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 

Abstract—Bimanual movements are an integral part of 

everyday activities and are often included in rehabilitation 

therapies. Yet electroencephalography (EEG) based assistive and 

rehabilitative brain computer interface (BCI) systems typically 

rely on motor imagination (MI) of one limb at the time. In this 

study we present a classifier which discriminates between uni-and 

bimanual MI. Ten able bodied participants took part in cue based 

motor execution (ME) and MI tasks of the left (L), right (R) and 

both (B) hands. A 32 channel EEG was recorded. Three linear 

discriminant analysis classifiers, based on MI of L-B, B-R and B--

L hands were created, with features based on wide band Common 

Spatial Patterns (CSP) 8-30 Hz, and band specifics Common 

Spatial Patterns (CSPb). Event related desynchronization (ERD) 

was significantly stronger during bimanual compared to 

unimanual ME on both hemispheres. Bimanual MI resulted in 

bilateral parietally shifted ERD of similar intensity to unimanual 

MI. The average classification accuracy for CSP and CSPb was 

comparable for L-R task (73±9% and 75±10% respectively) and 

for L-B task (73±11% and 70±9% respectively). However, for R-

B task (67±3% and 72±6% respectively) it was significantly higher 

for CSPb (p=0.0351). Six participants whose L-R classification 

accuracy exceeded 70% were included in an on-line task a week 

later, using the unmodified offline CSPb classifier, achieving 

69±3% and 66±3% accuracy for the L-R and R-B tasks 

respectively. Combined uni and bimanual BCI could be used for 

restoration of motor function of highly disabled patents and for 

motor rehabilitation of patients with motor deficits. 

 
Index Terms—Brain computer interface, 

electroencephalography, motor imagination, bimanual, common 

spatial patterns, linear discriminant analysis. 

 

I. INTRODUCTION 

RAIN computer interface (BCI) based on motor 

imagination (MI) has wide range of applications, spanning 

from spellers to assistive devices [1-7]. Yet MI BCI has 

most often been used as a part of rehabilitative and assistive 

systems to repair or restore motor functions. This is due to its 

reliance on the activity of the sensory-motor cortex [4,6]. For 

these applications, MI-BCI is typically combined with virtual 

reality, functional electrical stimulation or robots. Examples of 

these applications are MI BCI for rehabilitation of the upper 
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extremities in stroke patients and patients with incomplete 

spinal cord injury [4-6] and assistive devices for people with 

complete high level spinal cord injury (tetraplegia) for 

restoration of motor functions [2,3].  

Although many activities of daily living require use of both 

hands [8], most MI BCI rehabilitation systems have been 

designed to assist single limb movements [1-7]. Applications 

range from the detection of MI of different limbs to detection 

of direction, speed and target location of a single limb [9-12]. 

There are however multiple evidences that bimanual 

training facilitates rehabilitation after stroke [13].  It is believed 

that during bimanual training, there is no interhemispheric 

inhibition of the non-targeted hand which occurs during 

unimanual training. This allows ipsilateral (undamaged) 

hemisphere and descending pathways to contribute more to the 

movement of the hemiplegic limb [14]. A BCI which could 

classify between the unimanual movements of a dominant hand 

vs bimanual movements, could be used, combined with robotics 

or functional electrical stimulation (FES) in rehabilitation after 

stroke or spinal cord injury.  

Current trends in assistive MI BCI (e.g. “MoreGrasp” [15]) 

is to combine BCI with multi electrode arrays which may 

enable different grasp patterns [16], but are limited to 

unimanual control. People with complete tetraplegia, who have 

bilateral upper limb paralysis, would benefit from assistive 

devices that would allow a selection between uni- and bimanual 

tasks, enabling wider range of motor tasks, increasing patients’ 

independence. Combined unilateral and bilateral BCI-FES 

assisted movements could also be used in rehabilitation of 

movement in patients with incomplete subacute tetraplegia, 

because they require therapy of both hands [5]. 

An asynchronous, EEG based BCI that can detect right, left 

and bimanual movement has been used to control drone [17,18] 

or a robotic arm  [19] but has been tested on able-bodied people. 

