1,536 research outputs found

    Design and evaluation of acceleration strategies for speeding up the development of dialog applications

    Get PDF
    In this paper, we describe a complete development platform that features different innovative acceleration strategies, not included in any other current platform, that simplify and speed up the definition of the different elements required to design a spoken dialog service. The proposed accelerations are mainly based on using the information from the backend database schema and contents, as well as cumulative information produced throughout the different steps in the design. Thanks to these accelerations, the interaction between the designer and the platform is improved, and in most cases the design is reduced to simple confirmations of the “proposals” that the platform dynamically provides at each step. In addition, the platform provides several other accelerations such as configurable templates that can be used to define the different tasks in the service or the dialogs to obtain or show information to the user, automatic proposals for the best way to request slot contents from the user (i.e. using mixed-initiative forms or directed forms), an assistant that offers the set of more probable actions required to complete the definition of the different tasks in the application, or another assistant for solving specific modality details such as confirmations of user answers or how to present them the lists of retrieved results after querying the backend database. Additionally, the platform also allows the creation of speech grammars and prompts, database access functions, and the possibility of using mixed initiative and over-answering dialogs. In the paper we also describe in detail each assistant in the platform, emphasizing the different kind of methodologies followed to facilitate the design process at each one. Finally, we describe the results obtained in both a subjective and an objective evaluation with different designers that confirm the viability, usefulness, and functionality of the proposed accelerations. Thanks to the accelerations, the design time is reduced in more than 56% and the number of keystrokes by 84%

    DFKI publications : the first four years ; 1990 - 1993

    Get PDF

    Cognitive Principles in Robust Multimodal Interpretation

    Full text link
    Multimodal conversational interfaces provide a natural means for users to communicate with computer systems through multiple modalities such as speech and gesture. To build effective multimodal interfaces, automated interpretation of user multimodal inputs is important. Inspired by the previous investigation on cognitive status in multimodal human machine interaction, we have developed a greedy algorithm for interpreting user referring expressions (i.e., multimodal reference resolution). This algorithm incorporates the cognitive principles of Conversational Implicature and Givenness Hierarchy and applies constraints from various sources (e.g., temporal, semantic, and contextual) to resolve references. Our empirical results have shown the advantage of this algorithm in efficiently resolving a variety of user references. Because of its simplicity and generality, this approach has the potential to improve the robustness of multimodal input interpretation

    MULTI-MODAL TASK INSTRUCTIONS TO ROBOTS BY NAIVE USERS

    Get PDF
    This thesis presents a theoretical framework for the design of user-programmable robots. The objective of the work is to investigate multi-modal unconstrained natural instructions given to robots in order to design a learning robot. A corpus-centred approach is used to design an agent that can reason, learn and interact with a human in a natural unconstrained way. The corpus-centred design approach is formalised and developed in detail. It requires the developer to record a human during interaction and analyse the recordings to find instruction primitives. These are then implemented into a robot. The focus of this work has been on how to combine speech and gesture using rules extracted from the analysis of a corpus. A multi-modal integration algorithm is presented, that can use timing and semantics to group, match and unify gesture and language. The algorithm always achieves correct pairings on a corpus and initiates questions to the user in ambiguous cases or missing information. The domain of card games has been investigated, because of its variety of games which are rich in rules and contain sequences. A further focus of the work is on the translation of rule-based instructions. Most multi-modal interfaces to date have only considered sequential instructions. The combination of frame-based reasoning, a knowledge base organised as an ontology and a problem solver engine is used to store these rules. The understanding of rule instructions, which contain conditional and imaginary situations require an agent with complex reasoning capabilities. A test system of the agent implementation is also described. Tests to confirm the implementation by playing back the corpus are presented. Furthermore, deployment test results with the implemented agent and human subjects are presented and discussed. The tests showed that the rate of errors that are due to the sentences not being defined in the grammar does not decrease by an acceptable rate when new grammar is introduced. This was particularly the case for complex verbal rule instructions which have a large variety of being expressed

    Automatic design of multimodal presentations

    Get PDF
    We describe our attempt to integrate multiple AI components such as planning, knowledge representation, natural language generation, and graphics generation into a functioning prototype called WIP that plans and coordinates multimodal presentations in which all material is generated by the system. WIP allows the generation of alternate presentations of the same content taking into account various contextual factors such as the user\u27s degree of expertise and preferences for a particular output medium or mode. The current prototype of WIP generates multimodal explanations and instructions for assembling, using, maintaining or repairing physical devices. This paper introduces the task, the functionality and the architecture of the WIP system. We show that in WIP the design of a multimodal document is viewed as a non-monotonic process that includes various revisions of preliminary results, massive replanning and plan repairs, and many negotiations between design and realization components in order to achieve an optimal division of work between text and graphics. We describe how the plan-based approach to presentation design can be exploited so that graphics generation influences the production of text and vice versa. Finally, we discuss the generation of cross-modal expressions that establish referential relationships between text and graphics elements

    Mobile MultiModal presentation

    Get PDF
    ABSTRACT This paper presents the latest research into a mobile intelligent multimedia presentation system called TeleMorph which can dynamically generate a multimedia presentation using output modalities that are determined by the bandwidth available on a mobile device's wireless connection. To demonstrate the effectiveness of this research TeleTuras, a tourist information guide will implement the solution provided by TeleMorph, thus demonstrating its effectiveness. This paper highlights issues surrounding such a system & introduces the architecture

    Multiple classifiers in biometrics. Part 2: Trends and challenges

    Full text link
    The present paper is Part 2 in this series of two papers. In Part 1 we provided an introduction to Multiple Classifier Systems (MCS) with a focus into the fundamentals: basic nomenclature, key elements, architecture, main methods, and prevalent theory and framework. Part 1 then overviewed the application of MCS to the particular field of multimodal biometric person authentication in the last 25 years, as a prototypical area in which MCS has resulted in important achievements. Here in Part 2 we present in more technical detail recent trends and developments in MCS coming from multimodal biometrics that incorporate context information in an adaptive way. These new MCS architectures exploit input quality measures and pattern-specific particularities that move apart from general population statistics, resulting in robust multimodal biometric systems. Similarly as in Part 1, methods here are described in a general way so they can be applied to other information fusion problems as well. Finally, we also discuss here open challenges in biometrics in which MCS can play a key roleThis work was funded by projects CogniMetrics (TEC2015-70627-R) from MINECO/FEDER and RiskTrakc (JUST-2015-JCOO-AG-1). Part of this work was conducted during a research visit of J.F. to Prof. Ludmila Kuncheva at Bangor University (UK) with STSM funding from COST CA16101 (MULTI-FORESEE
    • …
    corecore