168 research outputs found

    An Analysis on Adversarial Machine Learning: Methods and Applications

    Get PDF
    Deep learning has witnessed astonishing advancement in the last decade and revolutionized many fields ranging from computer vision to natural language processing. A prominent field of research that enabled such achievements is adversarial learning, investigating the behavior and functionality of a learning model in presence of an adversary. Adversarial learning consists of two major trends. The first trend analyzes the susceptibility of machine learning models to manipulation in the decision-making process and aims to improve the robustness to such manipulations. The second trend exploits adversarial games between components of the model to enhance the learning process. This dissertation aims to provide an analysis on these two sides of adversarial learning and harness their potential for improving the robustness and generalization of deep models. In the first part of the dissertation, we study the adversarial susceptibility of deep learning models. We provide an empirical analysis on the extent of vulnerability by proposing two adversarial attacks that explore the geometric and frequency-domain characteristics of inputs to manipulate deep decisions. Afterward, we formalize the susceptibility of deep networks using the first-order approximation of the predictions and extend the theory to the ensemble classification scheme. Inspired by theoretical findings, we formalize a reliable and practical defense against adversarial examples to robustify ensembles. We extend this part by investigating the shortcomings of \gls{at} and highlight that the popular momentum stochastic gradient descent, developed essentially for natural training, is not proper for optimization in adversarial training since it is not designed to be robust against the chaotic behavior of gradients in this setup. Motivated by these observations, we develop an optimization method that is more suitable for adversarial training. In the second part of the dissertation, we harness adversarial learning to enhance the generalization and performance of deep networks in discriminative and generative tasks. We develop several models for biometric identification including fingerprint distortion rectification and latent fingerprint reconstruction. In particular, we develop a ridge reconstruction model based on generative adversarial networks that estimates the missing ridge information in latent fingerprints. We introduce a novel modification that enables the generator network to preserve the ID information during the reconstruction process. To address the scarcity of data, {\it e.g.}, in latent fingerprint analysis, we develop a supervised augmentation technique that combines input examples based on their salient regions. Our findings advocate that adversarial learning improves the performance and reliability of deep networks in a wide range of applications

    Mitigating Feature Gap for Adversarial Robustness by Feature Disentanglement

    Full text link
    Deep neural networks are vulnerable to adversarial samples. Adversarial fine-tuning methods aim to enhance adversarial robustness through fine-tuning the naturally pre-trained model in an adversarial training manner. However, we identify that some latent features of adversarial samples are confused by adversarial perturbation and lead to an unexpectedly increasing gap between features in the last hidden layer of natural and adversarial samples. To address this issue, we propose a disentanglement-based approach to explicitly model and further remove the latent features that cause the feature gap. Specifically, we introduce a feature disentangler to separate out the latent features from the features of the adversarial samples, thereby boosting robustness by eliminating the latent features. Besides, we align features in the pre-trained model with features of adversarial samples in the fine-tuned model, to further benefit from the features from natural samples without confusion. Empirical evaluations on three benchmark datasets demonstrate that our approach surpasses existing adversarial fine-tuning methods and adversarial training baselines.Comment: 8 pages, 6 figure

    Deep Neural Networks and Data for Automated Driving

    Get PDF
    This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What are useful validation techniques and how about safety? This book unites the views from both academia and industry, where computer vision and machine learning meet environment perception for highly automated driving. Naturally, aspects of data, robustness, uncertainty quantification, and, last but not least, safety are at the core of it. This book is unique: In its first part, an extended survey of all the relevant aspects is provided. The second part contains the detailed technical elaboration of the various questions mentioned above

    Survey of deep representation learning for speech emotion recognition

    Get PDF
    Traditionally, speech emotion recognition (SER) research has relied on manually handcrafted acoustic features using feature engineering. However, the design of handcrafted features for complex SER tasks requires significant manual eort, which impedes generalisability and slows the pace of innovation. This has motivated the adoption of representation learning techniques that can automatically learn an intermediate representation of the input signal without any manual feature engineering. Representation learning has led to improved SER performance and enabled rapid innovation. Its effectiveness has further increased with advances in deep learning (DL), which has facilitated \textit{deep representation learning} where hierarchical representations are automatically learned in a data-driven manner. This paper presents the first comprehensive survey on the important topic of deep representation learning for SER. We highlight various techniques, related challenges and identify important future areas of research. Our survey bridges the gap in the literature since existing surveys either focus on SER with hand-engineered features or representation learning in the general setting without focusing on SER

    An Adversarial Robustness Perspective on the Topology of Neural Networks

    Full text link
    In this paper, we investigate the impact of neural networks (NNs) topology on adversarial robustness. Specifically, we study the graph produced when an input traverses all the layers of a NN, and show that such graphs are different for clean and adversarial inputs. We find that graphs from clean inputs are more centralized around highway edges, whereas those from adversaries are more diffuse, leveraging under-optimized edges. Through experiments on a variety of datasets and architectures, we show that these under-optimized edges are a source of adversarial vulnerability and that they can be used to detect adversarial inputs
    • …
    corecore