Participants were trained to control time-varying spectral 

component amplitude from selected electrodes. The algorithm 

relied on spatially distinctive event related desynchronsiation 

(ERD). That however required extensive training of up to 20 

hours over several months [17]. In its simplest version, the 

algorithm required a control of the sensory –motor rhythm 

recorded at C3 and C4 electrodes only. BCI users produced 
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ERD at C3 for MI of the right hand, over C4 for the left hand 

and over both C3 and C4 for bilateral movements [18]. This 

algorithm could not be used for rehabilitation of stroke patients 

or patients with spinal cord injury (SCI) from two reasons: first, 

for patients, initial training time should be minimized in order 

to start a therapy as soon as possible after injury. Second, in 

stroke patients clear lateralisation of ERD is absent and the 

intensity of ERD during MI depends on the site of the lesion 

[20]. In subacute SCI patients lateralization of ERD may also 

be absent as these patients have bilateral ERD for unimanual 

movements [5]. In both patient groups it takes multiple therapy 

sessions to restore lateralized ERD [5]. In case of assistive BCI 

for chronic SCI patients, which also combines BCI with FES or 

robots, the lack of lateralization can be even more of an issue 

due to a disuse based cortical reorganization [21]. Thus, for 

these purposes, a classification algorithm has to adapt to a 

patient specific spatial ERD distribution. 

The main problem with detecting the cortical activity during 

execution or imagination of bimanual movements is that they 

do not represent a simple superposition of the activity of the 

sensory-motor cortex during unimanual movements of both 

hands. It is believed that the main marker of bimanual 

movements is the strength of connectivity between premotor 

and parietal areas within and between hemispheres rather than 

the intensity of activation [22]. Furthermore, cortical areas 

activated during bimanual movements overlap with the cortical 

areas activated during unimanual movements, but have stronger 

activity over the parietal cortex [22,23]. EEG/MEG studies of 

oscillatory brain activity differentiate between bimanual 

movements which simultaneously activate homologues 

muscles, i.e. same flexor muscles of both left and right hand 

(“in-phase” movement) from those which alternately activate 

homologues muscles, i.e. right hand flexor and left hand 

extensor muscles (“out-of-phase” movement) [24]. These 

studies suggest that in- phase movements present “a default 

mode” resulting in lower interhemispheric beta band coherence 

than anti phase and unimanual movements. Increased 

complexity of movements was associated with increased 

coherence and increased ERD over a wide band spectral power 

(alpha, beta and gamma).  Biamanual activities of daily living 

frequently include “in-phase” movements, like for example 

both hand flexing to grasp a large object. Less pronounced ERD 

during “in-phase” movements indicate that they might be 

harder to detect and classify in an BC paradigm than “our-of-

phase” movements.  

Intensity of ERD depends not only on the complexity of 

movement but also on hand dominance. Left and bimanual 

movements showed similar ME ERD in the alpha band, which 

was larger than ERD during movement of the dominant right 

hand [25]. While differences between bimanual and unimanual 

ME have been previously studied, differences in MI ERD 

between uni- and bimanual movement were however much less 

investigated.  

In this study we compare scalp distribution of ERD between 

uni- and bimanual MI and ME. We then created a uni- vs 

bimanual MI classifier and compared it with a left vs right hand 

MI classifier in both off line and on line paradigms.  

 

II. METHODS 

Ten adult, right handed able bodied volunteers took part in the 

study (29.6±5.7, 5M, 5F) organized over two days. On the first 

day they participated in a cue-based off-line ME and MI task 

with one or both hands. Those whose offline left vs right MI 

classification accuracy exceeded 70%, took part in a subsequent 

on-line BCI task about a week later. The experiment was 

approved but the University College Ethical Committee. All 

participants signed the consent form prior to taking part in the 

study. 

A. Questionnaires 

At the beginning of the off-line session participants filled out 

the Edinburgh Handedness Inventory questionnaire [26]. Since 

bimanual movements are predominantly controlled by the 

dominant hemisphere [22] the level of the hand dominance may 

have an effect on the classification accuracy. The questionnaire 

asked participants to select their limb preference for 10 

activities of daily living. Handedness was expressed as a 

laterality index LI 

 
 






LR

LRLI 100    (1) 

where R and L are scores for the right and the left upper limbs. 

LI can range from -100 to 100. Negative scores indicate left 

handed person, positive scores right handed while 

ambidexterous persons have scores close to 0 on both sides.  A 

larger absolute value indicate stronger hand dominance.  

Imagination ability has also been related to the classification 

accuracy between the left and right hand [27]. Participants’ MI 

ability was tested using Vividness of Movement Imagery 

Questionnaire (VMIQ) [28]. VMIQ tests three types of MI: 

external visual imagery (third person imagery), internal visual 

imagery (first person imagery) and kinaesthetic imagery (first 

person imagery of sensation in muscles). For the purpose of this 

study we were primarily interested in kinaesthetic imagery. 

Kinaesthetic imagery test had 12 questions which were rated in 

a range from 1 (no sensation) to 5 (sensation as intense as 

executing the action).  

