar to [39, 19] but no collision forces are calculated in the process.

2.3.3 Learning to Control

Learning based approaches rely on systems input/output data in order to learn behavior of

the system and perform actions. simple neural networks has been one of the favorite systems to

learn a control action up to year 2000s [42, 71]. But with progress in machine learning techniques

new class of network based controllers were designed.

Machine learning approaches are amongst this group of techniques. Reinforcement learning

has been one of the methods in which the algorithm tries to learn control actions from a human

controller while maximizing a reward function [88, 78, 97] . Another approach is to use a deep

neural network to learn a function which generates desired control signals base on current state of

AGV. Pan et al. [92] represent a network which can learn a CNN by training the network over large

amount of input/output data and system is capable of controlling a vehicle directly from camera

images.

A mixture of these methods also exist in which a deep network has been used with a rein-

forcement learning approach where the network replaces the value function in the reinforcement
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learning pipeline [70, 80] .

These methods do very well when it comes to making control decisions based on measurements

from environment and they are capable of controlling very non-linear systems. One of the downsides

for these systems might be that they require a large amount of data to train themselves. When

it comes to processing cost, these methods require stronger processors but they are also highly

parallelizable and can be used in realtime setting if implemented on multi-core computers.

2.3.3.1 Fuzzy Controller

Fuzzy control logic seems to be one of the control methods used in stabilizing autonomous

ground vehicles around early 2000s. Kodagoda et al. [62] designed a PD-PI controller for steering

and speed control. Kodagoda, claims that using fuzzy logic to synthesize the controller, facilitates

implementation of a controller while guranateeing stability and uncoupling steering control from

speed control. Speed controller itself consists of acceleration controller and braking controller.

Even though a Quasi-Lyapunove stability prove is given for every mode of the controller this

system eventually implements many local PD controllers which many gain parameters which needs

to be tuned. In another work Naranjo et al. [85] design a fuzzy logic steering controller for a car

to execute an overtaking action in the road.

In some cases, combination of different methods in this section has been researched. For

example, Dai et al. [26] design a fuzzy controller for a vehicle but the tuning task is done through

a reinforcement learning. Or Lin et al. [71] design a controller by combining neural networks and

fuzzy controller.

Although alternative approaches such as genetic algorithms and neural networks can perform

just as well as fuzzy logic in many cases, fuzzy logic has the advantage that the solution to the

problem can be cast in terms that human operators can understand, so that their experience can

be used in the design of the controller. This makes it easier to mechanize tasks that are already

successfully performed by humans [93].
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2.4 Conclusions

Each of the techniques discussed in this paper can be the best choice depending on the

conditions and expectations which one might have from the system performance. Some prose

and cons of each part is given at each section but in order to conclude ask some questions where

answering those has helped me choose a research direction.

In table 2.1 a comparison between models discussed in section 2.2 is given. In this table we

try to assign a score for each model based on following questions (lower scores are better).

• Question 1: Ease of modeling? (0:very easy, 6:very hard)

• Question 2: Possibility of including environment map in model? (0:possible with fine

details, 6:not possible)

• Question 3: Ease of debugging model behavior? (0:very easy, 6:very hard)

• Question 4: Processing power required for trajectory calculations? (0:very low, 6:very

hight)

• Question 5: How static the model is? meaning if something changes in the structure of

actual robot how hard is it to adapt the model (0:easily adaptable, 6:very static)

• Question 6: Ability to model contacts and contact forces? (0:very capable, 6:not capable)

Table 2.1: Modeling method comparison table

Question

Model
Unicycle Single Track Two Track Lat/Long Data Driven Physics Engine

Q1 4 4 6 6 0 0

Q2 6 6 6 6 2 0

Q3 3 4 5 5 6 1

Q4 0 0 1 1 5 6

Q5 5 5 5 5 6 0

Q6 5 5 5 5 6 2
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Scores in Table 2.1 are my personal judgment based on hundreds of papers that I have studied

through past four years of which some has been referenced in this paper. Also one should keep in

mind that questions 1-5 are my personal concerns when it comes to modeling and control of robotic

platforms. Looking at the table 2.1 we can see that Physics engines can do better in general

compared to classical modeling and machine learning based approaches in the scope of questions

1-5, However it might suffer from not being able to use it in a real-time pipeline.

Now we do a similar comparison for the control methods discussed in section 2.3. The

comparison scope is based on following questions and scores are given based on this review and my

past experience with each system (lower scores are better).

• Question 7: Runtime complexity of method? (0:very low, 6: very high)

• Question 8: Capability in handling nonlinear dynamics of system? (0:very capable, 6: not

capable)

• Question 9: Ease of designing the controller for a given model? (0:very easy, 6: very hard)

• Question 10: How static the controller is? meaning if there are changes in the model how

hard is it to adapt the controller to new condition? (0:easily adaptable, 6: very static)

• Question 11: Possibility of growing basin of attraction of controller? (0:easily, 6: very hard)

• Question 12: Any theoretical stability guarantees? (0: Exists, 6: no stability guarantees)

• Question 13: Actuator saturations can be included? (0: easily, 6: not possible)
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Table 2.2: Controller comparison table

Question

Controller
Linear Synthesized Non-Linear MPC Learning Based

Q7 0 1 0 6 5

Q8 6 0 0 0 2

Q9 3 5 6 1 4

Q10 6 6 6 0 6

Q11 6 1 6 1 3

Q12 0 0 0 0 6

Q13 3 3 3 0 6

Looking at Table 2.2 we can conclude that for the scope of questions which were asked MPC

controller is a better option for control of autonomous ground vehicles (based on question 7-13).

MPC approaches suffer from high computational cost.

As it appears, combination of physics engine based modeling and MPC can result in a very

strong control method but since both of them suffer from high computational cost, It might not be

practical to use them in realtime fashion.

In chapter 6 we show an implementation of MPC method where a physics engine is used as

underlying model of vehicle and we discuss challenges related to using this method and later in

chapter 7 we design an analytical model of the vehicle which shows effectiveness of proposed MPC

method and can run in realtime.



Chapter 3

Mathematical Framework

3.1 Rigid Transformations

A rigid transformation between two 3Dof frames can be represented by a 4× 4 matrix oper-

ating on homogeneous vectors 
x

y

z

 =

 R t

0 0 0 1

 ·

x

y

z

 (3.1)

where R is a 3× 3 rotation matrix and t is a translation vector in R3. In this thesis in addition to

the representation above a tangent space representation se(3) in vector form is also used

Pi =

(
x y z ω1 ω2 ω3

)T
(3.2)

wi are components of a 3× 3 skew-symmetric matrix [ω]x ∈ so(3)

[ω]x =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3.3)

when ever required, tangent space form of Eq. (3.2) can be shown in SE(3) via an exponential

map exp : se(3)→ SE(3) which has a closed form expression. This map is defined using Rodrigues

formula [38] :
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A ≡ sin(θ)

θ

B ≡ 1− cos(θ)

θ2

θ ≡
√
ωTω

R ≡ I +A[ω]x +B[ω]x[ω]x

V ≡ I +B[ω]x + (
1−A
θ2

)[ω]x[ω]x,

exp(Pi) =

R Vu

0 1

 , (3.4)

There is also a similar closed form expression of logarithm map log : SE(3) → se(3) which

takes a group element to a tangent vector. Details of Lie group algebra can be found in [121, 38].

Error between two nearby poses are calculated frequently in this thesis, this error can be

calculated with first mapping both poses to the tangent space with log map, calculating difference

between two poses and mapping the result back to SE(3) using exponential map.

3.2 Bézier Curve Parametrization

In order to represent a curve there exist many method of which the simplest can be shown

by points sampled from it, set of functions can also be used in order to define the curve such as

polynomials. We are interested in use of a class of Parameterized curves known as Bézier designed

by Dr. Pierre Bézier. Bézier curves of various degrees can be shown as

P (t) =

n∑
i=0

n
i

 (1− t)(n−i)tiPi, (3.5)

given control points Pi, points of the curve can be found by varying time parameter t ∈ [0 . . . 1]

in formulation above. An arbitrary parameter interval for t can also be formulated as well [112].

This parameterization is used in future chapters to reduce dimension of control signal and largely

improve performance of algorithms. If required these curves can be glued together or split as

required. Further operations on Bézier curves can be found in [112, 53].
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Figure 3.1: Convex hull of a bézier curve

3.2.1 Convex Hull Property

An important property of Bézier curves that is used in future chapters is that the resulted

curve from a set of Bézier curve, always lies within the convex hull of its control points. The

convex hull can be extracted by connecting control points via lines and the area contained in

resulted polygon would represent convex hull. Since all control points of curve lie on one side of

an edge of convex hull, it is impossible for the center of mass (Section 2.1 of [112]) of those control

points to lie on the other side of line. A graphical representation of convex hull is given in Figure.

3.1

3.3 Gauss-Newton Nonlinear Optimization

In this thesis Gausss-Newton optimization method or some other variations of it are used in

order to solve non-linear least squares problems. This method can take advantage of second order

derivatives of cost function to achieve higher convergence rates. An m dimensional cost function

with n variables x = (x1, . . . , xn) where m ≥ n and multiple residual functions r(x) is given as

C(x) =
m∑
i=1

ri(x)2, (3.6)
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residual function is normally defined in an error function form

ri(x) = zi − h(xi), (3.7)

where zi is the expected out come of the function h(·). Cost value of C(x) can be minimized

iteratively and a minimum value can be found using following update formulation from iteration s

to s+ 1

x(s+1) = x(s) − (Jr
TΣ−1 Jr)−1Jr

TΣ−1 r(x(s)), (3.8)

Jr =
∂ri(x

(s))

∂x
, (3.9)

where Jr is the jacobian matrix of r(x) with respect to vector of parameters x and Σ is

diagonal matrix of uncertainties of measurements zi. If calculation of an analytical jacobian is not

possible then a numerical version can be calculated by finite differencing approach. In Eq. 3.8 the

term Jr
TJr is known as hessian matrix.

3.4 Bond Graph Modeling

One of my interests in developing models is to design the model of systems from geometric

descriptions and parameters of system. For this purpose two approaches are studied in this thesis

of which one is by use of Bond Graph modeling. Using Bond Graphs it is possible to describe

the structure of the system in a graphical model and then through an automated algorithm all

differential equations of system can be extracted. Here we give a simple example of this approach

where more details can be found in [55].

Bond graph models are designed based on energy transfer between components. For example

consider the spring, damper, mass system in Figure. 3.2. Every component of this model can be

represented with bond graph component. Mass can be shown by an inertial component I, spring

can be shown by capacitive component C and damper can be shown by a resistive component R.

Bond graph components are connected to each other with bonds where each bond represents the

path which that component exchanges energy with rest of the system. Arrows on the bonds show
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Figure 3.2: Bond Graph modeling of dynamic systems. (a) spring-damper-mass system with force
input. (b) corresponding Bond Graph

direction of power distribution where as perpendicular lines on each bound define direction of flow

in the system. A 1 component in Figure. 3.2 is a flow (velocity in mechanical systems) equalizing

component which means that all the components have same velocity (spring and damper have

same velocity as mass in their connection point to the mass). A source of energy is shown with

SE component which corresponds to force input. Bond Graph in Figure. 3.2 can be used in a very

well studied algorithm to write analytical equations of motion. Resulted formulation might require

simplification by substitution to be in a more understandable equation for humans. For the system

in Figure. 3.2 equations of motion can be extracted as

q̇2 =
p3

M3

ṗ3 = SE1−K2 ∗ q2 −R4 ·
p3

M3
,

(3.10)

where p3 is momenta of mass and q2 is displacement of mass with respect to ground, SE1 is

input source, K2 is spring coefficient, R4 is damper coefficient and M is weight of mass.

by rearranging the equation above the traditionally equation of mass-damper-spring system

can be achieved

m · ∂
2q2

∂t2
+R · ∂q2

∂t
+K · q2 = F (t), (3.11)



Chapter 4

Experimental Platform and Physics Simulator

Using a dynamics model in a simulator framework is very helpful in testing different control

and perception algorithms. However, in using a simulator one needs to be careful in set of assump-

tions which are made about the physical system as one might make wrong conclusions. In order

to verify the effectiveness of a method, tests on a physical platform needs to be performed. When

it comes to self driving vehicles, doing experiments on actual vehicles require obeying many of

Department of Motor Vehicle rules and considering many safety conditions such that experiments

don’t cause any harm. Modifications to a normal to make it able to be driven with a computer is

also not a task easily achievable. For this purpose a smaller scale of a four wheel drive car has been

developed to be used in physical experiments. Smaller vehicle gives us the opportunity to do the

experiments in a much smaller area while not requiring any regulations. Having a robotic platform

in lab environment is both convenient to use and reduces cost of experiments.

