








































































































Discourse Representation Structures (DRS) are a well understood framework that
accurately describes dependencies between the semantics and allows the interpretation
of pronouns and other anaphoric expressions (Kamp and Reyle 1993). It allows
representation of text in first order logic. Again the “go to the post office’” example now

in first order logic:

2w 3x Dy (possible world(w) * robot(w x) * postoffice(w,v)
~ v Ba (action(w,a.v)
~ e (go(a,e) " to(a.e.x) ™ agenl(a.e.y))))

While DRT is a valid semantic representation, 1t is not a procedure that can be carned
out by a robot. In general terms DRT is more orientated at natural language structures
rather than actual robot functions. In order to map this representation to a robot function
(Robot Primitive) a rule base for mapping rules had to be created. The rules of this rule
base are described as Procedure Specification Language (PSL). Several utterances that
have different DRT representations can still have the same meaning to the robot and
must therefore point to the same Robot Primitive. For instance, the expressions “take
the next left, turn left, take the first turn left, etc” must all be mapped to the Robot
Primitive turn{direction="left”,ordinal="first”) According to the final EPSRC report
(Bugmann 2003) a total of approximately 200 PSL rules were required for the 15 Robot
Primitives of the IBL corpus. As an example for PSL the utterance “Go to the post

office” can be mapped with the following PSL rule:

event(X) &go(X) &to(X.Z) &$landmark(Z)->
go(prep ='to’"; landmark = Slandmark(Z))

to the Robot Primitive procedure go(prep='to', landmark='postoffice’)
Since the IBL project was using route instructions, the resulting system was developed
to deal with sequential instructions. Other forms of instructions, such as general rules,

which apply at any time during the task, such as “Stop at the petrol station if you run

low on petrol”, did not occur in the IBL corpus, and were therefore not investigated.
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The system could not deal with conditionals, such as the one above, that were not found
explicitly in the corpus (Lauria et al., 2002). In route instructions, sentences starting
with “if” instructions are generally just a colloquial way of expressing a sequential
instruction, as in the following example from the IBL corpus: *...okay if you carry on
straight along this road and if you take the third left you will go over a bridge...”

Therefore, to develop a more general instruction system, there 1s a need for looking at a
different application, where instructions not only include sequences, but also other
instruction structures. In imperative programs these would be decisions and repetitions.
However, in the declarative paradigm, programs consist of lists of goals and a set of
rules (see e.g. PROLOG). It is unclear which paradigm is a more useful representation
of human instructions. This is one of the questions that need to be addressed by

analysing a new corpus of instructions in a different domain.

2.2.3 Difference between Programming by Demonstration and
Instruction-based Learning

It was found that the task in the IBL project was only explained once, and in MIBL
project instructions have been explained once and typically the teacher was giving a
demonstration with verbal comment after. Following that, the robot / human student had
understood the instructions. This is called a one-shot task learning process by (Jung H.C
et al., 2007). Other researchers would refer to this as “Programming by Demonstration™
(Dillmann et al., 2002). Programming by demonstration can be broadly defined as
creating an generalised representation / program of a task that has been demonstrated to
the robot. The robot should then be able to execute the leamed task using the abstract
representation (program).

Defenders of one-shot task leamning, including this work argue that a service robot can
only be useful and efficient if it can learn a task as fast as a grown up human, in one
shot. An adult robot must have learned all basic sensori-motor skills, like a grown up
human, to be able to accept one-shot learning tasks. In the robot’s “childhood” it must
learn its skills, such as how to move its actuators accurately, with methods described by
(Demiris and Johnson 2003). A competent robot should be able to do both, “one-shot™

learning and skill learning,
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Let us try to give a definition of Instruction Based Learning, to distinguish better from
skill learning, “Programming by Demonstration” and other approaches of robot

learning;:

IBL is the process of learning a task from a teacher through ‘instructions, usually
verbal. The learning process may be supported by, but is not depending on a

demonstration.

Integrating these supporting demonstrations require a multi-modal system, therefore

MIBL is defined as Multi-modal IBL.

2.2.4 Conclusions from the IBL Project

The IBL project concluded in the EPSRC final report (Bugmann 2003) that the domain
of route instructions only included sequences and no decision making processes and
loops. This led to only limited reasoning capabilities of the robot. Attempts were made
to check the consistency of an explained route and also to recognise previously learned
routes. A state based rcasoning approach was taken allowing the robot to predict the

consequences of an action, such as “turn left”.

[n principle the first order logic representation that DRS allowed, is a powerful
mechanism for reasoning and representation of rules, as well as sequences. However the
lack of grounding of the produced semantics and incompatibility with the robot
functions required the translation with PSL. At this point the grounding (mapping) is
made between DRS semantics and actual robot functions. However the clear structure

of the lambda calculus that would enable deduction and reasoning is lost at this point.

In corpus based robotics the robot is build according to the findings of the corpus.
Therefore only being able to process sequences is not a disadvantage. However the aim
of generalising and researching the concept of corpus-based robotics and the translation
of human instructions to robot instructions, another domain has to be investigated,
where decision making and loops is significant. This is a further reason why a follow-up

project started which is presented in this thesis.
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The corpus-based approach aims at covering the most common expressions that the
users say to the robot, and this was demonstrated in the IBL project. The project also
has shown that the corpus is never complete, i.e. there are always instructions that have
not been covered by the corpus and that the robot then can not deal with. This is a
limitation of the corpus-based approach. In a future project, this limitations have to be

investigated.

Previous research in our group focused purely on verbal instructions which are
sufficient in some cases where a demonstration with physical objects is not required. In
practice, many tasks are explained using a mixture of verbal instructions, gestures and
demonstrations. Thus, a truly natural interface between human and robots must be
multi-modal. This 1s one of the features included in this PhD work and has been the
inspiration of the name of the project: MIBL (Multi-Modal Instruction Based

Learning). Multi-modal systems combine gesture and language.

Many ideas and concepts of this PhD work have their origins in the previous work. The
idea of Corpus-Based Robotics and the search for language primitives are from the IBL
project. Furthermore the idea of verbal communication that appears unrestricted to the
user. Whereas Corpus-Based Robotics was coined during the IBL project, in this PhD
work the starting point was how to formalise the idea of Corpus-Based Robotics. A
major difference in architecture between the IBL and MIBL system is that utterances
will be directly converted to language primitives in the grammar, rather than going
through the complex DRS and PSL system. The advantage is the simplification of the
process, however DRS is a powerful tool showing the relationships between semantics
in an utterance and to the whole dialogue. MIBL has a more primitive reference

resolution as will be shown later in Section 6.2.4, 7.5 and 7.6.
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2.3 Human-Robot Interaction Robots

A general overview of Human-Robot Interaction systems can be found at Fong er al.,
(2002) , Kiesler and Hinds (2004), Yanco and Drury (2004). However, this review will
focus on Human-Robot Interaction systems which have the most similarities in
philosophy and implementation to the MIBL project.

The current trend is to focus on the fundamental issues of Human-Robot interaction and
general Robot learning from a developmental Robotics point of view. This trend has
continued with the start of new research projects around the world. iTalk is a new
project with regards to the fundamental perspective since its focus is to create a child

robot with the capabilities of a 2 year old (Cangelosi 2007).

A further multi-million project that has started with possible impact on Human-Robot
interaction is CoTeSys (Cognitive Technical Systems). CoTeSys explores cognition for
technical systems such as vehicles, robots and factories (Buss er al., 2007). The
emphasis is on the incorporation of cognitive capabilities such as perception, reasoning,
learning, and planning into traditional technical systems. One of the outcomes is the
improvement of interaction with these systems. Buss recognises that multi-modal
interaction of humans and systems which involves emotion, action and intention
recognition lies at the highest and most complex levels of cognitive systems. The main
aims of CoTeSys are wider, they are the technical systems will have a form of self-

assessment and can therefore learn and improve themselves.

2.3.1 COGNIRON Robot Biron

COGNIRON (The Cognitive Robot Companion) is a European Union funded project
that had the objective of the development of cognitive robots whose “purpose in life”
would be to serve humans as assistants or “companions” {Kyriakopoulos and Siciliano,
2004). It aims at developing methods and technologies for the construction of such
cognitive robots able to evolve and grow their capacities in close interaction with
humans in an open ended fashion. Parts of these projects have identical objectives with
the motivation behind IBL and MIBL. In particular the investigations by the
COGNIRON research groups at the University of Bielefeld (Haasch et al., 2004) and

the University of Karlsruhe (Dillmann er al., 2002) have relevance to this work. In the
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COGNIRON project a research groups under the leadership of Kerstin Severinson
Eklundh at the Royal Institute of Technology in Sweden worked on the social aspects
such as the distances and orientation of the robot when giving commands (Huettenrauch
et.al. 2006). A further group of COGNIRON at the University of Hertfordhire
concentrates on social aspects and on how a robot can learn new skills from a human

demonstrator (Saunders et al., 2007).

The COGNIRON project addressed a large variety of real world human-robot

interaction problems and produced multiple HRI robots to carry out the research.

As part of the COGNIRON project, a group at the KTH-Sweden collected corpora on
multi-modal human-robot interaction. The corpora were used to study the users
behaviours (Green et al., 2006). As in this PhD work, they have identified the
importance of user-based studies with multi-modal corpora. The results showed that
users can be put into 4 types:

“Directors™ actively persistively controlling the robot

“Players™: interactive with the robot, passively let the robot act first

“*Manipulators™:  also interactive with the robot, actively controlling the robot

“Pointers™: little control over the robot or the environment,

adopting interaction to the situation

These user types have possible robot design implications so that the robot can adopt to
the type of user. In the MIBL project, where all these types of users can easily be
identified in the corpus, an adoption of the dialogue model to the user types would be

useful in future work.

The University of Bielefeld, investigates multi-modal dialogues in a home tour scenario.
Their robot, called BIRON, has the capability to detect which person out of a group it
has to pay attention to (Haasch, A. et al., 2004). The person can then engage in a simple
dialogue with the robot introducing objects to the robot. (see figure 2-4). BIRON can
focus microphone beams on the person thus improving speech recognition performance.
The domain of the reasoning and speech recognition engine of BIRON is limited to a

simple dialogue. BIRON only understands simple sentences that introduce objects, e.g.

-42 -







The Bielefeld group recognized some important points which are relevant to this

research:

- Combining uni-modal processing results into a multi-modal data-association
framework makes the system robust against errors.

- Human communication partners can not be expected to wear special equipment such
as close-talking microphone or data-gloves.

- a semantic-based grammar is necessary to extract the meaning of the sentence
(parsing and subsequent interpretation is not acceptable since these kind of parser do
not consider semantics and therefore introduce errors)

- missing information in an utterance can often be acquired from the scene with other
sensors (Wrede et al., 2004)

- the system uses a horizontal hierarchy (Reactive Layer, Intermediate Layer,

Deliberate Layer (see figure 4)

The research in Bielefeld concentrated on the reactive layer (Person Attention etc.). The
dialogue and high-level reasoning was not investigated enough to make this service
robot execute all commands necessary in its domain. This was not directly the aim of
the project, the project scenario concentrated on a home tour where the service robot has
just been bought and is shown around the house. The human-user introduces objects in
the house to the robot. The robot understands sentences such as “This is a plant”,
however it might not understand sentences such as “Please water cactuses only once
every fortnight and the other plants weekly™. That is what people really want to tell the
robot. That would be a typical household job. A corpus-based approach would
potentially reveal this and this PhD work will develop the methodology of how to

approach such complicated instructions.

For further reading, there is another project by Bielefeld University (Steil et. al 2004 )
about a robot called GRAVIS. The project concentrates on gesture recognition and
learning of grasping of objects. The dialogue system is based on an investigation of a
corpus of human-human and simulated human-machine dialogs. Language and gesture
integration is achieved with a Bayesian network. In contrast the MIBL project tried to

avoid probabilistic approaches if they are replaceable by symbolic algorithms.







2.3.3 Multi-modal Human-Robot Interaction systems

Multi-modal human-robot interaction systems have been investigated by several
research groups around the world (Iba et al., 2002; Wermter et al., 2003; Dillmann et.
al., 2002). The challenge of multi-modal robots lies in combining the modalities to form
a coherent information stream that modifies the internal model of the environment.

One of the first research projects to investigate multi-modal integration is described in
Bolt’s famous paper “Put-that-there” (Bolt, 1980). Bolt describes a “Media Room” with
a virtual space projected against the wall, a DP-100 NEC speech recognition system and
a tracking device, strapped to the users wrist. The user can point to objeéts on the
projection and say utterances like “Create a blue square there.” The system recognizes
the pointing direction with the tracking device at the time the word “there” was uttered.
Combining gesture and language is one of the focus points of this PhD work (Wolf and
Bugmann 2006).

Multi-modal integration has also been addressed in the past by (Oviat 1999; Johansson
2001; Nigay and Coutaz, 1995 and Chai, 2003), where it is sometimes referred to as
multi-modal fusion (see Djenidi er al., 2004). Curiously, most researchers working on
multi-modal interfaces do not appear to have addressed the problem of pairing the
gesture and language channels before integration. This is probably due to the fact that
experiments often constrained the human-computer interaction in such a way that
pairing which gesture with which language was not an issue. Constraints such as click-
to-speak or limitation in computing power influence the timing of the natural flow of
speech and gesture. (Oviatt et al, 2000) gives a good overview of multi-modal

integration research projects for further reading.

Long response times of the robot/computer are often the cause of an interrupted flow of
conversation. This actually simplifies the pairing problem and therefore may not have
come to the attention to many other researchers. The pairing problem, especially in a

free flowing conversation is therefore one of the focus points of this PhD work.




2.3.3.1 Early versus Late Fusion

The concept of early fusion interlinks the gesture recognition system with the speech
recognition system at an early stage. In this case the recognition systems are usually
based on the same computational model. Recently (Schillingmann et al., 2007)
investigated Hidden Markov Models and n-gram models to generate action-specific
language models, with the goal of early integration. Another computational model that
incorporates the early fusion of speech recognition and vision are Semiotic Schemas
(Roy, 2005). Roy showed that early fusion improves speech recognition in (Roy and
Mukherjee, 2005). Early fusion models have also been used in emotion recognition; see
(Wimmer et al., 2008).

In contrast, in the late fusion model, the fusion happens after speech recognition and
gesture recognition is completed (Djenidi et a/., 2004). In the MIBL project recognition
and grouping of actions are processes that are designed to initially be independent from
speech processing. This approach corresponds to the late-fusion model. It is the opinion
of the author that the method of late fusion is far easier to implement, since an off-the
shelf language recognition package can be used. In our case the package NUANCE 8.5.

was used.
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2.4 Natural Language Understanding Systems

2.4.1 A Brief Historical Overview

Literature in the areas of natural language processing and natural language
understanding will be reviewed here. Major historical works include ELIZA
(Weizenbaum, 1966,1976), SHRDLU (Winograd, 1971), MARGIE (Schank and
Abelson, 1977). All these mentioned above use text input, rather than speech
recognition. For further reading on contemporary work see (Mann, 1996; Bos 2002,

Bugmann et al., 2004) is recommended.

2.4.2ELIZA

ELIZA is a natural language processing system that enables a user to communicate with
it via a console (Weizenbaum, Joseph.(1966)). ELIZA poses as a Rogerian
psychotherapist. A Rogerian psychotherapist is very passive and understanding and lets
the patient talk about their problems. Empathic understanding supposed to have
psychological healing powers according to Rogers.

This is why Weizenbaum decided to make ELIZA a psychotherapist. When he was
confronted with the question: “And what was it that motivated this Rogerian guise?”

Weizenbaum answered:
“From the purely technical programming point of view then, the psychiatric

interview form of an ELIZA script has the advantage that it eliminates the need

of storing explicit information about the real world.”

This statement tells us that Weizenbaum recognized that “real world knowledge™ i.e.
semantic processing using a knowledge base is a difficult thing to implement. The
program ELIZA demonstrates also that even it has no “grounded” language it can pose
intelligent by replying to the user with sentences that refer to what the user said. For
example if the user says “I'M DEPRESSED.” , ELIZA is programmed to answer “I AM
SORRY TO HEAR YOU ARE DEPRESSED” because it was programmed to do so by

a simple statement along the lines of:

IF sentence has Subject="I" AND Verb="am” AND cbject="depressed”
THEN Answer="1 AM SORRY TO HEAR YOU ARE DEPRESSED”
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Even if the program only responds to key-words, the users are under the impression to
be understood by ELIZA. As the example above shows, however, there is no attempt to
connect the rule sets to infer new knowledge or even to ground it to the physical world.
ELIZA became a very popular program, since it was one of the first attempts to imitate

humanlike communication.

2.4.3 SHRDLU

SHRDLU is a program written by Terry Winograd between 1968 and 1972. It is able to
understand natural language text input. He showed by this implementation, that if
language is confined to a domain (“a micro world”), the computer is able to understand
and act upon user requests. The micro world he chose is a table with blocks, cubes,
pyramids and a box. These objects have colours and sizes assigned to them. This
representation has become quite famous in A.l. under the name “Blocks World™ as an
idiom for simplifying a problem by restricting the complexity of the environment. It has
a vocabulary of around 200 words.
Winograd recognized that syntactics, semantics and logical inference are inseparable in
his PhD thesis, (Winograd, 1971). He represents knowledge as procedures, rather than
as declarative statements. A procedure can make use of:

- grammar

- semantics

- deductive logic

- other procedures

As the system parses a sentence it will make use of the grammar procedures which can
also call semantic interpretation procedures during the parsing process. This is a flexible
and powerful method of language parsing.

This increases the flexibility of his representations, since a procedure can call and
combine with any other procedures. This is the reason why Winograd has chosen to
implement SHRDLU in Lisp. Lisp has the capability to ignore the difference between

procedures and data.
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The grammar used in SHRDLU is a form of context sensitive grammar called systemic’
grammar. Systemic grammar helps to organize the correlation between features of
natural language constituents and their semantics. This 1s important for understanding
systems, and this was probably the reason why Terry Winograd has chosen systemic
grammar. Winograd recognized that context free grammars are over-generative. The
grammar rules are written in “PROGRAMMAR?”, a general parsing system which
compiles the grammar to Lisp code. Winograd admits that it was not practical to
implement the whole of systemic grammar, and that the resulting grammar is more
“practical”. It should be noted that the implemented grammar is not a complete valid
grammar for English language. And it is definitely not a standard English grammar.
However, it enables the extraction of the semantics of most sentences in order to build a

natural language understanding system.

2.4.4 Schank’s natural language understanding systems

In the late seventies and eighties Roger Schank developed several natural language
understanding systems. Schank was working with a group of scientists (Cullingford,
Rieger, Goldman, Abelson, Riesbeck, Lehnert and others) perusing the same basic ideas
1.e. : creating a methodology that leads towards the eventual computer understanding of

natural language (Schank and Abelson 1977).

MARGIE was one of the first parsers that created conceptual representations directly

from the input text without doing an intermediate syntactic description of the sentence.

SAM (Script Applier Mechanismy) is a natural language understanding program in the
domain of stories. It is a successor of MARGIE (Schank and Abelson 1977). SAM was
created by Richard Cullingford and Riesbeck in 1975.

Schank goes into great detail of what “understanding™ means. To clarify the level of
understanding, systems build upon his theory have, the following characteristics are

given below.

? Systemic functional grammar (SFG) is a model of grammar developed by Michael Halliday, see
(Halliday, (1976).
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" The system is able to:
- create a linked causal chain of conceptualizations that represent what took place
in a story (a paragraph of written text).
- make inferences from the created concepts

- turn created concepts back into text in any language. (paraphrasing)

Since the programs use background knowledge the following is possible with the
systems:

- Inferences can be made which are specifically mentioned from the given text.

In order to encode background knowledge of a particular context, Schank invented the
idea of using “scripts”. A script is a structure that describes appropriate sequences of
events. Scripts are used if a situation has a stereotyped sequence of action. Stereotype
sequences are situations that are a well known series of events. For instance in the

context of a customer going shopping the following script could be used:

Shopping Script

Entry conditions:
- customer needs an item
- customer has money
Results:
- customer has item
- customer has less money

Script Header

Script scenes/events:
- entering the shop
- looking for the item
- taking the item or requesting the item
- paying for the item
- leaving the shop

Figure 2-8: example of a script

Script items are first hypotheses of events that are going to happen in a particular
situation.

The events are in an order, one event happens after another. Schank calls this a “causal
chain”. As the natural language text is processed script events are instantiated with

values - a kind of slot filling. If an event happens it can enable the occurrence of another
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event. In the example above: If the customer has taken an item off the shelf then the
event “paying for the item” is enabled. Since a customer in a shop can only pay if there
are items he/she wishes to pay for.

Unfortunately scripts only work for stereotypical situations; therefore they are by no
means the answer to how to understand natural language text. Like the title of Schank’s
book says “Scripts, Plans, Goals and Understanding” {Schank and Abelson 1977), there
are three theoretical entities necessary, namely Scripts, Plans and Goals to understand

natural language.