Following the off-line session participants were asked to rate 

the difficulty of three MI tasks on a Likert type scale ranging 

from 1 (very difficult) to 5 (very easy). More difficult tasks 

might recruit more neuronal resources and result in stronger 

ERD [29], thus potentially being easier to classify. The reason 

for including these questions was that VMIQ tests the 

imagination of complex body movements only. 

B. Off-line Experimental Sessions 

Participants sit comfortably 1 m from a computer screen. At 

t=0s a warning sign appeared on the computer screen and stayed 

there until t=4s. At t=1s a warning sign was overlaid by an 

execution cue ( for the right hand,  for the left hand and  

for both hands) which remained on the screen for 1.25s (Fig. 1). 

Depending on a cue, participants executed or imagined to 

slowly wave with one or with both hands in-phase from t=1s till 

t=4s. Fifty ME trials of each type (legt, right, both) were 

followed by one hundred trials of each of three types of MI, 

divided into 10 shorter sub-sessions. In each sub session, 10 MI 

of all three types (30 in total) were presented in a semi-random 

order. 
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C. Off-line EEG Recording and Pre-Processing 

Participants’ EEG was measured with 31 electrodes placed 

according to 10/10 system [30] using g.USBamp device (Guger 

technologies, Austria). Electrodes covered the central region of 

the sensory-motor cortex, parietal and frontal cortex, as shown 

in Fig 2 and 3. One electrode was placed at the lateral cantus  of 

the orbicularis oculi of the right eye to record the 

electrooculogram (EOG). EEG was recorded with respect to the 

linked-ear reference with the sampling frequency of 256 

samples/s. Impedance was kept under 5 kΩ. A ground electrode 

was placed at electrode location Fpz. EEG signal was filtered 

on-line between 0.5 and 60 Hz and notch filtered at 50 Hz using 

an IIR digital Butterworth filter built into a modular amplifier. 

For the purpose of   calculating Independent Components 

(IC) [31] and minimizing remaining line nose EEG was further 

filtered between 2 and 45 Hz. IC related to eye movement 

artifact, muscle activity or external noise were identified based 

on the characteristic spatial location and distribution, frequency 

content  and morphology (blinking and eye movements).  

Datasets of each participant, containing MI of all three types, 

were decomposed into independent components (IC) [31] using 

Infomax algorithm implemented in EEGlab [32] under Matlab 

(Mathworks). Components were visually inspected and those 

corresponding to noise (line noise, EOG, EMG and ECG) were 

removed and signal was back projected into EEG domain. 

Common average reference was computed for all channels. 

 

D. Features Extraction 

Event-related spectral perturbation (ERSP) [33] was 

computed on EEG of executed and imagined movement to 

compare event-related synchronization/desynchronization 

(ERS/ERD) [34] between different tasks over a range of 

frequencies, and to define frequency bands with strongest ERD. 

The ERSP analysis was performed using Morlet wavelet 

transform in the frequency band 3-45 Hz. The Hanning-tapered 

window was applied and the number of cycles of the wavelet 

was set to 3. These wavelet settings enabled low frequencies 

beginning from 3 Hz to be processed in a one second window. 

The ERSP was calculated as power changes in decibels with a 

reference to a baseline period (from -2s to -1s before the 

warning sign, Fig.1). The ERSD was averaged over trials within 

the same group, separated according to the imagination 

condition. A scalp map based on averaged ERS/ERD over a 

specific time window and over a specific frequency band was 

created for a group analysis. A time window for plotting ERSP 

was chosen to match the time window for best classification 

accuracy, explained further in the text. 

The Common spatial patterns (CSP) method [35] was applied 

to design spatial filters applied on pairs of classes (left-vs right, 

left vs bi-manual, right vs bi-manual). The CSP method projects 

multi-channel EEG data into a low-dimensional spatial sub-

space in such a way that the variances of the filtered time series 

are optimal for discrimination.  CSP filtering minimises the 

variance of one of the classes while maximising that of the 

other. The CSP method was applied either to EEG filtered in 8-

30 Hz band (called CSP further in the text) or on pre-defined 

bands (CSPb) based on observation of ERSD maps [36].  

While CSP uses a transformation matrix (spatial filter) W to 

decompose EEG signal Xk  of k trials, into time series Zk 

kk XWZ     (2) 

the CSPb extends the transformation matrix W(0) with one 

delayed coordinate W(), where  is a delay time.  

  kkk XWXWZ   )0(
 (3) 

A delayed vector TXk simply appends as an additional 

channel to Xk  so that transformation can be presented similar to 

(2) but transformation matrix W now consists of a spatial and a 

FIR filter which are interchangeable (one can first apply spatial 

or frequency filter). This is relevant for on-line classification 

where FIR filter is applied after spatial filter to a subset of 

selected projected channels. 

