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Abstract

An Analysis on Adversarial Machine Learning: Methods and Applications

Ali Dabouei

Deep learning has witnessed astonishing advancement in the last decade and revolutionized
many fields ranging from computer vision to natural language processing. A prominent
field of research that enabled such achievements is adversarial learning, investigating the
behavior and functionality of a learning model in presence of an adversary. Adversarial
learning consists of two major trends. The first trend analyzes the susceptibility of machine
learning models to manipulation in the decision-making process and aims to improve the
robustness to such manipulations. The second trend exploits adversarial games between
components of the model to enhance the learning process. This dissertation aims to provide
an analysis on these two sides of adversarial learning and harness their potential for improving
the robustness and generalization of deep models.

In the first part of the dissertation, we study the adversarial susceptibility of deep learn-
ing models. We provide an empirical analysis on the extent of vulnerability by proposing
two adversarial attacks that explore the geometric and frequency-domain characteristics of
inputs to manipulate deep decisions. Afterward, we formalize the susceptibility of deep net-
works using the first-order approximation of the predictions and extend the theory to the
ensemble classification scheme. Inspired by theoretical findings, we formalize a reliable and
practical defense against adversarial examples to robustify ensembles. We extend this part
by investigating the shortcomings of adversarial training (AT) and highlight that the popu-
lar momentum stochastic gradient descent, developed essentially for natural training, is not
proper for optimization in adversarial training since it is not designed to be robust against
the chaotic behavior of gradients in this setup. Motivated by these observations, we develop
an optimization method that is more suitable for adversarial training. In the second part of
the dissertation, we harness adversarial learning to enhance the generalization and perfor-
mance of deep networks in discriminative and generative tasks. We develop several models
for biometric identification including fingerprint distortion rectification and latent fingerprint
reconstruction. In particular, we develop a ridge reconstruction model based on generative
adversarial networks that estimates the missing ridge information in latent fingerprints. We
introduce a novel modification that enables the generator network to preserve the ID infor-
mation during the reconstruction process. To address the scarcity of data, e.g., in latent
fingerprint analysis, we develop a supervised augmentation technique that combines input
examples based on their salient regions. Our findings advocate that adversarial learning
improves the performance and reliability of deep networks in a wide range of applications.
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Chapter 1

Introduction

1.1 Problem and Motivation

Machine learning has witnessed astonishing advancement in the last decade and revolu-

tionized many domains ranging from computer vision [12, 18] to natural language process-

ing [19–21]. These achievements have been fueled by major progress in other domains that

provided two types of resources for training deep neural network (DNN). First, the ad-

vancement of hardware technology has led to the development of graphics processing units

with a large amounts of memory to store numerous training parameters and many process-

ing cores to optimize these parameters efficiently via parallel processing. Second, the huge

amount of data has become available which has enabled us to gather large training datasets

and utilize them to enhance the generalization of the learning process. Consequently, the

theory of DNNs has made significant progress in various directions including network ar-

chitectures [12, 18, 22, 23], optimization techniques [24–26], learning paradigms [27, 28], and

objective functions [29–31]. Despite the major progress in the field, there is still a long

journey to understand and exploit the mysterious potential of learning systems.

One major trend of research that significantly contributed to the theory of learning

systems is adversarial learning. Adversarial learning aims to analyze the functionality and

behavior of learning models in presence of an adversary. Adversarial learning broadly encom-

passes two trends, based on the intention of the adversary. The first trend is concerned with

the security of predictions, and the adversary is a distinct external entity who aims to alter



Ali Dabouei Chapter 1. Introduction 2

Figure 1.1: Illustration of an adversarial perturbation and its functionality. The original

image on the left is correctly classified by the deep model as “traffic sign”. However, adding

the adversarial perturbation on the middle changes the prediction of the model to “cinema”.

Note that the perturbation on the output image is almost imperceptible to the human eye.

Figure is inspired by Figure 1 in [10].

the learning or prediction process in order to change the decisions of the model [4,10,32,33].