2.4.4.1 Plans & Goals

If there is no script available, there needs to be a method of understanding a text. The
first thing to do then is to identify the main “goal” of the entities in the text. Suppose
the text starts with “John is hungry” then the goal of John is to find food. There might
be several sub-goals that are identified during the processing of the text, such as going
to a location where food can be found.
If a goal can be identified then the computer is able to:

- make prediction what might happen

- build up a script on how to achieve the goal by following the text

- put the text and word meanings in the right context (not specifically mentioned

in Schank’s book)

To deal with situations, that are not available as scripts, mechanisms
(conceptualisations) that underlie the normal scripts must be accessed. Any
conceptualizations that are instantiated must be placed so that it is possible to trace a
path between them. The path is called a “plan”. Although Schank’s scripts. plans and
goals idea lacks flexibility, it may be the most practical approach since a service robot is
confined to a limited set of skills. Especially if a practical/commercial service robot
with natural language interface would be build at present or in the near future it would
most likely use a script based learning approach. Its practical nature makes it so
attractive, and commercially feasible, a further reason to consider here that hopefully

brings service robots closer to reality.
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The programs for natural language understanding (NLU) developed by them make use
of conceptual dependency theory. However, the inventor of conceptual dependency
theory John Sowa argues that the implementations that Schank’s research group used,
does not explore the full potential of conceptual dependency (Mann 1995). For
example, a word is assigned to a single meaning or word-sense where a word could

have multiple meanings.
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2.5 Natural Language Understanding Systems with
Speech Recognition

This section reviews speech recognition architecture and tools required for natural

language understanding systems with speech recognition.

2.5.1 Spoken vs. Written Language

Spoken language is different to written language. This has to be taken into account.
Spoken language is more spontaneous and instant. It has a looser construction and
unnecessary repetition. Often the speaker is rephrasing and stops in the middle of a
sentence (Crystal 1997). On the other hand spoken language is part of a conversation,
and the other parties can communicate to ask clarification questions immediately. The
grammar of spoken language is different from written language, and if natural language
grammar and parsers are applied they must therefore be built for spoken language. The
use of formal grammar for written English was a major limitation in the IBL project.

Only 60% of the corpus was covered by the grammar (Bugmann 2003).

2.5.2 Architecture

A typical Natural Language Processing System is organised in a Pipeline Architecture.
The components are organised in parts that are not necessarily from the same software
package. The components in order of the information flow in the pipeline are typically:
speech analysis, morphological and lexical analysis, parsing, contextual reasoning,
application. And from the application the pipeline can go back to speech synthesis in a
similar fashion by going through utterance planning, syntactic and morphological steps
to speech synthesis. Some examples are GATE (Cunningham ef a/., 1997), NUANCE 8
(Nuance App. Dev. (2005)) or the open source Natural language toolkit NLTK.

The pipeline architecture of natural language processing systems has been under
criticism see (Graga et al., 2006; Marciniak and Strube 2005; Leidner 2003; Daelemans
and van den Bosch 1998), however it is still the most common structure since it is the
best method to implement a natural language system from a software engineering point
of view. Also the natural language system introduced in this PhD work will use the

pipeline architecture. There is no escape from it. The criticism is mainly aimed at the
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problems introduced by the possibly independent language tools that are used in a
chain. It is hard to give feedback to a previous stage and due to the transformations from
stage to stage information may be lost and errors may therefore be introduced. One of
these pipeline tools is typically a syntactic parser that parses recognised text. These
parsers are often not trained on the specific context of the domain and therefore

introduce errors.

2.5.3 Hidden Markov Models

Modemn speech recognition systems utilise Hidden Markov Models (HMM) to
recognise phonemes, words and phrases in a multi-layered model (Cunningham 2000).
HMMs, in the context of speech recognition, are statistical models of how likely a word
follows another. Or at a lower level, which phoneme or acoustic feature most likely
follows another. A common way to extract acoustic features is by using Fast-Fourier
Transforms. The acoustic features and the probably of their occurrence arc an
inheritably sub-symbolic (statistical) process. For a good introduction see (Rabiner
1989). However these models use symbolic building blocks: phonemes, words and
phrases. Their relations are expressed as grammar. The HMM retums the most likely
interpretation (with the highest overall probability in the markov chain). By accepting

this as the interpretation text, the sub-symbolic audio data has become a text.

2.5.4 Interpretation

In case of natural language understanding, where the emphasis is on understanding, the
text alone is not sufficient. The concept of “understanding™ puts the text to a meaning, a
relation that the robot can reason with, and particularly important, the concept of
“understanding”™ means that the text and relations the robot reasons with are connected
in the robots action and perception. Therefore the grammar is connected to an
interpretation (called interpretation grammar (Nuance App. Dev. (2005)), slot filling or
semantic grammar (Rosner and Johnson (1992) ), which is usually expressed as an
attachment to a grammar rule. Grammar acts as the defining language to connect speech

to semantic interpretation.
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Figure 2-9: A typical Natural Language Interpretation system uses grammar lo define multi-layered HMM models from
phonemes to words and words to sentences. These modcls serve as mapping between Speech and text. Traditionally the text output
is parsed (syntactic analysis) by a interpretation grammar to determine the meaning of the text

2.5.5 Grammar

The Nuance speech recognition system, used in this project, combines the CFG (context
free grammar) and the interpretation grammar into one. Every CFG grammar rule can
have slot-and-value semantics attached to it. Parsing recognised text to extract an
interpretation has been widely criticised for the same reason as the pipelining
architecture, because the grounding of the interpretation is disconnected from the text
and speech recognition that are preceding in the pipeline. In practice this means that text
is recognised that the robot cannot understand because it does not make sense. One of
the problems with IBL was that it recognises “turn the tree”, which is correct in English
but does not make sense. It was introduced by generalising a CFG from sentences like
“pass the tree” and “turn left”.

The CFG grammar in this case is:

S —V NP
S —V ADJ
NP — DET N

DET — the

N — tree | corner
Vv — turn | pass
ADJ — left
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Disconnecting meaning from grammar, such as in this case, produces unwanted
overgeneration. A correct syntax does not always lead to sentences meaningful within

the domain of correspondence of the robot.
Chapter 6 describes how the combination of CFG and interpretation is ‘used as an

advantage to improve speech recognition. In a nutshell, the combination allows the

prevention of unwanted generalisation by abstracting syntax rules from the corpus.
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2.6 Semantic Representation Theories

2.6.1 Semiotic Schemas

In an effort to create a non-symbolic (computational) system that can make the
connection to symbols, Deb Roy from MIT created a framework (Roy 2005), which is
outlined here. The framework for semiotic schemas is built upon creating a meaning
from sensor data and motor acts. It is therefore a so called bottom-up approach to
machine learning systems. Every piece of knowledge stored in the robots “brain” can be
referred back to the physical world through sensor data and motor acts. It is a grounded
system. The knowledge can also be used to make predictions about the future and

compare these to actual sensations.

This is called an analog belief. So sensors are mapped to analog beliefs. See the

notation below in figure 2-10.

./ analog
"\_belief

sensor
projection

Figure 2-10: a sensor (natural sign) is monitored to create an “average” belief state

One may wonder how this “analogue™ statistical distributions can be put into categories.
Deb Roy introduces categorizers as a link between analog beliefs and discrete
categorical beliefs. In the graphical notation analog beliefs are oval and categorical

beliefs are rectangular.

categorical

belief

A 4

analog categorizer
belief

Figure 2-11: a categorizer makes discrete decisions based on an analog belief
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—/—r Hot
E ‘:---_-b -_/:----

as distribution '
of the last fewhours Lo

Figure 2-12: a robot that can feel temperature and belief if it is hot or cold

Deb Roy implemented this framework into a robot called Ripley, which has a 7 degrees
of freedom arm, vision system and a speech interface. The robot was designed for
grounded language experiments (Roy es al., 2004). The framework is an attempt to
connect the symbolic world of language to the non-symbolic world of sensors and
actuators. Roy argues that not-grounded systems would need a human in the loop during
design and implementation to connect sensor data to a representation system in the
robot, whereas his approach enables statistical mapping between the sensors/actuators
and the introduced symbols. The framework of semiotic schemas is used as an
inspiration to this work. The most relevant concept for here is the idea that physically
grounded analogue data can be converted to symbalic categories. Categorical believes
could be used to represent locations of cards and the recognised actions/gestures. This
allows symbolic processing and the integration of language into the robots advanced
reasoning system, even though the robots low level Al (skill-learning and pattern

recognition) is subsymbolic.

2.6.2 Conceptual Graphs

Conceptual Graphs (CQG) are related to semantic networks. They were invented by John
F. Sowa. Conceptual Graphs can represent concepts and their relationships. They are a
powerful tool to create a knowledge base. CGs have the following useful properties:
They are human readable (hence they can be tumed into natural language expressions.
They can be created from natural language expressions. They can be turned into
predicate logic statements (with certain constrains).Conceptual graphs are best
explained by an example. Below an example of the sentence:

“John is going to Boston by bus” taken from (Sowa J.F. website)
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Person:John |¢— «—| Go |—» —»! City:Boston

Bus

Figure 2-13: “John is going to Boston by bus™, The square boxes indicate concepts and the circles indicate relations. Note that the
concept Person has a referent “John™ while the instantiation (referent) of the Bus is unknown.

In IBL and MIBL a primitive function can be defined to match this example. The

primitive itself is “Go™ and its parameters are Agent, Destination, and Instrument.

go { Agent, Destination , Instrument )}

Whereby the allowed word classes could be:
- Agent of the word class Person
- Destination of the word class City

- Instrument of the word class vehicle

A concept always has a Type and can have a Referent. A referent is a particular
object/concept. The Type must be based on ontology. (Ontology is a tree of types
starting with the most general type at the top). A concept can either stand alone or be
connected to a relation. It is not allowed to connect two relations directly with each

other.

[Type: Referent] <-(Relation)-> [Type: Referent]

A single concept may be: (Bus] Which means “There is a bus”.

[Proposition:
[Woman: *x]->(Attr)->[Beautiful]
]

"There exists a woman x who is beautiful.”

Language can be mapped into a conceptual representation using a conceptual parser.

The conceptual representation is a representation of the dependency of the parsed text.
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assigned a unique ID at creation for referencing. Upon the first creation of the objects,
the server software emitted an audible ring sound which can be used later to
synchronise audio recordings with the timestamp of the gesture log file. The human-
readable protocol format allows easy and transparent analysis of the communication

system. Table 3-4 shows the protocol between server and display clients.

PROTOCOL BETWEEN SERVER AND DISPLAY CLIENTS

Direction
Name (C)lient to Command, Parameters
(S)erver Description
Ready C-S R, ClientName
Client Reports that it is ready, followed by ClientName which is
either “Teacher™ or “*Student”
Offset S$>C 0, Offset_X, Offset_Y, GLWin_Width, GLWin_Height, Viewscale
Offset of the Camera in Global OpenGL coordinate frame
Move C2>S$~>C M, X, Y, UniguelD
(forwarded) Move the object with ID UniguelD 1o position X Y in the OpenGL
coordinate frame
Turn C>S$->C T, UniguelD
(forwarded) Turn object UniquelD 180 degrees around the Z-axis
Front C>5>C F, UniquelD

(forwarded) Bring object UniguelD to the front of the OpenGL drawing list,
which will make it appear in front of other objects.

Angle S=>C A, Theta X, Theta Y, Theta Z, UniquelD

Set the object UniguelD rotation in all three axes, rotating aboul
its local object centre. O degrees is in line with the global OpenGL
coordinate frame.

Create S=2C C X, Y, Size X Size VY, isStatic, FileName, attl, ait2, UniquelD
Create a card which is in effect a 3D OpenGL Box with a texture
loaded from FileName and will be given the ID UniguelD from
now on. {In this simplified version NonStatic objects are assumed
to be playing cards and static objects are 3D Boxes which are
push-buttons and the playing table)

Quit C->S 4]

The client has quit the connection.

Table 34: Protocol between Server and Display Clients.

3.3.4 World Model for Simulator

As described above, every creation and manipulation of objects through the touch
screen interface is recorded in a log file. To redraw the OpenGL world and give
information about the objects, the state of the world and the information about the
objects is saved in an internal representation (C++ Object CState). In order to use this
world model in the transcription software, it is required to jump to any point in time of

the recording, like on a tape recorder. This required the state-space of all world objects
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at any point in time of the recording to be kept in memory. This approach is memory

intensive but fast.

An object state holds:

PHYSICAL OBJECT IN THE WORLD MODEL OF THE SIMULATOR

Name Description
UniquelD its unique identifier for communication
Static static or movable
Att attributes, such as texture
X,Y,Z world frame coordinates
xRot, yRot, | Orentation relative to world frame
ZRot
scale scaling factor of
sizex, sizey | size of the object (default thickness is 4.0)

Table 3-5: Properties of the Physical Object in the World Model of the Simulator

As shown in figure 3-5, every communication is logged to a transcription file. Every
state-space also contains a variable indicating the file position in the logfile (FilePos),
the last action (Activity), the object ID of the object that was last involved in the action

(ACT _ObjectID) and the number of objects in this state (NoOfObject).

The world model has no physics engine attached. This decision was taken since playing
cards have a negligible mass. When an object is touched by the touch screen, it becomes
the first object in the new state-space list so that it is drawn in front of the other objects.
Any dragging move with the finger down on the screen will now immediately move the
object that is under the mouse cursor relatively to the same position as the cursor /

finger, to give an impression that one can drag objects around.
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3.4 Multi-Modal Transcriptions

3.4.1 Transcription Tool

Recorded dialogues are transcribed to form a multi-modal corpus. A transcription has to
capture the salient features of the gestures and utterances. Timing information has to be
preserved in the transcription. The recorded audio, video and object manipulation data
must each always carry timing information to allow a time-synchronised playback for
the transcription. Similarly (Kvale et al., 2004) uses timestamps to synchronize inputs

from touch screen and voice.

Annotation tools to create a corpus of multi-modal human-robot interaction have been
used in related projects, such as the BITT Corpus for Topic tracking (Maas, and Wrede,
2006) or for instance “the Corpus-Viewer” of (Koide et al., 2004) , or the Home-tour

scenario from (Green et al., 2006).

Transcriptions are commonly stored in Extensible Markup Language (XML), (Witt,
2002). The advantage of XML is the range of available parser and browsers that can be
used to process the transcribed information. Existing multi-modal transcription and
annotation tools such as ELAN, EXMARaLDA, TASX, MacVisTA consist of a Video
playback window, a timeline window and an optional transcription window (Rohlfing
K. et al., 2006). Most multi-modal transcription tools analyse video data. In corpus-
based robotics, however, pre-processed sensor data, such as object coordinates can be
available for transcription. This data must be imported into the transcription tool. In this
research project the data is represented in a 3D environment on a screen rather than a
video. Occasionally it is required to turn over a card, in order to check its ID for
transcription. Converting the 3D environment recording into a video recording would
remove the possibility to manipulate objects or change the camera viewpoint during
transcription. Therefore a new transcription tool was designed called MuTra (Multi-
Modal Transcription Tool). It was often necessary to go through menus and do several
mouse clicks to transcribe a single utterance, since it is multi-modal; this was a further
reason for creating a new tool. It is hard to develop a multi-modal transcription tool that

suits all research projects due to the large variety of types of sensor data.
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4. Action and Gesture Recognition

The term “gesture” has no commonly accepted definition. The Oxford Advanced
Learner’s dictionary (Homby, 2000) defines gesture as “a movement that you make
with your hands, your head or your face to show a particular meaning”. In general
terms, gesture could be defined as the act of non-verbal communication using body
parts. An action could be defined, for example, as manipulation of objects.
Demenstrating an action to another person or robot is also an act of non-verbal
communication using body parts. Cadoz (1994) laid out three major functions for

gesture:

« semiotic: it is used to communicate meaningful information; (for example sign
language, pointing)

e ergotic: 1t is used to perform manipulation in the real world; ( manipulating,
creating of objects, for example cooking)

» epistemic: it is used in learning from the environment through tactile experience

(by touching and manipulating objects).

The functions of gesture may be augmented by using an instrument according to Coutaz
and Crowley (1995) .

In this respect gesture recognition systems link gesture and action and can be treated the
same from a computation point of view as well. Therefore there is no differentiation
between the terms “action” and “gesture” in this chapter.

The MIBL corpus contains some semiotic gestures while the majority is ergotic.
Epistemic data can be found in the recordings where the teacher initially explained how
the touch screen works. This epistemic data has not been used for this research. In card
games, gestures can be pointing gestures, gestures moving cards from one place to
another, e.g. stack to table, hand to table, re-arranging gestures, making a group of cards

look tidier and turning over gestures.
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4.1 Gesture Recognition by spatial mapping

Action and gesture recognition is in essence like speech recognition, where analogue
sensor data streams are mapped into categories. These categories are more meaningful
for further interpretation and reasoning. Commonly, machine learning algorithms such
as Hidden Markov-Models (HMM) or neural networks are applied for this task. In some
cases simple thresholding algorithms are sufficient.

The MIBL system uses a touch screen to simplify gesture recognition. The touch screen
operates as an additional mouse to a computer. The effect of a user touching the screen
is signalled as a mouse button-down event in the operating system. The MIBL GUI-
Client translates these events to a “touch” of a virtual object. Moving cards on the touch
screen is intuitively done by touching the card and dragging it to another position. The
resulting data is a trail of X, Y coordinates of where the card is going. In case of a real
service robot, this tracking data of cards on the screen could be the output to the service
robot’s vision system.

The X,Y data of the moving card must be categorised to complete the gesture
recognition. The starting position, where the card was first touched (Figure 4-1) is
compared to area boundaries which have been predefined (Figure 4-2). Combined with
the type of action and object ID, this provides the initial parts of the gesture primitive:
For example:

<objmove t="2416" user="t" ID="D/5" from="+Table+Stock" to=? until=? ></objmove>

The target position “to” and end-time “until” is still unknown at this point. An algorithm
continues to collect X,Y data of the manipulated card until the card comes to a rest or
another card was touched. The final XY position is then categorised again by
comparison to predefined areas. The gesture primitive is now complete.

<objmove  t="2416"  user="t" 1ID="D/5" from="+Table+Stock" to="+Temp2"

until="2442"></objmove>
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Gesture recognition is a skill set, as mentioned in Section 2.1, skills can be learned but
that is not the aim of this work. Therefore the gesture recognition skills are pre-

programmed as a categorisation algorithm.

Gestures are recorded in a transcription file in XML format including time of start and
end of movement, player doing the move, card identity and start position and
destination, such as for instance:

<objmove t="2416" user="t" ID="D/5" from="+Table+Stock" to="+Temp2"

until="2442"></objmove>

Move-gestures that have the same start and final position category are often pointing
gestures, or local rearrangements (tidying) of cards. In some card games or other
domains, spatial relations are important. At this point an algorithm would have to be
included that can recognise relative positions such as “A left-of B” or “A on-top-of B”.
In the game Scopa, which was investigated here, relative relations however, were not of
importance.

The gesture recognition process is used in the MIBL robot module called
autotranscriber (Wolf 2008, MIBL Manuat). The gesture recognition process can also
be used to assist multi-modal transcriptions. Once the initial area categories have been
determined, gesture recognition is automatic. A smart transcription tool that could be
trained while transcription is going on and suggest gesture transcriptions to the user is
of advantage, since the transcription process is tedious. At the stage where utterances
are transcribed, it is useful to have gestures already transcribed/recognised to indicate
any connection between gestures and utterances in the transcription. This provides

reference data for multi-modal integration algorithms.

GESTURE PRIMITIVES
Gesture Primitive Description

move (object, from, to) Moving an object. Whereby object is a physical object
and from / to are locations from figure 4-2
Pointing at an object. Whereby object is a physical
objectand 1oc / loc are the same, since the card is only

move (cbject, loc, loc) moving very slightly when touching it for pointing at it.
locattons are from figure 4-2
Turning an object. Whereby object is a physical object

turn (object, side) that is rotated around its Y axis. side “up” is defined as
0° and “down” as 180°

Table 4-1: Table of Gesture Primitives in the Corpus
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Occasionally pointing gestures are also found in the corpus. The teacher wiggles a card.
This can be recognised as a special case of moving, whereby from and to locations stay
the same. Furthermore cards are sometimes rearranged to look tidy. This can be falsely
recognised as pointing,.

The screen should have enough space for all objects to spread out. In a too small setup,
humans will otherwise start rearranging objects because there is not enough space,
which makes gesture recognition unnecessarily complex. Unfortunately, the MIBL
corpus 1s affected by rearrangement gestures, especially when the game progresses

many cards clutter the screen.
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4.2 Gesture Production

Following the corpus-based approach, every gesture primitive is not only recognised,
but can also be performed by the robot. The robots planner produces low-level robot
instructions (LRI) (Chapter 7.8.6) which have the same level and syntax as the
primitives. While the robot carries out its actions (move / turn ), the robot sees the
consequences with its vision system. Even though in the MIBL example this is going on
a touch screen, there is still the separation between the LRI-module which generates the
gesture and manipulates the object and on the other side the autotranscriber-module,
“the robots eyes” which recognises its own actions. This feedback loop gives the robot
the opportunity to recognise a failure of its actions. For example if the teacher interferes

with the process.
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4.3 Advanced Gesture Recognition

Statistical learning algorithms could be used instead in a real service robot, if the vision
system output coordinates are noisy or if there are no clear cut boundanes. In these
experiments it was found that a statistical categorization is not required because of the
clear separation shown in figure 4-1. In other cards games however, the situation can be
more complicated. It is advised to display histograms of start and end points of
manipulators in order to determine the predefined areas. These boundaries of these areas
could be defined by the density of the resting positions, based on data such as in figure
4-1. The separation into areas could further be defined with Voronoi diagrams. A
Voronoi diagram is a set of points equidistant to two or more obstacles in configuration
space (Russell and Norvig 2003)

This work deliberately used a simplified method for gesture recognition in order to
concentrate the research on higher level reasoning. The simplified method could be
summaries by using predefined Areas, and if a card has moved to that area a gesture is
recognised.