Robotic vehicle (Parkour Car) in Figure. 4.1 shows the final assembled robot. This robot

has the following specifications.

- Scaled at 1
8

th
of actual vehicle size

- A Core-i7 computer with multiple USB3 connections ports

- Wifi Connection

- Wireless Gamepad connection

- Four wheel drive drivetrain
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Figure 4.1: Parkour Car Robot designed to be used in different autonomous driving experiments

- High torque electric brushless Motor

- Servo driven front and back steering

- Single ECU controlling actuators, sensors and power distribution

- Swing Arm sensors to measure suspension deflection

- Steering angle position sensors

- Four wheel velocity/position optical encoders

- Engine shaft Hall effect encoder for engine speed feedback

- Nine degree of freedom inertial measurement unit

- Two front facing high speed global shutter cameras

- Carbon fiber enforced chassis

4.1 Design Details

4.1.1 Electronics Design

Parkour car includes custom made electronics as well as of-the-shelf compute boards, A

Hierarchical view of overall electrical connections is given at Figure. 4.2.
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Figure 4.2: Hierarchical view of parkour car’s wiring connection

Parkour car’s ECU includes an ARM-Cortex-M4 processor and handles all the signal con-

ditioning for the main PC. Signals are captured through different interfaces like RS-232, RS485,

digital and analog stored in memory. Once a new data is captured, a data packet is constructed

and transmitted through a USB2.0 connection to the man PC. Transmitted packet includes the

information from all the sensors attached to the ECU. In same fashion, ECU receives a data packet

from main PC which has the motor torque and steering servo angles and corresponding signals

are applied to the motors. Communication between ECU and the main PC happens in baud rate

of 115.2Kbps and data packets include header and checksum bytes in both directions to avoid

transmission of corrupted data.

Two methods has been tested in ECU’s firmware design. Effectiveness of FreeRTOS realtime

OS with 1 msec updates of OS (maximum achievable update rate) has been compared to bare-metal

implementation while considering execution times of different processes. Each process has been
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Figure 4.3: Top view of ECU Figure 4.4: Bottom view of ECU

timed for execution while data capturing from different channels as well as main PC communication

happens through DMA(Direct Memory Access) channels available in STM32F407 processor. Final

results showed that bare-metal implementation has higher performance due to low processing time

for sum of all process times (<1ms) and FreeRTOS’s overhead for OS actually slows the system

down.

For safety of system, a watchdog timer monitors the communication channel. Watchdog

resets every time that a new command is received from main PC and as a result actuators can

operate. If new data packet does not arrive on a timely fashion then the steering wheels are reset

to zero angle and the main engine is halted.

Drive terrain has been one of the difficult part of the design but after five iterations of this

ECU final result has been promising. BLDC motor drive circuit is capable of monitoring thermal

condition of the drive circuit and shutdown the power in the case of high temperature. It has been

observed that if vehicle is driven continuously for long time with high torque then the ECU would

turn the system off. Time of operation of vehicle can be increased by adding a cooling system to

the ECU in the future.

ECU has been optimized in size to fit in small robotic platforms so it measures dimentions

of 9× 8× 2 cm, has a four layer PCB layout and includes components in both sides of the board.
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Both top and bottom views of the ECU are shown in Figures 4.4 and 4.3.

ECU design is open source and further details of the system as well as schematics can be

found in ?? and production files are available in ARPG Lab’s Github page [115].

Two different computers has been tested with this vehicle. First, a Gigabyte Brix PC (Figure

4.6) was used which had a Intel Core-i7 processor with four separate cores and total of eight hyper

threads. Later, a intel NUC board was installed which has the similar performance to Gigabyte

model but has lower wight.

Parkour car is equipped to a three cell 5000 mAh LiPo battery which powers the main PC,

ECU, Sensors and actuators. Our tests has shown that vehicle is capable of operating for 45 minute

when CPU is used at 100% and vehicle is driven with 30% average torque.

4.1.2 Mechanical Design

Most of Parkour car’s mechanical parts (Steering mechanism, Differentials, Suspension sys-

tem) are taken from Team Associated’s RC8.2e RC car but dual steering system and carbon fiber

chassis has been designed to reduce the system weight and make the vehicle capable of taking more

interesting maneuvers. Figure 4.5 and 4.6 shows location of different parts inside vehicle chassis.

A Brushless DC motor create the torque required to propel the vehicle. Motor torque splits in

half between front wheels and back wheels with a central differential and lated a front and back

differential splits the input torque between left and right wheels. A removable junction between

differentials and also between wheels and differentials makes it possible to achieve different configu-

rations for the drive terrain and test different vehicle behaviors. For Example, connection between

front wheels and front differential can be removed and front axis of central differential can be fixed

to achieve a back wheel drive vehicle drive terrain. Similarly, a front wheel drive mechanism can

be handled.

Steering mechanism can also be defined by fixing one of the steering servos to have front/back

wheel steering or have dual steering by commanding both steering servo motors. Dual steering

mechanism has shown a big advantage in reducing turn radius and increasing steering response of
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Figure 4.5: Parkour Car’s parts. Triangles show vehicle sensors, ovals represent major mechanical
parts and rectangles correspond to actuators and the battery

the vehicle. Steering two wheels in a vehicle can be non intuitive for human drivers if not possible

but since a self driving vehicle is driven with a computer algorithm achieving this task can be

trivial.

4.1.3 Software Drivers

A software pipeline has been developed which abstracts the complications of operating the

vehicle and reading its sensor information. This has been developed as a part of ARPG’s open-

source HAL Library [?]. User can access the vehicles data by defining a callback function and an
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Figure 4.6: Parkour Car’s processing Units attached to top plate in chassis

interrupt will call this function as soon as a new data packet is received by main PC. Similarly,

user can update steering and accelerating variables in the driver and software pipeline will handle

transmission of this update to the ECU.

4.2 Physics Engine Dynamic Model (Spirit)

Different approaches in modeling of a car has been discussed in Chapter 2. In the conclusion

it was shown that dynamics physics engines are among strong choices of models which can model

behavior of the robotic platform as well as its interactions with the environment. For the purpose of

this thesis a vehicle simulator called Spirit has been developed in c++ language [3] which is based

on bullet physics engine library [24]. Using this library, a user can define vehicles of different size and

geometry with multiple wheels and drive terrain and simulate trajectories of the designed model.
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This pipeline also provides derivatives of vehicle trajectories with respects to desired parameters of

vehicle which are used in methods explained later in Chapter 5 6 . One of the major difficulties in

design of control systems is that the designer needs to have a very strong mathematical background

and modeling experience in order to be able to design a proper model, Using this method modeling

task is simplified to defining geometric constraints of the physical system and a model is developed

automatically. This idea of moving from geometric constraints to a mathemtical model has also

been kept in mind while designing model of vehicle in Chapter 7.

Spirit library also is capable of using multiple processor cores while in operation which speeds

up the processing of higher level algorithms. A graphical user interface has also been implemented

in this library to give proper feedback to the user which can be very helpful in debugging problems

when working with a higher level algorithm.



Chapter 5

Online System Identification and Calibration of Dynamic Models

This chapter is concerned with system identification and the calibration of parameters of

dynamic models used in different robotic platforms. Independent of what method is used for

modeling a robotic platform, there are always parameters in the model which require calibration

in order to get similar behavior between the model and physical platform. For this purpose a

constant time algorithm has been developed in order to automatically calibrate the parameters

of a high-fidelity dynamical model for a robotic platform. The presented method is capable of

choosing informative motion segments in order to calibrate model parameters in constant time while

also calculating a confidence level on each estimated parameter. Experiments in both simulated

environment as well as on the parkour car platform of Chapter 4 has been done to verify effectiveness

and accuracy of proposed method.

5.1 Introduction

Dynamical models are used in planning, control and state estimation of robotic platforms;

however, finding a model which describes a real physical platform well is nontrivial. Despite the

amount of effort one might put into designing a high-fidelity dynamical model, there exists yet

another challenge that arises: such models typically have a large number of parameters which must

be tuned very accurately. For instance, when operating a ground vehicle around a turn at high

speed, a small inaccuracy in the coefficient of friction could send the vehicle into slip through a

discontinuous change in dynamics. Such behavior would be deleterious and potentially hazardous



39

Figure 5.1: Informativeness of trajectory of parkour car where green color correspond to informative
segments and red segments are non informative segments

unless it were predictable, in which case it might be used to an advantage in e.g. guiding the vehicle

through a tight corner. Even if an accurate set of parameters are chosen via expert tuning, some of

these parameters would inevitably change in time due to mechanical degradation or environmental

disturbances.

Even more complicating to the scenario is that only some of these parameters are impercep-

tible in driving unless an obscure set of conditions are met. For instance, in a ground vehicle the

static coefficient of friction between tires and the ground is only measurable at the point of slip; the

dynamic coefficient is only measurable when slipping, which is potentially even more challenging

to observe. Also, it is not immediately obvious which types of motions a vehicle platform might

undergo that allow a human operator to determine the suspension stiffness. No one motion will

allow all of these parameters to be observed, thereby creating a quandary of how to operate a

vehicle such that all relevant physical parameters might be known to some degree of certainty.

And yet despite these difficulties the goal of grounding a system’s representation in concrete

parameters that represent physical relationships remains highly desirable. Were the estimation of

these physical parameters to be robust and reflexive for different operating scenarios, it is possible

that model-predictive control could be applied in contexts that are currently challenging, such as
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Figure 5.2: A flow chart overview of the method. First, a sequence of state information known as
a “motion sample” is captured within a candidate window, which is used to estimate calibration
parameters. Next, the motion sample is compared to a priority queue of motion samples. The
comparison operator in this priority queue determines if the sample in the candidate window reduces
the entropy over the whole calibration parameter set while maintaining a balance of informative
motion segments across all calibration parameters. If the motion sample is comparatively better
than any within the priority queue, the candidate window is augmented to the priority queue and
the lowest-scoring window in the queue is purged. This pipeline consists of three threads which run
in parallel with synchronization tokens exchanged between threads.

when dynamic parameters are changing in time or are unknown before system operation. Further-

more, these parameters might be estimated through measurements through external sensors, e.g.

cameras or infrared, providing another mechanism to directly influence controllers built on these

models. Finally, reasoning about such systems can be transparent and tractable from a nearly

intuitive standpoint.

To address this, the present work develops a probabilistic calibration method which may be

used to estimate parameters of a dynamical model of a ground vehicle.
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5.2 Related Work

The parameter estimation problem has been well-studied on robotic platforms, traditionally

aimed at particular parameters on certain experimental platforms; these efforts have largely grown

out of a need to estimate parameters that cannot be directly measured, such as the coefficient

of friction for wheels or the extrinsic transformation between an IMU sensor and image sensor

of a camera. Another possibility is that such parameters are not truly static and change during

operation. For example in the case of ground vehicles, GPS measurements have been used in order to

estimate vehicle mass [7], roll stiffness and damping ratio [108] or tire/road friction coefficient [125].

In the case of quadrotor UAVs, IMU measurements have been used to estimate the body moment

of inertia [1]. For other platforms, the 6-DOF pose measurements have been leveraged to estimate

inertial parameters of a grasped object [77] or thrust factor of actuators [67]. Geometric/kinematic

parameters have also been estimated for different platforms, like linkage length in a robotic arm

[46, 103], as well as distances and angles between a car chassis coordinate frame and its tire frames

[122]. More recently in the robotics community, probabilistic approaches have been developed in

order to estimate camera/IMU/laser scanner extrinsic parameters [58, 86, 111].

The calibration task, frequently known as “system identification” for physical platforms, gen-

erally involves estimating some parameters of the model from some indirect sensory measurements,

however the choice of sensors and their attachment location on an autonomous platform is very

important for achieving accurate calibration estimates, since only some specific motions of robot

would render parameters observable. Regressing parameters on data which does not render pa-

rameters of interest observable generally leads to wildly inaccurate results or a lack of convergence.