A well-known example for this kind of adversary is adversarial example: a manipulated

version of the input data that remains benign to the human perception but can fool deep

learning models to confidently make wrong predictions [10, 32]. Figure 1.1 provides a vi-

sualization of adversarial examples where an imperceptible additive perturbation changes

the prediction of a deep model, i.e., ResNet-50. Adversarial examples are potential threats

to almost all applications of machine learning [34–36] and raise critical concerns regard-

ing the deployment of machine learning models in security-sensitive applications such as

autonomous vehicles [37] and biometric identification [4, 38]. While analyzing DNNs as dif-

ferentiable transfer functions has led to substantial studies exploring embedding spaces and

their characteristics in regard to training paradigms, analyzing the adversarial behavior has

highlighted the importance of the topology of the decision boundaries and their properties

in high dimensional data spaces [39, 40].

The second trend of adversarial learning utilizes an internal adversary as part of the model

to improve the learning process. This goal is often obtained by designing a min-max game

between the components of the model in which one component tries to maximize the loss

function and the other component minimizes the loss simultaneously. A well-known example

for this type of adversarial learning is Generative Adversarial Network (GAN)s [27, 28, 41],

in which the target model itself is an adversary for the discriminator network.
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The dissertation is broadly divided into two parts. The first part aims to analyze the

adversarial susceptibility of DNNs to novel adversarial attacks and proposes approaches for

improving the robustness of predictions against such manipulations of the input samples. In

the second part of the dissertation, we harness adversarial learning and develop applications

for computer vision and biometric identification. In the following sections, we provide an

introduction to our contributions and the organization of the dissertation.

1.2 Adversarial Robustness

In the first part of the dissertation including Chapters 2, 3, 4, and 5, we analyze the sus-

ceptibility of DNNs to adversarial perturbations and propose approaches for alleviating this

critical limitation of DNNs. In Chapter 2, we analyze the susceptibility of deep face recogni-

tion (FR) models to geometric manipulations of the face and propose adversarial attacks that

modify the landmark locations of the face to compute adversarial examples. By reducing the

search space for finding the adversarial manipulations, the proposed attack achieves notable

speed-up compared to the previous geometric attacks, while maintaining a high success rate

in fooling deep models. This method alters each landmark of the face independently, and

therefore, sometimes causes artifacts in the generated faces. To address this shortcoming,

we developed a second attack constrained on the semantic structure of the face. The second

attack is extremely powerful in generating natural-looking adversarial faces that are hard to

detect by the human eye and state-of-the-art (SOTA) defense methods.

In Chapter 3, the frequency characteristics of additive adversarial perturbation is studied

and an adversarial attack capable of crafting perturbations with controllable frequency com-

ponents is proposed. In Chapter 4, we exploit first-order interactions within ensembles to

formalize a reliable and practical adversarial defense. We introduce a scenario of interactions

that certifiably improves the robustness according to the size of the ensemble, the diversity

of the gradient directions, and the balance of the member’s contribution to the robustness.

One of the most effective methods (defenses) to alleviate adversarial susceptibility is ad-

versarial training which improves the robustness by training the model on the worst-case

loss [42, 43]. Despite the fundamental distinction between adversarial and natural train-
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ing, adversarial training methods generally adopt momentum stochastic gradient descent

(MSGD) for the outer optimization. In Chapter 5, we analyze this choice by investigating

the overlooked role of outer optimization in adversarial training. Our exploratory evalua-

tions reveal that adversarial training induces higher gradient norm and variance compared

to natural training. This phenomenon hinders the outer optimization since the convergence

rate of MSGD is highly dependent on the variance of the gradients. To this end, we propose

an optimization method called example-normalized stochastic gradient descent with mo-

mentum (ENGM) which regularizes the contribution of each input example to the average

mini-batch gradients. We prove that the convergence rate of ENGM is independent of the

variance of the gradients, and thus, it is suitable for adversarial training. Furthermore, we

introduce a trick to reduce the computational cost of ENGM using empirical observations

on the correlation between the norm of gradients w.r.t. the network parameters and input

examples. Through extensive evaluations and ablation studies we demonstrate that ENGM

and its variants consistently improve the performance of adversarial training and alleviate

its major shortcomings including robust overfitting and high sensitivity to hyperparameter

settings.