With real robots, proper gesture recognition systems and skill learning systems would
be needed. The research field of imitation learning and human motion recognition
provides systems for this purpose. These proper systems could “plug-in” to MIBL. For
instance Roy (2005) analogue beliefs and the categorizers, reviewed in chapter 2.6.1.
Alternatively the HAMMER framework (Demiris and Khadhouri, 2005) that can learn
from observing the demonstrator. The advantage of the HAMMER architecture is that
actions can be recognised (perceived) and reproduced within the same architecture.
Another system that can do human motion recognition specifically aimed at
categorising these actions into sequences is from (Loesch et al., 2008, Otero et al.,
2006). It uses a body model of a human to match tracked motion data against the model.

All three mentioned systems are designed specifically for human-robot interaction.
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8.7 Pilot for Full System test with people ( E4.1 )

What can we learn from tests with people? The purpose of the test of the robot with
people has several reasons. First of all it gives insights to how people communicate with
the robot. Furthermore it shows how a corpus-based system is deployed: The
deployment will show how the system adapts as new grammar rules are added during
deployment. In a typical scenario of first deployment the corpus of the system is
expanded. In a commercial environment, it 1s common practice to deploy a natural
language system with a small corpus and then expanded it, see Nuance Gram. Dev.
(2005). Nuance already provides a set of call logging and tuning tools for this purpose
in mind. Further rationale for adding new grammar rules during deployment is to adapt
the interaction to actual field of deployment, since the differences between corpus
collection and deployment of the product have an impact on the vocabulary and
grammar rules. Therefore, after each subject has been invited to communicate with the
robot, the dialogue will be transcribed and new grammar rules will be added to the
corpus. The reasoning and multi-modal integration system however will remain

unchanged.

It was decided to do a pilot to prepare for the full test with people in a partly “controlled
experiment”. A pilot test will show initial problems with the communications between
human and robot and if any improvements on the system and setup are necessary before
starting deployment experiment E4.2. A “positive control” is a procedure that is very
similar to the actual experimental test, but is known from previous experience to give a
positive outcome. For instance, the previous experience is the corpus, were all subjects
took 6 instructions to explain the dealing of cards (no complicated rules). If these 6
instructions can be reproduced with new subjects, the experimental setup and
environment is right. New primitives were not expected to occur, which makes the
semantics controlled and the outcome a “positive control”.

For the grammar this is already an actual experimental test, a “not controlled
environment”, since new subjects will use new words and grammar that the robot does
not know. The 6 instruction primitives for completing the dealing are shown in figure 8-
5. Often the last two instructions 5 and 6 are regarded as start of the game, because the
person picks up the cards in front of the him/her to look at them. Then only the first 4

are produced by the teacher.
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“you have to deal three cards for each player”
1. move=ns-cardname-ns, 03, +table+stock, +templ

2. loopindicator=each

“place four cards in the middle of the table face up”
3. move ns-cardname-ns, 04, +table+stock, +table

4. turn=ddd-cardname-+table, ?, up

“drag the cards into your area and turn them over”
(missing, start of the game )
5. move=ddd-cardname-ns, ?, ?, +hand2 : imitate=now

6. turn=them-?-ns,?,7?

Figure 8-5: 6 instructions primitives of the dealing phase in the format outputied from the grammar. Transcript of
subOltry01.xml

8.7.1 Dialogue Management Issues and Solutions

Speech recognition i1s a hard problem, since speech recognition software is not
achieving 100% recognition. This has implications for the dialogue between a speech
recognition system and a human user. It is like speaking to person hard of hearing or a
person who’s English is not very good. In fact, subject 04 from the pilot experiment
went closer to the microphone and spoke louder when repeating an utterance, because
she believed the robot is hard of hearing. From the IBL project, it was found that people
speak differently to a natural-language robot than to another person. The robot
frequently requests the user to repeat what he or she said, because of bad speech
recognition performance. However, the corpus was not recorded with persons that
constantly ask for repeating the sentence. Therefore the dialogue structure with people
talking to a robot is different to that of the corpus. Final report to the EPSRC about IBL
(Bugmann 2003) suggests that the user can adapt to the robot’s dialog and vocabulary,
if the robot guides the user. The MIBL dialogue manager, like the IBL dialogue
manager, will ask the user “did you say XYZ” if the speech recognition is unsure. This
clarification process is better than just saying ‘“can you repeat that please?”. Repeating
what the speech recognition understood provides feedback of what vocabulary and
sentence structures the robot can understand. This feedback guides the user.

Unfortunately this can be annoying to the user. Without this guidance, people would
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simplify to a telegraphic style if the robot does not understand (Bugmann 2003).
Communication would break down, since this style of telegraphic phrases is not in the
corpus. Speech recognition should not be confused with natural language
interpretation/understanding. The clarification process, which asks “did you say XYZ”
comes after speech recognition, but before interpretation, which means that this
dialogue has to be passed first before the semantics of the utterance get passed to the
dialogue-manager and the knowledge base.

The clanfication question by the robot, to some extend, interrupts the flow of the
explanation of the teacher, especially in the case where the teacher has to repeat the
sentence. This can be a problem simultaneously actions are carried out by the teacher
for demonstration. Usually the demonstration is only carried out once, and not repeated
during clanfication. This has consequences for multi-modal integration, which relies on
timing. As a solution, the timing of the user’s first attempt to say the utterance is frozen
and passed with the semantics to the dialogue-manager and unify-learn-mechanism.
This way multi-modal integration timing is preserved. The user’s first attempt to make

his intentions known to the robot is the crucial one for multi-modal integration.

8.7.2 Procedure of pilot experiment

The instructions to the subjects can be found in appendix A2 and appendix A3.

4 subjects have been invited to take part in the pilot. Every subject had two tries to teach
the robot. This small number is justified, since it is a pilot experiment. A set of paper
strips with card game rules written on them is placed in front of the subjects, upside
down. The subjects were instructed to take a paper strip. They studied the paper and had
to give it back so they remembered the rules. In fact in the pilot all paper strips
contained the same text, shown in figure 8-6. The conductor of the experiment tried to

create an illusion that he genuinely didn’t know the rules on these strips.
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This is a two player game.
Dealing:
deal 3 cards to each player

then deal 4 cards, face up, into the middle

Figure 8-6: Paper strip with card game rule for the pilot test

After their attention was distracted from the rules by explaining the touch screen and the
experimental setup, the subjects were asked to explain the rule to the experimenter, step
by step. This is to clarify in the subjects mind how to teach the rules. During the whole
experiment, the person running the experiment was not allowed to say any card game
instruction to the subjects, unless they did not understand what was written on the piece
of paper with the rules.

After it was assured that the subjects understood the rules they were allowed to explain
it to the robot. The robot first says “could you explain the game to me please ?”. The
subjects went on to communicate with the robot until they have explained the rules and

felt the robot understood. Then the experiment was stopped.

8.7.3 Findings, problems and changes from the Pilot Test:

1. The subjects did not believe that the experimenter didn’t know the rule in
advance and therefore their effort when explaining the rule to me was not
instruction by instruction. This was corrected by reminding the subjects.

2. The subjects did not use 6 instructions like in the corpus because it did not occur
to them that they have to take the cards into their hand and look at them in order
to start playing. This was because they were only instructed to deal the cards and
then stop. All produced the 4 dealing instructions from figure 8-5. This will not
be a problem in the next experiment ( E4.2 ) because it will include a game
phase.

3. Two subjects first thought that the robot will move the card for them, while they
are explaining. This is not what was found in the corpus. The corpus had all 19
teachers explaining the dealing phase by demonstrating (teacher doing the

actions). The subjects do not feel they are talking to a normal playing partner.
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One hypothesis could be the lack of embodiment or they think of the robot as a

servant ?

. One subject explained the dealing without demonstrating in the first try.

5. Subjects did not wait until the robot has finished speaking, before they

answered. Particularly when the answer was “Yes” or “No”. A more clear busy
icon was put in place, see the clock in figure 8-8. A real robot would show that
its busy through its facial and body expressions.

. The Recognition End-Point, which indicates the length of silence that is required
after an utterance is regarded as finished has been increased from 0.6 to 1.4
seconds, to deal with hesitation. Users tend to hyper-articulate slightly (speak
slowly with long breaks) if they think the robot does not understand.

. Speech recognition errors and out-of-grammar errors made interaction difficult.
To reduce the errors, 52 new grammar rules were added to the corpus with the
use of the one-clause-one-primitive principle, see Appendix A13. In particular
new grammar rules occurred in the dialogue management. More complex
structures in the reply to robot questions were found. If the robot asked “how
many cards would you like me to move?” the user can now say “three to the
table” or related phrases, rather than just “three”.

. 745 words added to the corpus, 111 unique (novel) vocabulary appeared which
the robot didn’t know before.
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This time they are given the following rules to explain:

This is a two player game.

Dealing:

deal 3 cards to each player

then deal 4 cards, face up, into the middle

RS 1203

Playing:

2 card on the table with the same value as a card in your hand are a
pair.

you can take this pair to the side as a capture
RS 1697

the cards have their usual value
and the jack is worth 8 , queen is worth 9 and king is worth 10
ace is low

RS 1283

o v e = = v ———— -

Figure 8-9: Paper strips with card game rules used for the full test
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8.8.3 Findings and Problems from the Final Test and Discussion

1.

The experiment added 119 new grammar rules, 3046 words and 300 novel
vocabulary to the corpus.

People did not use the touch screen as much as in the Human-to-Human corpus
El. Similarly to the pilot experiment there is a lack of flow in the dialogue
because of the bad speech recognition performance and out of grammar errors
53.8 %. The repeated rejections of their utterances possibly deterred the subjects
doing the actions while speaking compared to the human-to-human corpus. The
reduction of Multi-modal interaction to the single modality speech was not an
expected finding. Hypothetically, the modality could also have been gesture
instead. However only subject 06 (sub06tryl.xml) went to do more actions and
shorted his sentences to “can you make a pair?”. Everyone else tended to engage
with clarification dialogue and reduced gestures.

This time the subjects completed the dealing phase, but failing to make the robot
pick up its own cards, mainly because of out-of-grammar errors. The fact that
the robot did not pick up its cards made the users suspicious of its capabilities
another factor is that lack of embodiment. l.e. it does not have a visible arm and
hand. The robot without cards in his hands leads to confusion on how to carry on
to the pairing rule explanation. Picking up cards is often an imp_licit instruction.
It is coded as such by adding the “imitate=now" primitive to the grammar if the
teacher talks about picking up his cards. Teachers don’t say I pick up my cards,
please pick up yours too” They expect imitation when they pick up theirs, or the
other way round instruct the robot to pick up his and pick up theirs without

telling.

Traditionally a performance test of the robot would have been carried out without

adding grammar rules. What would hypothetically been the outcome of such a test that

would not add grammar rules after each session ? Certainly the out-of-grammar errors

for instance would have been at least as high as now. The logical conclusion and

recommendation at the end would have been to add more grammar rules to cover the

domain and therefore reduce out-of-grammar errors. This deployment test however

showed that this would not have worked. Graph 8-13 does not go down with the

progression over more subjects. The deployment test is already a step ahead of the usual
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static analysis and shows an interesting finding, namely the out-of-grammar errors can

not be reduced linearly by just adding more grammar rules.

8.8.3.1 Out-of-Grammar Errors

Out-of-Speech-Grammar errors:

As seen in graph 8-13, the rate of Qut-of-Speech-Grammar errors < error_oosg> is not
decreasing over the progression of more subjects. Also the success rate in graph 8-14 is
not increasing. It can be hypothesised that the adding of new grammar rules does not
affect the success rate at this size of the corpus. It would affect it, however, if the corpus
is very small of course, since without a minimum of grammar rules there is no success

at all.

This is a clear indicator that these instructions have a large variety of being expressed in
language. Here lies a clear limitation of the corpus-based approach or indeed any
natural language interface. The rate of errors must decrease to a user-bearable rate
before a system can be said usable in practice. This important finding first of all limits
the application of the corpus-based approach to instruction-domains that have a limited
expressions/size. It will probably limit any other approach (not only corpus-based) that
requires grammar-to-robot function mapping. The limit is the cost implication of
mapping what hundreds of users said, rather than the concept.

Three recommendations can be made from these results specifically regarding domain
size:

. Alignment of the speaker and the robots grammar by replying with utterances
that guide the human to use the right sentence structure and vocabulary.

2. A pilot study needs to be carried out on a domain. The pilot study measures the
OOSG / instruction rate. This will show if the corpus-based approach is feasible
for the domain. If not, a more restrictive dialogue may be necessary which is
more stressful to the user on the other hand. Some domains are so large that they
have to be split into sub-domains. A robot working in a department store is a
typical example, each department would be a sub-domain to keep

implementation feasible.
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3. Further research is required into natural language understanding to explore more
cost-effective ways of mapping complex language grammar to semantics and

robot primitives.

It seems that corpus-based linguistics has suffered from the same problem see (Leidner
2003): “Such training corpora are typically expensive or\virtually non-existent (data

resource bottleneck)...leads to unacceptable accuracy”

The IBL domain for example seems to be much smaller than the MIBL domain. Further
research is needed to investigate indicators of a domain size. The out-of-grammar errors
of IBL are difficult to compare since it suffered from a problem with grammar design.

Lets expand on recommendation one from above. The final report to the EPSRC about
IBL (Bugmann 2003) suggests that the user can adapt to the robot’s dialog and
vocabulary, if the robot guides the user. (Garrod and Pickering, 2004) talk of an
alignment process between the two conversation partners. In this alignment linguistic
representations are aligned so that both come to an understanding. The simplest version
of this alignment is implemented in MIBL as the robot repeats what it understood using
the words that are in the grammar with “did you say XYZ”. However there i1s much
more potential for doing clever alignment, not only with vocabulary and grammar but
also in semantics. What does the teacher understand by “on the table™ or the robot may
be two different things. By exploiting alignment the oosg-errors can be reduced. The
Nuance Gram. Dev. (2005) mentions that 5%-20% of out-of-grammar typically occur,
whereby the Nuance guide book assumes a strict interrogative dialogue management. In
fact it suggest, one should start with designing the dialogue and then the grammar. This
1s not the way forward but it shows that the dialogue management influences the out-of-
grammar errors. The problems of menu driven restricted dialogue control, as it is used
in industry today are compared to the MIBL approach with free speaking in table 8-3. Is

a mixture of both ways the answer ? This may be answered in future research.
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CONTROL OF THE DIALOGUE: HUMAN vS ROBOT

antrol of Human Teacher VS. Robotic Student
Dialogue

Properties Free speaking of the human, the Robot asks question, human only
robot only asks questions allowed to answer in a from the robot
sometimes. The robol lets the suggested form, i.e. “yes”,” no”, “one”,
user change context any time. “two”. Menu driven, like automatic

telephony system. Interrogative .

Advantages - emulates the traditional - alignment between robot and human is
dialogue between teacher and better, which means there are few
student, which is natural for speech recognition and out-of-grammar
teaching scenario errors.

Disadvantages | - as seen in MIBL the free - the alignment is forced by the robot-
choice of vocabulary and student, effectively making the student
sentence structure causes a large in charge of the teaching flow and
amount  of  out-of-grammar content. This leads to frustration by the
errors. It is hard to control them human-teacher who can not continue in
if the robot is not driving the the way he wants.
user to alipnment.

Table 8-3: Human vs. Robot Dialogue control. Effect on Alignment

Combinatorial explosion of Grammar rules:

Novel vocabulary is not the only obstacle, the large amount of possible combination of
vocabulary, i.e. the grammar is a further limitation. With novel words new possible
combinations are introduced which, cause in the worst case, an exponential increase of
grammar rules. Key word spotting, or SLM'' grammars for speech recognition suffer
from this problem. With the use of word classes and the one-clause-one-primitive
principal the combinations are limited. This limit keeps a lid on the exponential growth
problem that for example a keyword spotting grammar would suffer from. Exponential
growth is bad for speech recognition. It reduces the probability of finding the correct
pathway through the Hidden Markov model (in NUANCE called “confidence™). Often
the primitive is recognised correctly, but parameters were erroneous because of the
lower probability to get word classes right. If the number of possibilities of expressing
an instruction is large, it is necessary to collect a large amount of samples for the one-
clause-one-primitive method. Generally it was noted that complex instructions have a

larger variety of being expressed. For instance, the pairrule in Figure 8-13 shows a

' Statistical Language Modeling
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success rate of only 3% because the pairing rule has the largest variety of being

expressed.

8.8.3.2 Speech Recognition errors
Speech-recognition errors are marked <error_se> and appear if despite an utterance

being defined in the grammar, it is not recognised. 10.4% of errors where due to speech
recognition, see 8-11 and 8-12. Nuance claims that the new version Dragon Naturally
Speaking 9 has a 20% higher recognition rate than the previous version 8. Assuming
this statement is true, the error rate can be reduced further by using the latest speech

recognition software. Good audio equipment also has an influence.

8.8.3.3 Human Error

Human error shown in figure 8-12 as 15.8 % consists of 3.1 % <error_ti> ( teacher
instruction errors ), 3.5 % <error_tigiveup> (teacher gave up explaining deliberately )
and 9.2 % <error_tdm> (teacher dialogue move error).

Even though all subjects have been tested if they can explain the rules correctly, 3.1 %
gave wrong instructions. They made mistakes in their verbal expressions, without
noticing. Some of these <error ti> may come through a lack of concentration or
accuracy in the English.

The <error tgiveup> was due to frustration of the teacher, often after many failed
attempts of saying an expression without success.

The <error_tdm> comes from a mismatch in the dialogue, i.e. the robot asks a question,
but the teacher does not answer and instead talks about something else. The very simple
dialogue manager from MIBL was not able to handle this. Sometimes the error also
occurred when the robot asks a question about a previous instruction on the stack, and
the teacher already moved on to the next instruction. This caused confusion in both, the
teacher and robot. The human teachers were instructed to say “forget it” or similar

expressions if they felt the robot was confused.
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9 Conclusions and Future Work
9.1 Achievements

In Chapter 1, the aim of the work has been set out as a contribution to knowledge in the
field of human-robot communication. More specifically how to convert unconstrained
multimodal instructions (spoken natural language + gestures/actions) into a knowledge
representation usable for robot reasoning and acting from Chapter 1.1 .

The thesis has shown how to work towards this aim by introducing multi-modal
integration algonthms in chapter 5. Particular attention was paid to natural instructions
from human-to-human, and the attempt to make algorithms for a robot to capture and
integrate these. These natural instructions can not only consist of sequences, like in an
assembly task, but also of conditionals which occur in rules. It was shown that a time
window for gesture and utterance overlap exists. In combination with semantic
matching and nearest neighbour matching a match between the right gestures and
utterances was made possible. The results have been quantified in previous chapters
532,85,86.

The work has also shown that contributions have been made in the area of converting
actions into usable knowledge for a robot. The finding of primitives (Chapter 3.5, 6.1)
and generating a grammar with the use of Corpus-Based Robotics (Figure 1-3) have
been shown to be a useful method in order to achieve this aim. The results have been
quantified in Chapter 8.

Finally a further aim was to enable a robot to reason and act upon this knowledge
gained from human instructors. It was shown in Chapter 7, a combination of frame-
based reasoning and an ontology of the robots world enabled reasoning. More
specifically, rule-frames and later state transition rules were created from human
instructions, which hold the context and actions that the robot has to carry out. These
rule-frames provided the robot with a framework that allowed reasoning such as
unification, reference resolution, action prediction and planning. Finally ail results,
shown in chapter 8 and 5.3.2 were critically analysed. These tests showed what happens
in a deployment scenario. Interesting findings such as the influence of adding new
vocabulary and grammar rules which did not reduce out-of-grammar errors, were
demonstrated in the tests. The tests showed the points where corpus-based robotics

needs improvement and further research.
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9.2 Comment on the corpus-based Robotics approach

The corpus-based approach is a method to create a system that is able to understand
instructions that are given at a high human-like level. This leaves the developers with
the burden of trying to create very complex robot primitives. First of all it must be said
that this is a good way of making researchers address hard real world problems. The
corpus comes from end-users and is used for testing the final system, which is therefore
rigorous and unforgiving.

However the corpus collection and transcription adds additional work compared with
the traditional product development methods, where they are absent. This leads to an
overall increase of labour and cost of the product. However, in theory, the product will
match user requirements exactly and be able to communicate naturally which may
justify the increased price. Furthermore a corpus-based robot will have a wider range of
customers, since it could potentially be used by the elderly or by functionally illiterate

people.