In this study, CSPb were calculated for each participants 

based on their individual ERD, selecting one or two bands out 

of preselected frequency bands: 8-12 Hz, 16-24 Hz, 16-30 Hz 

and 30-35 Hz.  

The CSP and CSPb filters were computed using data 

segments that fell within t = 1.5-4s following the warning cue. 

Data in these segments should provide the most significant 

discriminant features for classifying between classes. Time 

delay  for  CSPb were calculated for 0.125s long sub-segments. 

E. Features Classification 

Classification was based on Linear Discriminant Analysis 

(LDA) [37]. This is a technique used to project data onto a low 

dimensional space to enable the separation of the data into 

classes. The classes were separated using a hyperplane that 

maximizes linear separability of the data. To achieve this, LDA 

maximises a ratio between inter class variance and intra class 

variance. Classification was performed for each 0.125s long 

sub-segment to find a segment with the highest Cohen’s kappa 

[38]. That segment from all but one trail was used to train a 

classifier. Classifier was then tested on the full length of each 

trial from t=1.5 to t=4s (leave-one-out procedure) for both CSP 

and CSPb. Classification was implemented in rtsBCI v. 020, 

Biosig [39], under Matlab (Mathworks, USA). Classification 

performance was expressed in terms of classification accuracy, 

sensitivity and specificity. 

FNTNFPTP

TNTP
Accuracy




  (4) 

 

 
Fig. 1.  Experimental paradigm: a warning cue appears at t=0s and stays on  a 
screen until t=4. An execution cue (an arrow) appears at t=1s and stays on the 

screen for 1.25s. Arrows pointing to the left, right and upwards appear in a 

semi-random order and correspond to MI or ME  of the left, right or both hands 
respectively. ME and MI were performed in separate sub-sessions. Time 

between two trials was semi random, between 3 and 5s. Baseline was 

calculated from a period t=-2s to -1s before each warning cue. 
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FNTP

TP
ySensitivit


   (5) 

FPTN

TN
ySpecificit


   (6) 

where TP is true positive, FP is false positive, TN is true 

negative and FN is false negative rate. 

Receiver operating characteristic (ROC) was obtained for 

both classes (specificity vs sensitivity for a range of thresholds) 

and Area Under Curve (AUC) was calculated. The AUC value 

corresponding to the time window with highest kappa was 

reported [40]. All calculations were implemented in Biosig 

under Matlab. 

F On-line Experiment 

The experimental procedure was similar to the off-line 

procedure, but a bar proportional to the on-line accuracy 

overlaid the execution cues on a computer screen. The bar was 

extended to the left or to the right for classification between left 

and right MI task and to the right and upwards for the 

classification between the right hand and bimanual MI task. 

The unmodified classifier from the off-line session was used. 

Two classifiers were used: left vs right hand and right vs 

bimanual. . On-line classification between left hand and both 

hands MI was not performed to avoid fatigue due to increased 

concentration, which could result in a reduced performance. 

Right vs both hand classification was selected as being more 

relevant for performing activities of daily living of right handed 

people. For each classifier participants were asked to perform 

40 trials per condition i.e. each class (80 trials in total). The 

order of tested classifiers varied between participants to 

counterbalance fatigue. 

  

G. Statistical Analysis 

To produce ERSP maps, a statistical non-parametric, 

bootstrapping analysis, with a significance level p=0.05 was 

used in order to assess the differences between the groups and 

conditions. A correction for multiple comparisons was 

performed using the false discovery rate method [41]. 

Classification results and results of questionnaires were tested 

for normality using Kolmogorov-Smirnov test. Parametric 

analysis (paired student t-test) was applied to compare the 

equality of means of normally distributed data (Acc results in 

tables 1 and 2) while non parametric rank sum test was applied 

for data which did not have a normal distribution  such as results 

extracted from questionnaires. A Pearson correlation was 

calculated between classification accuracy and results of 

questionnaires. In all tests a significance threshold was set to 

p=0.05. All analysis was implemented in Matlab (Mathworks). 

III. RESULTS 

Quantitative EEG analysis is presented first followed by the 

off line and on line classification results. 