1.3 Applications of Adversarial Learning

In the second part of the dissertation, we develop applications of machine learning and es-

pecially adversarial learning for problems in computer vision and biometrics. In Chapter

6, we propose a framework for disentangling deep representations for the two major char-

acteristics of the face, namely appearance and geometry. To provide supervision for this

aim, we generate geometrically identical faces by incorporating spatial transformations. We

demonstrate that the proposed approach enhances the performance of deep FR models by

assisting the training process in two ways. First, it enforces the early and intermediate

convolutional layers to learn more representative features that satisfy the properties of dis-

entangled embeddings. Second, it augments the training set by altering the geometry of the

faces.

In Chapter 7, we study the mixing augmentation, a prominent approach for improving
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the generalization of DNNs. We demonstrate that the blind mixing in previous approaches

such as MixUp [44,45] and CutMix [46] can potentially deteriorate the information in salient

features of the input images. Consequently, we develop a mixing augmentation method that

identifies the salient regions within input images to construct mixed training samples. Hence,

SuperMix constructs mixed images rich in visual features and complying with realistic image

priors. To enhance the efficiency of the optimization for SuperMix, a variant of the Newton

iterative method, 65× faster than gradient descent is developed. Through extensive evalu-

ations and ablation studies on two tasks of object classification and knowledge distillation,

we demonstrate that SuperMix can significantly alleviate overfitting in DNNs.

In Chapter 8, we address the geometric distortion of fingerprints and their negative effect

on the recognition performance by developing a fast and effective distortion estimator which

captures the nonlinear properties of geometric distortion. While recently proposed methods

handle distortion using a dictionary of distorted templates, we use DNNs to estimate the

principal distortion components of input samples. Our approach does not require the ridge

frequency and orientation maps to estimate the distortions. In addition, our model estimates

the distortion parameters continuously to achieve more accurate rectifications.

In Chapter 9, we developed an adversarial learning model to reconstruct the ridge in-

formation of latent fingerprints. The core network in the model is a conditional generative

adversarial network that reconstructs the obscured ridge information of the latent samples.

To overcome the limitation of the previous ridge-based reconstruction methods, our model

predicts three extra maps in addition to the ridge map, namely the orientation, frequency,

and segmentation maps. Generating the orientation and frequency maps ensure that the

model is considering the orientation and frequency information of the input latent finger-

prints. Generating a segmentation map prevents the model from filling large missing areas

in the input latent samples; thus, it optimizes the amount of ridge information that can be

reconstructed. In addition, to force the generator to preserve the ID information (type and

location of minutiae), we developed an auxiliary deep model to extract the perceptual ID

information (PIDI) of the generated sample and fuse it into the cGAN model to enhance the

reconstruction process.



6

Chapter 2

Geometric Adversarial Attack on

Deep Face Recognition

2.1 Introduction

Machine learning models especially DNNs have obtained SOTA performance in different

domains [18, 47, 48].Despite the excellent performance, it has been shown [2, 32] that DNNs

are vulnerable to a small perturbation in the input domain which can result in a drastic

change of predictions in the output domain. These small perturbations, which are often

imperceptible to humans, can transform natural examples into adversarial examples that

are capable of manipulating high-level predictions of neural networks.

A crucial characteristic of adversarial examples is that they are visually similar to the

original samples. This property significantly highlights the vulnerability of DNNs in critical

applications where a carefully crafted adversarial example may remain benign to the human

eye while targeting several machine learning models. For instance, autonomous vehicles may

be misled by traffic signs constructed by an adversary to deceive machine learning methods,

while the same sign may seem natural to human drivers [11].