9.2.1 Human-to-Human vs. Human-to-Robot dialogues

It was observed that people speak differently to robots than to humans. This has caused
problems in IBL and MIBL because the corpus has been based on human-to-human
dialogues. In the future a wizard-of-oz approach should be taken during corpus
collection, whereby the subject must be under the impression of talking to a robot, from
the start. It might be necessary to imitate problems with speech recognition during
corpus collection. The human to robot dialogues suffered from a too simple dialogue
manager that could not guide the user well enough on what the robot can understand.
By using alignment techniques, i.e. guiding the user in what expressions the robot

understands, it may be possible to reduce out-of-grammar errors in future work.
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9.3 Future Work

This paragraph shows possible future work on the MIBL project specifically.

Comparison and integration of statistical learning algorithms for gesture
recognition (from chapter 4.3 Advanced Gesture Recognition). This could
Improve accuracy in gesture recognition.

The dialogue model is too rigid and cannot detect if the user decides not to
answer a question. Much more can be done to make the dialogue better to
keep the context between robot and teacher aligned.

What is the role of apparent skill level in the dialogue? How to show
capabilities of the robot to the user.

Ask the subjects why they want the robot to do something that they usually
would demonstrate themselves if a human would be their student.

More clever dialogue management guides the user to use the right
expressions. This needs to be exploited more and can significantly reduce
the <error_oosg>.

An interesting investigation could be to define a multi-modal grammar and
modelling its recognition with HMM.

Learning locations for gesture recognition from examples (grounding).
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9.4 What is holding back user-programmable robots?

An aim set out in the introduction was to advance methods for producing a user-
programmable robot for a specific domain. The work presented in this thesis has made
progress by showing a method of multi-modal integration and a knowledge-

representation scheme in the area of task learning.

Speech recognition is a major limitation and holding back the development of user
programmable robots. The experiments have shown that 13.8% + 53.8% of errors is due
to speech recognition and grammar problems. The rate is so high that it is not useful in
practical applications. For the same reason we still use keyboards on our PCs. As
(Lauria, 2007) correctly points out, speech interfaces still do not outperform keyboard
based interfaces, for example the voice-dialling option on a mobile phone is hardly

used, even it is built into many phones.

- 188 -




References

Abney S. (1991) "Parsing by Chunks”, In Robert C. Berwick, Steven P. Abney, and
Carol Tenny, Eds, Principle-Based Parsing: Computation and Psycholinguistics, pages
257-278. Kluwer Academic Publishers, Boston, USA , 1991

Aristotle (transl. 1989) “Prior Analytics” translated Robin Smith, Hackett Publishing,
1989, ISBN 0-87220-064-7

Asada M., MacDorman K.F., Ishigurob H. and Kuniyoshi Y. (2001) "Cognitive
developmental robotics as a new paradigm for the design of humanoid robots", Robotics
and Autonomous Systems,Elsevier, Volume 37, Issues 2-3, 30 November 2001, Pages
185-193

Asfour T., Regenstein K., Azad P., Schroeder J., Bierbaum A., Vahrenkamp N. and
Dillmann R. (2007) "Design of ARMAR III — a new humanoid " Proceedings of 16th
Int. Workshop on Robotics in Alpe-Adna-Danube Region - RAAD 2007 Ljubljana,
Slowenia, June 7-9, 2007

Baldry A., Thibault P.J. (2006) “Multimodal Transcription and Text Analysis”,
Equinox, 2006

Biber D., Conrad S. and Reppen R. (1998) “Corpus Linguistics — Investigating
Language Structure and Use”, Cambridge University Press, Cambridge, U.K. [SBN 0-
521-49957-7

Bird S. and Liberman M. (1998) “Towards a formal framework for linguistic
annotations.” Presented at the /CSLP, Sydney

Bolt R.A. (1980) “Put-that-there™: Voice and Gesture at the Graphics Interface, in Proc.
of the 7th Annual ACM Conf. on Computer Graphics and Interactive Techniques
SIGGRAPH’ 80 (Seattle, 14-18 July 1980), Computer Graphics, Vol. 14, No. 3, pp.
262-270.

Bobrow G.D. and Winograd T. (1977) “An overview of KRL, a Knowledge
Representation Language”, Volume 1, Issue 1, Pages 1-123 (January 1977)

Bos J. (2002) “Compilation of Unification Grammars with Compositional Semantics to
Speech Recognition Packages.” COLING 2002, Proceedings of the 19th International

Conference on Computational Linguistics, Pages 106-112.

Brand R.J. and Tapscott S. (2007) "Acoustic Packaging of Action Sequences by
Infants", Infancy, 11:3, 2007, pp. 321-332

Bratko 1. (2000) "Prolog: Programming for Artificial Intelligence", Addison Wesley,
3rd edition September, 2000

- 189 -



Bnll E. (1992) "A simple rule-based part-of-speech tagger”, Proceedings of ANLP-92,
3rd Conference on Applied Natural Language Processing, Trento, Italy,152-155,1992

Brooks A.G. (2007) “Coordinating Human-Robot Communication™ PhD Thesis MIT.
2007

Brooks R.A. (1990) “Elephants Don't Play Chess", Robotics and Autonomous Systems,
Vol. 6, No. 1&2., June 1990, pp. 3-15.

Brooks R.A. (1987) "Planning is just a way of avoiding figuring out what to do next",
Technical report, MIT Artificial Intelligence Laboratory, USA, 1987

Brooks R.A. (1986) "A Robust Layered Control System for a Mobile Robot", /EEE
Journal of Robotics and Automation, Vol. 2, No. 1, March 1986, pp. 14-23; also MIT
Al Memo 864, September 1985. (http:/people.csail.mit.edu/brooks/papers/AIM-
864.pdf)

Bugmann G. (2005) "The What and When of Service Robotics™, Industrial Robot: An
International Journal, Emerald , Volume 32 Issue 6 2005, p.437

Bugmann G., Klein E., Lauria S., Bos J. and Kyriacou T. (2004) “Corpus-Based
Robotics: A Route Instruction Example™ in Proceedings of IAS-8, 10-13 March 2004,
Amsterdam, pp. 96-103.

Bugmann G. (2003) “Final report to the EPSRC (IGR GR/M90023)™

Buss M., Beetz M. and Wollherr D. (2007) “CoTeSys - Cognition for Technical
Systems”, In Proceedings of the 4th COE Workshop on Human Adaptive Mechatronics
(HAM), 2007.

Cadoz, C. (1994) “Les réalités virtuelles”, Dominos, Flammarion, 1994,

Calinon 8. and Billard A. (2007) "Learning of Gestures by Imitation in a Humanoid
Robot" Dautenhahn and Nehaniv, editors of book: Imitation and Social Learning in
Robots,Humans and Animals: Behavioural, Social and Communicative Dimensions.
Cambridge University Press, 2007.

Cangelosi A. (2007) “Integration and Transfer of Action and Language Knowledge in
Robots: I-TALK”, Large-scale integrating project (IP) proposal, ICT Call 1, FP7-ICT-
2007-1

Coutaz J. and Crowley J.L. (1995) “Interpreting Human Gesture with Computer
Vision”, Position paper for the workshop Gesture at the User Interface, CHI'95,
Denver, U.S.A. 1995 (http://iihm.imag. fr/publs/1995/ )

Copleston S.N. and Bugmann G. (2008) “Personal Robot User Expectations”. MRes
Thesis, University of Plymouth, U.K.

Chai J.Y., Hong P., Zhou M.X. (2003) "Combining semantic and temporal constraints
for multimodal integration in conversation systems" Proceedings of the Human

- 190 -




Language Technology-NAACL 2003 workshop on Research directions in dialogue
processing, Vol. 7, Edmonton, Canada, 2003

Crangle C. and Suppes P. (1994) “Language and Learning for Robots”, CSLI Lecture
notes No. 41, Centre for the Study of Language and Communication, Stanford, CA.

Crystal D. (1997) "A Dictionary of Linguistics and Phonetics", 4th ed. Oxford:
Blackwell Publishers, 1997

Cunningham H., Humphreys K., Wilks Y. and Gaizauskas R. (1997) “Software
infrastructure for natural language processing.” In Proceedings of the Fifth Conference
on Applied Natural Language Processing Washington, DC, March 31 — Apnl 3, 1997,
pp. 237-244.

Cunningham H. (2000) "Software Architecture for Language Engineering", PhD Thesis,
Department of Computer Science, University of Sheffield, June 2000

Daelemans W. and van den Bosch A. (1998) “Rapid development of NLP modules with
memory-based learning.”, In Proceedings of ELSNET in Wonderland, Utrecht:
ELSNET, pp.105-113.

Dahlbick N., Jonsson A. and Ahrenberg L. (1993) "Wizard of Oz Studies — Why and
How", Knowledge-Based Systems, Vol. 6, No. 4, pp. 258-266.

Davis J. and Shah M. (1994) "Visual gesture recognition", /EE Proc.-Vis. Image Signal
Processing, Vol. 141, No. 2, April 1994

De Ruiter J.P. ,Rossignol S., Vuurpijl L., Cunningham D.W. and Levelt W.J.M. (2003)
“SLOT:A research platform for investigating multimodal communication.” In Proc. of
Behavior Research Methods, Instruments & Computers 2003, 35(3),408-419

Dean D.H. (2008) "What's wrong with IVR self-service", Journal of Managing Service
Quality, Emerald, Vol 18, Issue 6, 2008, pp 594-609

Dearden A.M., Demins Y. (2005) "Learmning Forward Models for Robots" in
Proceedings of IJCAI-2005, Edinburgh, pp. 1440-1445, July 2005.

Demiris Y. and Johnson M. (2003) “Distributed, predictive perception of actions: a
biologically inspired robotics architecture for imitation and learning”, Connection
Science, Vol. 15, No. 4, December 2003, 231-243

Demiris Y. and Khadhouni B. (2005), “Hierarchical, Attentive Multiple Models for
Execution and Recognition (HAMMER)”, Proceedings of the IEEE ICRA-2005
Workshop on Robot Programming by Demonstration, Barcelona, Spain, 2005,

DIEE (1999) "A Fresh Start - improving literacy and numeracy” , U.K. Government

Department for Education and Employment Report, DfEE 1999, ref: CMBS 1, (known
as the Moser Report)

- 191 -



Dillmann R., Ehrenmann M., Steinhaus P., Rogalla O., Zollner R. (2002) “Human
Friendly Programming of Humanoid Robots - The German Collaborative Research
Center”, Tsukuba Research Center, AIST, Tsukuba, Ibaraki, JAPAN, Dec.11-12, 2002

Djenidi H., Benarif S., Ramdane-Cherif A., Tadj C., Levy N. (2004) "Genenc
Multimedia Multimodal Agents Paradigms and Their Dynamic Reconfiguration at the
Architectural Level" in EURASIP Journal on Applied Signal Processing 2004:11,
Hindawi Publishing Corporation, pp. 1688—1707, 2004

Engelhardt K.G. and Edwards R.A. (1992) “Human-robot integration for service
robotics”, Chapter 16 from Human-Robot Interaction, Taylor & Francis Ltd. , London,
1992

Fikes R.E. and Kehler T. (1985). “The role of frame-based representation in knowledge
representation and reasoning.” Communications of the ACM 28(9) pp 904-920, 1985

Flach P.A., Antonis C.K., Lorenzo M. and Oliver R. (2006) “Workshop on Abduction
and Induction in Al and Scientific Modelling”, Proceedings, Riva del Garda, Italy,
August 2006

Fong T.W., Nourbakhsh 1., and Dautenhahn K., (2002), “A survey of socially
interactive robots: Concepts, design, and applications”, Tech. Rep. CMU-RI-TR-02-29
Robotics Institute, Carnegie Mellon University, 2002.

Garrod S. and Pickering M.J. (2004) “Why is conversation so easy?”, Trends in
Cognitive Sciences, January 2004, vol. 8, iss. |, pp. 8-11(4)

Goldstein, I.P. and Roberts R.B. (1977) “NUDGE: a knowledge-based scheduling
program” Proc. Fifth Int. Conf. Artificial Intelligence, 257-63

Graga J., Mamede N.J. and Pereira J.D. (2006) "A Framework for Integrating Natural
Language Tools" chapter in "Cemputational Processing of the Portuguese
Language" Springers Lecture Notes in Computer Science series , Vol 3960/2006
,Springer,Berlin,ISBN 978-3-540-34045-4,pp 110-119, 2006

Green A., Huettenrauch H., Topp E.A., Severinson-Ekiundh K. (2006) "Developing a
Contextualized Multimodal Corpus for Human-Robot Interaction” In Proceedings of the

fifth international conference on language resources and evaluation (LREC2006),
Genova, May 2006

Haasch A., Hohenner S., Hiiwel S., Kleinehagenbrock M., Lang S., Toptsis I., Fink G.
A., Fritsch J.,, Wrede B. and Sagerer G. (2004) “BIRON - The Bielefeld Robot
Companion” (In E. Prassler, G. Lawitzky, P. Fiorini, and M. Higele, editors), Proc. Int.
Workshop on Advances in Service Robotics, pages 27-32, Stuttgart, Germany, May
2004. Fraunhofer IRB Verlag.

Halliday M.A K. (1976) "A Brief Sketch of Systemic Grammar", in Kress, G.R. (ed),
System and Function in Language, London: Oxford University Press, 1976, pp.3-6.

-192 -




Homby A.S. (2000) “Oxford Advanced Learner’s Dictionary”, Wehmeier S. (ed),
Oxford Umiversity Press, Sixth Edition, Oxford, U.K., 2000

Huettenrauch H., Eklundh S.K., Green A., Topp E.A. (2006) "Investigating Spatial
Relationships in Human-Robot Interaction”, Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems (IROS 2006), Oct. 9-15, 2006, Beijing,
China ‘ :

Huffman S.B. and Laird J.E. (1995) "Flexibly Instructable Agents", Journal of Artificial
Intelligence Research, 3, pp. 271-324.

Iba S., Paredis C. and Khosla P. (2002) “Interactive Multi-Modal Robot Programming”,
International Journal of Robotics Research, Vol. 24, No. 1, January, 2005, pp. 83-104.
also appeared in Proceedings of the 2002 IEEE International Conference on Robotics
and Automation, Washington D.C., May 11-15, 2002

Johansson, H. (2001) *Understanding multimodal interaction by exploiting unification
and integration rules” presented at the /3th Nordic Conference on Computational
Linguistics (NoDalLiDa'01), Uppsala, Sweden, 2001

Johnston M., Cohen P.R., McGee D., Oviatt S.L., Pittman J.A., Smith, 1. (1997)
"Unification-based Multimodal Integration" in the Proceedings of the 8th conference on
European chapter of the Association for Computational Linguistics, Madrid, Spain,pp
281-288,1997

Jung H.C,, Allen J., Galescu L., Chambers S.M., Taysom W. (2007) "Utilizing Natural
Language for One-Shot Task Learning", Journal of Logic and Computation (Advance
Access), December 20, 2007

Kamp, H. and Reyle, U. (1993) “From Discourse to Logic; An Introduction to
Modeltheoretic Semantics of Natural Language, Formal Logic and DRT’. Kluwer,
Dordrecht.

Kiesler S. and Hinds P. (2004) “Introduction to this special issue on human-robot
interaction”, in Human-Computer Interaction 19 (2004) pp. 1-8.

Koide Y., Kanda T., Sumi Y., Kogure K. and Ishiguro H. (2004) “An Approach to
Integrating an Interactive Guide Robot with Ubiquitous Sensors.” In Proceedings of the
2004 [EEE/RSJ International Conference on Intelligent Robots and Systems, 2004.
(IROS 2004), volume 3, pages 2500-2505, 28 Sept/ 2 Oct.

Kowalski R. and Kuehner D. (1971) “Linear Resolution with Selection Function™
Artificial Intelligence, Vol. 2, 1971, pp. 227-60.

Kruijff J.-G., Brenner M., Haws N. (2008) "Continual Planning for Cross-Modal
Situated Clarification in Human-Robot Interaction", /nternational Symposium on Robot
and Human Interactive Communication, RO-MAN 2008, Munich, Germany, Aug, 2008,
pp. 592-597

- 193 -



Kuniyoshi Y., Inaba M., Inoue H. (1994) "Learning by Watching: Extracting Reusable
Task Knowledge from Visual Observation of Human Performance”, /EEE Trans.
Robotics and Automation Vol 10, No 6, Dec 1994

Kyriacou T. (2004) “Vision-Based Urban Navigation Procedures for verbally instructed
robots”, PhD Thesis, University of Plymouth, U.K.

Kyriakopoulos K. and Sicihano B. (2004) “EURON Report”, IEEE Robotics &
Automation Magazine, Vol. 11, No. 4, December 2004, ISSN 1070-9932, pg 128

Lauria S. (2007) “Human Robot Interactions: Towards the Implementation of Adaptive
Strategies for Robust Communication”, F. Mele et al. (Eds): BVA/ 2007, LNCS 4729,
pp- 555-565, Springer Verlag, Heidelberg 2007

Launa S., Kyriacou T., Bugmann G., Bos J. and Klein E. (2002) “Converting Natural
Language Route Instructions into Robot Executable Procedures” in proc. of the 2002
IEEE International Workshop on Robot and Human Interactive Communication
(Roman'02), Berlin, Germany, pp. 223-228.

Leidner J.L. (2003) “Current Issues in Software Engineering for Natural Language
Processing” Proceedings of the Workshop on Software Engineering and Architecture of
Language Technology Systems (SEALTS) held at the Joint Conference for Human
Language Technology and the Annual Meeting of the Noth American Chapter of the
Association for Computational Linguistics 2003 (HLT/NAACL'03), Edmonton,
Alberta, Canada, pp. 45-50.

Lemon O., Bracy A., Gruenstein A. and Peters S. (2001) "The WITAS Multi-Modal
Dialogue System 1", in proc. EuroSpeech 2001, Aalborg, Denmark, Sept. 2001

Loesch M, Schmidt-Rohr S.R., Dilimann R. (2008) *Making Feature Selection for
Human Motion Recognition More Interactive Through the Use of Taxonomies™, in proc
International Symposium on Robot and Human Interactive Communication, RO-MAN
2008, Munich, Germany

Lopes L.S., Teixeira, A.1.S., Rodrigues M., Gomes D., Girao, J., Teixiera C., Senica N.,
Ferreira L. and Soares P. (2003) “A robot with natural interaction capabilities™
Emerging Technologies and Factory Automation, 2003. in proc. ETFA '03. IEEE
Conference, Volume 1, 16-19 Sept. 2003 Page(s):605 - 612 vol.1

Lungarella M., Metta G., Pfeifer R., Sandini G. (2003) “Developmental Robotics: A
Survey.” Connection Science. 15(4), pp. 151-190. 2003.

Maas I.F. and Wrede B. (2006) “BITT: A Corpus for Topic Tracking Evaluation on
Multimodal Human-Robot-Interaction.” in proc. of the Fifth international conference
on Language Resources and Evaluation LREC2006.

Mann G. (1996) “Control of a Navigating Rational Agent by Natural Language”, PhD

thesis, Department of Artificial Intelligence, School of Computer Science &
Engineering, The University of New South Wales, Sydney, Australia

-194 -




Martin J.C. (2005) "Analysis and synthesis of cooperation between modalities.", HC/
International 2005. 11th International Conference on Human-Computer Interaction. Las
Vegas, Nevada USA

Matsui T., Asoh H., Fry J., Motomura Y., Asano F., Kurita T., Hara I. and Otsu N.
(1999) ‘lntegrated Natural Spoken Dlalogue System™ ofJuo 2 Moblle Robot for Office
Services, proc. AAAI/IAAL, pp. 621-627.

Marciniak T. and Strube M. (2005) "Beyond the pipeline: Discrete optimization in
NLP.", in proc. of the 9th CoNLL, Ann Arbor, M1, pages 136--143. 2005

Maybeck P.S. (1979) “Stochastic models, estimation, and control”, Academic Press,
New York, USA, Vol 1, 1979

McCarthy J. and Hayes P.J. (1969) "Some philosophical problems from the standpoint
of artificial intelligence”, Machine Intelligence, Meltzer and Michie (Eds.) , Edinburgh
University Press, Vol 4, pp 463-502. , 1969

McKerrow P.J. (1991) “Introduction to Robotics”, Addison-Wesley Publishing Co.,
Electronic Systems Engineering Series, Wokingham,Australia, ISBN 0 201 18240 8,

Mellish C.S. (1985) “Computer interpretation of natural Language descriptions”, Ellis
Horwood Limited, Chichester, ISBN 0-85312-828-6

Miller G.A. (1985) "WordNet: a dictionary browser.", Proc. of the Ist International
Conference on Information in Data, University of Waterloo, Waterloo, 1985.

Minsky M. (1975} “A framework for representing Knowledge”, In P. Winston (Ed.),
The psychology of computer vision, McGraw-Hill,New York,U.S.A., 1975 ( originally a
MIT-AI Laboratory Memo 306, June, 1974.)