A. Event Related Spectral Perturbation 

Fig. 2 shows ERSP scalp maps in the alpha (8-12 Hz) and 

beta (13-30 Hz) band during real and imagined movements of 

the left hand, right hand and both hands, averaged over time 

period t=1.5s to 2s following a warning cue. For real 

movements in the alpha band there was a statistically significant 

difference at electrode location C3 between bimanual and right 

hand ME task; at C3, C5 and CP5 between the bimanual and 

left hand ME task; and at C5, CP2, CP4 and P4 between the left 

and right hand ME task. In the beta band there was a statistically 

significant difference at CF2 and CF4 between bimanual and 

right hand ME task and at CF4 between bimanual and left hand 

ME task. In the gamma band statistically significant difference 

were found only between bimanual and left hand task at CF4 

(Fig. 3). In all cases, the bimanual movements had stronger 

ERD than the unimanual movements.  

During imagined movements there was however no 

statistically significant differences between different types of 

movements. Looking at lateralization, in the alpha band, MI of 

left hand and of both hands  showed clear ERD lateralization to 

the right hemisphere. In beta band for all three types of MI, 

TABLE I 
RESULTS OF CSP CLASSIFIERS AND OF QUESTIONNAIRES 

P Ml Acc 

(%) 

Sens 

(%) 

 

Spec 

(%) 

AUC 

(%) 

KI LI 

1 LR 69 70 67 70 2.4 80 
 BR 66 65 66 65   

 BL 68 68 69 69   

2 LR 68 69 67 70 3.0 58 
 BR 65 65 64 67   

 BL 67 67 66 66   

3 LR 66 66 66 62 1.2 93 
 BR 64 64 64 64   

 BL 64 64 64 66   

4 LR 86 100 81 87 1.4 38 

 BR 68 68 53 66   

 BL 89 100 82 91   

5 LR 63 62 65 65 2.4 73 

 BR 65 65 65 65   

 BL 71 73 70 69   

6 LR 90 84 100 89 3.1 67 

 BR 68 100 83 70   

 BL 69 69 70 70   

7 LR 68 72 61 65 2.9 87 

 BR 68 73 64 67   
 BL 69 76 59 70   

8 LR 73 73 74 74 2.4 86 

 BR 65 64 66 66   

 BL 68 67 68 66   

9 LR 75 78 73 73 2.3 78 

 BR 74 82 64 70   

 BL 72 78 61 70   

10 LR 77 65 62 79 2.6 88 
 BR 71 61 65 73   

 BL 73 67 68 73   

Av LR 73±9 74±11 72±12 72±9 2.4±0.6 75± 17 

 BR 67±3 71±12 65±7 67±3   
 BL 73±11 68±7 68±7 71±7   

CSP common spatial patterns; P=participant; MI=motor imagery, Acc=accuracy; 
Sen=sensitivity; Spe=specificity, Auc=area under ROC curve, same for the left and 

right hand STD standard deviation, CI confidence interval. P=participant, LR=left 

vs right; BR=both vs right, BL=both vs left, Av=mean±STD, KI=kinaesthetic 

imagery questionnaire, LI=laterality index. 

TABLE I 
RESULTS OF CSP CLASSIFIERS AND OF QUESTIONNAIRES 
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(%) 

Sens 

(%) 

 

Spec 

(%) 

AUC 

(%) 

KI LI 

1 LR 69 70 67 70 2.4 80 
 BR 66 65 66 65   

 BL 68 68 69 69   

2 LR 68 69 67 70 3.0 58 
 BR 65 65 64 67   
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 BR 71 61 65 73   

 BL 73 67 68 73   

Av LR 73±9 74±11 72±12 72±9 2.4±0.6 75± 17 

 BR 67±3 71±12 65±7 67±3   
 BL 73±11 68±7 68±7 71±7   

CSP common spatial patterns; P=participant; MI=motor imagery, Acc=accuracy; 
Sen=sensitivity; Spe=specificity, AUC=area under ROC curve, same for the left and 

right hand, STD standard deviation. P=participant, LR=left vs right; BR=both vs 

right, BL=both vs left, Av=mean±STD, KI=kinaesthetic imagery questionnaire, 

LI=laterality index. 
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ERD was lateralized to the right (non-dominant hemisphere). 

Left and both hand MI lateralization was similar to the 

corresponding ME lateralization. In the gamma band ERD was 

lateralized to the right for bimanual MI. For MI of the left hand 

ERD was widespread bilateraly and no clear ERD could be 

noticed for right hand MI. 