Most of the attack methods developed in the previous works [2,3,49] are intensity-based

attacks, as they directly manipulate the intensity of input images to fool the target model.

Intensity-based attacks are computationally cheap and can prosper from a low-cost similar-

ity constraint by adopting an ℓp-norm to force the generated examples to be similar to the



Ali Dabouei Chapter 2. Geometric Adversarial Attack on Deep Face Recognition 7

Figure 2.1: Comparison of the proposed attack to an intensity-based attack. First column:

the ground truth image, which is correctly classified. Second column: the spatially trans-

formed adversarial image wrongly classified and the corresponding adversarial landmark

locations computed by our method. Third column: the adversarial image wrongly classified

and the corresponding perturbation generated by the fast gradient sign method [2]. The

proposed method leads to natural adversarial faces which are clean from additive noise.

benign samples. Since perturbations for neighborhood pixels are computed independently,

adversarial examples generated using intensity-based attacks often have high-frequency com-

ponents that can be used as a measure to detect and remove them [50]. On the other hand,

the ℓp-norm is not a perfect measure for perceptual similarity since it is sensitive to spatial

transformations [51]. For instance, a small rotation, translation, or scale variation in the

input image, results in a drastic change of similarity. These limitations restrict intensity-

based attacks from incorporating spatial perturbations. Recently, Xiao et al. [1] proposed a

novel method of generating adversarial examples by spatially transforming natural images.

Spatial transformations provide a convenient way of incorporating neighborhood information

through interpolation.

From the defensive perspective, we divide FR systems into two different types, active

and passive. In the active type, the model processes online face images from devices such as

surveillance or access control cameras to identify the captured face. Therefore, the model has

a limited amount of time to examine whether the input image is natural or not. In the passive

FR, individuals submit a digital or hard copy photo to register their identity in a system for
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future identification. The attacker can submit an adversarial face image that prevents the

system from recognizing the malicious ID in the future. In such a case, the defense algorithm

has unlimited time to examine the gallery images. Hence, attacking passive FR systems is

more challenging than attacking active systems. However, if the attack on the passive FR

system is successful, the attacker may obtain a long-term immunity against the identification

system.

This study explores the extent to which passive FR systems are vulnerable to spatially

transformed adversarial examples. Inspired by [1], we propose a novel and fast method of

generating adversarial faces by altering the landmark locations of the input images. The

resulting adversarial faces completely lie on the manifold of natural images, which makes

it extremely hard for defense methods to detect them even by a novelty detector [52]. The

contributions of this paper are as follows:

• We have demonstrated that the prediction of a FR model has a linear trend around

the actual value of the landmark locations of the input face image.

• We have introduced a fast method of generating adversarial face images, which is

approximately 200 times faster than the previous geometry-based attacks which use

L-BFGS optimization.

• We have developed a structure-constrained attack that manipulates face landmarks

based on the semantic regions of the face.

• We have demonstrated that constraining the attack to preserve the natural structure

of faces greatly increases the robustness of the method against the SOTA defense

algorithms.

2.2 Related Work

Recent advances in technology have led to the generation of large datasets and powerful

computational resources that made it possible to train deeper learning models. These models

outperformed traditional methods in different areas ranging from signal processing to action
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Figure 2.2: The proposed method optimizes a displacement field f to produce adversarial

landmark locations Padv. The spatial transformation T transforms the input sample to the

corresponding adversarial image xadv such that Φ(xadv) = Φ(x) + f, and a SOTA FR model

g miss-classifies the transformed image xadv.

recognition. Despite the spectacular performance, Szegedy et al. [32] showed that a small

perturbation in the input domain can fool a trained classifier into making a wrong prediction

confidently. In this section, we first review the literature on intensity-based and geometry-

based attacks. Then we explore the background of adversarial examples for the FR systems.

2.2.1 Intensity-Based Attacks

Algorithms for generating adversarial examples can be categorized by the perturbation type.