Miura J., Iwase K. and Shirai. Y. (2005) "Interactive Teaching of a Mobile Robot,"
Proc. 2005 IEEE Int. Conf. on Robotics and Automation, pp. 3389-3394, Barcelona,
Spain, April 2005

Monaco P.C. (2002) “Creating and Editing Grammars for Speech Recognition
Graphically”, United States Patent No 6434523 B1, Nuance Communications, Menol
Park U.S.A 13/08/2002.

Newell A. and Simon H.A. (1956) “The logic Theory Machine, a complex information
processing system”, The RAND Corporation, Santa Monica, CA, USA, June 15, 1956,
P-868

Newell A. and Simon H.A. (1972) “Human Problem Solving”, Englewood Cliffs,
Prentice Hall, New Jersey, 1972

Nigay L. and Coutaz J. (1995) "A Generic Platform for Addressing the Multimodal
Challenge" in the Proceedings of CHI'95, 1995, p. 98-105

- 195 -



Nuance Gram. Dev. (2005) "Nuance Speech Recognition System, Version 8.5, Grammar
Developer's Guide", Merriam-Webster ,Menlo Park, California, U.S.A.

Nuance App. Dev. (2005) "Nuance Speech Recognition System,Version 8.5, Application
Developer's Guide", Merriam-Webster ,Menlo Park, California, U.S.A.

Ogale A.S., Karapurkar A., Aloimonos Y. (2005) “View-invariant modeling and
recognition of human actions using grammars”, in proc International Conference on
Computer Vision, Workshop on Dynamical Vision (ICCV-WDM), October 2005

Otero N., Knoop S., Nehaniv C.L., Syrdal D., Dautenhahn K. and Dillmann R. (2006)
“Distribution and recognition of gestures in human-robot interaction,” in /5" JEEE
International Symposium on Robot and Human Interactive Communication, Hatfield,
U.K., 2006

Oviatt S.L. (1999) “Ten myths of multimodal interaction” Communications of the ACM,
Vol. 42, No. 11, November, 1999, pp. 74-81

Oviatt S., Coulston R., and Lunsford R. (2004) "When Do We Interact Multimodally?
Cognitive Load and Multimodal Communication Patterns."” in Proc. of 6th International
Conference on Multimodal Interfaces (ICMI 2004), Pennsylvania, USA, October 14-15,
2004

Owviatt S., Cohen P., Vergo J., Suhm B., Holzman T., Winograd T., Landay J., Larson J.,
Ferro D. (2000) “Designing the User Interface for Multi-modal Speech and Pen-based
Gesture Application”, Human-Computer Interaction Journal, Vol. 15, Issue 04/02/2000
, pg. 263 - 322

Oviatt S., DeAngeli A. and Kuhn K. (1997) “Integration and Synchronization of [nput
Modes during Multimodal Human-Computer Interaction.” In: Pemberton, Steven (ed.)
Proceedings of the ACM CHI 97 Human Factors in Computing Systems Conference
March 22-27, 1997, Atlanta, Georgia. pp. 415-422.

Panchev C. and Wermter S. (2006) “Temporal Sequence Detection with Spiking
Neurons: Towards Recognizing Robot Language Instruction.” Connection Science, Vol
18,1, pp. 1-22.

Parlett D. (2004) “the Oxford A-Z of Card Games”, Oxford University Press, Second
Ed.

Perzanowski D., Shultz A.C. and Adams W. (1998) “Integrating Natural Language and
Gesture in a Robotics Domain™ in Proceedings of the IEEFE International Symposium on
Intelligent Control: ISIC/CIRA/ISAS Joint Conference, Gaithersburg, MD: National
Institute of Standards and Technology, 247-252, September 1998.

Perzanowski D., Adams W., Shultz A.C. and Marsh E. (2000) “Towards Seamless

Integration in a Multi-modal Interface.” in Proceedings of the Workshop on Interactive
Robotics and Entertainment, Camegie Mellon University: AAAI Press, 3-9, April 2000.

- 196 -




Perzanowski D., Schultz A.C., Adams W., Marsh E. and Bugajska M. (2001) "Building
a Multimodal Human-Robot Interface", IEEE Intelligent Systems, 16 (1), 1EEE
Computer Society, 16-21.

Rabiner L.R. (1989) "A tutorial on hidden Markov models and selected applications in
speech recognition”, Proceedings of the IEEE, 77(2), pp 257-286, 1989

Riesbeck C.K. (1986) “From Conceptual Analyzer to Direct Memory Access
Parsing:An  Overview”,  Advances in  Cognitive  Science, Chapter 8
(http://www.cogsci.northwestern.edu/courses/cg207/Readings/Riesbeck From _CA to
DMAP.pdf)

Robinson J.A. “A Machine oriented Logic Based on the resolution principle” Journal of
the ACM, 12:23--41, 1965.

Rohlfing K., Loehr D., Duncan S., Brown A., Franklin A., Kimbara 1., Milde J.-T.,
Parnll F., Rose T., Schmidt T., Sloetjes H., Thies A. and Wellinghof S. (2006)
"Comparison of multimodal annotation tools", Gespréchforschung - Online-Zeitschrift
zur Verbalen Interaktion, Vol.7, 99-123, ISSN 1617-1837

Rosner M., Johnson R. eds. (1992) “Computational Linguistics and Formal Semantics”,
Series: “Studies in Natural Language Processing”, Cambridge University Press, October
1992, ISBN 0521429889

Roy D. (2005) “Semiotic Schemas: A framework for Grounding Language in Action
and Perception”, Elsevier, Artificial Intelligence Journal, Volume 167, Issues 1-2,
Pages 170-205 (http://web.media.mit.edu/~dkroy/papers/pdf/aij_current.pdf)

Roy D. and Mukherjee N. (2005) “Towards situated speech understanding: visual
context priming of language models”, Elsevier: Computer Speech & Language, Vol 19,
Issue 2 pg 227-248, Apnl

Roy D., Hsiao K., Mavridis N. (2004) "Mental imagery for a conversational robot”,
IEEE Transactions of Systems,Man and Cybernetics, Part B, 34(3):1374-1383, 2004

Rumelhart D.E. (1976) “Understanding and summarizing brief stories” in D. LaBerge
and S.J. Samuels (eds.). “Basic processes in reading: Perception and comprehension”
Lawrence Eribaum Associates, Hillsdale,NJ,U.S.A.

Russell S. and Norvig P. (2003) “Artificial Intelligence — A modern Approach”, Pearson
Education, 2nd Ed., New Jersey, U.S.A. 2003

Rybski P.E. and Voyles R.M. (1999) "Interactive Task Training of a Mobile Robot
through Human Gesture Recognition", Proceedings of the 1999 IEEE International
Conference on Robotics & Automation, Detroit, Michigan, U.S.A, May 1999, pg 664-
669

Saunders J., Nehaniv C.L., Dautenhahn K. and Alissandrakis A. (2007) "Self-Imitation

and Environmental Scaffolding for Robot Teaching”, International Journal of Advanced
Robotics Systems, Vol. 4, Issue 1, pp. 109-124, ISSN 1729-8806

-197-



Schaal S. (1999) "Is imitation learning the route to humanoid robots?" Journal: Trends
in Cognitive Sciences, Volume 3, Issue 6, | June 1999, Pages 233-242

Schank R. (1975) “Conceptual Information Processing”, North Holland, Amsterdam.

Schank R. and Abelson R. (1977) “Scripts Plans Goals and Undersianding”, Lawrence
Erlbaum Associates Inc, New Jersey, U.S.A_, ISBN 0-470-99033-3

Sekine S., Grishman R. (1995) “A Corpus-based Probabilistic Grammar with Only Two
Non-terminals”, Fourth International Workshop on Parsing Technology

Shieber S. (1986) "An introduction to Unification-Based Approaches to Grammar"”,
CSLI Lecture Notes, Vol 4, University of Chicago Press, Chicago, I1,USA, 1986

Smith B. (2006) “Ontology: An Introduction How to Build an Ontology”, Online
Lecture,  University of Buffalo, Department of  Philosophy, 2006,
http://ontology.buffalo.edu/smith/ (visited 13/02/2007)

Sowa J.F. (2005), website “http://www_jfsowa.com/cg/cgexamp.htm”, accessed, March
2005.

Spear A.D. (2006) “Ontology for the Twenty First Century: An Introduction with
Recommendations”, Manual for Basic Formal Ontology from the Institute for Formal
Ontology and Medical Information Science, Saarland University, 2006

Spiliotopoulos D., Androutsopoulos I. and Spyropoulos C.D. (2001) "Human-Robot
Interaction Based on Spoken Natural Language Dialogue”. Presented at the European
Workshop on Service and Humanoid Robots (Servicerob 2001), Santorimi, Greece,
2001.

Steil J.J., Réthling F., Haschke R. and Ritter H. (2004 ) “Situated robot leaming for
multi-modal instruction and imitation of grasping”™ Robotics and Autonomous Systems,
Special [ssue on "Robot Learning by Demonstration”, (47), 129-141, 2004

Torrance M.C. (1994) “Natural Communication with Robots”, MSc Thesis submitted to
MIT Dept of Electrical Engineering and Computer Science.

UNECE/IFR (2005a), “2005 World Robotics Survey — Summary”, United Nations
Economic Commission for Europe/International Federation of Robotics (Statistical-
Department), UNCE Information Service, Geneva .

UNECE/IFR (2005b), “World Robotics 2005: Statistics, Market Analysis, Forecasts,
Case Studies and Profitability of Robot Investment”, United Nations Economic

Commission for Europe and Intemational Federation of Robotics, Geneva and
Frankfurt.

Weizenbaum, J. (1966) "ELIZA - A Computer Program for the Study of Natural

Language Communication between Man and Machine," Communications of the ACM 9:
36-45.

- 198 -



Weizenbaum, J. (1976) “Computer power and human reason” San Francisco, CA: W.H.
Freeman

Wang Y. and Acero A. (2001) “Grammar Learming for Spoken Language
Understanding”™, in proc. of ASRU Workshop. Madonna di Campigilo, Italy, Dec 2001

Wang Y. and Acero A. (2006) “Rapid Development of Speech Recognition Grammars”,
Speech Communication, Vol. 48, No. 3-4., 2006

Wermter S., Elshaw M., Weber C., Panchev C., Erwin H. (2003) “Towards Integrating
Learning by Demonstration and Learning by Instruction in a Multimodal Robotics™
Proceedings of the IROS-2003 Workshop on Robot Learning by Demonstration, pp. 72-
79, October 2003.

Wertheimer M. (1923) "Untersuchungen zur Lehre von der Gestalt II", published in
Psychologische Forschung, 4, 301-350, Year 1923

Wilks Y. (1973) “An artificial intelligence approach to machine translation™ article in
“Computer Models of Thought and Language”, W.H. Freeman, San Francisco, CA,
US.A.

Wimmer M, Schuller B., Arsic D., Radig B., and Rigoll G., (2008) “Low-Level Fusion
of Audio and Video Features For Multi-Modal Emotion Recognition”. In: Alpesh
Ranchordas and Helder Araujo, editors, Proc. 3rd Int. Conf. on Computer Vision Theory
and Applications VISAPP, Funchal, Madeira, Portugal, volume 2, pp. 145-151., 2008.

Winograd T. (1971) “Procedures as a Representation for Data in a Computer Program
for Understanding Natural Language”, published in three forms:

MIT Al Technical Report 235, February 1971 (http://hdl.handle.net/1721.1/7095)
Journal, Cognitive Psychology Vol. 3 No 1, 1972

Understanding Natural Language (Academic Press, 1972).

Witt A. (2002) "Multiple Informationsstrukturierung mit Auszeichnungssprachen. XML.-
basierte Methoden und deren Nutzen fiir die Sprachtechnologie", PhD Thesis,
University of Bielefeld, Germany

Wolf J.C. and Bugmann G. (2005) “Multimodal Corpus Collection for the Design of
User-Programmable Robots.” Proc. Taros 2005, London, pp. 251-255.
MuTra link: (http://www.swrtec.de/swrtec/mibl/mutra/index.php)

Wolf J.C. and Bugmann G. (2006) “Integration of visual and spoken input in robot
instructions” in the Proceedings of the European Robotics Symposium, Italy, Palermo

Wolf J.C. and Bugmann G. (2006) "Linking Speech and Gesture in Multimodal
Instruction Systems” in the Proceedings of RO-MAN 06: The 15th IEEE International
Symposium on Robot and Human Interactive Communication, Hatfield, UK., pg. 141-
144

- 199 -



Wolf J.C. and Bugmann G. (2007) "Understanding Rules in Human-Robot
Instructions" Special Session paper in the Proceedings of RO-MAN 07: The 16th IEEE
International Symposium on Robot and Human Interactive Communication, Jeju Island,
South Korea, Paper# WA2-4, pg. 714-719, Sept 2007.

Wolf }.C. and Bugmann, G. (2008) "Converting Multi-Modal Task Instructions to Rule-
Based Robot Instructions" in the Proceedings of RO-MAN 08: The 17th IEEE
International Symposium on Robot and Human [nteractive Communication, Munich,
Germany, Aug 2008.

Wolf, J.C. (2008) “The MIBL Manual”, Technical Report, University of Plymouth

Wrede B., Haasch A., Hofemann N., Hohenner S., Hiwel S., Kleinehagenbrock M.,
Lang S., Li S., Toptsis I., Fink G.A., Fritsch J. and Sagerer G. (2004) "Research issues
for designing robot companions: BIRON as a case study", In Proc. IEEE Conf
Mechatronics & Robotics, 2004.

Yanco H.A. and Drury J.L. (2004) “Classifying human-robot interaction: an updated
taxonomy”, in IEEE International Conference on Systems, Man & Cybernetics (2004)
pp. 2841-2846.

-200 -




-201 -



Table of Appendices

Appendix Al: Word Frequency in COPUS ......covvuiiierninniiinnmenesienissesneeesenessesessenssssessssnsaces 204
Appendix A2: Instructions to Subjects in Pilot......c.ccoriiinic s 208
Appendix A3: Touch Screen Instructions to Subjects in Pilot ...........cooeereeeneeverreceereenene 209
Appendix A4: Examples Of EITOIS.........cccovcrrrorininneninceeresrenesnie e sssnssssiesssstssnesesseeseeesns 210
Appendix AS: Screenshots of the MIBL Software ..........cccocoviniceeiernninneneeceseseeenressenns 211
Appendix A6: Photos of Final EXperiment........ccccveeeieveiveeieinecrenienreninisinee e seseseenenressenns 214
Appendix A7: Num. of Primitives in Card Games..........ccocovvvrvniceiiencsccsnicssivnenriennnnesens 215
Appendix A8: GIAMMAT ..c..oieeiveiiiiiii it sresse e sr s s e e e s esse st e e smnase s ssasen 217
Appendix A9: Part of Prolog Code: unify_and_learn...........ccocoveiieniiiniiecesncenenenrennenns 224
Appendix Al0: Thesis LOZ....cvevieimrimnniinniniiiiiicssssissiiisssiis s s esecsesassesssssas 225
Appendix A11: Noun Phrase Anaphora (ref-res.pl ) ......cccecerrnccicrnrensnsesermnenenicierernssennns 226
Appendix A12: Dealing Playback Exp. E3.1.....c.oreeertereerrcsecneere e 229
Appendix Al3: Pilot GIammar.............ccvoiimrerniininsiese e s s ssssss 231
Appendix Al14: MIBL Manual...........o.ooremiicniiitiicsiennitsenmni s cssssscsssesssstssssrnsessses 233

-203 -





















Appendix A4: Examples of Errors

<error_tdm> wrong dialogue move of teacher

<tv t="8659" until="8687">

the jack is worth ten

<recognised>the jack is worth ten</recognised>
<attempt/>

</tv>

<sv t="8805" until="8815">
<speak>did you say the jack is worth ten? </speak>
</sv>

<tv t="8837" until="§927">

no <operator>for once it undestands me and i am telling it the wrong thing</operator>
<recognised>no and take one yours one tens in to me those any zerc to me this jacks your place
to me</recognised>

<error_tdm/>

</tv>

from sub0&iry 1.xml
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A transcription tool (Wolf and Bugmann, 2005) was designed that allows producing XML files
including gesture and speech act timings. The entries on gestures were generated automatically
using a recognition method described in the next section. The transcription of speech was done
manually by adding speech tags to the gesture tags. The analysis of the corpus is not complete yet.
This paper reports on data covering only the initial phase of the game instruction: how to deal cards.

3. Gesture recognition

In card games, gestures can be pointing gestures, gestures moving cards from one place to another
(e.g. stack to table, hand to table), re-arranging gestures (making a group of cards look tidier) and
turning over gestures. A touch screen operates as an additional mouse to a computer. The effect of a
user touching the screen is signalled as a mouse button-down event. Moving cards on the touch
screen Is intuitively done by touching the card and dragging it to another position. The resulting
data is a trail of X, Y coordinates of where the card is going. In case of a real service robot, this
tracking data of cards on the screen could be the output the service robot’s vision system.

The “analogue” trail of X, Y data of a cards position is then registered as a movement from a start
area to a destination areas e.g. move(pile, templ). The areas numbers and their boundaries are
defined from observations of where the movements of the players usually end, namely: stockpile,
table, handl, hand2, temp| and temp2 (figure 2). The stockpile’s position is set by the system.

Figure 2. Areas defined on the touch screens. Temp!l and Handl are on the teacher’s side. Temp2 and
Hand2 are on the student’s side. The teacher and the student can only see and manipulate cards in their
hand area.

The categorization of areas is a straight forward comparison between coordinates and area
boundaries. An analogue belief system, see Roy, D. (2005), could be used instead in a real service
robot, if the vision system output coordinates are noisy or if there are no clear cut boundaries. In our
experiment it was found that a statistical categorization is not required, in other cards games
however, the situation can be more complicated. Within a move of a single card, users sometimes
stop and then continue to move the same object until it reaches its final location. This is meant to be
a single move by the user, but how can the robot recognize that? The strategy used here is to wait
untii the human picks up another object, which automatically imphes that he has finished with the
previous one. This is generally true with a touch screen, where there is only a single mouse cursor.
With real vision, a better method might be to use a timeout.

Gestures which the same start and destination position are pointing gestures. Gestures with
the same start and destination area are re-arranging gestures. Gestures with different start and



destination arcas are card displacements. Gestures are recorded in a transcription file in XML
format including time of start and end of movement, pfayer doing the move, card identity and start
position and destination, such as for instance:

<objmove (="2416" user="t" ID="D/5" from="+Table+Stock" to="+Temp2" until="2442"></objmove>

4. Synchronizing visual and auditory input.

In the transcriptions of the human-to-human dialogues, utterances and gestures are grouped together
by the operator doing the transcription. This provides reference data, in order to design a system
that can automatically group utterances with gestures. The challenge here is to pair automatically
the correct gestures with the correct utterances. In the domain of card games we found that most

often a single utterance U, was associated with several actions G,,G,,G,,... forming a group of

actions. Groups of actions, such as dealing 3 cards, are characterized by short time delay separating
individual actions. Figure 3A shows that most actions in a group are separated by less than 2
seconds. However, the time intervals between groups are very short too, and time intervals between
groups (end to start) are often smaller than 2 seconds (Figure 3B). Therefore, groups can not
reliably be identified on the basis of time intervals. A safer and reliable method is to group actions
according to their start and destination areas and to the type of action performed on the cards (see
e.g. table 1). The end of a group of actions is identified either from the start of a new group of
actions, or from a time-out of 2 seconds (from figure 3A).
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Figure 3. A) Histogram of time intervals between individual actions in a group of actions. B) Histogram
of time intervals between action groups {gestures).

The second question is how groups of actions (which we will call a “gesture”) can be associated
with the corresponding utterances. The speech recognition engine (NUANCE 8.5) provides the
times of start of speech and the times of end of speech. The same information is provided for
gestures using the method cited above. Thus, we explored the possibility to associate gestures and
utterances by comparing their relative timings. Gestures tend to start either before or after speech in
equal proportion (Fig. 4A). However, gesture rarely starts after speech ends (Fig. 4B). Figures 4A
and 4B show that the first action in a group usually occurs later than 5.5 seconds before the start of
speech and not later than 4 seconds after the end of speech. This time “buffer” at each end of the
utterance (see figure 5) can unfortunately not often be used to assign a start of gesture to its
utterance. The reason is that the time interval between utterances (end of the previous to the start of
the next) is generally smalter than 9.5 second (4 + 5.5) (Fig. 4C) and buffers belonging to different
utterances generally overlap. Observation of the instruction process shows that the teacher never
pauses for a long time, producing a nearly continuous flow of words and actions. This is especially
true of instructions of the dealing phase. Thus, the time periods where buffers do not overlap (e.g.
penod B in figure 5) are relatively short. Only 40% of gestures start during this non-overlapping
period and can be unambiguously paired. The start times of the remainder of the gestures fall into
area A (figure 5) where pairing is uncertain. More elaborate rules of pairing are required. For




instance, additional information may be obtained from the timing of the end of the gesture. One
observation might be of interest. Figure 4D shows that the end of a gesture always occurs at least
1.6 second after start of speech. In other words, subjects sometime start the gesture well before
speech, but always start speaking before the paired gesture is completed. Unfortunately the reverse
is not true. In several cases, subjects started a new utterance before the gesture related to the
previous one had ended. Therefore, the timing of end of gestures does not immediately appear to be
helpful to decide the pairing between gesture and utterance. To assess if relative timing carries
useful information at all, we attempted to assign gestures starting in period A (figure 5) to the
nearest utterance. This resulted in a total of 83% correct pairings (including the 40% correctly
paired in time period B). This shows that timing contains significant information exploitable for
pairing. However this result is of little practical use, as pairing errors are bound to cause serious
problems in instruction understanding. What is needed 1s a pairing system that either produces a
safe pairing or signals its uncertainty.
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Figure 4: A) Histogram of the time intervals between start of specch and start of the first action in a
group. B) Histogram if time intervals between the end of specch and the start of the first action in a group
of actions. Only groups of actions associated with the speech event are plotted. C) Histogram of time-
intervals between speech events {ecnd of previous to start of next). D) Histogram of time difference
between end of the last action in a group and the start of speech.