One approach previously taken is to attach a sensor in a specific location which properly excites its

output signal; however, finding the ideal location might be very hard if not impossible [61, 91]. Two

ways to avoid calibrating a platform using a dataset which does not make parameters observable is

to restrict motions of robot to some pre-planned trajectories which have good excitation properties

[122, 45] or to algorithmically choose the most informative motion segments [111, 58, 86] from a
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platforms trajectory. In these approaches, one must be careful in choosing informative segments

of motion since an uneven amount of information could bias the results toward selecting segments

only for parameters with more informative segments without balancing this with accuracy over the

entire parameter set. To avoid this problem, techniques like normalization of the posterior estimate

has been proposed [56], but this has been exclusively applied to the SLAM problem.

5.3 Methodology

In this work we develop a self-calibration approach to the estimation of parameters for a

dynamic physical model of a ground platform using as input the state estimates to the vehicle.

The approach develops an algorithm for choosing informative motion segments for all calibration

parameters, and is extensible to intrinsic and extrinsic parameters (e.g. tire friction coefficients and

wheel base) for the vehicle.

In general, dynamic models of robotic platforms are developed under the assumption that

the platform operate only in the same regimes as those in which they are calibrated. This work

represents a step toward loosening this highly constraining assumption, allowing for such parameters

to potentially change in a dynamic environment and for the system to estimate these new parameters

in constant time. Furthermore, the procedure developed allows for the estimation of a high-fidelity

(and high-dimensional) model which, from a principled standpoint, has proven to be quite elusive.

Many approaches for example assume a four-wheeled vehicle is reducible to a bicycle model [63],

however the assumptions implicit in such a model are very constraining: a vehicle must drive on a

flat surface, with tires always in contact with the ground and without any roll. Many vehicles in

normal operation, and especially in challenging off-road conditions, do not exhibit such behavior.

We now will provide a high-level explanation of the algorithm, accompanied by a flow chart

in Figure 5.2. At the core of the method, and the key innovation in this work, is the evaluation of

discrete-segment motion samples by assigning a “score” that quantifies the sample’s informativeness

toward estimating the parameters. The collection of these motion samples in a priority queue are

used to jointly estimate calibration parameters online. Since both the candidate window and
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priority queue have fixed sizes, the calibration parameter estimates are produced in constant time.

Our approach is also highly parallelizable, with the consumption, candidate window and priority

queue optimization operations each running in separate threads. Note that the parallelization of

this algorithm is shown using dotted windows for each part of algorithm in Figure 5.2.

5.3.1 Dynamics Model

First we suppose that we have a model of the dynamics of the platform given as:

x′(t) = Φ(x(t), F (t),u(t),p), (5.1)

in which Φ(·) represents the dynamical model, x(t) ∈ Rn is the state of the system, x′(t) is the

derivative of the state under the governing dynamics, F (t) consolidate external forces applied to

the system, u(t) ∈ Rm is a control input (for vehicles, generally the steering and acceleration),

and p ∈ Rw is model parameter vector to be calibrated. Distinctions between the system’s “real

dynamics” and modeled ones are ignored with the restriction that modeling assumptions are not

violated when operating the platform. For example, if a physical model is utilized which restricts

the vehicle to not be airborne, it is assumed the vehicle will never go airborne. This model is

discretized in time, such that xk, k ∈ N is the n-dimensional state of the platform at time step k.

Strictly speaking, the generality of the method we described may be extended to non-ground

vehicle platforms; however, we will describe this method as we have developed it for such systems.

The state xi includes the SE(3) pose of the wheels and chassis as well as wheel speeds and rigid

body angular momenta. Many of these quantities may be directly estimated through, e.g. modern

SLAM algorithms or properly placed sensors like linear or angular encoders. For a simple car model,

a calibration parameter vector might include vehicle properties like tire and chassis geometry; more

complicated models might consider inertial properties, linear and rolling friction coefficients of all

bodies, suspension anchor points, suspensio damping and stiffness coefficients, motor speed-torque

parameters for steering and acceleration motors and a chassis’s center of mass location.

The control input u(t) is discretized by sampling the continuous input signal over time
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intervals ∆tk = tk − tk−1 which need not be uniform. Through this, it is assumed that the control

input is constant within the interval [tk, tk + ∆tk]. Current control inputs, system state and the

timestamp of the system are sampled and stored as a triplet sk = [xk,uk, tk] which compose the

motion samples at timestep k.

5.3.2 Rolling Candidate Window

In order to score motion segments based on how much information they contribute to the

calibration parameter estimation problem, a rolling window of size nc is used. The rolling candidate

window at time step k is Ck = [sk−nc , . . . , sk] which is composed of the nc latest motion samples.

WithinCk a score of informativeness is calculated. The score is calculated by estimating parameters

p and calculating a score based on the entropy of the posterior. Since the entropy is a way to

quantify uncertainty, lower scores represent more desirable motion samples contained within the

window.

For a given candidate window Ck, a cost function is constructed as follows:

(1) initialize Eq. (5.1) at a state/input pair given at the beginning of the window as the

canonical estimate of that state; i.e.,

ŝk−nc = sk−nc ; (5.2)

(2) integrate Eq. (5.1) forward with the measured control inputs over the time intervals stored

in Ck to get Ĉk:

Ĉk = [ŝk−nc , . . . , ŝk] ; (5.3)

(3) and finally, construct a cost function:

ΨCk
= Ck [x]� Ĉk [x̂] , (5.4)

where Ck [x] represents only the vector of states (from the triplet sk) in the corresponding

window, and operator � calculates a weighted error between two state vectors.
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Figure 5.3: Elements of cost function before candidate window optimization. For a given motion
segment Ck (blue dots) in candidate window for a window of size nc = 4 and an integrated path
Ĉk with initial parameter values (red dots), a corresponding cost function ΨCk

is constructed.

The cost function ΨCk
is later minimized in order to calculate the covariance of the posterior

Σ̂Ck
and a score for current window. The candidate window Ck is a rolling window, meaning that

when a new measurement arrives, sk−nc is removed and the new measurement is pushed back to

the window at sk; a new score is then calculated.

5.3.3 Optimization

Calibration parameters are estimated in a nonlinear maximum likelihood estimation frame-

work. The joint probability distribution of parameter p given state measurements sk in window

Ck and dynamics provided by Eq. (5.1) is:

P (p,Qk[x]) = P (Qk[x]|p)P (p) =

nq∏
i=1

P (Ci[x]|p), (5.5)

where Qk = [C0, . . . ,CnQ−1], represents all candidate windows in the queue at time step k for a

queue of size nQ. In Eq. (5.5), the likelihood term P (Qk[x]|p) is factored since different candidate

windows are selected such that they are independent of each other (see Section 5.3.4). Note that

the prior term P (p) can be dropped since the priority queue will carry the prior of the estimate.

Noting that the prior term in Eq. (5.5) vanishes since the first state variable is always fixed
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to the first measurement (see Eq. (5.2)), hence we have:

P (p,Ck[x]) = P (Ck[x]|p), (5.6)

An optimal estimate p̂ for the parameter vector p can be calculated by minimizing the joint

probability:

p̂ = argmax
p

P (p,Ck[x]), (5.7)

According to Eq. (5.5), the solution to this estimation problem can also be achieved by maxi-

mizing the likelihood term. Assuming that parameter noise is Gaussian distributed, we can write

probability density function of each likelihood term in Eq. (5.5) as:

P (Ck[x]|p) ∝ exp(−1

2
‖Ck[x]� Φ(Ck, F (t),p)‖2Σ)

∝ exp(−1

2
‖Ck[x]� Ĉk[x]‖2Σ)

∝ exp(−1

2
‖ΨCk

‖2Σ),

(5.8)

in which || · ||2Σ signifies squared Mahalanobis distance given measurement uncertainty Σ and Ck[x]

for the kth candidate window. In the case of a rolling candidate window, the equation above will

only have one likelihood term as mentioned at Eq. (5.6). then Eq. (5.7) is solved by iteratively

updating parameter vector p with a trust region method [2]. Given the Gaussian distribution

assumption, the covariance of the posterior is computed over calibration parameters by inverting

the Fisher information matrix:

Σ̂(p̂) = Cov(p̂) = (Jᵀ(p̂) J(p̂))−1, (5.9)

Here J(p̂) is Jacobian of ΨCi at p̂. The Jacobian is checked to make sure it is full rank before

calculating the covariance; if it is not of full rank, then the current motion sample is ignored due

to lacking observability in all calibration parameters.
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5.3.4 Entropy Score Board

Solving the MLE problem within a candidate window results in the covariance of the estimate

Σ̂, which is used to calculate a score vector for the current motion sample. An entropy value for

each parameter is given by κk[i] = 1
2 ln (2πeσi) where κk is vector of entropy values of matrix Σ̂

and σ is diagonal vector of Σ̂ for the candidate window Ck. Recall that lower entropy implies

better candidate.

One of the primary considerations is that we would contain the number of motion samples

we are tracking at any given time; this was part of our comparison operator design, and was found

to aid robustness in collecting salient and informative segments for all parameters. To do this, we

introduce the notion of a score board which is part of our comparison as follows:

(1) The maximal entropy for each parameter from all motion samples in the priority queue is

stored in a vector λ ∈ Rnp (since each element of λ corresponds to an element of p) where

np is number of parameters to be estimated.

(2) A np×nQ table T is constructed to keeps track of which candidate windows are informative

for which parameters. T ∈ Nnp×nQ contains {0, 1} values in its entries and an entry 1 in

index T[i, j] shows that candidate segment in index j of priority queue is informative for

parameter i.

(3) A vector τ ∈ Nnp keeps track of the total number of informative segments for each param-

eter which currently exist in priority queue by summing over the rows of T:

τi =

nQ∑
j=0

T[i, j] T[i, j] ∈ {0, 1}. (5.10)

For each newly calculated κk, we compare corresponding indexes in this vector to current

worst entropy λ according to Alg. 1.

Note in Algorithm 1, β is a tuning parameter representing the minimum acceptable score,

and α = 0.95 is a safety margin to ensure at least a 5% reduction on maximum entropy occurs when
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Data: Ck,κk, np,λ, β, α
Output: update condition, current score
current score← 0;
for i ∈ {0, . . . , np − 1} do

if κk[i] < α× λ[i] then
current score← current score+ 1;

end

end
if current score ≥ β then

update condition← true;
else

update condition← false;
end

Algorithm 1: Priority queue update condition

adding a motion sample to the priority queue. A candidate window might overlap with previous

candidates in queue which would result in double counting the information in the queue and biasing

the results; to avoid this, the current candidate window is checked for such a condition. If there is

an overlap, then the current candidate is compared with the sample in the priority queue with an

overlap as in Alg. 1 and replaces the entry in the queue if the resulting score is higher.

In the case that the update condition in Alg. 1 is satisfied and there are not any common

segments between the current candidate window and any candidates in the priority queue, then a

final condition is checked to make sure the amount of data entered is not biased toward a group of

parameters. In this check, the new candidate is added to priority queue and corresponding entries

of T which reduce entropy of parameter i are marked with 1 s and corresponding τi and λi values

are updated. If adding a new 1 to the table falsifies the queue limit inequality τi ≤ ns on any

parameters (ns being maximum number of desired samples per parameter), then the table entry

which previously had the highest entropy in vector λ is changed to a 0. Figure 5.4 shows a flow

chart for this procedure.

To initialize this process, the very first candidate is accepted without any checks and later

candidates are checked for having an overlapping window or if they have a lower entropy score

but no replacements (with higher entropy candidates) takes place until the queue is full. Once a

decision is made a pruning step takes effect by removing columns of table T which have all zeros
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Figure 5.4: Flowchart for deciding if a motion sample should be added to the priority queue or
not. In this chart Ccom is the motion sample in queue which has overlapping segment with the
candidate in current rolling window. In the figure, the boxed Algorithm 1 compares the current
window’s κk to the entropy vector of Ccom. This is opposed to λ in Alg. 1, where λ← κCcom .
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and also removing corresponding candidate window from the queue.

5.3.5 Priority Queue

The priority queueQk, is responsible for storing the set of candidate windows which have been

selected using the criteria described in Section 5.3.4. At every update to this queue we construct a

cost function and jointly optimize over all candidate windows in the queue. from Eq. (5.4) we can

write

ΨQk
=

nQ∑
i=0

(ΨCi), (5.11)

The cost function ΨQk
is then used in the optimization step (see Section 5.3.3) to find a new

estimate p̂ as well as its corresponding covariance Σ̂. The estimated covariance is then used to

asses the confidence level on each estimated parameter.

