1,943 research outputs found

    Unimanual versus bimanual motor imagery classifiers for assistive and rehabilitative brain computer interfaces

    Get PDF
    Bimanual movements are an integral part of everyday activities and are often included in rehabilitation therapies. Yet electroencephalography (EEG) based assistive and rehabilitative brain computer interface (BCI) systems typically rely on motor imagination (MI) of one limb at the time. In this study we present a classifier which discriminates between uni-and bimanual MI. Ten able bodied participants took part in cue based motor execution (ME) and MI tasks of the left (L), right (R) and both (B) hands. A 32 channel EEG was recorded. Three linear discriminant analysis classifiers, based on MI of L-B, B-R and B--L hands were created, with features based on wide band Common Spatial Patterns (CSP) 8-30 Hz, and band specifics Common Spatial Patterns (CSPb). Event related desynchronization (ERD) was significantly stronger during bimanual compared to unimanual ME on both hemispheres. Bimanual MI resulted in bilateral parietally shifted ERD of similar intensity to unimanual MI. The average classification accuracy for CSP and CSPb was comparable for L-R task (73±9% and 75±10% respectively) and for L-B task (73±11% and 70±9% respectively). However, for R-B task (67±3% and 72±6% respectively) it was significantly higher for CSPb (p=0.0351). Six participants whose L-R classification accuracy exceeded 70% were included in an on-line task a week later, using the unmodified offline CSPb classifier, achieving 69±3% and 66±3% accuracy for the L-R and R-B tasks respectively. Combined uni and bimanual BCI could be used for restoration of motor function of highly disabled patents and for motor rehabilitation of patients with motor deficits

    Brain–computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum

    Get PDF
    Individuals with Autism Spectrum Disorder (ASD) show deficits in social and communicative skills, including imitation, empathy, and shared attention, as well as restricted interests and repetitive patterns of behaviors. Evidence for and against the idea that dysfunctions in the mirror neuron system are involved in imitation and could be one underlying cause for ASD is discussed in this review. Neurofeedback interventions have reduced symptoms in children with ASD by self-regulation of brain rhythms. However, cortical deficiencies are not the only cause of these symptoms. Peripheral physiological activity, such as the heart rate, is closely linked to neurophysiological signals and associated with social engagement. Therefore, a combined approach targeting the interplay between brain, body and behavior could be more effective. Brain-computer interface applications for combined neurofeedback and biofeedback treatment for children with ASD are currently nonexistent. To facilitate their use, we have designed an innovative game that includes social interactions and provides neural- and body-based feedback that corresponds directly to the underlying significance of the trained signals as well as to the behavior that is reinforced

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Brain–computer interfacing with interactive systems-Case study 2

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Brain-computer interface technology and neuroelectrical imaging to improve motor recovery after stroke