In summary, both real and imagined bimanual movements 

resulted in bilateral desynchronization, more wide spread over 

the non-dominant hemisphere. For real movements, in all three 

bands, ERD was stronger during bimanual than during 

unimanual movements. These results indicate that feature 

extraction methods based on spatial filters might be adequate to 

classify between the uni- and bimanual movements. Largest 

differences between uni and bimanual movements can be 

noticed over the left (dominant) hemisphere for the alpha band 

and over the right hemisphere for the beta and gamma bands. 

B. Off-line Classification   

Table 1 shows classification performance for CSP classifiers 

(accuracy, sensitivity and specificity and AUC) for individual 

participants. It also shows kinesthetic imagery and LI scores for 

each single participant. The average classification accuracy was 

for left vs right (L-R) hand 73±9%, for both vs right hand (B-

R) 67±3% and for both vs left hand (B-L) 71±9%. There was 

no statistically significant differences between R-L and B-L as 

well as between B-R and B-L accuracy but there was a 

statistically significant difference between the classification 

accuracy of L-R and B-R (p=0.0372, paired t test). The average 

kinaesthetic imagery was moderate 2.4±0.6 and the average LI 

was 75±17, meaning that participants were on average clearly 

right handed. The average self-reported difficulty of 

imagination of hand movements of a single hand was 2.4±0.7 

and 2.4±0.7 for the right and for the left hand respectively, 

while for both hands it was 2.6±1.0. There were no statistically 

significant differences in self-reported difficulty of MI between 

tasks.  

Table 2 shows classification results for CSPb and frequency 

bands for which best accuracy was achieved. The average 

classification accuracy was for L-R 75±10%, for B-R 72±6% 

and for B-L 70±9%. Alpha band features were most frequently 

selected, although in 4 participants, single beta band features 

achieved the best accuracy for either R-B or L-B classification. 

Lower gamma band (30-35 Hz) was selected only three times 

 
Fig. 2.  Spatial maps of group average ERSP (a-c) real movements, (d-f) imagined movements in the alpha, beta and lower gamma (30-40 Hz) band. B: bimanual, 

L: left, R: right. Time window from 1.5 to 2 s post warning cue (0.5s to 1s post execution cue).  

 

 
Fig. 3.  Spatial maps showing group level statistically significant differences 

(p=0.05) of ERD between different real movements. Electrode locations 

according to 10-10 system (a) alpha band, (b) beta band, (c) lower gamma 

band (30-40 Hz), B: bimanual, L: left, R: right. Time window from 0.5s to 1s 

post execution cue. Electrode locations (from left to right) top row: F3, F1, Fz, 
F2, F4; second row: CF5, CF3, CF1, CFz, CF2, CF4, CF6; third (middle) row: 

C5, C3, C1, Cz, C2, C4, C6; fourth row: CP5, CP3, CP1, CPz, CP2, CP4, CP6, 

sixth (bottom) row: P3, P1, Pz, P2, P4. 
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and in all cases it was for L-B classification. For CSPb, there 

was no statistically significant difference in classification 

accuracy between any of the tasks. There was also no 

significant difference between CSP and CSPb accuracy for 

neither L-R nor for B-L task. However for B-R task, classifier 

based on CSPb feature had significantly higher classification 

accuracy (p=0.0351, paired t test).  

We also investigated a relation between the kinesthetic 

imagery and classification accuracy (CSPb and CSP features) 

and a relation between LI and the classification accuracy. There 

was no significant correlation between kinesthetic imagery 

scores and classification accuracy for neither CSP nor CSPb 

based classifier. Likewise there was no significant correlation 

between the LI and classification accuracy of any classifier. 

Figure 4 shows first two CSP for a representative volunteer 

(P4) used for classification between two conditions. For L-R 

classification CSP corresponded to areas over the sensory-

motor cortex. For R-B CSP had a parieto-occipital and left 

cental location while for L-B they had mid-central and parieto-

occipital location. For the L-R and R-B classifications,  spatial 

filters over the left hemisphere (covering sensory-motor cortex 

of the right hand) looked almost identical. Similarly, occipito-

parietal spatial filters, being representative for MI of both 

hands, look almost identical for R-B and L-B classifiers. The 

spatial filters are the same for CSP and CSPb because the CSP 

algorithm first calculates spatial filters and then filters CSP time 

series in different frequency bands. 

C. On-line Classification 

For on-line experiments, CSPb classifiers were used. Table 3 

shows on-line classification accuracy for L-R MI (69±3%) and 

for B-R MI (66±3%). The average classification accuracy 

dropped equally, for 6%, for both classifiers as compared to the 

off-line classifiers. Classification between uni- vs bimanual 

task had lower accuracy than classification between L-R tasks 

but is was higher than the chance level which for this number 

of trials (N=80) is 60% [42]. Based on the observation of the 

accuracy as a function of time in off-line experiment, a period 

from 1.5s to 2s following the warning cue was used for 

classification, as it showed best classification accuracy in all 

participants.  