5.4 Experiments

In order to validate this algorithm, we have performed simulations on a model four wheel drive

vehicle as well as experiments on a modified 1
8

th
-scale vehicle platform. The method as described

has been implemented in the C++ language and tested in both simulation and experiment, and has

reliably performed in constant time on an Intel Core-i7 CPU. As shown in Figure 5.2 with dashed

lines, the pipeline consists of three main threads. The first thread is responsible for capturing motion

samples in discrete time and constructing a rolling candidate windows as described in Section 5.3.2.

When this task is complete, this thread signals to a second thread that the motion sample is ready

for analysis. This second thread then minimizes the cost Ψck using the optimization technique

explained at Section 5.3.3. In addition to assigning a score to a given motion sample, this thread

also handles the decision making explained in Section 5.3.4 and updating Qk. This thread then

provides a synchronization token to a third thread which calculates and updates the cost ΨQk
. The

optimization in the third thread results in a new parameter and covariance estimate.



51

Figure 5.5: Estimation results for friction coefficient (left), and wheel base (right) of simulated car.
Solid colored line represents mean value, filled areas are scaled variances and black dashed line is
ground truth value. Note that error bands are drawn in 0.01σ scale to achieve graphics capable
of representing both the mean value changes (in small scale) and rapid uncertainty reduction (in
larger scale). Also this should be noted that despite variations in mean of estimate, It always stays
in 1σ bound. After 12th iteration of priority queue optimization, both parameters reach very low
uncertainty of ∼10−5 since dynamics of simulated car is exactly same as the one used for estimating
parameters.

As a model for experiments, a physics based dynamics model using the Bullet Physics Engine

[25] is constructed. To accomplish this, a high fidelity four-wheel drive vehicle model was imple-

mented; the model includes parameters such as mass, inertia and geometry for each wheel and

the chassis, dampers and springs as a suspension for each wheel and their anchor points, steering

and acceleration motor speed/torque properties and speed limits and also rigid body linear/rolling

friction coefficients. This model is also capable of interacting with a map of the environment and

modeling contact forces [21].

We will now describe the two sets of experiments we conducted in procedural detail, and

present their results.

5.4.1 Simulation

For this experiment a simulated world with a flat floor and constant friction coefficient at

every point was constructed. The simulated vehicle was developed to accept steering and throttle



52

commands from a user who would manually drive the vehicle in the simulated environment using

a gamepad. The state of the vehicle used in this case is:

xk = [xps, ẋps,ω] , (5.12)

where xps ∈ SE(3) is the pose vector of the chassis with rotations in axis-angle format, ẋps is vector

of linear and rotational velocities and ω is vector of wheel velocities. In these experiments, the

model for the simulated vehicle is exactly equal to those in Eq. (5.1) used to regress the calibration

parameters, however the parameters are significantly perturbed. The target of this experiment is

to identify the perturbation and regress the correct physical parameters.

In this experiment, user first drives the simulated car in a back and forth motion in the virtual

environment until a sufficient number of priority queue updates have occurred (in our case four),

suggesting a reasonable estimate may have been found. The user then drives on circular trajectories

in order to consider alternate motions that may influence the parameter calibration. This sequence

of driving demonstrated what is intuitively expected: in the first type of motion, both the friction

and wheel base estimates are very uncertain since a back and forth motion does not render these

parameters observable. In the second type of motion however, and especially when introducing some

obvious sliding in the driving mode, more informative segments for these calibration parameters

are added to the priority queue. Through the combination of these motions, both parameters

eventually converge very close to their ground truth values with very low uncertainty.

A set of two calibration parameters are considered in this case: the car’s wheel base and the

ground/tire friction coefficient are simultaneously estimated. Since these parameters are known for

the simulated vehicle, we may compare the resulted estimates to the ground truth values directly.

Figure 5.5 shows the results for applying this calibration method with nC = 20 and nQ = 10 for

about one minute of driving with discretization steps of 100ms. In both charts, the solid line shows

the mean of the estimate and the two shaded areas with different colors show variance bounds on

the estimate while a black dashed line shows the ground truth value.
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5.4.2 Parkour Car Tests

For experiments with an actual system, the parkour car platform in Chapter 4 is used. As

mentioned this vehicle accepts throttle and steering commands and is capable of measuring wheel

speeds, current steering angle position and suspension lengths in real time. In order to get pose

and velocity measurements of chassis, experiments were performed in a large open room equipped

with a motion capture system. In these trials, the vehicle has been modeled with same physics

based model explained in previous section and the state vector is the same as that considered in

Eq. (5.12). Figure 5.6 shows the priority queue estimates of friction coefficient and wheel base on

our model vehicle. The wheel base estimate of 0.32 meters is fairly close to the measured value of

0.34, this error could be due to the differences of the physics based dynamic model and the actual

vehicle. As one might realize, the parameter confidence after convergence on data from physical

car is low compared to simulated data, which is a result of using a less accurate model. Since

comparison of the friction coefficient estimate to a ground truth value is impractical we evaluate

it qualitatively. Friction coefficient is a number in [0, 1] where zero means no friction. Since the

experiment happened on a carpeted floor with treaded tires, a high value of µ̂ was expected and

the priority queue estimate shows a similar value (0.85).

5.5 Conclusions

As described before parameter estimation is a crucial task for autonomous ground vehicles in

the sense that wrong parameters might result in unstable systems, which use a dynamical models as

their core to predict vehicle’s behavior. In this paper a new method in estimating parameters has

been shown which chooses most informative motion samples of the trajectory of vehicle and esti-

mates the parameters while avoiding any biasing toward a group of parameters with higher chance

to be excited. This method has been tested both in simulation and physical experiments; results

show the usefulness of this method while giving a confidence level on the current estimate.
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Figure 5.6: Estimation results for friction coefficient between tire and carpet (left), and wheel base

of a four wheel drive 1
8

th
scale car (right). Solid colored line represents mean value of estimate,

filled areas are scaled variances and black dashed line is ground truth value of car’s wheel base
measured manually.



Chapter 6

Terrain Aware Model Predictive Controller

This chapter presents a new model predictive control approach for control of autonomous

vehicles. Proposed method takes a geometric definition of robotic platform and some arbitrary

points showing path of the vehicle is capable of controlling the vehicle through those waypoints.

Some intermediate steps such as calibration of parameters (as on Chapter 5) and local planning

are required to achieve the final result which are explained in more details in this chapter.

6.1 Introduction

With rapid progress in the development of autonomous vehicles, the need for more stable and

accurate controllers which can accept more complicated vehicle dynamics into consideration while

handling environmental uncertainties is greater than ever. Research in “enhanced driver assists”

like adaptive cruise control [50] or lane-keeping [96, 113] for cars has been widely researched in the

past. These control systems largely concern themselves with stabilizing a vehicle to a desired state.

Some vehicle models has been significantly simplified in order to have differentiable dynamics while

considering other dynamic effects as noise input to the system, e.g. [27, 72]. Common simplifications

include ignoring collision forces due to their complicated effects. However, in order to achieve a

stable control response it is required to use as much information from the environment as possible

to make action devisions. Developments in new sensor technologies and estimation algorithms allow

control systems engineers to capture more detailed information from the environment like 3D pose

estimation of the robot or depth maps of the environment using cameras[40] or depth sensors [82].
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Modern control algorithms should use this information in their determinations.

In contrast to classical control methods in which simplified dynamics of the autonomous

vehicle is discovered in form of explicit equations, and a controller is designed to stabilize that

model, model-predictive controllers (MPC) [14] solve the optimal control problem in every time

step. To do this, the algorithms are given the current state of the model up to a finite time horizon,

but the solution to this problem (control command) is only applied to the system during the next

time step and for the step after that it needs to be recalculated. Solving an optimization problem

for every time step makes MPC algorithms computationally expensive, specially when dynamics

of the vehicle gets more complicated finding a solution to this problem might take a longer time

than time step period. Note that control problem requires a goal and this case autonomous vehicle

would need a reference trajectory to follow. Nagy et al. [84] proposed a method to parameterize a

trajectory for car-like robots using cubic curvature polynomials which is a good estimate for path

of the autonomous vehicle in flat surfaces but it might not be accessible by the robot in a rough

terrain.

In order to find a solution to these problems, we wish to develop an intuitive, computationally

efficient method that is robust to uncertainty. In most of autonomous control pipelines a global

planning algorithm decides a generic path for a vehicle by setting waypoints over a map for a

vehicle to traverse, then a local planning algorithm might be used to generate a path between

two consecutive waypoints and later these paths are used in a controller to control the vehicle

toward the reference path. Design of each stage in this approach requires a model of the vehicle in

most cases the final planner/controller has model behavior backed in it and model changes require

redesign/synthesis of the controller.

In this work, we present an approach to modeling, planning and control of an autonomous

vehicle. Proposed method fits with a widely used structure of autonomous planning and control

which is shown in Figure 6.1. Based on this model it is assumed that a user or a higher level global

planning algorithm defines some middle points between current robot state and final goal state.

Global planning algorithms generally use a simpler model to generate the waypoints due to high
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Figure 6.1: Complete planning and control pipeline structure

computational cost of the algorithm however the resulted waypoints might not be actually accessible

by the physical robot. So, a local planning algorithm takes every two consecutive waypoints and

using a higher fidelity model checks whether the second waypoint is reachable from first waypoint.

This stage of the pipeline informs the global planner by either accepting the waypoint, rejecting it

or modifying it to a better state. If the waypoint is not rejected a path between two waypoints,

representing the drive path of the vehicle is generated as well as the control signals corresponding to

that path. This path is later used as a reference trajectory for the model predictive controller. Blue
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Figure 6.2: A perspective view of the graphical front-end to our MPC software. a) Waypoints with
pose and velocity constraints represented by the yellow boxes and white lines respectively. b) A
resolved solution after solving the 2-point BVP is designated by the red line. The presence of the
red line connecting the waypoints designates that the second waypoint is reachable. c) When no
solution is feasible (in this case, because environmental parameters were varied), a closest-feasible
waypoint is generated in green.

box in Figure 6.1 shows dynamic model of the vehicle which is separated from Local Planning and

MPC stages of the pipeline. This gives us the freedom to change the behavior of the model on the fly

and both stages of the pipeline would automatically work with the new model updates. Changes can

include anything from parameter updates to the actual model of the vehicle to updates in vehicle’s

terrain map. One might appreciate adaptability of this approach when perception of robot of its

environment changes. For example adding a new sensor to the robot to sense friction of the terrain

can be easily added to the terrain map and planner/controller would take in consideration this

new information of terrain without changing them. More details of these two stages are given in

Sections 6.3.2 and 6.3.3.

In order to model the autonomous vehicle we use a high-fidelity physics simulation engine as

described in Sec. 4.2 which takes the dynamics of the autonomous vehicle into account as well as

terrain roughness and contact forces applied to the autonomous vehicle. We use the Spirit physic

engine based model to solve two problems: 1) the reachability problem between two waypoints

constrained to autonomous vehicle dynamics, and 2) the corresponding optimal control problem.
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6.2 Problem Statement

We take a model predictive approach to autonomous vehicle control; in this framework, the

controller leverages a high fidelity vehicle model and prior environment maps in order to calculate

the optimal control signal for the autonomous vehicle. We also develop a local planning method

which finds an optimal reference trajectory between waypoints defined by a higher level global

planner. Later this trajectory is used as a reference trajectory for model predictive controller.

In our framework, modeled dynamics of the autonomous vehicle should capture behavior of

autonomous vehicle as accurately as possible. In order for the autonomous vehicle to travel from

one waypoint to another, it is required to first examine the reachability condition between the two

waypoints. If the final waypoint is reachable, then it is possible to design the controller in order to

navigate the autonomous vehicle to the subsequent waypoint.

6.3 Methodology

6.3.1 Modeling

In order to predict behavior of the autonomous vehicle we use the dynamics model of the

vehicle as well as the terrain in a physics engine[25] as discussed in Chapter4.2. Same model was

also used in Chapter 5. In this work we evaluate the performance of the method on a front-steering

four wheel drive vehicle with spring-damper suspension on each wheel attached to a cuboid chassis.