At R o Aty
....... ;‘.-----.'. el
U, U, U;
P Aty N
....... B. [Ep———

Figure 5: Illustration of overlapping time windows. Three utterances Ul, U2 and U3 define each a time
widow Dtl, Di2 and Dt3 which extend the utterance duration by 5 scc before its start and 4 sec after its
end. During the time span A, overlapping time windows make it impossible to assign gesture to cither Ul
or U2. Only during time span B can a gesture reliably be assigned to U2, based on the start time of the
gesture.



5. Semantic representation and role of gesture

Card games typically consist of three phases: dealing, playing and a post-game phase where players
count their points. In this paper we focus on the explanations covering the dealing phase. Table 1
shows an example of how verbal instructions and gesture are combined in such explanations.
Dealing explanations comprise a sequence of actions, in contrasts to play instructions which include
mainly rules (not shown in this paper). In the card game Scopa, which was used during corpus
collection, every player gets three cards and another four cards are dealt face up on to the table. All
subjects described dealing as a sequence of six steps (see e.g. table 1). In the MIBL corpus it was
found that all teaching proceeds via spoken instructions accompanied by simultaneous execution,
making descriptions of actions much more detailed, and easier to understand for a human or robotic
student. The role of gesture 1s often to specify spatial coordinates of verbal instructions (e.g.
instruction 2) or to resolve references such as “these” (e.g. instruction 4), as also noted by other
authors (e.g. Perzanowski et al., 2000).

Do as I do. A curious problem with task instructions in unconstrained spoken language is
that the speaker uses interchangeably “I”, “you” and “we”. This appear to come from the fact that
the teacher is demonstrating and expects the robot to copy his/her behaviour in most cases. To some
extent, the availability of an example to follow appears to require less linguistic rigour from the
teacher. It is likely that instructions given over the phone would be much more precise. A formal
linguistic analysis is bound to meet serious problems here, but this is not the topic of this paper. It
appears that, at least in the dealing case, it could be a good strategy to ignore most of the speech and
learn to mirror the teacher’s actions. Only is cases where cards are invisible to the student (in area
handl) would speech processing provide necessary information. Practical implementation will
verify if this is possible. Indeed, in explanation of the rules of the game speech cannot be ignored.
Further analysis of the corpus will clarify this.

6 Concluding comments

The presented data show that gestures can start before, during or after an utterance within limited
time windows, but never end before the utterance starts. Simple pairing rules based on parts of these
data produce correct pairings for 83% of gestures. This is encouraging given the complexity of the
situation analyzed here, characterized by a free flow of gesture and verbal instructions. For practical
applications however, different characteristics are demanded from a pairing algorithm. It must
either given a correct pairing, or signal it inability to provide a pairing. In the latter case appropriate
repair dialogues can then be initiated. Another issue to be considered is the fact that dialogues with
robotic systems are likely to exhibit different timing characteristics than the ones between humans.
These may show a simplification of the pairing problem. Otherwise, and depending on the causes of
the difficulty, one may have to introduce timing constraints on the sequence of speech/gesture
through dialogue strategies. Another avenue is to exploit the semantic analysis of the speech to
identify paired gesture.

Once utterances and gestures are paired, they can provide complementary information, as identified
in other works. However the quality of speech in terms of grammatical rigour appears to be very
poor here, certainly poorer that in the IBL corpus where gestures were not allowed. In this case, it is
possible that this bears no consequence, as it may turn out that most leamning can be done by
imitation. In task instruction, there is a fixed amount of information to communicate and user may
just “spread” that information across modalities. Thus, multimodal communication may not always
carry more information than unimodal information.
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Table 1. Example explanations of the dealing phase. The table shows utterances spoken by the teacher, related gestures and meaning of the combined input. Some details are
discussed in the text. Times are given in 1/10™ of a second.

No  Text-03 Gestures Semantics
1 I Hl just explain how you deal the cards <tv t="2396" until="2428"> gamestate = learn_dealing
2 er what you do is first of all is <objmove t="2416" user="t" ID="D/5" from="+Table+Stock" to="+Temp2" until="2442"/> start_learn_sequence(seq?)
er you take three cards for <objmove t="2446" user="t" ID="C/2" from="+Table+Stock" to="+Temp2" until="2460"/> set1 = D/5,C/2,H/QQ and owner(set1,robot)
Yourself
<tv t="2431" until="2477"> <objmove {="2463" user="t" ID="H/QQ" from="+Table+Stock" to="+Temp2" until="2477"/> seql_step1 = goal{move set1 from stock to temp2)
3 face down and ill take three <objmove 1="2482" user="t" ID="D/QQ" from="+Table+Stock" to="+Temp1" until="2496"/> set2 = D/QQ,D/KK,D/AA
<tv t="2486" until="2513"> <objmove {="2499" user="t" ID="D/KK" from="+Table+Stock" to="+Temp1" until="2510"/>  seq1_stap2 = goal( move set2 from stock to temp1)
<objmove t="2512" user="" ID="D/AA" from="+Table+Stock" to="+Temp1" until="2522"/>  owner(set2,human)
4 you take these into your black  <objmove t="2531" user="t" ID="D/QQ" from="+Temp1" to="+Hand 1" until="2544"/> Ref. Resolution: “these” = set1
Area <objmove t="2547" user="t" ID="D/KK" from="+Temp1" to="+Hand 1" until="2567"> seq1_step3 = goal(move set1 from temp2 to hand2)
<tv 1="2540" until="2563"> <objmove t="2570" user="1" ID="D/AA" from="+Temp1" to="+Hand 1" until="2577">
5 S0 you can drag them down Ref. Resolution: “them” = sel1 , hence “down"=hand2
<tv ="2564" until="2575"> no action required, already done
6 and then er turn them over <objrot 1="2599" user="{" ID="D/AA" roty="0" /> Ref. Resolution: “them" = set1
<tv t="2606" until="2627"> <objrot 1="2644"-user="t" ID="D/QQ" roty="0" /> seq1_stepd = goal( turnover set1 )

<objrot 1="2613" user="t" ID="D/KK" roty="0" />

Ref. Resclution: “them” = set1

7 so you can see them and obviously i cant see them <tv {="2660" until="2675"> (this sentence can be used for confirmation)
The card is not mentioned and didn't change
8 <pbjmove t="2580" user="t" ID="D/AA" from="+Hand 1" to="+Hand 1" until="2582"/> location. Therefare this move is unimportant
9 and then whal we do next is er <tv t="2680" until="2704"> - {_supports we are still in seq1) l
10 put four cards face up on the <objmove t="2695" user="t" ID="H/2" from="+Table+Stock" to="+Table" until="2715"/> set3 = H/2.D/3.C/KK DiJJ

Table <objmove t="2719" user="t" ID="D/3" from="+Table+Stock" to="+Table" until="2736"/>
<tv t="2708" until="2760"> <objmove t="2740" user="t" ID="C/KK" from="+Table+Slock" to="+Table" until="2753"/>
<objmove t="2668" user="1" ID="D/JJ" from="+Table+Stock" {o="+Table" until="2692"/>

seq1_step5 = goal( set3 cards from pile to table)

Ref. Resolution: “those” = set3
seq1_stepB = goal( turnover set3 )

11 soill just turn those over <objrot t="2808" user="t" |D="D/JJ" roty="0" />

<tv 1="2821" until="2834"> <objrot t="2820" user="t" ID="H/2" roty="0" />
<objrot t="2832" user="t" ID="D/3" roty="0" />
<objrot t="2844" user="t" ID="C/KK" roty="0" />




Linking Speech and Gesture in Multimodal Instruction Systems

Joerg C. Wolf, Student Member, IEEE, and Guido Bugmann

Abstract—This paper analyses the timing of gesture and speech
acts in a corpus (MIBL) of free-flowing human-to-human
instruction dialogues. From there, an algorithm is proposed to
establish the pairing between speech and gesture of the
instructor. It is shown that correct pairing requires timing and
semantic information. Further work will explore the use of this
algorithm in uncenstrained free flowing multimodal instruction
dialogues between human and robot. A brief overview of a
robetic system is given, that is able to learn a card game from a
human teacher.

I. INTRODUCTION

N the future, service robots should be programmable by
anybody interacting with them. There are far too many
possible tasks for the robot to be pre-programmed
completely and users want to change the robots behaviour to
their individual preference [!1]. Users may not be experts in
programming Therefore “programming™ of service robots
should be done in the language of humans. Humans teach by
step-by-step task instructions. So the robot becomes a student
and the human an instructor who teaches it. What do humans
do when they teach? Humans teach by speaking and
demonstrating. Therefore a service robot must be designed to
understand natural language and demonstrations, in the
domain where it is going to be taught. Looking at cxamples
how humans teach is best done by collecting a corpus. This
approach is called “corpus-based robotics” [1,2]. In
corpus-based robotics, the interaction between human-teacher
to human-student is analysed and the human-student is then
replaced by a robot-student. A corpus provides the researcher
with all the information required to design the robot to cope
“with unconstrained flow of speech and gesture
(demonstrations).

So far our research group has investigated two corpora, one
in the Instruction Based Learning project (IBL) and one in the
Multimodal IBL project (MIBL). There are only few
multimodal corpora aimed at human-robot interaction studies
[3]. The IBL corpus contained route instructions mainly
composed of sequences of actions. In the current project
(MIBL), we focus on instructions also containing rule
specifications. These are found frequently in  game
instructions. Using the same corpus-based method, we started
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Communications and Electronics, University of Plymouth, Drake Circus.
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with recording card game instruction dialogues between a
teacher and a student. The teacher could demonstrate actions
using a touch screen (figure 1) and all movements on the
screen were recorded. The aim of this work is to develop a
system capable of understanding such game instructions, build
them into an internal representation and subsequently play the
game with the user/teacher. In the chosen setup, the robot
needs neither artificial vision nor effectors, as it can “see”
cards moved on a touch screen and can play by moving cards
on the touch screen. It allows concentrating the research on the
leamning process.

The plan of this paper follows the main development stages
of the MIBL card-game leaming system. Scction 1] describes
the corpus collection and its analysis. This includes an
identification of functions referred to in utterances. It also
includes an analysis of the type of gestures found in the
corpus. Section III focuses on the process of determining
which speech events correspond to which gesture events. In
free flowing human-to-human instructions, these events start
and end at different times and a combination of timing and
semantic rules are required to achicve perfect pairing. Section
IV proposes a system implementation based on the current
findings. Section V concludes.

H. CORPUS COLLECTION AND ANALYSIS

A. Corpus Collection

The MIBL corpus was collected by recording dialogues
between a person who already knows a card game (teacher)
and another person who doesn’t know the card game, using
the setup shown in the figure below.

Fig. 1: Corpus collection setup. The instructor on the right moves a card
on the touch screen. The leamer sees a copy of the move on her screen.



In card games, gestures can be pointing gestures, gestures
moving cards from onc place to another (e.g. stack to table,
hand 1o table), re-arranging gestures (making a group of cards
look tidier) and turning-over gestures. The separation panel
between instructor and learncr force the gesture component of
the communication to take place via the touch screen and can
casily be recorded. Each screen has a small “private™ black
band representing the hand of the player. The larger green area
represents the table and is shared by the two players.

The dialogue was unconstrained; the participants were
allowed to describe the card game at their own pace in their
own words.

Transcription was done using dedicated multimodal
transcription software called MuTra [4]. MuTra generates
XML files with uttcrances and gesture content and timing.
Table 1 shows information extracted from transcription

files. Ui are the utterances and Giare the gestures (from the
touch screen). So far we have only analysed explanations of
the dealing phase of the game.

TABLE |
EXAMPLE DIALOGUE (SEssIon 03 FrRoM MIBL CORPUS)
N Time in i1 lext ture semantics

0 10th sec. ulierance lext or ges i
uo 2396-2428 [ will just explain how you deal the cards”
ul 2431-2471 “er what you do first of all is..

er you deal three cards for yourself™

Gl: 2416-2477 mave({D/5,C/2 H/QQ, Stock , Temp2)

Uz 2486-2513
G2 2482-2522
U3 2540-2563
G3 2531-2577
u4 2564-2575
us 2606-2627
Gs 2599-2644
uUé 2660-2675
u7 2680-2704
us 2708-2760
G8 2668-2753
ug 2772-2718
Ulo  2801-2815

“face down and 1 will take three™
move(D/QQ.D/KK.D/AA, Stock , Temp!)
“you take these into your black arca™
maove(D/QQ,D/KK.D/AA. Temp1.Hand!)
*'s0 you can drag them down™

“and then cr turn them over”
wm(D/5.C/2,H/QQ)

50 you can sec them and | can’t see them™
“and then what we do next is er”

“put four cards face up on the table”
move{H/2,D/3,C/KK,D/}) stock lable)
“yep just four on the table™

“yeh and three for each player”

ull 2821-2834 “s0 § will just tum those over”
Gil 2808-2844  wm({H/2.D/3.C/KK.D/IJ)
U1z

see text for explanations

B. Analysis of speech transcriptions

The corpus provides all information required to write a
grammar and tune specch-recognition software. Currently a
statistical language model has been trained with the corpus
using NUANCE 8.5, a user independent speech recognition
system.

Analysing the utterances of the transcriptions also reveals
primitive procedures that the robot has to be able to carry out
(the robot’s “prior knowledge™). Such “language primitives”
are specific to the level at which humans communicate with
cach other. They can constitute complex robot procedures
which may require the use of micro planers (see section IV).

The following language primitive have been identified i
the dealing phase:

atart_of_ segquence (name)
end_of_sequence ()

deal {objects, amount, target)

move {objects, amount, source, target)
turn{objects)

owner (objects, player)

visible (objects, player}

count (objects, amount}

For instance U3 from the example above would need o b
mapped onto a function call of the form:

move {objects=these?, num_of_ cards=3, target=hand2)

Many of these primitives can only be completely specifie
and resclved using a combination of speech and gestur
information. For instance the primitive function of U
contains a “these” which can be resolved by the object
identified in the gestures.

C. Analysis of gesture transcriptions

Raw gesture data are a trail of X, Y coordinates of wher
the card is positioned on the touch screen. In case of a rea
robot, such tracking data could be the output the robot’s visio
system. The “analogue™ trail of X, Y data of a cards position i
then registered as a movement from a start area to
destination arca ,e.g.

move(H/2,D/3.C/KK.D/l) stock.table).

Where “stock™ is the source screen area and “table™ is th
target area of the cards. These areas, namely: stock, table
handl, hand2, temp! and temp2 divide the screen. The area
numbers and their boundaries are defined from observation:
of where the movements of the players usually end. Thes
areas are currently simple squares and gesture labelling i
straightforward [7]. If a vision system were to be used, th
added uncertainty could call for the use of more comple
probabilistic methods [5,6].

In general, gestures taken alone do not constitute
complete specification of the instruction. This is probably no
true for the dealing phase where simply copying the gesture
(without language) would be sufficient for the robot to dea
correctly. However, in later phases of game instructions, suc
as in winning a trick, gesturcs only constitute examples, wher
objects of action are to be specified in general terms by th
content of the spoken instructions. Therefore it is important t
determine which speech act corresponds 1o which gesture.

Sections II B) and Il C} have argued that language o
gestures alone do not carry a complete message. Speech an




gesture arc acquired through different channcls and must be
re-associated to reconstruct or determine the complete
meaning of a message. In the next section we cxploit the idea
of using temporal synchronization of speech and gesture.

IIl1. LINKING SPEECH AND GESTURE

A. Pairing of speech and gesture

A detailed analysis was carried out measuring the timing
between gesture and speech of the teacher [7]). The MIBL
corpus shows that verbal instructions are always in the same
order as the corresponding gestures. Timing histograms
(Figure 2,3) suggest the design of a pairing algorithm based on

the maximum time-difference between
start-of-speech/end-of-speech and start-of-gesture.
Start of Speech A

6' #
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Fig 2: Histogram of the time intervals between start of speech and start of
gesture.
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Fig 3: Histogram of time intervals between the end of speech and the stan of
gesture. Only gestures associated with speech events are plotted.

Figure 2 shows that gestures never start more than 5.5 sec
before speech starts. Figure 3 shows that gestures ncver start
later than 4 sec after corresponding speech ends. These
observations suggest that a time window around the speech
duration could be used to group speech and gesture (Figure 4).
The time window borders are based on the maximum extend
of the histogram.,

G11 G12

-
>

time

Fig. 4: 'This ligure shows three incoming utterances and two incoming
gestures. The grey areas show the maximum pairing range of the utterance. I’
a stan-of-gesture falls within that range, it is a candidate for pairing with the
utterance.

However, care must be taken with such grouping rules
because time windows generally overlap.

Therefore, filters designed for grouping utterance-gesture
groups can often only narrow down the candidates for
grouping, but not solve the grouping problem completely.

In the example figure 4 U12 is clearly a candidate for G12,
there is no confusion. U10 and Ull however could both
belong to G11. In this ambiguous case, semantics must be
used. In a first attempt the Gesture is assigned to the nearest
neighbour utterance. In the MIBL corpus, this results in 83%
correctly grouped cases.

The analysis of the | 7% erroneous groupings revealed that
they occur systematically with utterances which point to
incompatible language primitives. For instance, in figure 4,
when trying to pair G11, U10 is a reply to a question from the
student and therefore not related to G11. U10 does not refer to
the primitive curn (objects) .

Using timing alone pairs U10 with G11, while semantic
filtering, as just described, eliminates Ul0 from the pairing
candidates. Inspection of the corpus indicates that this
algorithm can achieve perfect pairing.

B. Semantic integration of Speech and Gesture

Once specech and gesture is paired, semantic integration
must take place. Work is currently underway to develop
first-order predicate logic statements that carry out the
unification, although temporal logic could be considered as
well. A Prolog rule that compares the parameters of the
language primitive to the parameters of the gestures is at the
corce of the mechanism. The following 4 cases can occur as a
result of pairing:

1) Completion:
A gesture and an utterance are individually incomplete, but
complelc cach other.

n, =1, all variables are resolved

2) Confirmation:
A gesture and an utterance are individually complete. When
combining they match.

n, =1, no variables cxist



3) Contradiction:
The gesture supplies contradicting semantics when compared
io the utterance.

n. =0
4} Under-specification:
The gesture and language combined arc still semantically

underspecified. Therefore several possible candidates are
returned.

n,>1

Where A, is the number of solutions of the Prolog rule.

Note that the completion-case can be used 1o do reference
resolution. In the MIBL corpus, a specific set of cards is often
co-referred with “them”,”these” or “those”. This part of the
systemn is not discussed in this paper.

IV. PROPOSED SYSTEM

Shown in figure 5 is an overview of the system
implementing concepts described in previous sections.
Interestingly, Perzanowski [8,9] produced a similar system
proposal independently.

Teacher Uttera?) Gesture f

Natural Language Recognition

Gesture Recognition &
Semantic Interpretation

r

Semantic Interpretation

2

Timing
& Semantic Mapping

Micro-Planer

y

assertion
l Robot Action

Fig. 5. Multi-modal input processing in the MIBL robot.

We are currently using a statistical language mode] for the
language recognition. A
cxtracts the semantics.

A multithreaded application (one for gesture and one for
speech recognition) forwards information to the Timing &
Semantic Mapping process. The semantics are unified and the
micro-planer is consulted.

robust interpretation grammar

The micro-planer produces a detaiicd plan of what the robo
should do. Sentences such as “take out all the eights, nines an
tens from the deck”, are one primitive to a human, but requir
a variety of robot-actions to be carried out at the low icvel (i.e
moves and comparisons). The micro-planer is a proble
solver which returns the steps required for the robot 1o achiev
the language-primitive. If a single solution-path is returned
the problem is solved. The path is executed if needed, an
stored if the robot is in its learning phase.

The resultant plan can be a robot action or a change in th
knowledge base. Robot actions range from moving cards t
replying to the user via a text-to-speech processor.