IV. DISCUSSION 

Activities of daily living combine uni- and bimanual tasks. Yet 

assistive and rehabilitative BCI typically rely on using one hand 

TABLE II 
RESULTS OF OFF-LINE CSPB CLASSIFIER 

P Ml Band (Hz) Acc 
(%)  

 

Sen 
(%)  

Spec 
(%) 

AUC 
(%) 

1 LR 8-12;16-30 66 65 66 66 

 BR 8-12 65 66 65 67 

 BL 8-12;30-35 64 64 65 62 

2 LR 16-30 65 64 68 68 

 BR 8-12; 16-30 66 65 66 65 

 BL 8-12;30-35 67 68 66 66 

3 LR 8-12;16-30 65 65 66 62 

 BR 8-12 69 69 69 67 

 BL 8-12 63 62 64 64 

4 LR 8-12;16-30 90 83 100 89 

 BR 8-12;16-30 76 77 74 74 
 BL 8-12;16-30 90 89 90 90 

5 LR 8-12,16-24 65 64 65 66 

 BR 16-24 63 61 65 61 
 BL 16-24 60 59 61 61 

6 LR 8-12;16-24 90 96 85 85 
 BR 8-12;16-30 83 80 86 84 

 BL 8-12,16-24 70 70 71 69 

7 LR 8-12;16-24 72 62 84 70 

 BR 8-12;16-30 75 77 73 75 

 BL 8-12,30-35 66 62 69 69 

8 LR 8-12;16-30 82 83 82 82 

 BR 8-12 79 77 81 80 
 BL 16-24 70 73 68 71 

9 LR 16-24 79 79 80 80 
 BR 16-30 76 67 83 81 

 BL 8-12 76 78 77 76 

10 LR 16-30 77 79 76 76 

 BR 8-12;16-30 70 72 69 69 

 BL 16-30 73 74 73 71 

Av LR  75±10 74±12 77±11 71±9 
 BR  72±6 71±6 73±8 72±8 

 BL  70±9 70±9 70±8 70±8 

 
CSPb Band specific common spatial patterns; P=participant; MI=motor 

imagery, Acc=accuracy; Sen=sensitivity; Spe=specificity, AUC= area under 

ROC curve (same for left and right hand), STD standard deviation. 
P=participant, LR=left vs right; BR=both vs right, BL=both vs left, 

Av=mean±STD  

 

 
Fig. 4.  Spatial distribution of first two CSP for classification between the left 

and right MI (L-R left columns), right and both hands (R-B middle column) 
and left and both hands (L-B right column). 

  

TABLE III 

CLASSIFICATION ACCURACY OF ON-LINE CSPB CLASSIFIER [%] 

  P4 P6 P7 P8 P9 P10 Mean±STD 

[ 95% CI] 

L Acc 68 64 68 70 73 73 69±3 [68.7 69.3] 
R Sen 65 66 67 68 84 80 72±8 [71.3 72.7] 

 Spe 73 62 68 63 70 68 67±4 [66.6 67.4] 62 68 63 70 68 

B Acc 68 63 62 65 69 66 66±3 [65.7 66.3] 
R Sen 76 61 61 63 71 64 66±6 [65.4 66.5] 

 Spe 69 65 70 72 67 70 69±3 [68.7 69.3] 65 70 72 67 70 
 

CSPb Band specific common spatial patterns; Acc=accuracy; 

Sen=sensitivity; Spe=specificity, STD standard deviation, CI confidence 
interval. P=participant, LR=left vs right; BR=both vs right 

 



7 

 

at the time. Creating a BCI classifier between uni- and bimanual 

MI is considered a difficult task, based on the assumption that 

a bimanual task does not produce neither stronger nor spatially 

distinctive cortical activation as compared to the unimanual 

tasks [22,23].  

Results of this study showed that (i) on a group level, both 

ME and MI of bimanual movement had spatially distinctive 

ERD patterns different for alpha, beta and gamma bands, (ii) 

utilizing spatial time frequency distribution it was possible to 

create a uni-vs bimanual classifier which achieved a 

comparable classification accuracy to the left vs right hand MI 

classification. 