The terrain can be specified as a dense three-dimensional mesh with a friction coefficient specified

for each mesh surface. Similar to model given at Eq. 5.1 The governing equations of motion for

autonomous vehicle can be shown in more detail as

x′(t) = Φ(x(t),Π(x(t), g,M),u(t),p), (6.1)

in which Φ(·) represents the modeled dynamics of the autonomous vehicle, x(t) is current

state of autonomous vehicle, and x′(t) is the derivative of the state under the governing dynamics.

Π represents contact forces applied to the autonomous vehicle and surface frictions at a given
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state x(t), with gravity vector g and the map of terrain M . Note also that u(t) are the steering

and acceleration inputs, p is vehicle parameter vector. This parameter vector includes vehicle

properties like tire and chassis geometry, as well as their inertial properties, linear and rolling friction

coefficients of all bodies, suspension anchor points, suspension damping and stiffness coefficients as

well as their travel limits, motor speed-torque parameters for steering and acceleration motors and

chassis’s center of mass location.

The control input u(t) is a continuous signal which must be discretized. As an added chal-

lenge, sampling this signal in high frequency would result in a problem with very high computation

cost. To avoid this, we apply a parametrization of this signal by a quadratic Bézier curve [53]. We

may then rewrite u(t) as

up(t) = (1− t)2p0 + 2(q − t)tp1 + t2p2. (6.2)

We will later discuss the implications this has in simplifying the corresponding boundary value

problem; in particular, it reduces the problem size significantly by solving for pi, i ∈ [0, 2] rather

than discrete points on u(t). Order of the curve must be chosen such that the resulted signal

is capable of generating appropriate reference for underlying actuator. This can be decided from

response time of the actuator and inn our case a quadratic curve turns to be the right choice.

It is possible to solve Eq. (6.1) with algorithms like MLCP Dantzig, MLCP Projected-Gauss-

Seidel or Sequential Impulse Solver, which are already implemented in the Bullet physics engine

[24]. Note that as with all algorithm choices, swapping the solver has an effect on the speed of

computation and accuracy of solution.

Software library defined in Chapter 4.2 can generate trajectories of the vehicle by defining

initial condition of the vehicle, map of the world and parameters pi and depending on discretization

step defined in the library. Since the integration step doesn’t have much processing overhead, input

Bézier curve can be sampled as fine as desired to be applied to the vehicle along the path.
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6.3.2 Local Planning

Given two waypoints on the terrain mesh we evaluate reachability of waypoints constrained

to autonomous vehicle dynamics. We also come up with a reference trajectory for the autonomous

vehicle to be followed by the MPC algorithm. By design, a waypoint wi defines a pose and velocity

constraint as

wi = [di, ri, ḋi, ṙi], (6.3)

in which di ∈ R3 is position vector of the autonomous vehicle in global Cartesian coordinates,

ri ∈ R4 is vector of axis-angle rotation, ḋi ∈ R3 is linear velocity constraint in the waypoint and

ṙi ∈ R4 is rotational velocity at the waypoint.

In order to evaluate reachability of waypoint wi+1 from wi we must construct a Boundary

Value Problem using dynamic formulation in Eq. (6.1). To construct a BVP problem we take an

optimization approach. A cost function can be defined between two consecutive waypoints such

that minimizing it would provide the solution for BVP problem. For this we fist initialize the

vehicle in the state specified by first waypoint similar to Eq. (6.3) and given a initial parameterized

control for the vehicle we integrate the model forward to get an end state. Then we define a cost

between resulted end state vector (current state) and state vector of next waypoint (desired state)

(Figure 6.3). Minimizing this cost would reduce the error this error while updating parameters

of beziér control signal. Eventually, this procedure is terminated if the cost value is below some

predefined value or step size of the optimization is very small. Then, solution of the optimization

problem as well as trajectory of the vehicle in last iteration of optimization is stored to be used by

the controller in next stage of the pipeline.

Cost function can be shown as Eq. 6.4. Dropping the Π and p arguments for simplicity and

replacing u(t) from Eq. (6.2), we have:

p∗bvp = min
p

λ‖xwi+1(ti+1) �Φ(xwi(ti),up(t))‖2

+γ‖ti+1 − ti‖2

+‖L(up)‖2,

(6.4)
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Figure 6.3: Cost function definition for Boundary Value Problem. BVP before optimization (Left)
and same problem after one iteration of optimization (right)

where xwi(ti) is state of vehicle at time ti with boundary conditions wi, and λ and scalar γ are

weighting parameters. The operator � calculates the velocity and pose error between two vehicle

states. The first term in the cost function of optimization problem in Eq. (6.4) defines an error

vector between waypoint wi+1 and solution of dynamic model in Eq. (6.1) starting from wi with

parameterized input up(t). Second term is a regularization term which results in a time-optimal

trajectory and third term accounts for actuator limits by largely penalizing undesired values in

actuator’s input space. This function is applied to control points on the Bézier curve and as shown

in Section 3.2.1 since the whole curve is subsumed with convex hull of the control points this

guarantees that the underlying control signals are going to be inside actuator limits. Actuator

limit penalty function L(up) is a piecewise linear function as

L(upi
) =



−a · upi + αl upi ≤ αl

0 αl < upi
< αh,

a · upi + αh upi ≥ αh

(6.5)

where a defines slope of the cost when actuator’s high and low limits αh and αl are violated. Eq.

(6.4) is solved via an optimization framework which is discussed later. Even though formulation in

Eq. (6.5) is non-smooth in boundaries, but since a numerical differentiation is used in calculating

derivatives of the cost, this would not be a problem.

After solving Eq. (6.4), if a solution is achieved with cost value lower than some ε, then wi+1
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Figure 6.4: Result of solving BVP problem for eight consecutive waypoints(yellow) and resulted
trajectories(red) which are used as a reference for controller

is considered reachable (Figure 6.2b). However, if the error is greater than ε, then the waypoint is

considered not reachable (see Figure 6.2). In this case, one can decide whether to use the solution

to adjust wi+1 to the current solution and continue to next waypoint or terminate the algorithm.

In addition to solving for p∗ from Eq. (6.4), we also store the trajectory of the autonomous vehicle

between every two consecutive waypoints:

τj = Φδj (xwi(ti), c(p
∗
bvp)) j ∈ {0...b ti+1 − ti

δt
c}, (6.6)

where δj = ti + j ∗ δt and δt are the time step sizes to sample the trajectory. Φδj (·) is the state

after time δj , with the input c(p∗) applied to dynamics model. Trajectory τj does not need any

additional computation and can be extracted from last iteration of the optimization in Eq. (6.4).

In order to test the planning algorithm, we used the model in Sec. 4.2 (Figure 6.4). Imple-

menting the local planning approach from Sec. 6.3.2 demonstrated that we can validate reachability

of a waypoint and also come up with a reference trajectory for the autonomous vehicle. We also

parameterized the control input by Bézier curves [22] to reduce dimensionality of search space from

infinite dimensional continues functions to quadratic curves. Figure 6.4 shows the resulted reference

trajectories for eight consecutive waypoints.
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Figure 6.5: Model predictive controller cost function with (red dots) discretized vehicle trajectory
points, (blue dots) discretized reference trajectory points, (yellow box) waypoint, (purple line)
weighted costs. a) autonomous vehicle with initial control input results in red trajectory before
optimization. b) autonomous vehicle’s trajectory converges to reference trajectory after convergence

6.3.3 Model Predictive Control

Once a reference trajectory has been calculated as in Eq. (6.6), we design a model predictive

controller such as that employed by [15] to stabilize the autonomous vehicle to the reference tra-

jectory. For this we define a “cost-to-go” function as in Eq. (6.7) and construct an optimization

problem in order to find the proper control signal. Stability of the controller is proven later in this

chapter.

Cost-to-go function of proposed MPC is given as:

p∗mpc = min
p

K∑
j=0

ρj‖τj �Φδj (xwi(ti), c(p))‖2 + ‖L(up)‖2, (6.7)

where ρj is weighting coefficient and K is the length of the sequence of states over the discretized

time horizon. Since most vehicles have control constraints arising from the steering angle of the

wheels, one might apply less weight to closer points to the current position of autonomous vehicle

since control signal can not reduce the error due to nonholonomic constraint of wheels. Weights

can also be adjusted according to importance of pose or velocity error in the problem.

Figure 6.5 shows the trajectory of a four-wheeled autonomous vehicle before and after solving

Eq. (6.7). Once a control command c(p∗mpc) is calculated, it gets executed on the autonomous vehicle
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for a short period of time—in our case, until next control command is calculated.

6.3.4 Optimization

For both BVP and MPC problems we minimize a cost function in a least-squares sense. We

solve these optimization problems using the Levenberg-Marquardt [83] algorithm. We also must

calculate the Jacobian of the error function with respect to its parameters J = ∂e
∂p , for which

we take a finite differencing approach to calculate derivatives of Eq. (6.1). Finite differencing on

physics engine of Sec. 4.2 is calculated by perturbing a control signal parameter with a small value

(ε = 0.05) and finding difference of state vectors in state space.

Since columns of the Jacobian matrix are not correlated with one another, finite differencing

can occur in parallel. Our multi-threaded algorithm is capable of calculating the Jacobian at each

iteration of optimization quickly.

6.3.5 Trajectory Tracking vs. Maneuver Regulation

A trajectory tracking controller has been defined in Sec. 6.3.3 where discrete points on

trajectory are spaced in a timed fashion. This means that if the vehicle falls behind in time of

execution an appropriate control signal will be selected such that it minimizes the distance between

the time varying reference and vehicle’s current position. Another perspective for the controller is

one were vehicle always tries to merge to a reference maneuver where the trajectory itself is not

timed and control goal is to push the vehicle onto the maneuver as soon as possible. A maneuver

regulator can be implemented in Method of Sec. 6.3.3 by first defining a continuous reference

trajectory between waypoints (parameterized curve fitting through discrete points of Planner in

Sec. 6.3.2) and then re-defining the operator � such that it returns the closest distance between

vehicle’s current discrete trajectory points and the continuous reference curve. In this mode, velocity

of the vehicle is regulated by defining a constant linear forward velocity for the maneuver rather

than velocity terms in Eq. (6.3).
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6.3.6 Adaptive Horizon MPC

One of the important parameters in performance of MPC methods is choice of horizon. A

useful approach should try to minimize the required length of horizon as much as possible to achieve

a high performance. In order to choose the correct horizon length we need to understand under what

conditions the controller would be stabilizing. For stability of receding horizon controller there are

two main approaches where one uses a terminal cost in the cost function terms and minimizing the

resulted cost would give a stabilizing controller [100]. In another approach, a terminal constraint

can be added to the cost function where if tail of the horizon falls in the final set then resulted

MPC would be stabilizing, However defining this final set can not be easily calculated for other

than some well known systems with simple dynamics. Also, Jadbabaie and Hauser [51] give a proof

for existence of a finite horizon in which the corresponding receding horizon scheme is stabilizing

without the use of a terminal cost or constraint but it is not known how length of horizon can be

determined.

In this thesis we use the result of a recent work from Krener [64], which uses a local controller

and a corresponding lyapunove function in a terminal cost and based on a heuristic decides whether

tail of the horizon is in basin of attraction of the local controller or not and extends or retracts the

horizon length. As per [64] an adaptive horizon can be selected by

(1) Assuming set of states X and set of terminal states Xf are colsed, Xf ∈ X, set of inputs U

is compact and X, Xf and U contain neighborhoods of their respective origins. However it

is not required that Xf is known explicitly.

(2) A discrete timed controlled dynamics f(x, u), a lagrangian l(x,u), a constraint pair (h(x, u), Y )

and a terminal cost Vf (x) satisfying following assumption (Assumption 2.2 [100]).