    Get PDF
    Stroke is defined as a focal lesion in the brain caused by acute ischemia or hemorrhage. The events that characterize acute stroke as well as the spontaneous recovery process occurring in the subacute phase, demonstrate that the focal damage affects remote interconnected areas. On the other hand, interconnected areas largely contribute to reorganization of the central nervous system (CNS) along the recovery process (plasticity) throughout compensatory or restorative mechanisms which can also lead to unwanted effects (maladaptive plasticity). Such post-stroke brain reorganization occurring spontaneously or within a rehabilitation program, is the object of wide literature in the fields of neuroimaging and neurophysiology. Brain-Computer Interfaces (BCIs) allow recognition, monitoring and reinforcement of specific brain activities as recorded eg. via electroencephalogram (EEG) and use such brain activity to control external devices via a computer. Sensorimotor rhythm (SMR) based BCIs exploit the modulation occurring in the EEG in response to motor imagery (MI) tasks: the subject is asked to perform MI of eg. left or right hand in order to control a cursor on a screen. In the context of post-stroke motor rehabilitation, such recruitment of brain activity within the motor system through MI can be used to harness brain reorganization towards a better functional outcome. Since 2009 my research activity has been focused mainly on BCI applications for upper limb motor rehabilitation after stroke within national (Ministry of Health) and international (EU) projects. I conducted (or participated to) several basic and clinical studies involving both healthy subjects and stroke patients and employing a combination of neurophysiological techniques (EEG, transcranial magnetic stimulation – TMS) and BCI technology (De Vico Fallani et al., 2013; Kaiser et al., 2012; Morone et al., 2015; Pichiorri et al., 2011). Such studies culminated in a randomized controlled trial (RCT) conducted on subacute stroke patients in which we demonstrated that a one-month training with a BCI system, which was specifically designed to support upper limb rehabilitation after stroke, significantly improved functional outcome (upper limb motor function) in the target population. Moreover, we observed changes in brain activity and connectivity (from high-density EEG recordings) occurring in motor related frequency ranges that significantly correlated to the functional outcome in the target group (Pichiorri et al., 2015). Following these promising results, my activity proceeded along two main pathways during the PhD course. On one hand, efforts were made ameliorate the prototypal BCI system used in (Pichiorri et al., 2015); the current system (called Promotœr) is an all-in-one BCI training station with several improvements in usability for both the patient and the therapist (it is easier to use, employs wireless EEG system with reduced number of electrodes) (Colamarino et al., 2017a,b). The Promotœr system is currently employed in add-on to standard rehabilitation therapy in patients admitted at Fondazione Santa Lucia. Preliminary results are available on chronic stroke patients, partially retracing those obtained in the subacute phase (Pichiorri et al., 2015) as well as explorative reports on patients with upper limb motor deficit of central origin other than stroke (eg. spinal cord injury at the cervical level). In the last year, I submitted research projects related to the Promotœr system to private and public institutions. These projects foresee i) the addition of a proprioceptive feedback to the current visual one by means of Functional Electrical Stimulation (FES) ii) online evaluation of residual voluntary movement as recorded via electromyography (EMG), and iii) improvements in the BCI control features to integrate concepts derived from recent advancements in brain connectivity. On these themes, I recently obtained a grant from a private Swedish foundation. On the other hand, I conducted further analyses of data collected in the RCT (Pichiorri et al., 2015) to identify possible neurophysiological markers of good motor recovery. Specifically, I focused on interhemispheric connectivity (EEG derived) and its correlation with the integrity of the corticospinal tract (as assessed by TMS) and upper limb function (measured with clinical scales) in subacute stroke patients. The results of these analyses were recently published on an international peer-reviewed journal (Pichiorri et al., 2018). In the first chapter of this thesis, I will provide an updated overview on BCI application in neurorehabilitation (according to the current state-of-the-art). The content of this chapter is part of a wider book chapter, currently in press in Handbook of Clinical Neurology (Pichiorri and Mattia, in press). In the second chapter, I will report on the status of BCI applications for motor rehabilitation of the upper limb according to the approach I developed along my research activity, including ongoing projects and prliminary findings. In the third chapter I will present the results of a neurophysiological study on subacute stroke patients, exploring EEG derived interhemispheric connectivity as a possible neurophysiological correlate of corticospinal tract integrity and functional impairment of the upper limb. Overall this work aims to outline the current and potential role of BCI technology and EEG based neuroimaging in post-stroke rehabilitation mainly in relation to upper limb motor function, nonetheless touching upon possible different applications and contexts in neighboring research fields

    Functional connectivity analysis of motor imagery EEG signal for brain-computer interfacing application

    Get PDF
    International audienceThe human brain can be considered as a graphical network having different regions with specific functionality and it can be said that a virtual functional connectivity are present between these regions. These regions are regarded as nodes and the functional links are regarded as the edges between them. The intensity of these functional links depend on the activation of the lobes while performing a specific task(e.g. motor imagery tasks, cognitive tasks and likewise). The main aim of this study is to understand the activation of the parts of the brain while performing three types of motor imagery tasks with the help of graph theory. Two indices of the graph, namely Network Density and Node Strength are calculated for 32 electrodes placed on the subject's head covering all the brain lobes and the nodes having higher intensity are identified
    corecore