V. CONCLUSION

The work shows that it is possiblc 10 pair spcech an
gesture as occurning in unconstrained human-to-hum
instruction  dialogue. The proposed pairing algorith
combines timing and semantic information. Further work wil
explore if this algorithm allows unconstrained free flowin
multimoda!l instruction from human to robot.
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Converting Multi-Modal Task Instructions
to Rule-Based Robot Instructions

Joerg C. Wolf and Guido Bugmann

Abstract—While frame-based representation of knowledge is
a well known concept [L,2], its application to verbal rule
instructions poses a number of problems. This paper describes
how verbal instructions can be converted (mapped) into a
frame-based representation, to form a base for reasoning and
carrying out robot actions. Furthermore the paper introduces
idea of corpus-based robotics, which supports the design of
natural human-robot communication systems. An application
and experimental results to the scenario of teaching a card-
game are shown,

I. INTRODUCTION

ATURAL communication between people using
speech and gesture is part of our daily live and we are
oblivious to how complicated the mechanisms are that are
involved. If a person would like lo communicate in the same
way to a robot, with the same speed and level of language
natural communication to robots becomes a hard problem to
solve. In this paper we hope o present some solutions which
can bring us closer to solving this problem.

A particularly useful scenario for future human-robot
communication is teaching a task that the robot should be
able to perform afterwards. The main advantage of natural
task instructions is that it removes the need for the users
training and the need for thick manuals, making service
robots  programmable by everyone with normal human
communication ability.

Related work in the human-robot teaching scenario has
been carried out by [3,4,5]. In these works the emphasis is on
crealing natural or near lo natural human-robot teaching
interfaces for service robols in a realistic scenario. The user
of the interface treats the robot as a competent learner that
can understand the task after a single demonstration.

A. Corpus-Based Robotics

The idea of Corpus-Based Robotics is borrowed from
Corpus Linguistics. In Corpus Linguistics text is collected
into a database called a “corpus”. These fexts can also
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consist of transcribed spoken dialogues. The strength of
Corpus Linguistics is that the actual use of language can be
investigated as opposed to the traditional study of language
structure [18]. Similarly Corpus-Based Robotics also uses a
corpus to determine the language and gestures used when
interaction between a human and a robot takes place.

The point of deparure for creating such natural
communication with robots is corpus-based robotics (CBR).
In corpus-based robotics, human-to-human instructions are
recorded and used as an information source and guideline for
the design of the robot. The recorded corpus can be multi-
modal and contain speech and gestures in form of sensor
data. This speech and data is then mapped 10 primitive
functions that the robot can carry out. This paper describes in
section IV the mapping of speech and gesture to primitive
functions and from there into a frame-based reasoning
system.

These primitive functions are high-level functions referred
to in the human language, not action primitives devised by
robot designers. We have found that a clause in an utlerance
usually contain one primitive, derived from the main verb.
The noun-phrases contain parameters of the primitive. These
primitives are often complex procedures in the robots lower
level structure. In order to successfully perform the
primitive, the implementation requires appropriate
algorithms and hardware. Ultimately, the corpus tells the
robot designer what is required. This is therefore a corpus-
based design process.

1) Robor Grammars, a logical consequence?

Linguistics is divided into corpus linguistics and
structural linguistics (in “structural linguistics™, sentences are
built from a grammar)., The same division could be
hypothesized in robotics, where corpus based robois is
opposed to structural robotics. In structural robotics, the
robot is build from components. For example, a part of a
robot-grammar of structural robotics could be:

robot ->
acruators ->
drive hardware ->

sensors processing_unit actuators
drive_electronics drive_hardware
wheel gearbox shafr-encoder

Whereas in corpus-based robotics, the utterance “drive
forward” would create the need for a drive hardware design

586



TABLEI
LINGUISTICS CONCEPTS APPLIED TO ROBOT DESIGN

B. Example Conversation

Symbol Corpus Structural TABLEN
EXAMPLE DIALOGUE (SEssioN |1 FROM MIBL CORPUS)

Linguistics | Corpus Based Linguistics Structural Linguistics » Time

( has Corpus of words ) { has linguistic Grammar ) & 'mean utterance texi Or gesture semantics

= 10th sec.

Robotics Corpus Based Robotics Structural Robotics Tu | 1588-1619 :and er this is how the game goes um”

{ has Corpus of functions) | { has rabot-function grammar ) TU | 1622-1686 what you have to do is er if you can you take

one card from your er three cards”

2) Previous work on Corpus-Bused Robotics

In previous work, our research group applied corpus-
based robotics to a route instruction scenario (the Instruction
Based Leaming project (IBL) [6]). In the IBL project the
robot was able to navigale its way through a model 1own,
after a human instructor explained the path. The set up for
the IBL project did not consider gestures. The primitive
combinations found were purely sequential. Neither
conditionals nor loops where found. Therefore a new
scenaric was needed to include these other components of
instructions. Teaching a card game includes actions (and
gestures), and conditional primitives (game rules), and is a
flexible test bed, since the robot could learn different games.
The results are described here.

II. Corprus COLLECTION

A. Procedure

Corpus collection has been described in detail in [7]. We
summarize the main points here. We have collected a corpus
of 21 instruction dialogues between a human teacher and a
human student. The teacher explained the card game Scopa.
An initial instruction session was followed by one or two
games during which the instructions were refined. We report
here on the initial instruction phase. Subjects did not know
the selected ltalian card game, but had prior knowledge of
card games. The setup is shown in Figure . The subjects
explained the game to each other in a long chain, whereby
the last student becomes the teacher for the next student.

Fig. 1: Corpus collection setup. The instructor on the right moves a
card on the wouch screen. The leamner sees a copy of the move on her

TU | 1688-1742 “and you have to either like Im doing here
you cither match it with a card on here”
TG | 1739-1756 move(D/37,+1able+lablc)

TG | 1715-1735 move(C/07,+hand [ ,+lemp1)

SU | 1740-1747 “ok

TU | 1914-1975 "s0 in my case what | have done there is |
have put the seven in and therefore 1 have
won that seven”

TG | 1931-2000 | move(C/07.+hand|,+1empi)

move(C/07,+lempl . +templ)

move(D/}7 +1able,+emp1)

“which means that 1 have won that er”

turn (C/07",up)

] have won those cards there and now you
will down 1o the three and then iis your go”
move(C/07" temp " sidel”)

move(D/07" lempl”,sidel”)

The 1able shows a typical example of instructions found in the corpus.
T=human teacher, S= human student, U=verbal uulerance,
G=gesture / action

TU | 1976-2024
TG | 2007-2007
TU | 2027-2060

TG | 2018-2045

C. Language Primitives

Analyzing such instructions leads to the definition of
following semantic classes that will need to be identified by
the speech recognizer {Table Il1). We are using Nuance(TM
which supports semantic grammars mapping directly from
speech to any desired output using slot filling.

Each utterance of the corpus is divided into linguistig
clauses. For each clause a grammar rule was created
mapping it to a primitive. For more information on thi
procedure see [8]. The primitives are extracted manually b
carefully looking through the corpus and taking notes until 1
final format of the primitives has been found. |

We may note several features of the instructions:

¢  They contain procedural instructions “first you deal”

e They contain declarative factual instructions *“a king is
worth X

s They contain declarative rule instructions “‘that is how
you can capture a card”. These are often in the form of
sometime hypothetical examples that the student needs
to generalize.

¢ They contain imperative commands “you do this until
there are no cards left” These can also be interpreted as
a statement of the goal of the game.

587




TABLEl
IDENTIFIED LANGUAGE PRIMITIVES
E: IID,/ Language Pomitve

(act D value(cardname, value)

fact D | exisy( cardname ) / not_exist (cardname }
conditional D ifcond(how. what, lhs. rhs, rhs... .}
conditional D ifloc(cardname, location)
conditional 4 until(...)

context D new_case()

context D typc(imaginary / real )

action P move(cardname, amount, from, 10)

aclion P turn{cardname)

Table listing the primitive functions found in the MIBL corpus.
D=Declarative primitive, P=Procedural primitive

Human instructions arc constructed for a listener with
human reasoning capabilitics. Indeed, the instructions found
in the corpus reflect the assumption that human leamers have
reasoning capabilities and prior knowledge. For instance, the
instructions contain no instruction on how to use the
declarative information (marked with D in table II1). The
teacher assumes that the card-game experienced student has
the capability to reason using the acquired knowledge in
order to decide the next move during the game.

This means a useful future service robot should have an
adult-like (experienced) prior knowledge of the domain, for
maximum efficiency during instruction receiving. The key is
that adult-like prior knowledge is achievable in a specific
domain, but so far not in “general” terms. In addition, a robot
able to use such instructions would also needs human
reasoning capabilities. However, in a particular task domain,
represented by a given corpus of instructions, a robot does
not necessarily need to emulate all forms of human
reasoning. Current models of human reasoning also show
such task specificity. An investigation into the required
computational approach is required to determine the right
framework.

The problem in designing a learning robot is the selection
of a suitable representation of knowledge and of operations
that can be performed on thal representation.

1II. COMPUTATIONAL APPROACH

A. Issues

In order to organise knowledge from natural language,
Minsky [1] and Schank and Abelson have presented
pioneering work in their book *‘Scripts Plans Goals and
Understanding™ {2]. In this case very domain specific frames
and scripts where holding the information about a story.

Models designed to reproduce human problem solving in
the domain of logic games (chess, mathematical puzzles) all
use some form of production rules, that specify the
conscquence of an action performed on a given initial state.
These are defined in discrete state spaces suited for the
domain. Through the use of an inference engine, the required

transformation steps required to achicve a goal state can be
determined. These models include the General Problem
Solver (GPS from Newel and Simon {9]), SOAR [10] and
ACT-RI1].

For modclling  time-constrained  decision-making
processes (c.g. of nurses, rescue workers or military
commanders) computational models of recognition-primed
decision making were developed [12, 13]. These proceed by
selecting initial actions from a library of solutions applied in
similar situations. Then, by forward-chaining they evaluate if
the initial step can lead to the desired goal.

When modclling how students arc able to solve a new
problem by analogy with a known cxample, models of
anatogical problem solving are used [14]. Such models use
some form of spreading activation between problem
representations.

The declarative form of some of the game instructions
(marked with D in table III) requires the use of a problem
solver of some form. As game instructions essentially define
actions in a discrete state space, problem solvers developed
for mathematical puzzles are good candidates. Early work on
robot instruction was based on SOAR. The Instructo-SOAR
system [15] was able to handle the types of instructions listed
in table 111. 1t was however restricted to typed text input and
could not handle rules explained over multiple utterances.

In order to store knowledge that can be generalised easily,
we also investigated ontological reasoning. [16]. By using
is-a and has-a and instantiation relations, a hierarchical
representation of the robots world can be created. See [8].

For storing and reasoning with the card-game instructions
from the teacher, we decided to store all knowledge gained
from the instructions into frames, which are part of ontology.
{see rule-frames in thc next chapter) This well structured
knowledge then provides the base for creating production
rules for a problem solver aitempting to plan the task that the
teacher explained.

The presented implementation is done in logic
programming {(Prolog). The main advantage is that
programming consists of stating the problem in a declarative
form (iike many primitives) and Prolog will seek the
solution.

V. MAPPING

A. Rule frames and Staies

The content of rule frames is flexible, determined by the
content of instructions. 1t must include at least a conditional
to make a rule only apply in a given situation. This is usually
followed by sequential instructions that have to be carried
out in the situation. Since rulc are context-dependent, a new
rule frame is created cvery time the context changes. This is
achieved by appropriately using mapping rules in the speech
recognition grammar. For instance:

{land ?er this is how the game goes 2um)
{recurn(":context=new case:")}
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This new value of the variable context validaies a Prolog
rufe (not described in detail here) that creates a pointer to a
new frame. After a new rule frame is created in that way,
every consecutive utterance will be added to it. Initially users
usually start explaining in which situation the rule applies.

For instance:

{? {(what you have to do is ?er) if you can you
take cne card from your ?er three cards)
{recurn{":ifloc=ns-cardname-ns, 01, +thand2:") }

The ifioc condition for example means that in a situation a
card must be in a specific location initially. We found that
ifloc conditions are sometimes implicit and can only be
recovered from demonstrations rather than from language.
The ifcond condition is a more general if-statement that
compares properties of these cards found in specific
locations. ifcond takes a minimum of four parameter, namely
how to compare , what to compare and the cards involved.
The reference card 1s mentioned first, the other cards follow.
An example of a rule frame is shown in figure 2.

{and you have to either like i am doing here you
either match it with a card on here )

{return({"ifcond=macch, ?,deictic determinative,de
ictic determinative:")}

move=05.01 +hand2, +temp2

iNoc=02 Hable

iMloc=03,+lable

ifloc=05,+hand2

ifcond=equal.value.02,03.05 move=02/03/05,03,? +side2

[

[
|
I !
' !
' |
|
' |
: Rulel I
' |
! |
' |
' |
' |
' |

Fig 2. Rule Frame, a collection of semantics that are connected to Rulel
since the utterances were in the same context. This rule frame is used (0
consiruct a function that the robot can carry out 1o play the game/ perform a
task. If there are question-marks left. or ambiguities, the robot can clanify
information with the teacher before creating the ncw robot function.

B. Mapping issues

Semantic analysis of the corpus reveals the previously
described language primitives (table 1II). These language
primitives are connected to the knowledge base by a
mapping process. Different types of language primitives
affect different areas of the knowledge base. Simple facts
directly change object properties in the robots world modecl.

We found that most rule instructions are a combination of
several utterances; hence a framework is required to show
the relationship between them. For example, a rule that
describes how to capture a card in the game consists of
conditionals describing the situation when it is allowed to
capture a card and then continue to describe how to move the
cards by using sequential action primitives. These
combinations are stored in a framework called rule frames.

A context change will open up a new rule frame. An
subsequent instructions are stored into this new rule fram
until another context change occurs. This mechanism allow:
mapping instructions that belong together into the same rule.

Underspecification in the parameters of languag
primitives result in question marks placed in rule frame slots
For example the utterance “and then we put four card
in the middle” generates the following languag
primitive: move=ns-cardname-ns, 04, ?,+table: which ha
a question mark in the source location, since it is unknow
where the card comes from. It the question mark is no
resolved at the end of the explanation the robot will ask th
user for clarification. Normally, resolving question marks i
done by unifying information from pgestures and othe
utterances of the same rule explanation. The unificatio
process takes two or more language and gesture primitives o
the same kind and tries to combine their parameters. Ou
multi-modal fusion system performs this unification in rea
time. The unification algorithm is described in [19].
further unification system is applied at the end of a rul
explanation.

The rule frames are wrapped into state-transition rule
(STR) to allow the robot to predict the outcome of it
actions. A state transition rule consists of the entry state,
rule frame and the exit state.

C. Mapping Process overview

The mapping of corpus utterances to robot functions i
divided into several steps. A summary of the process:

1. Utterances are mapped to primitives and parameters|
using grammar

2. Primitives are mapped to rule-frame instruction
taking into account unification with gestures an
reference resolution.

3. Production rules are created that can create plans
from rule-frame instructions. This enables plannin
in the robots brain. The robot plans consequences o
its actions.

4. Each production rule may have a implementation o
an actual robot action (i.e. move gripper) attached.

D. Anaphora Resolution

Anaphora are references to explicitly mentioned nouns,
carlicr in the discourse [17]. The determinative
demonstrative deictic references (DDD): this, these, that,
those and the in the noun-phrase are indicators for anaphora.
Further corpus references are determinative possessive
deictic references (DPD): my, your, our, his, her, its, their,
ones. And finally the word them is also treated as a reference
to carlier mention. A grammar has been defined to forward
the reference category to the unification process. Here an
anaphora resolution algorithm tries to identify the reference
by looking at the previous utterance. If a previous utterance
and its corresponding rule-frame were identified, it is
possible to recover missing information for the new rule-
frame. For example the utterance “turn them over’, does not
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say which cards need to be turned over, how many or where
they are.

Every noun phrase is stored in the rule frame (knowledge
base). If the resolution algorithm is confronted with a DDD,
the resolution is achicved by retrieving the previously stored
noun phrase.

E. Generalisation

We found from the corpus that complex tasks arc ofien
explained using an cxample, which means that the robot
needs a generalization mechanism.

A personal robot has to be able to learn from one or two
examples of a task cxplanation. Asking for further
cxplanations will annoy the user, since an experienced
personalised service robot is not seen as a child in the user’s
eyes. It is an adult servant who should reduce the workload
of the user. Furthermore, anyone who has used speech
recognition knows that it can test the user’s patience.
Therefore the robot must go to great length in order to
generalise what it leamed autonomously. It is possible to rely
on so called Hasty Induction of the rule without proves. If a
user says "if you have a five in your hand" , Protog will treat
this five as a placcholder in its representation of the
instruction. This implicitly implements the concept of
generalization. Practically, this is equivalent to storing "if
you have card 4 in your hand". This may be how humans
learn game rules, and they are often stopped later on by the
teacher if the gencralization was flawed. However, the
limited task domain is an advantage that helps making
correct generalizations. While explaining the capture and the
painng rule of the game, all subjects used actual cards as
examples or at least gave examples set in an imaginary
situation.

F. Problem Solver

In order to use rules that have been explained to the robot,
the robot needs to constantly compare the current state of the
environment with the precondition in the rule frames in order
to derive the next valid step in its actions. This is realiscd
using a problem solver. Once the next valid step has been
found the robot can predict the consequences using the state
transition rules. The robot simulates the next step by using
the state transition rules (production rules) which consist of
rule frames.

When trying to apply a rule, i.e. going from state to state,
an algorithm is used to put the rule frame into action.
1. check all ifloc conditions of the rule-frame
2. considering the cards selected in the ifloc conditions,
do the ifcond, which usually is a comparison function
between cards.
3. do all action instructions of the rule-frame

Firstly, the current state is examined if the necessary cards
are in place (ifloc). This first application of the ifloc rules
also creates a tuple-list of cards and their propertics that arc
involved in the rule. A Tuple-list is necessary to prescrve the
reference to objects within a rule throughout the application

LIS

of the primitives. For example “if you have say a five” “you
can bring the five forward™ This is a fact and an action, but
the “five” is mentioned two times. This link must be
prescrved in the reasoning when applying the rule. The next
step is to apply comparison functions to the tuple-list and the
current state. If the comparison function is passed as
successful the last step is carried out, which is doing the
actions of the rule in sequence. First the actions are only
simulated by modifying the current state and replying this
outcome to the problem solver. [f the problem solver selects
this statc the actions arc actually applied by the robot. Within
a rule-frame, the problem solver trics to carry out the
functions in order of explanation. If this fails, the problem
solver can try actions in a different order, since some human
teachers fail to explain the rule in the right order to the robot.

V. EXPERIMENTS WITH CORPUS

A. Corpus playback of dealing rule and Card-pairing

In order to confirm that the system described in earlier
chapters performs correctly (learning a rule as the teacher
intended), the data of the corpus can be played back to the
robot.

The teacher’s voice and touch-screen data is fed into the
robot (software agent). In two experiments, the explanations
of dealing of cards and the explanation of the pairing-rule is
played back. The robot has a chance 1o ask questions during
this learning phase. After a single rule explanation the robot
is instructed to play. At this point the robot will start its
problem solver to apply the learned rule. A printout of the
rule-frames  quickly reveals any problems during
development. The corpus has been split into half named test-
set and evaluation-set.

In the first experiment 10 dialogues (of our test-set) where
played back to the robol, and the robot successfully learned
the dealing rule in the way the teacher explained it.

In the second experiment we investigated a total of 19
dialogues (test and evaluation set) from the corpus which
explains how to capture cards by pairing them together.

In 3 cases the explanation of the pairing rule was by the
teacher was so incomplete that the robot did not know what
to do. The robot successfully learned and applied pairing
rule in all 16 remaining teaching dialogues.

The explanations of the same rule can result in a different
sel of instructions, since every teacher has his individual
understanding of the rule. Some teachers would show the
card from the hand first before capturing for example. Others
may define the winning pile in a different place.

In most cases the teacher did not explain the pairing rule
completely when comparing to the onginal rules of the
game. However the robol was able to learn and execule the
rule in the way the teacher explained il.

B. Discussion

These tests with the corpus do not show much on general
the framework is. However they confirm that the instructions
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found in the corpus have been successfully implemented into
the robotic software agent. They also show if a combination
of language primitives fead to correct reasoning in the robot.

The nature of spoken language makes the determination of
language primitives and a reasoning system particularly
difficult. Users often say incomplele statements or change
their mind in the middie of an utterance. An extensive
practical evaluation of this sysiem should reveal its polential
and limitations. Currently we are testing the system “live”
with people rather than from the corpus. This will hopefully
prove the robustness of the MIBL sysiem in a final
evaluation.

Due to the limitation in the anaphora resolution system
and the limited understanding of the dialogue state, the robot
sometimes fails to resolve all parameters that the human
student was able 1o resolve. Which is not a serious problem,
since the robol can resclve these missing parameters by
interrogating the teacher. Other limitations, are the detection
of a repletion of an instruction. Teachers sometimes repeat
an utlerance, even if they actually want the robot (o do the
action only once, not lwice.

The use of Prolog to implement a learning system is
convenient as it includes the necessary inference engine.
However, it is also time consuming to program each
primitive manually, and cannot be considered as a general
purposc tool for roboticists working on HRI. For this, it will
be necessary to develop automatic code generation tools that
support primitive mapping and implementation.