Assumption: The functions, discrete dynamics f(x, u), discrete dynamics l(x, u), con-

straints h(x, u) and terminal lyapunov function Vf (x) are continuous on some open set

containing (X)×U, l(x, u) is nonegative definite in (x, u) and positive definite in u on this

open set, Vf is positive definite on Xf and f(0, 0) = 0, l(0, 0) = 0, Vf (0) = 0.
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(3) A terminal feedback u = κf (x) and a class K∞ function α(·) defined for all x ∈ Xf and

satisfying

Vf (x) ≥ α(|x|)

f(x, κf (x)) ∈ Xf

Vf (x)− Vf (f(x, κf (x))) ≥ α(|x|)

h(x, κf (x)) ∈ (Y )

(6.8)

AHMPC method proposed by Krener [64] does not require an explicit definition of dXf

however it requires a pair of terminal cost funciton Vf (x) and controller κf (x) to approximately

solve infinite horizon dynamic program equation on some neighborhood of the origin. An example

of such a pair can be constructed using linear quadratic regulator where LQR cost can be used as

the terminal cost term and resulted local controller can be used as the control law κf (x). Since

in general it is not possible to find a terminal set Xf from terminal pairs Vf (x) and κf (x) such

that conditions (1) to (3) are satisfied, a method to check whether state of the system in horizon

is contained in Xf has been proposed.

Based on this method, once the MPC problem has been solved for horizon N , given that Vf

is defined in x(N) then the tail can be extended using the terminal feedback u = κf (x) for another

L steps. If terminal state x(N) is not in Xf then horizon N needs to increase and MPC problem

should be solved before extending tail. Once the tail is extended following conditions are checked

Vf (xN (k)) ≥ α(|xN (k)|)

Vf (xN (k))− Vf (xN (k + 1)) ≥ α(|xN (k)|)
(6.9)

for k = N, . . . , N +L+ 1. This condition checks if value of the terminal cost has sufficient decrease

and if so it is concluded that xN ∈ Xf . Otherwise it is assumed that xN 6∈ Xf and horizon should

increase to N + 1 steps and this method should be checked again. Length of tail L is a design

parameter and is selected by user.
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<latexit sha1_base64="9vp/LnQhUXB3sUC71f9NTyam4JM=">AAAB6XicbVA9SwNBEJ2LXzF+RW0Em8UgxCbc2Ri7gI1lRM8EkiPsbfaSJXt7x+6cEEN+go2Fiq3/yE7wx7j5KDTxwcDjvRlm5oWpFAZd98vJrayurW/kNwtb2zu7e8X9g3uTZJpxnyUy0c2QGi6F4j4KlLyZak7jUPJGOLia+I0Hro1I1B0OUx7EtKdEJBhFK92W6VmnWHIr7hRkmXhzUqodPX6DRb1T/Gx3E5bFXCGT1JiW56YYjKhGwSQfF9qZ4SllA9rjLUsVjbkJRtNTx+TUKl0SJdqWQjJVf0+MaGzMMA5tZ0yxbxa9ifif18owqgYjodIMuWKzRVEmCSZk8jfpCs0ZyqEllGlhbyWsTzVlaNMp2BC8xZeXiX9euax4NzaMKsyQh2M4gTJ4cAE1uIY6+MCgB0/wAq+OdJ6dN+d91ppz5jOH8AfOxw81646+</latexit><latexit sha1_base64="FoDffsytzux/Ek3bUD/l+r0KbtA=">AAAB6XicbVBNS8NAEJ3Ur7Z+Vb0IXhaLUC8l8WK9Fb14rGhsoQ1ls920SzebsLsRaij4B7x4UPHqP/CneBP8MW7aHrT1wcDjvRlm5vkxZ0rb9peVW1peWV3LF4rrG5tb26Wd3VsVJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vAi85t3VCoWiRs9iqkX4r5gASNYG+m6go+7pbJdtSdAi8SZkXJ9//678PBx3uiWPju9iCQhFZpwrFTbsWPtpVhqRjgdFzuJojEmQ9ynbUMFDqny0smpY3RklB4KImlKaDRRf0+kOFRqFPqmM8R6oOa9TPzPayc6qHkpE3GiqSDTRUHCkY5Q9jfqMUmJ5iNDMJHM3IrIAEtMtEmnaEJw5l9eJO5J9azqXJkwajBFHg7gECrgwCnU4RIa4AKBPjzCM7xY3HqyXq23aWvOms3swR9Y7z8x2pA7</latexit><latexit sha1_base64="FoDffsytzux/Ek3bUD/l+r0KbtA=">AAAB6XicbVBNS8NAEJ3Ur7Z+Vb0IXhaLUC8l8WK9Fb14rGhsoQ1ls920SzebsLsRaij4B7x4UPHqP/CneBP8MW7aHrT1wcDjvRlm5vkxZ0rb9peVW1peWV3LF4rrG5tb26Wd3VsVJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vAi85t3VCoWiRs9iqkX4r5gASNYG+m6go+7pbJdtSdAi8SZkXJ9//678PBx3uiWPju9iCQhFZpwrFTbsWPtpVhqRjgdFzuJojEmQ9ynbUMFDqny0smpY3RklB4KImlKaDRRf0+kOFRqFPqmM8R6oOa9TPzPayc6qHkpE3GiqSDTRUHCkY5Q9jfqMUmJ5iNDMJHM3IrIAEtMtEmnaEJw5l9eJO5J9azqXJkwajBFHg7gECrgwCnU4RIa4AKBPjzCM7xY3HqyXq23aWvOms3swR9Y7z8x2pA7</latexit><latexit sha1_base64="Dtk2s2IQlNZNwAa5jzEukQa0/vI=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLUS0m8WG8FLx4rGltoQ5lsN+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nbX1jc2t7dJOeXdv/+CwcnT8qJNMUebTRCSqE6JmgkvmG24E66SKYRwK1g7HNzO//cSU5ol8MJOUBTEOJY84RWOl+xpe9CtVt+7OQVaJV5AqFGj1K1+9QUKzmElDBWrd9dzUBDkqw6lg03Iv0yxFOsYh61oqMWY6yOenTsm5VQYkSpQtachc/T2RY6z1JA5tZ4xmpJe9mfif181M1AhyLtPMMEkXi6JMEJOQ2d9kwBWjRkwsQaq4vZXQESqkxqZTtiF4yy+vEv+yfl337txqs1GkUYJTOIMaeHAFTbiFFvhAYQjP8ApvjnBenHfnY9G65hQzJ/AHzucP8oSNEA==</latexit>

(b)
<latexit sha1_base64="/qonialRV8DXOSAZPHCh2U45+HU=">AAAB6XicbVA9SwNBEJ2LXzF+RW0Em8UgxCbc2Ri7gI1lRM8EkiPsbfaSJXt7x+6cEEN+go2Fiq3/yE7wx7j5KDTxwcDjvRlm5oWpFAZd98vJrayurW/kNwtb2zu7e8X9g3uTZJpxnyUy0c2QGi6F4j4KlLyZak7jUPJGOLia+I0Hro1I1B0OUx7EtKdEJBhFK92Ww7NOseRW3CnIMvHmpFQ7evwGi3qn+NnuJiyLuUImqTEtz00xGFGNgkk+LrQzw1PKBrTHW5YqGnMTjKanjsmpVbokSrQthWSq/p4Y0diYYRzazphi3yx6E/E/r5VhVA1GQqUZcsVmi6JMEkzI5G/SFZozlENLKNPC3kpYn2rK0KZTsCF4iy8vE/+8clnxbmwYVZghD8dwAmXw4AJqcA118IFBD57gBV4d6Tw7b877rDXnzGcO4Q+cjx83b46/</latexit><latexit sha1_base64="viGiHaRlzygreraLnGbskC/LDPM=">AAAB6XicbVBNS8NAEJ3Ur7Z+Vb0IXhaLUC8l8WK9Fb14rGhsoQ1ls920SzebsLsRaij4B7x4UPHqP/CneBP8MW7aHrT1wcDjvRlm5vkxZ0rb9peVW1peWV3LF4rrG5tb26Wd3VsVJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vAi85t3VCoWiRs9iqkX4r5gASNYG+m64h93S2W7ak+AFokzI+X6/v134eHjvNEtfXZ6EUlCKjThWKm2Y8faS7HUjHA6LnYSRWNMhrhP24YKHFLlpZNTx+jIKD0URNKU0Gii/p5IcajUKPRNZ4j1QM17mfif1050UPNSJuJEU0Gmi4KEIx2h7G/UY5ISzUeGYCKZuRWRAZaYaJNO0YTgzL+8SNyT6lnVuTJh1GCKPBzAIVTAgVOowyU0wAUCfXiEZ3ixuPVkvVpv09acNZvZgz+w3n8AM16QPA==</latexit><latexit sha1_base64="viGiHaRlzygreraLnGbskC/LDPM=">AAAB6XicbVBNS8NAEJ3Ur7Z+Vb0IXhaLUC8l8WK9Fb14rGhsoQ1ls920SzebsLsRaij4B7x4UPHqP/CneBP8MW7aHrT1wcDjvRlm5vkxZ0rb9peVW1peWV3LF4rrG5tb26Wd3VsVJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vAi85t3VCoWiRs9iqkX4r5gASNYG+m64h93S2W7ak+AFokzI+X6/v134eHjvNEtfXZ6EUlCKjThWKm2Y8faS7HUjHA6LnYSRWNMhrhP24YKHFLlpZNTx+jIKD0URNKU0Gii/p5IcajUKPRNZ4j1QM17mfif1050UPNSJuJEU0Gmi4KEIx2h7G/UY5ISzUeGYCKZuRWRAZaYaJNO0YTgzL+8SNyT6lnVuTJh1GCKPBzAIVTAgVOowyU0wAUCfXiEZ3ixuPVkvVpv09acNZvZgz+w3n8AM16QPA==</latexit><latexit sha1_base64="djfapyKZFxY+9P76JiuDLrnzi00=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLUS0m8WG8FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfztr6xubWdmmnvLu3f3BYOTp+NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSfS286Feqbt2dg6wSryBVKNDqV756g4RlMVfIJDWm67kpBjnVKJjk03IvMzylbEyHvGupojE3QT4/dUrOrTIgUaJtKSRz9fdETmNjJnFoO2OKI7PszcT/vG6GUSPIhUoz5IotFkWZJJiQ2d9kIDRnKCeWUKaFvZWwEdWUoU2nbEPwll9eJf5l/bru3bnVZqNIowSncAY18OAKmnALLfCBwRCe4RXeHOm8OO/Ox6J1zSlmTuAPnM8f9AiNEQ==</latexit>

(c)
<latexit sha1_base64="zmXmYNBZXzvC4HzikwOq7Dr+kdg=">AAAB6XicbVA9SwNBEJ2LXzF+RW0Em8UgxCbc2Ri7gI1lRM8EkiPsbfaSJXt7x+6cEEN+go2Fiq3/yE7wx7j5KDTxwcDjvRlm5oWpFAZd98vJrayurW/kNwtb2zu7e8X9g3uTZJpxnyUy0c2QGi6F4j4KlLyZak7jUPJGOLia+I0Hro1I1B0OUx7EtKdEJBhFK92W2VmnWHIr7hRkmXhzUqodPX6DRb1T/Gx3E5bFXCGT1JiW56YYjKhGwSQfF9qZ4SllA9rjLUsVjbkJRtNTx+TUKl0SJdqWQjJVf0+MaGzMMA5tZ0yxbxa9ifif18owqgYjodIMuWKzRVEmCSZk8jfpCs0ZyqEllGlhbyWsTzVlaNMp2BC8xZeXiX9euax4NzaMKsyQh2M4gTJ4cAE1uIY6+MCgB0/wAq+OdJ6dN+d91ppz5jOH8AfOxw84847A</latexit><latexit sha1_base64="Q76PBWn6mJ2/otWd5EkiiDqSxwg=">AAAB6XicbVBNS8NAEJ3Ur7Z+Vb0IXhaLUC8l8WK9Fb14rGhsoQ1ls920SzebsLsRaij4B7x4UPHqP/CneBP8MW7aHrT1wcDjvRlm5vkxZ0rb9peVW1peWV3LF4rrG5tb26Wd3VsVJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vAi85t3VCoWiRs9iqkX4r5gASNYG+m6Qo67pbJdtSdAi8SZkXJ9//678PBx3uiWPju9iCQhFZpwrFTbsWPtpVhqRjgdFzuJojEmQ9ynbUMFDqny0smpY3RklB4KImlKaDRRf0+kOFRqFPqmM8R6oOa9TPzPayc6qHkpE3GiqSDTRUHCkY5Q9jfqMUmJ5iNDMJHM3IrIAEtMtEmnaEJw5l9eJO5J9azqXJkwajBFHg7gECrgwCnU4RIa4AKBPjzCM7xY3HqyXq23aWvOms3swR9Y7z804pA9</latexit><latexit sha1_base64="Q76PBWn6mJ2/otWd5EkiiDqSxwg=">AAAB6XicbVBNS8NAEJ3Ur7Z+Vb0IXhaLUC8l8WK9Fb14rGhsoQ1ls920SzebsLsRaij4B7x4UPHqP/CneBP8MW7aHrT1wcDjvRlm5vkxZ0rb9peVW1peWV3LF4rrG5tb26Wd3VsVJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vAi85t3VCoWiRs9iqkX4r5gASNYG+m6Qo67pbJdtSdAi8SZkXJ9//678PBx3uiWPju9iCQhFZpwrFTbsWPtpVhqRjgdFzuJojEmQ9ynbUMFDqny0smpY3RklB4KImlKaDRRf0+kOFRqFPqmM8R6oOa9TPzPayc6qHkpE3GiqSDTRUHCkY5Q9jfqMUmJ5iNDMJHM3IrIAEtMtEmnaEJw5l9eJO5J9azqXJkwajBFHg7gECrgwCnU4RIa4AKBPjzCM7xY3HqyXq23aWvOms3swR9Y7z804pA9</latexit><latexit sha1_base64="e9KRHARAQCN0n02c06qJSAsZ2A0=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLUS0m8WG8FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nbX1jc2t7dJOeXdv/+CwcnT8qJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8M/PbT6g0T+SDmaQYxHQoecQZNVa6r7GLfqXq1t05yCrxClKFAq1+5as3SFgWozRMUK27npuaIKfKcCZwWu5lGlPKxnSIXUsljVEH+fzUKTm3yoBEibIlDZmrvydyGms9iUPbGVMz0sveTPzP62YmagQ5l2lmULLFoigTxCRk9jcZcIXMiIkllClubyVsRBVlxqZTtiF4yy+vEv+yfl337txqs1GkUYJTOIMaeHAFTbiFFvjAYAjP8ApvjnBenHfnY9G65hQzJ/AHzucP9YyNEg==</latexit>
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Figure 6.6: Projection of trajectories on x − −y plane generated by Parkour car for the obstacle
avoidance problem. Funnel boundary is shown in gray and as long as the center of car is in the
funnel, the whole body of the car remains in the blue region. (a) guaranteed traces, (b) not
guaranteed but safe traces, (c) not guaranteed and unsafe traces (from [98]).