ME of a bimanual task had significantly stronger ERD than 

unimanual tasks, and that was more pronounced in the alpha 

than in the beta and gamma band. Compared to ME of the right 

and of left hand, ME of the bimanual task resulted in stronger 

ERD over the left hemisphere for the alpha band and over the 

right hemisphere for the beta band. Motor execution ERD in the 

alpha and beta bands of both bimanual  and left hand tasks had 

a bilateral distributions, confirming results from [25]. In the 

gamma band, clear bilateral ERD was noticed during the 

bimanual task only, while no ERD was visible during the 

unimanual tasks. These results demonstrate that algorithms 

relying on spatially distinctive ERD between uni and bimanual 

tasks, as suggested in [18], could not be used for untrained 

participants. 

The bimanual MI task had parietal ERD more spread over 

the non-dominant hemisphere but the intensity was not 

significantly stronger than during unimanual MI tasks. Contrary 

to the results of our previous study on another group of healthy 

participants [43] we found no significant difference between 

ERD during MI of the left and the right hand. That might 

explain somewhat lower classification accuracy of L-R 

classifier in this study vs 83±3% in [43]. On average 20% 

people cannot use MI BCI [44] which might reflect on 

differences in classification accuracy between healthy 

volunteers.  

For the on-line experiment we selected only participants 

whose off-line classification accuracy was 70% or higher based 

on recommendations from the literature [45]. This was however 

recommendation for systems for communication and control 

but it is not known if this level of accuracy is required for 

assistive and rehabilitative BCI.  

We performed classification based on CSP features which 

utilized spatially distinctive distribution of ERD and showed 

that classification between right vs both hands could be further 

improved when band specific CSPb features were created. 

What is most important, we showed that uni-vs bimanual and 

L-R MI classifiers may achieve comparable classification 

accuracies. Relevant results is also that the specificity, 

selectivity and AUC were of comparable values as 

classification accuracy, indicating no particular bias towards 

false positive or false negative. 

Although classification accuracies of the on-line classifiers 

were lower than that of the off-line classifiers, they dropped 

proportionally for L-R and B-R tasks.  That indicates that lower 

average accuracy of the on-line classifier was not specific to the 

task, but rather to a general variability of EEG features between 

sessions. Performing a short additional off line calibration 

session [46] on the day of the on-line experiment might have 

improved the classification accuracy. Further optimization of 

CSP features could be achieved by simultaneously or 

alternately optimizing temporal FIR and spatial filters [46-48]. 

Time window from which feedback is provided may also affect 

classification accuracy; methods such as correlation –based 

time window selection could be used to automatically detect 

optimal time window for each person [49].  

Contrary to our previous study [27], we found no correlation 

between motor imagery ability and classification accuracy. One 

reason might be that in our previous study we used band power 

features from 3 bipolar montage channels rather than CSP. Thus 

unlike this study, the previous study reflected a relation 

between the power of the sensory-motor rhythm over the central 

cortex and kinaesthetic imagery. We also did not find any 

correlation between handedness degree and classification 

accuracy, probably because most participants had high degree 

of right handedness.  

A limitation of this study was that it has been performed on 

the able bodied people although the main intended users of the 

proposed classifier are patients with stroke or spinal cord injury. 

Stroke affects the laterality of ERD thus MI of bimanual 

movements might be more lateralized towards the unaffected 

side, which might influence results based on CSP. We believe 

that due to the inherent lack of laterality of ERD of bimanual 

task, uni- vs bimanual MI classifiers might be less affected by 

stroke than left vs right hand classifiers.  

In SCI patients, the level of ERD changes over time [50]. 

Subactue incomplete patients may have stronger, parietally 

shifted, less lateralized cortical ERD, which becomes more 

central and lateralized over the course of recovery [5]. On the 

other hand, in patients with chronic complete SCI who did not 

recover motor function of their upper limbs, ERD is weaker 

than in able-bodied, typically resulting in worse BCI 

performance [51] unless affected by a secondary condition, 

such as a chronic pain [52] . Thus it is possible that uni- vs 

bimanual classifiers would have different performances in 

rehabilitative BCI used by incomplete subacute SCI patients 

and in assistive BCI used by chronic complete SCI patients.     

 Many patents unable to perform a motor task can 

differentiate between motor imagination and motor attempt 

[53]. A motor attempt is more similar to motor execution thus 

potentially creating stronger ERD which are easier to classify 

than MI, resulting in higher performance of uni-vs bimanual 

classifier.  

V. CONCLUSIONS 

In this paper, we propose a novel MI BCI paradigm. Uni-vs 

bimanual classifier has comparable performances to left vs right 

MI BCI classifiers and could be used in all applications in 

which MI classifiers are used. We suggest that its main 

application should be for rehabilitative and assistive BCI where 

it could increase the variety and complexity of motor tasks. 
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