Most of the previously proposed methods are intensity-based attacks, as they directly try

to manipulate the intensity of the input sample. Szegedy et al. [32] used a box-constrained

L-BFGS [53] to generate some of the very first adversarial examples. Despite the high

computational cost, their method was able to fool many networks trained on different inputs.

Goodfellow et al. [2] proposed a fast and efficient intensity-based attack called the fast

gradient sign method (FGSM) and showed that the prediction of a deep leaning model has

a linear trend around the saddle point of the input sample. Hence, they used the sign of the

gradient of the classification loss with respect to the input sample as the perturbation to

manipulate the intensity of the benign examples. This provides a fast and effective single-step

attack. Although they select a small coefficient for the amplitude of the gradient sign to make

the perturbation imperceptible, such a noisy pattern can facilitate the process of defending
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against it [50, 54]. Various extensions to intensity-based attacks have been developed to

explore the vulnerability of machine learning models. To increase the effectiveness of the

attack, Rozsa et al. [55] proposed to use the actual gradient value instead of the gradient sign

used in FGSM [2]. Also, several iterative methods are developed to improve the robustness

of single-step attacks against defenses, including the iterative version of FGSM [11,56].

Papernot et al. [57] proposed the use of the Jacobian matrix of the prediction of classes

concerning the input sample to generate Jacobian-based Saliency Map Attack (JSMA). JSMA

reduces the number of pixels that are needed to be changed during the attack by calculating

a saliency map of the most important pixels in the input space. Carlini and Wagner [58]

modified the JSMA by changing the target layer used in the algorithm to compute the

Jacobian matrix. They reported the adversarial success rate of 97% by modifying less than

5% of pixels in the input samples. However, saliency-based methods are computationally

expensive due to the greedy search for finding the most significant areas in the input sample.

Almost all intensity-based attacks add high-frequency components to the input samples

and use an ℓp-norm constraint to control the amount of distortion. However, the ℓp-norm is

not a perfect similarity measure and does not guarantee that the adversarial samples lie on

the same manifold as the natural samples. This increases the vulnerability of intensity-based

attacks, especially in the passive applications where the agent has unlimited time to assess

the legitimacy of the inputs.

2.2.2 Geometry-Based Attacks

Recently, Xiao et al. [1] proposed stAdv attack in which they generate adversarial examples

by spatially transforming benign images. For this purpose, they define a flow field f for all

pixel locations in the input image. The corresponding location of a pixel in the adversarial

image can be computed by the displacement field. Since the displacement field can hold

fractional values, they use a differentiable bilinear interpolation [59] to overcome the dis-

continuity problem. Furthermore, they added the sum of the total displacement of any two

adjacent pixels to the main loss function to control the amount of distortion introduced by

the displacement field. However, optimizing a flow field for all pixels in an image produces a
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highly non-convex cost function. They used the L-BFGS [53] with a linear backtrack search

to find the optimal flow field f∗. Such a computationally expensive optimization is the critical

limitation of this method.

2.2.3 Attacking Face Recognition

All of the previously proposed attack methods can be adopted for FR models, but the

approach is highly dependent on the type of the FR model. For active FR, it has been shown

that putting on enormous amounts of makeup [60] or wearing carefully crafted accessories [4]

can conceal the identity of the attacker. However, wearing heavy makeup or overt accessories

may draw attention and increase the chance of defense against the attack.

For passive FR, Goel et al. [61] and Goswami et al. [62] examined several intensity-based

attacks and showed that they are extremely successful in fooling FR systems. However,

the noisy structure of the perturbation makes these attacks vulnerable against conventional

defense methods such as quantizing [54], smoothing [61] or training on adversarial examples

[32].