6.3.7 Synthesizing a Local Controller

As explained in Sec. 6.3.6 in order to choose an adaptive horizon, a pair of local lyapunov

function and a local controller is required. For this, result from Ravanbakhsh et al. [99] is used to

design a local controller. In [98] we introduce a control funnel function which in addition to the

lyapunov function and the control law, a safe set is produced which guarantees that trajectories of

the state would stay inside safe set if the system starts from a state in input of the funnel. Reader

must refer to [98] for more details on implementation of this approach but we will discuss benefits

of using this approach in a terminal cost term of Sec. 6.3.6.

The control funnel function of [98] uses thedemonnstrator-based learning framework of [99]

to synthesize the control funnel functions. The BVP problem in Sec. 6.3.2 in combination with
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model of Sec. 4.2 is used as a Demonstrator stage of [99] in order to find an optimal control action.

Later a Learner stage of pipeline tries to find a control lyapunov candidate function V (x) and in

next step this function is checked to verify that it is indeed a CLF (Control Lyapunov Function).

Even though, Demonstrator uses the complicated model of Sec. 4.2 but the CLF function found

in Learner stage uses a kinematic bicycle model similar to Eq. 2.1 to find and verify the CLF.

Resulted CLF is used to get a feedback law based on result of Artsein [5]. Resulted control law

maps a set of start states to final states such that if vehicle starts in start set it is guaranteed that

it would end up inside end set. Experiments on the model vehicle of Chapter. 4 has been done to

verify effectiveness of this method. Figure 6.6 shows results of stabilizing the vehicle to an obstacle

avoidance reference trajectory. Synthesized controller can also be used in form of trajectory tracking

or maneuver regulation(path folowing) in the sense described in Sec. 6.3.5. Experimental results of

two described modes of controllers are shown in Figure. 6.7 which represent successful stabilization

of vehicle to a circular reference trajectory. Different modes of approaching control problem has

been discussed in Sec. 6.3.5, and difference between trajectories of two approaches starting from

same initial conditions can be observed in experiments with parkour car as well (Figure. 6.8).

As it has been discussed in Sec. 6.3.6 a lyapunov function or corresponding control law can

be used in deciding horizon length of MPC method in Sec. 6.3.3 such that it is stabilizing. For the

purpose of this thesis, the end state of the MPC horizon xN can be checked in synthesized CLF

defined in this section to confirm if the pair (xN , uN ) gives a lower value for the CLF than expected

threshold which would guarantee that the end state is indeed in start set of the local control funnel

function. If CLF returns a larger value than expected threshold then horizon of the MPC problem

can be extended.

6.4 Conclusions

Our experiments showed that dynamics engines may be used to model complicated behavior

of autonomous vehicles and the same model could be used in local planning and control problems

without further modification. This simplifies the control problem to defining geometric and dynamic
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(a)
<latexit sha1_base64="Cd2bi68i8Ofe5oLJ9z7ckOCo7qs=">AAAB6XicbVDLSgNBEOz1GeMr6lGQwSDES9j1ol4k4MVjRNcEkiX0TibJkNnZZWZWCEs+wYsHNZ4E/8ibf+PkcdDEgoaiqpvurjARXBvX/XaWlldW19ZzG/nNre2d3cLe/oOOU0WZT2MRq3qImgkumW+4EayeKIZRKFgt7F+P/dojU5rH8t4MEhZE2JW8wykaK92V8LRVKLpldwKySLwZKVaORqMPAKi2Cl/NdkzTiElDBWrd8NzEBBkqw6lgw3wz1SxB2scua1gqMWI6yCanDsmJVdqkEytb0pCJ+nsiw0jrQRTazghNT897Y/E/r5GazkWQcZmkhkk6XdRJBTExGf9N2lwxasTAEqSK21sJ7aFCamw6eRuCN//yIvHPypdl79aGcQVT5OAQjqEEHpxDBW6gCj5Q6MITvMCrI5xn5815n7YuObOZA/gD5/MH5fSPRg==</latexit><latexit sha1_base64="2d2++jwqGg84XyfBpWKS/ibHfgg=">AAAB6XicbVBNSwMxEJ2tX7V+VT0KEixCvZRdL+pFCl48VnRtoV1KNs22odlkSbJCWfoTvHjwo1f/kTf/jdm2B219MPB4b4aZeWHCmTau++0UVlbX1jeKm6Wt7Z3dvfL+waOWqSLUJ5JL1QqxppwJ6htmOG0liuI45LQZDm9yv/lElWZSPJhRQoMY9wWLGMHGSvdVfNYtV9yaOwVaJt6cVOrHHzkmjW75q9OTJI2pMIRjrduem5ggw8owwum41Ek1TTAZ4j5tWypwTHWQTU8do1Or9FAklS1h0FT9PZHhWOtRHNrOGJuBXvRy8T+vnZroMsiYSFJDBZktilKOjET536jHFCWGjyzBRDF7KyIDrDAxNp2SDcFbfHmZ+Oe1q5p3Z8O4hhmKcAQnUAUPLqAOt9AAHwj04Rle4c3hzovz7kxmrQVnPnMIf+B8/gBBe5EL</latexit><latexit sha1_base64="2d2++jwqGg84XyfBpWKS/ibHfgg=">AAAB6XicbVBNSwMxEJ2tX7V+VT0KEixCvZRdL+pFCl48VnRtoV1KNs22odlkSbJCWfoTvHjwo1f/kTf/jdm2B219MPB4b4aZeWHCmTau++0UVlbX1jeKm6Wt7Z3dvfL+waOWqSLUJ5JL1QqxppwJ6htmOG0liuI45LQZDm9yv/lElWZSPJhRQoMY9wWLGMHGSvdVfNYtV9yaOwVaJt6cVOrHHzkmjW75q9OTJI2pMIRjrduem5ggw8owwum41Ek1TTAZ4j5tWypwTHWQTU8do1Or9FAklS1h0FT9PZHhWOtRHNrOGJuBXvRy8T+vnZroMsiYSFJDBZktilKOjET536jHFCWGjyzBRDF7KyIDrDAxNp2SDcFbfHmZ+Oe1q5p3Z8O4hhmKcAQnUAUPLqAOt9AAHwj04Rle4c3hzovz7kxmrQVnPnMIf+B8/gBBe5EL</latexit><latexit sha1_base64="s6HbKpJb7bLlQAvsfpP5PQCzRHQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLUS0m8qBcpePFY0dhCG8pmu2mXbjZhdyKU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dlZW19Y3Nktb5e2d3b39ysHho0kyzbjPEpnodkgNl0JxHwVK3k41p3EoeSsc3Uz91hPXRiTqAccpD2I6UCISjKKV7mv0rFepunV3BrJMvIJUoUCzV/nq9hOWxVwhk9SYjuemGORUo2CST8rdzPCUshEd8I6lisbcBPns1Ak5tUqfRIm2pZDM1N8TOY2NGceh7YwpDs2iNxX/8zoZRpdBLlSaIVdsvijKJMGETP8mfaE5Qzm2hDIt7K2EDammDG06ZRuCt/jyMvHP61d1786tNq6LNEpwDCdQAw8uoAG30AQfGAzgGV7hzZHOi/PufMxbV5xi5gj+wPn8AfRSjRY=</latexit>

Path-Following (b)
<latexit sha1_base64="ijFMeTXlS64qLuLR19USGzGI5K8=">AAAB6XicbVDLSgNBEOz1GeMr6lGQwSDES9j1ol4k4MVjRNcEkiXMTjrJkNnZZWZWCEs+wYsHNZ4E/8ibf+PkcdDEgoaiqpvurjARXBvX/XaWlldW19ZzG/nNre2d3cLe/oOOU8XQZ7GIVT2kGgWX6BtuBNYThTQKBdbC/vXYrz2i0jyW92aQYBDRruQdzqix0l0pPG0Vim7ZnYAsEm9GipWj0egDAKqtwlezHbM0QmmYoFo3PDcxQUaV4UzgMN9MNSaU9WkXG5ZKGqEOssmpQ3JilTbpxMqWNGSi/p7IaKT1IAptZ0RNT897Y/E/r5GazkWQcZmkBiWbLuqkgpiYjP8mba6QGTGwhDLF7a2E9aiizNh08jYEb/7lReKflS/L3q0N4wqmyMEhHEMJPDiHCtxAFXxg0IUneIFXRzjPzpvzPm1dcmYzB/AHzucP53iPRw==</latexit><latexit sha1_base64="ghMoykA3M/YJkx3Y+VM3R9NvZL4=">AAAB6XicbVBNSwMxEJ2tX7V+VT0KEixCvZRdL+pFCl48VnRtoV1KNs22odlkSbJCWfoTvHjwo1f/kTf/jdm2B219MPB4b4aZeWHCmTau++0UVlbX1jeKm6Wt7Z3dvfL+waOWqSLUJ5JL1QqxppwJ6htmOG0liuI45LQZDm9yv/lElWZSPJhRQoMY9wWLGMHGSvfV8Kxbrrg1dwq0TLw5qdSPP3JMGt3yV6cnSRpTYQjHWrc9NzFBhpVhhNNxqZNqmmAyxH3atlTgmOogm546RqdW6aFIKlvCoKn6eyLDsdajOLSdMTYDvejl4n9eOzXRZZAxkaSGCjJbFKUcGYnyv1GPKUoMH1mCiWL2VkQGWGFibDolG4K3+PIy8c9rVzXvzoZxDTMU4QhOoAoeXEAdbqEBPhDowzO8wpvDnRfn3ZnMWgvOfOYQ/sD5/AFC/5EM</latexit><latexit sha1_base64="ghMoykA3M/YJkx3Y+VM3R9NvZL4=">AAAB6XicbVBNSwMxEJ2tX7V+VT0KEixCvZRdL+pFCl48VnRtoV1KNs22odlkSbJCWfoTvHjwo1f/kTf/jdm2B219MPB4b4aZeWHCmTau++0UVlbX1jeKm6Wt7Z3dvfL+waOWqSLUJ5JL1QqxppwJ6htmOG0liuI45LQZDm9yv/lElWZSPJhRQoMY9wWLGMHGSvfV8Kxbrrg1dwq0TLw5qdSPP3JMGt3yV6cnSRpTYQjHWrc9NzFBhpVhhNNxqZNqmmAyxH3atlTgmOogm546RqdW6aFIKlvCoKn6eyLDsdajOLSdMTYDvejl4n9eOzXRZZAxkaSGCjJbFKUcGYnyv1GPKUoMH1mCiWL2VkQGWGFibDolG4K3+PIy8c9rVzXvzoZxDTMU4QhOoAoeXEAdbqEBPhDowzO8wpvDnRfn3ZnMWgvOfOYQ/sD5/AFC/5EM</latexit><latexit sha1_base64="yMp7F3Q4VBMhYF26uwDAYZxJiQc=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLUS0m8qBcpePFY0dhCG8pmu2mXbjZhdyKU0J/gxYOKV/+RN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dlZW19Y3Nktb5e2d3b39ysHho0kyzbjPEpnodkgNl0JxHwVK3k41p3EoeSsc3Uz91hPXRiTqAccpD2I6UCISjKKV7mvhWa9SdevuDGSZeAWpQoFmr/LV7Scsi7lCJqkxHc9NMcipRsEkn5S7meEpZSM64B1LFY25CfLZqRNyapU+iRJtSyGZqb8nchobM45D2xlTHJpFbyr+53UyjC6DXKg0Q67YfFGUSYIJmf5N+kJzhnJsCWVa2FsJG1JNGdp0yjYEb/HlZeKf16/q3p1bbVwXaZTgGE6gBh5cQANuoQk+MBjAM7zCmyOdF+fd+Zi3rjjFzBH8gfP5A/XWjRc=</latexit>