We are proposing to take corpus-based robotics to the
next level by providing convenient developer tools, such as
MuTra [7].

C. Fuiure experiments

Future experiments are planned whereby subjects will be
invited to instruct the robot verbally. If speech recognition
fails, subjects often simplify their sentence. We hope 1o catch
these simplified utterances and add these to our corpus.

In the long term, experiments on other more complex
domains (other than card games and route instructions) will
push the boundaries of the framework.

VI. CONCLUSION

This paper demonstrated that natural task instructions can
be converted to human level primitive functions (semantics).
Due to the nature of task instructions, which go over several
utterances, we demonstrated that rule-frames are able to keep
the relevant information of the primitive functions.
Furthermore the robot was able 10 use the instructions from
the rule frame by applying a problem solver to play cards.
The design concept for creating the card-game learning robot
was starting from a corpus of dialogues via primitive
extraction and design to implementation.

We have shown in the IBL project that the corpus-based
robotics approach works [6] and in this project (MIBL) the
results look promising. We can therefore assume that this
approach may work in other human-robol teaching domains.
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We are convinced that the corpus-based approach brings us
step closer 1o design service robots thal are programmable b
end-users.
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Understanding Rules in Human-Robot Instructions

Joerg C. Wolf and Guido Bugmann

Abstract— This paper presents an overview of the systematic
creation of a human-robot instruction system from a
multi-modal corpus. The corpus has been collected from
human-to-human card game instructions. A design procedure is
introduced that helps creating a speech recognition grammar
which is closely linked to semantics and the corpus, so avoiding
unwanted over-generation. Particular atlention is paid to
rule-instructions, since they are more challenging to implement
than sequential and knowledge manipulating instructions. A
brief overview is given on how the robot stores knowledge
coming from instructions using an ontological object-oriented
form. Furthermore a problem-solver is described that can reason
with the newly gained knowledge. The aim of the work is to
enable users to naturally instruct robots without prior
knowledge about the robot. A further aim is to simplify and
expedite the process of implementing multi-modal human robot
instruction systems by engineers.

l. INTRODUCTION

THE ability of future service robots to learn from end-user
instructions would be a great advantage, since service

robots can not completely be pre-programmed by the
manufacturer [1]. There are far too many possible tasks for a
scrvice robot 10 be pre-programmed in advance. End-users arc
usually not familiar with programming; therefore the robot has
to be able to understand instructions at a human level. We are
investigating the structure and implementation of
human-robot instruction systems that aliow naive instructors
to interact naturally with the robot verbally and with gestures.

In order 10 discover how humans speak about a task, a
corpus (“body”) of conversations between a human teacher
and student instructing a task is collected. So far our research
group has investigated two corpora, one in the IBL
(Instruction Based Learning) project [2] and onc in the MIBL
(Multimodal IBL) project [3]. It is possible to usc a corpus
collection sctup for human-to-human or human to
wizard-of-0z to collect the corpus. We used a
human-to-human setup.

In the current project (MIBL), we focus on instructions
containing rule specifications. Thesc arc a found frequently in
game instructions. Using the same corpus-based method, we

Final manuscript received May 30, 2007. This work was supported by the
University of Plymouth.

Guido Bugmann and Joerg C. Wolf are with the School of Computing
Communications and Electronics. University of Plymouth, Drake Circus,
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started with recording card game instructions dialogues
between a teacher and a student of the Italian card game
Scopa. The tecacher explains the rule verbally and could
demonstrate actions using a touch screen (figure 1) and all
movements on the screen were recorded.

Fig. 1: Corpus collection setup. The instructor on the right moves a card
on the touch screen. The leamner sees a copy of the move on her screen.

The aim of this work is to develop a system capable of
understanding such multi-modal game instructions, build
them into an internal representation and subsequently play the
game with the user/tcacher. In the chosen setup, the robot
needs neither antificial vision nor effectors, as it can “see”
cards moved on the screen and can play by moving cards on
the screen. While the IBL project has been completed by
implementing and testing human-robot interaction, work is
still in progress in the MIBL project. Most game instructions
have already been implemented and simple human-robot
interaction can take place.

In this paper we describe the instruction types found in the
MIBL card game corpus followed by a detailed description on
the design of a speech recognition grammar based on the
corpus. Furthermore a reasoning system is described that can
store, plan and carry out instructions. The paper concludes
with a summary of this novel procedure of creating a
human-robot instruction system. A brief overview of the steps
involved in creating a human-robot instruction system is given
in table 1 along with the paragraph where these are described.
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TABLE |
METHOD OF DESIGNING A HUMAN-ROBOT INSTRUCTION SYSTEM

Step M/A/S Chapter
I. Corpus design and collection M .
2. Multi-modal Transcription M+§S LA
3. Cutting utterances into clauses A 1.
4. Context tagging M ILA
5. Semantic annolation & ontology design ~ M+S 11.B.V.B
6. Generalisation within semantic classes M+S LA, IT.C
(exchangeable words)
7. Grammar generation A H.C
8. Multi-modal integration M v
& reference resolution
9. Language primitives implementation M+S 1.3

M = must be a Manual task
S = task can be assisted by smart editor
A = can theoretically be fully automated task

[I. CORPUS ANALYS!S

A. Initial Corpus Analysis

The recordings have been transcribed using the multi-modal
transcription tool MuTra [3]. The transcriptions include start
time and duration of gesture and speech. The transcription
process could be simplified by adding speech recognition
software. However, all transcribed text has to be confirmed
manually since the corpus provides the reference data for all
further system development. The transcription is stored as a
XML file indicating which utterance belongs to which gesture.
Each teacher explanation was tagged so that tasks and sub
tasks arc hierarchically divided. In our case the explanation
has been divided with XML tags into the three game phases of
dealing, game-play and counting points at the end. This could
be referred to as context tagging. Inside the dealing phase we
have found 6 sequential instructions of moving and turning of
cards (sub-tasks). In the game-phase we have tagged the rules
on pairing/capturing cards and the description of the ranking
of cards. The tagging process also helps the developer to
break down complex explanations into logical parts for which
robot functions can be implemented correspondingly, step by
step. An cxample below (20.xm1/912-955) shows the tagging
of the value-rule, which describes the value of a card in points.

<dealing>

</dealing>
<game>
<value-rules>
<TVv t="912" until="955">
and the jack queen and king become the eight nine
and ten
</tv>
</value-rule>

</game>

The tagging process is also useful for automatically generating
a grammar later.

B. Language Primitives and [nstruction Tvpes

Analysing the utterances of the transcriptions reveal
primitive procedures which the robot has 1o be able to ca
out before leaming from the end-user can start (the robot’
“prior knowledge™). Such “language primitives”™ are specifi
to the level at which humans communicate with each other
They can constitute complex robot procedures in th
background. These language primitives can be categorize
into facts, sequential actions, context indicators an
conditionals. Somec cxamples of transcriptions an
corresponding primitives:

Facts:
21.xml1/696-723:"exm ok so the deck were
playing with”

21.xml/725-748:"ig8 a forty card deck”
21.xml/758-779:"with the eights nines and tens
removed”

Corresponding Primitive:
not_exist (card=08, card=09, card=10)

Sequential actions:
03.xml/2431-2481:"cr what you do first of all is.. er you
deal three cards for yourself fac
down™

Corresponding Primitive:
move (objects=these?,num_of cards=3, target=hand2)

As for context indicator and conditionals, examining th
corpus for game rules reveals that a game rule is constructe
from:
1. minal context indicator: c.g. “suppose you™ or “if”
2. conditionals: e.g. “have an ace” or “cards with equa
rank”
3. a sequence of instructions that have to be carried ou
when the conditionals arc satisfied

For example:
21.xml/1621-1648: “so like with two sevens
if you had a seven you could onl

take one of them”

Corresponding Primitives:
context (context=new_case)
ifloc{card=07, location=hand2)
ifloc{card=07,location="?)
ifcond (type=equal, compare=value, card=07,card=07)
move (objects=them?,num_of cards=1,target=?)

These primitives are inserted into the transcriptions a
XML tags.

The question mark in the semantics means, that there 1
missing information. Missing information is completed b
combining semantics, multi-modal integration (section 1V)
and by requests to the teacher.

These three types of primitives are implemented in differen




ways. Facts result in manipulations of the knowledge base
using Prolog statements.  Sequential arc
implemented as C-routines affecting the physical behaviour of
the robot, i.e. moving the robot arm. The third type, Context
indicator and conditionals initiate the creation of rule frames
(scction V. A), which are stored in the knowledge base.

Rules are also found in other domains, such as cooking,
where every ingredient has to be multiplied with the number
of persons. Previous to this corpus our group collected a
corpus on route instructions to a driver in a town. These did
not contain rules. Therefore, the primitive categories which
occur are domain dependent.

instructions

III. SEMANTIC CLAUSE-BASED GRAMMAR

An advantage of corpus-based robotics (method for
collecting a corpus of the domain before building the robot
[1]) is the availability of a corpus that can be used for
generating grammar. Generally a grammar from a corpus
should truly represent the content of the corpus.

A. The overgeneration problem

Most work in grammar induction from texts is irrelevani for
application specific language as it aims at generating a
grammar of the whole language from a small corpus of
cxample sentences [for example, see 4]). These grammars
massively overgenerate, by design, and are unsuitable for the
application-specific spoken interfaces. The main problem of
overgeneration is that instruction-sentences can be recognized
which the robot is not able to carry out or comprehend.

In order to create a grammar that has over-generation only
in appropriate places, such as generalizing over numbers or
colours, we created semantic classes for words and phrases.
Word-classes are semantic categories. For example the
number of cards is a different class to the rank of cards. Using
the same sub-grammar would lead to overgeneration in the
wrong place. One could, for example, refer to “1 card” but not
to a card with rank “1" since the smallest rank of a card is 2",
These word-classes are then also used as a class in the
knowledge representation scheme and as language primitive
paramcters, when passing information from the language
recognition module to the reasoning system.

B. Clause-Based Grammar

A problem of specch recognition is the fact that the speaker
may pause before finishing the sentence (inappropriate end of
speech). At this stage we assume that partial sentences are
complete clauses. To cope with multiple clauscs, they arc
linked at a higher level of the grammar. The concept has been
named clause-based grammar.

Corpus utterances have been cut into clauses by the help of
a natural language parser. Cutting is done if clauses are linked
with words like “and”, “and then™ or “s0™. For identifying the
end of a clause, The Apple Pie Parser [5] provided most
accurate results on the MIBL corpus.

The implementation of this grammar is written in Nuance
GSL (Grammar Specification Language), which utilizes the
slot filling concept. When a grammar rule (in this case made of
a clause) is hit during speech recognition, variables (slots) are
filled with values. These slots are usually are in form of a first
semantic interpretation such as “go=forward”. Slots are the
interface variables between the grammar and the application
specific software that processes the interpretation. To
preserve the order in which the clauses werc said during
interpretation, the semantic information of each clause is
concatenated and passed to the reasoning system through a
single slot. Now a user can arbitrarily give onc or more
instructions in one utterance. We are currently investigating
how to optimise the search tree of the speech recognition
without the loss of flexibility.

C. Full Corpus Coverage

Clauses have been grouped by their language primitive
using the context tags during annotation of the corpus. The
advantage of semantic grouping is that it ensures correct
overgeneration at a local level. Semantic grouping also helps
the grammar designer to structure and identify the semantics,
which initially looks as an overwhelming task when looking at
a corpus of thousands of utterances. The definition of
word-classes is an easy task for non-specialists in natural
language processing. The resulting structure is a grammar
template which is easy to convert into GSL grammar. The
most trivial solution to convert a corpus into a grammar is to
simply copy all transcriptions into the grammar. Hence all
clauses become GSL grammar rules. This ensures that the
grammar initially covers the whole corpus. This template is
the starting point for the grammar designer.

Our aim is to reflect the corpus as accuratcly as possible.
Even colloquial expressions are kept. For example:

14.xml/17428-17440: “thats nght innit”

This is important for real world applications when the robot is
uscd in a household. 1t is indeed possible to add sentences in
good (corrected) English to the corpus, in a controlled way.

The appropriate semantics are now attached to cach
uttcrance in the grammar, manually. Alternatively, this could
be done automatically if the XML transcriptions have the
utterances already annotated with primitives (semantics).
Now, the bespoke word-classes can be substituted 1o create
controlled over-gencration.

An cxample on how to achieve correct overgeneration
(generalisation) is given below. First a version of the grammar
without and then with generalisation:
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Simple:

(if you have say a five)

context_types=imaginary
ifloc=05, +hand2

Generalised:
(if you have say a CardCat:c)

context_type=imaginary
ifloc=5c, +hand2

This step in the grammar implcmentation is a time
consuming but easy process. In order to expeditc this process,
a smart editor could be used thai keeps track of word classes
and suggests substitutions automatically. The smart editor
could also suggest language primitives, based on previous
related sentences. A related editor has been suggested by [6,
7] and a graphical grammar editor has been suggested by [8],
although these do not have the full functionality required for
the above task.

Once the grammar and slots for semantic interpretation
have been designed, the output (slots) is ready for reasoning.
The first step in reasoning is to resolve references. Here
multi-modal information can be used.

IV, MULTI-MODAL ISSUES

The MIBL system allows input through gestures, namely
movements of cards on the touch screen and verbal
instructions. From a robot perspective these modalities arc
two communication channels that nced to be recombined into
one message. The diagram in figure 2 summarises the
multi-stage  process  of  multi-modal  integration
(“recombination”) or sometimes referred to as multi-modal
fusion.

Language ol word to clause
» X -
grouping E -
. = .
?: o = Instruction
25 ™ & »>
Gesture LENR 3
€5 ol Geslure . o S
. » 2
grouping e

Fig 2: Multi-modal integration system

The diagram shows how gestures are first grouped in order
to be represented at the same level as verbal instructions. For
example the utterance “put three cards onto the table™ is one
instruction, but consists of at lcast threce gestures. The
integration of frecc flowing speech and gesture has added
complexity. In this case utterances can follow very closely
behind each other and, as Oviatt correctly describes in [9], it is
a myth that speech and gesture always have a time overlap if
they belong together. In recent work [10] we described a time

synchronisation and pairing algorithm that finds the righ
language-gesture pair in order to unify the two informatio
channels. Timing and semantic information must be used t
achieve a satisfactory performance in multi-modal integration
With a combination of timcouts, ncarest neighbour match an
of gesture and language primitive verbs the algorith
achieves pairing the right gestures and utterances.

Multi-modal reference resolution can be carried out durin
multi-modal integration. The following example is taken fro
the transcriptions (03.xml/2540-2563). It mentions the wor
“these™, referring to cards. In order to resolve what is meant b
“these™ multi-modal integration is essential.

<tv t="2540" until="2563">
you take these into your black area
<objmove £="2531" user="t" ID="D/QQ" from="+Templ"
to="+Handl" until="2544"></cbjmoves
<objmove £="2547" user="t" ID="D/KK" from="+Templ"
to="+Handl" until="2567"></cbjmove>
<objmove t="2570" user="t" ID="D/AA" from="+Templ"
to="+Handl" until="2577"></cbjmove>
</tv>

Typically the instruction only gives a minimum of informatio
For example if the source location of these cards (in this cas
+Templ) is apparent, it is not mentioned in the language.

Let’s review the path of the information so far. An uticranc
and gestural data was initially recognised using a grammar,
then connected to a scmantic interpretation such as
“move(...)” or “ifloc(...)". These interpretations have bee
grouped and logically unified, which was briefly described in
this section. Finally these interpretations can be used fo
reasoning, which is described in the next section.

V. KNOWLEDGE REPRESENTATION

The rcpresentation and reasoning with the information
coming from the gestures and language primitives required a
hybrid system. Factual knowledge or the world-model of the
robot is represented in an object oriented database. Tcacher
instructions that require action, on the other hand, are
represented as rule frames. These rule frames are then turned
into rules for a problem solver. The implementation of the
knowledge representation of the MIBL system is entirely in
Prolog.

A. Rules and Actions

Whereas facts are stored in the object database, action
instructions and game rules are initially stored in a rule frame.
A rule frame is a collection of hints on how the complete rule
may be constructed. These hints consist of initial context
indicator, conditionals and a scquence of instructions that
have to be carricd out when the conditionals have been
satisfied (see example in section 11.). An example is given




below where a teacher describes a rule of the card game Scopa.
The example shows utterances with their corresponding
language primitives (slots) in the grammar.

{the other possibility is)
{return{"context=new_case:"}}

(if you have say a five)
{return("context type=imaginary:ifloc=05, +hand2:

n)}

(and you gee on the table there you got a three and a
two)
{return("ifloc=03, +table:ifloc=02, +table: ")}

(you can bring the five forward)
{return{"move=05, 01, +hand2, +temp2: ") }

(you take the three and the two because that is equal
to five )
{return{"ifcond=equal, ?,02,03,05:")}

{the same value that is on your card so then you can

take all the cards to your side )

{return{“ifcond=7,value,?,?,?:
move=deictic_determinative,?,?, +side2:")}

(we will just take it forward so you can show your
opporient that you have got a five )
{return("move=05,01, +hand2, +temp2:") }

From the example it is clear that rules are not described 1n a
single utterance. A rule frame is required as a temporary
structure to collect parts of a complete rule (Fig. 3). We have
also found cases were the user does not explain game rules in
the expected order. Often conditionals are mixed with
instructions. The frame approach allows acquiring rule
information provided in random order. A rule can then be
checked for consistency and logical completeness. A
completion of a rule description is detected by a context
change. It is rare that a user specifically mentions that a rule
cxplanation is complete. Usually a context change is detected
by the start of a new rule explanation, which triggers the
completion of the previous.

move=03,0! +hand2. +temp2

ifloc=02,+table

ifloc=03 +table

ifloc=05,+hand2

ifcond=equal.value,02,03.05 move=02/03/05,03,2, +side2

|

| I
' |
! |
' |
! |
' |
: Rulel I
| |
|

| |
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Fig 3: Rule Frame, a collection of semantics that are connected to Rulel since
the utterances were in the same context. This rule frame is used 10 construct a
function that the robot can carry out to play the game/ perform a task. If there
are guestion-marks lefl, or ambiguities. the robot can clarify information
with the leacher before creating the new robot function.

If a rulc cxplanation is complete, the content of the rule
frame is translated into a Prolog program that represents a
state-transition rule for a problem-solver. If it is the robots
turn to play, the problem-solver is consulted. The
problem-solver now trics to find and apply the appropriate
game rule for the given sitation in order to compete his turn.
This approach rcquires actions to be stored as steps for the
problem solver. As described these steps (stale-transition
rules) arc not prior knowledge; they are gencrated by the
speech and gestures from the teacher.

Templates for state-transition rules are defined by the
grammar designer. These templaies map language primitives
to actions at the robot-level. Current robot level actions are
moving cards, turning over cards, comparing ranks of cards,
counting cards, removing cards. Their implementation is
hardware specific.

B. Factual Knowledge

Knowledge of physical objects and their properties are
stored by the robot in an object-oriented format. The robot has
an innate prior knowledge of playing cards and their
properties. Propertics are attributes of a class. Classes are
structured in a tree taxonomy. For example a playing card is a
3D-object. A 3D-object has coordinates. See figure 4.
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Figure 4: Extract of the ontology of cards for the MIBL reasoning system

Essentially thc is-relationship indicates classes and
sub-classes. A  has-relationship indicates  properties.
Propertics ar¢ inheried. For example cards inherit the
property of coordinates (see Fig. 4). Currently multiple
inheritance is not allowed. However, multiple ontological
trees can be combined. The modelling of this ontology closely
follows [11,12], who suggest ontology design based on Basic
Formal Ontology (BFO).

r

is_a('face_card', 'rank').
is_a('cardinal’, 'rank’).

is_a('Jdd', face_card').
is_a('QQ', 'face_card').

has_a('object3d’', 'X').

has_a('cardname', 'rank').
has_a('cardname', 'suit'}) .

Table 2: extract from the implementation of the ontology in Prolog
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Actual cards that are present on the playing table are
instances of classes. This representation system allows storing
of the current situation and factual knowledge about the robots
world. The previously described primitives that refer to a fact
are manipulating this knowledge. For example the fact that the
cight has been removed from the game translates into the
Prolog statement:

forall (
get_property (INSTANT, 'rank',08),
{delete_instance (INSTANT) )

VI. CONCLUSION AND SUMMARY OF METHOD

This paper described a method of creating multi-modal
interfaces for instructing robots. Initially a corpus is collected
using a multi-modal interface between two humans. Afier
transcription the utterances are grouped hierarchically by
phases of the task and finally utterances are grouped by
tanguage primitives. Utterances are split by a parser so that
sequential instructions/clauses arc separated. A grammar is
generated, containing all corpus sentences. At this stage it
becomes clear what the structure of the ontology of the
domain could be. Ontological classes are created, which are
then also used as sub-grammars for targeled overgencration
and as language primitive parameters.

Regarding the translation of rules, it has been found that
rules are a combination of language primitives consisting of
context indicators, conditionals and instructions that have to
be carried out if the conditionals are true and the context is
correct.
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