Trajectory Tracking

Figure 6.7: (a)Maneuver Regulation (Path Following) controller and (b) trajectory tracking con-
troller stabilizing parkour car to circular trajectory, starting from distant initial condition. As
discussed in Sec. 6.3.5 a trajectory tracking controller will take shortcut trajectories to compensate
for delay in timed trajectory reference. (from [98]).
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Figure 6.8: (a)Maneuver Regulation (Path Following) controller and (b) trajectory tracking con-
troller stabilizing parkour car to circular trajectory. (from [98]).

properties of the autonomous vehicle and defining some waypoints for the robot to follow.

Some of the challenges which have been observed was execution cost of model in Sec. 4.2.

Using this model in the control pipeline of Sec. 6.3.3 and running both in simulation and also on
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parkour car we were able to stabilize the vehicle to a circular trajectory. In simulation this method

is able to stabilize to desired path as expected when the control signal computation time is ignored,

but due to high control signal latency (0.2 sec) in physical experiments, Tests has only been limited

to slow speed (0.5 - 1 m
s ) drives with horizon of 0.9 sec. The main bottle neck for this problem is

heavy calculation required by bullet physics engine for integration of model which includes many

constraint and contact problem solving. Despite the benefits that exist for modeling contact forces,

one might ignore them to achieve higher processing speed and as a result a faster control loop. In

next chapter we will develop a simplified model of vehicle which also can be defined geometrically

and it can operate in about three orders of magnitude faster than the model in Sec. 4.2.



Chapter 7

Vehicle Dynamic Modeling and Analysis

One of the drawbacks of using physics engine based model is the calculation cost. Physics

engine based models due to generic design of their software structure and object to object contact

calculation take a considerable time in executing model integration in time. This causes an large

drop in execution frequency of the controller and eventually bad performance of the controller. In

order to solve this issue we design a new model for the vehicle while maintaining desired properties.

In addition to low execution time we require it to be adaptable to model changes without need of a

expert system modeler. Also, we would like to be able to define geometric relation between different

parts of system and extract mathematical relations of the system automatically. And lastly, model

should capture dynamic behaviors of the physical system accurately.

To achieve this goal we use a modeling approach called Bond Graph. In bond graph modeling,

different parts of vehicle and force and velocity constraints between them can be described using a

graph. For details on how this method is implemented readers can refer to [55]. A simple example

of extracting a graph for a mass-spring-damper system is given in Section 3.4 . Once the model

is extracted from the bond graph we investigate similarity of a more detailed sports car model in

[106] to verify its function.

A four wheel drive vehicle can be modeled in simple form as a 2-D model shown in Figure

7.1.
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Figure 7.1: Vehicle’s configuration as well as parameter names.

We parameterize the wheels with a distance and angle metric from geometric center of the

car as shown in Figure 7.2

Figure 7.2: Wheel location parametrization

Then Bond Graph model of the system can be designed as in Figure. 7.3. Engine torque

is applied through a torque equalizing junction 0 to four longitudinal models of the wheels which

represents the model of a transmission in the car. Forces generated from tires are applied to linear

and rotational inertial elements in the model shown as Ix, Iy and Jz in the graph of Figure 7.3.

”TF” elements in this graph are transformer elements with coefficients of cij which correspond to
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kinematic of the model which will be described later. Tire models are shown as boxes TireLon and

TireLat and their corresponding graph is shown in Figures 7.4 and 7.5.

Figure 7.3: Bond Graph Model of four wheel drive car

Lateral model of the tire is shown at Figures 7.4 which is modeled independent of longitudinal

force. Longitudinal tire model accepts a torque input from transmission and outputs the amount

of force generated by tire. TF object is a kinematic parameter defining radius of the wheel, I is

inertia of the wheel and R is friction coefficient in both models. 7.5

Figure 7.4: Bond Graph model of wheel lateral dynamics
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Figure 7.5: Bond Graph model of wheel llongitudinal dynamics

As mentioned, R components in both graphs of Figure 7.4 and 7.5 represent the friction

coefficient of tire which can be set to a constants value for a linear tire model or more complicated

model like Pacejka tire model which can be represented as follows for longitudinal friction in tire

coordinate frame:

µni = dx sin(cx arctan(bx(1− ex)κi + ex arctan(bxκi))) (7.1)

and lateral friction as

µti = dy sin(cy arctan(by(1− ey)βi + ey arctan(byβi))) (7.2)

It is assumed that tires have same friction properties.

Given Bond Graph of of the system we can extract dynamic equations of system in about

1ms. Resulted ODE of system is in multiple short equations which can be used directly to predict

behavior of the model but for sake of better representation we simplify it to the following equation.

ẇ0 =τ − rµn0(r
w0

It0
− c00

py
Iy
− c10

px
Ix
− c20

pω
Iω

); (7.3)

ẇ1 =τ − rµn1(r
w1

It1
− px
Ix
− c21

pω
Iω

); (7.4)

ẇ2 =τ − rµn2(r
w2
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Ix
− c22

pω
Iω

); (7.5)

ẇ3 =τ − rµn3(r
w3

It3
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Ix
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pω
Iω

); (7.6)
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(7.9)

In the equation above wi s are rotational wheel velocity, τ is engine torque, r is wheel radius,

I correspond to inertia of related rigid body, µ is corresponding friction coefficient, px py pω are

linear and rotational momentum of chassis, m is mass of chassis and parameters cij correspond to

the terms in ith row and jth column of kinematic matrix K below


Fx

Fy

Fω

 = K(σ, θ)



F0
lon

F1
lon

F2
lon

F3
lon

F0
lat

F1
lat

F2
lat

F3
lat



, (7.10)

where

K(σ, θ) =


cos(σ) 1 1 cos(σ) − sin(σ) 0 0 − sin(σ)

sin(σ) 0 0 sin(σ) cos(σ) 1 1 cos(σ)

d cos(θ − σ) d cos(θ) −d cos(θ) −d cos(θ + σ) d sin(θ − σ) −d sin(θ) −d sin(θ) d sin(σ + θ)

 , (7.11)
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In order to calculate tire friction coefficients Pacejka tire model requires forward slip κ and

side slip angle β which can be written as

κ0 = κ3 =
|r · wi − vx · cos(σ)|
max(|r · wi|, |vx|)

κ1 = κ2 =
|r · wi − vx|

max(|r · wi|, |vx|)
,

(7.12)

β0 = β3 = |arctan(
vy
vx

)− σ|

β1 = β2 = arctan(
vy
vx

),

(7.13)

Trajectories of model can be generated by integrating the model using Runge Kutta integra-

tion method. A sample trajectory showing vehicle with steering in direction of turn with engine

torque = 10nm (Figure. 7.7) and steering in opposite direction when engine torque = 100nm (Fig-

ure 7.6). Similar behavior is expected from actual vehicle which shows possible effectiveness of

model.

Figure 7.6: Vechile trajectory to 100nm engine torque
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Figure 7.7: Vechile trajectory to 10nm engine torque

In another example we simulate trajectories of vehicle for a constant input with two different

tire models. The response curve of Bond Graph model with a linear tire model and pacejka tire

model show that they both converge to a circle which is an expected constant trajectory of a car

(Figure 7.8).
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Figure 7.8: Vehicles trajectory in constant operating condition

7.1 Equilibrium Manifold

Results in Figures 7.6,7.7 and 7.8 show similarity of trajectories to an actual car but this does

not verify effectiveness of model in whole range of it. To further investigate behavior of this model

we extract constant trajectories of dynamically involved variables (LHS variables in system ODE)

and compare it to the one in [106]. We analyze equilibrium manifold of the vehicle by studying set

of trajectories of system that can be executed using constant inputs. In order to achieve this we

use a numerical zero finding method to compute the equilibrium manifold on whole range of tire
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operation.

Trajectory (x(t), u(t)) ≡ (xe, ue) is a constant trajectory if it satisfies the following equation

f(xe, ue) = 0, (7.14)

where f(xe, ue) represents ODE of the system dynamics and xe, ue are system state and input

in equilibrium. We solve this nonlinear system of equations using Matlab’s fsolve function.

Equilibrium manifold of the model is defined as a the set of constant trajectories calculated

from Eq. 7.14 by iteratively solving it while perturbing one state/input and initializing the problem

with the solution from last step.

By solving Eq. 7.14 slices of equilibrium manifold can are calculated. Different slices of

equilibrium manifold for vehicle with linear tire model are shown in following figures.

Figure 7.9: Slice of equilibrium manifold(linear tire), alat vs σ for V=10m/s
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Figure 7.10: Slice of equilibrium manifold(linear tire), σ vs β for V=10m/s

Figure 7.11: Slice of equilibrium manifold(linear tire), alat vs β for V=10m/s

Similarly, Slices of equilibrium manifold for nonlinear tire friction model which depends on

side slip formulations of Eq. 7.12 and 7.13 is shown in following figures.
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Figure 7.12: Slice of equilibrium manifold(nonlinear tire), alat vs σ for V=10m/s

Figure 7.13: Slice of equilibrium manifold(nonlinear tire), σ vs β for V=10m/s
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Figure 7.14: Slice of equilibrium manifold(nonlinear tire), β vs alat for V=10m/s



Chapter 8

Conclusion

8.1 Summary

Controllers designed for autonomous vehicles are required to be able to maneuver in dangerous

conditions. Two classes of controllers has been designed for this purpose in the past. First, those

which use simplified models of actual system to synthesize a control law and second, those which

require lots of data from different conditions to learn a control law. Synthesized control laws which

are based on simplified dynamics does not take benefit from capabilities of system in its limits

and for second class, designing controllers for all combinations of possible changes in dynamics of

the vehicle might not be possible. In this thesis we resolve the problem by removing dependency

of controller and planner from model itself where they can both interact with a given model at

anytime. Then, model can be updated in realtime while controller and planner would continue

their task without any changes. This required design of a new local planning, controller and

calibration pipeline which can interact with a separated model.

8.2 Future Work

The investigation of new control and planning method in this thesis creates number of avenues

for further research:

• The controller discussed in Chapter 6 is capable of updating control action based on feed-

back from new sensory information. Smart tires are capable of classifying type of material
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which a vehicle is driving on. This information could be used in order to update tire friction

coefficient in the model.

• One of the drawbacks of using the MPC method explained in 6 is slow convergence rate for

more complicated models. However, if a proper initial condition is provided, a faster conver-

gence has been observed. Neural networks can be very capable when it comes to learning

nonlinear functions and in this case they can be used in order to seed the optimization

problem to a closer point to the solution.

• Slices of equilibrium manifold has been extracted for the model in Chapter 7, similar

approach can be used to extract slices of equilibrium manifold for the physical vehicle and

eventually compared to the calibrated model in the ODE form of Chapter 7 to verify its

similarity in its whole range of performance.
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