2.2.4 Defense Methods

Since the introduction of adversarial examples, many approaches have been proposed to

detect and mitigate these threats. Current defenses against adversarial attacks consist of

two main approaches which modify either the model [2, 43, 63] or the input before feeding

to the model [64, 65]. The most successful group of defenses to date are methods based on

modifying the model, especially by using adversarial training [43].The adversarial training

uses the adversarial examples during the training phase to make the model robust against

the attack. Goodfellow et al. [2] proposed to utilize FGSM to generate adversarial examples

and use them to train the model to provide robustness against adversarial examples. Later in

Section 2.4.4, we use this method followed by ensemble adversarial training [63] and projected

gradient descent [43] to examine the performance of our attacks under these SOTA defenses.
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2.3 Approach

Here we first briefly describe the problem of generating adversarial examples. We then define

a face transformation model based on the landmark locations in Section 2.3.2. We continue

by presenting a landmark-based attack in Section 2.3.3 and developing a structural constraint

in Section 2.3.4.

2.3.1 Problem Definition

For the process of generating adversarial faces, we assume that the victim FR model is a well-

trained classifier g : x → y over Nc different classes, that predicts a vector of classification

scores y ∈ RNc , given an input face image x ∈ [0, 1]H×W×3 with spatial size H ×W. We

consider the white-box scenario where the attacker has full knowledge about the model and

its prediction. The attacker tries to manipulate a benign face image x from class c in a way

that the FR model miss-classifies the resulting adversarial face image xadv.

2.3.2 Landmark-Based Face Transformation

Let Φ be a landmark detector function that maps the face image x to a set of k 2D landmark

locations P = {p1, . . . , pk}, pi = (ui, vi). We assume padv
i = (uadv

i , vadvi ) is the transformed

version of pi, and defines the location of the i-th landmark in the corresponding adversarial

face image xadv. To manipulate the face image based on P, we define the per-landmark flow

(displacement) field f to produce the location of the corresponding adversarial landmarks.

For the i-th landmark padv
i = (uadv

i , vadvi ), we optimize the spatial displacement vector f i =

(∆ui,∆vi)
∗. The adversarial landmark padv

i can be obtained from the original landmark pi

and the displacement vector f i as:

padv
i = pi + f i,

(uadv
i , vadvi ) = (ui + ∆ui, vi + ∆vi).

(2.1)

∗We assume that 2D coordinates are independent. So in the rest of the paper, all operations on coordi-

nates are element-wise.
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Figure 2.3: Grouping face landmarks based on semantic regions of the face.

Contrary to [1], which estimates the displacement field f for all pixel locations in the input

image, the displacement field f in the proposed method is only defined for k landmarks. In a

real-world application, especially FR problems, k is notably small compared to the number

of pixels in the input image. As a result, it is possible to use conventional spatial transfor-

mations to transform the input image. Consequently, limiting the number of control points

reduces the distortion introduced by the spatial transformation. The resulting adversarial

face image is the transformed version of the benign face image using the transformation T

as follows:

xadv = T(P,Padv, x), (2.2)

where T is the spatial transformation that maps the source control points P to the target

control points Padv. Note that xadv is differentiable with respect to the landmark locations

and the input image.

2.3.3 Fast Landmark Manipulation

It has been shown [66] that landmark locations in the face image provide highly discrimi-

native information for FR tasks. Indeed, we experimentally show this in Section 2.4.2 that

even learning based FR systems discriminate face identities based on extracting the relative

geometric features. More specifically, the predictions of FR systems are highly linear around

the original landmark locations of the face image. This property allows the direct employ-
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ment of the gradient of the prediction in a FR model to geometrically manipulate benign

faces.

We use the gradients of the prediction with respect to the location of landmarks to

update the displacement field f. For this purpose, we first define a standard for the correct

prediction, and then we use it to compute the formulation of the attack. As a measure of

correct classification, we select the same softmax cost used in [4, 67]. Given an input x, a

one-hot label vector yc corresponding to class c and a vector of classification score g(x) from

the victim classification model, we define the softmaxcost as:

J
(
g(x), c

)
= – log

(
ey

T
c g(x)∑Nc

n=1 e
yTn g(x)

)
, (2.3)

where Nc is the number of classes. Besides, we define a boundary for the amount of dis-

placement to prevent the model from generating distorted face images. Inspired by [1], we

develop Lflow to constrain the displacement field f as follows:

Lflow(f) =
1

k

k∑
i=1

(∆ui
2 + ∆vi

2). (2.4)

Having the measure for the correct classification, and the term for bounding the displace-

ment field, we define the total loss for generating adversarial faces as:

Lt(P, P
adv, x, cx) = J

(
g
(
T(P, Padv, x)

)
, cx

)
– λflowLflow(P

adv – P), (2.5)

where λflow is a positive coefficient used to control the magnitude of the displacement. The

attacker can generate geometric adversarial perturbations by finding the f∗ as:

f∗ = arg max
f

Lt(P, P
adv, x, cx). (2.6)

As we show in Section 2.4.2, the prediction of FR models is highly linear around the

ground truth location of the face landmarks; therefore, we use the direction of the gradient

of the prediction (same as FGSM [2]) to find the landmark displacement field f in an iterative

manner. The t-th optimization step for finding f using FGSM is:

f(t+1) = f(t) + ε sign(∇Padv(t)Lt(P, P
adv(t), x, cx)), (2.7)
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where Padv(t) = P + f(t). We refer to this as the fast landmark manipulation method (FLM)

for generating adversarial faces. Figure 2.2 shows an overview of the method.

2.3.4 Semantic Grouping of Landmarks

In the previous section, we developed a model to generate face images based on manipulating

the landmark information. Although this method is fast and computationally cheap, it has a

limitation that should be addressed. In Equation 2.7, we use the gradients of the classification

loss with respect to the landmark locations to update the displacement field for generating

the adversarial face images. These gradients can have any direction in the 2D coordinate

space. As a result, multiple updates of the displacement field f can severely distort the

generated adversarial images. To prevent this issue, we adopt the total ℓ2–norm of the

displacement field f as an additional loss. However, our model computes the displacement

field f for a significantly small number of locations in the input image, so limiting the size

of f can reduce the effectiveness of the attack.

To overcome this limitation, we propose to semantically group landmarks and manipulate

the group properties instead of perturbing each landmark. Consequently, the total structure

of the face will be preserved. This consideration allows us to increase the total amount of

displacement and, as a result, extremely increases the effectiveness of the attack. We break

down the set of landmarks P into m semantic groups Pi, i ∈ {1, . . . , m}, and pi,j denotes the

j-th landmark in the i-th group which has ni landmarks. These groups are formed based on

their semantic regions in the face, such as left eye, right eye, mouth, etc.. Figure 2.3 shows a

sample grouping of face landmarks used in this study. We define a flow field vector for each

of the groups by means of a translation and a scale variable that will apply to all elements

in the group. For the face regions, a rotation is not of interest because it is not natural to

have a face with a rotated mouth or nose.

Let Pi be the i-th landmark group e.g. all landmarks of the nose. To scale these land-

marks, we define the scaling tuple αi = (αui ,αvi) where αui and αvi are the horizontal and

vertical scaling parameters respectively. To translate the landmarks, we define the transla-

tion tuple βi = (βui , βvi) where βui and βvi are the translation parameters for the horizontal



Ali Dabouei Chapter 2. Geometric Adversarial Attack on Deep Face Recognition 16

and vertical axes respectively. The location of the corresponding landmarks in the adversarial

image can be computed as:

Padv
i = αi(Pi – pi) + βi, (2.8)

where pi=
1
ni

∑ni
j=1 pi,j is the average location of all landmarks in the group Pi. We subtract

the average of the group from each landmark location in the group before scaling to force

each part of the face to be scaled regarding its center.

We choose αi and βi such that they minimize the square error of Padv
i between Equation

2.1 and Equation 2.8 as:

arg min
αi,βi

1

ni

ni∑
j=1

(
αi(pi,j – pi) + βi – pi,j – f i,j

)2
. (2.9)

Solving Equation 2.9 results in the closed-form solutions for the αi and βi as:

αi =

∑ni
j=1(pi,j – pi)(pi,j + f i,j)∑ni

j=1(pi,j – pi)
2

, (2.10)

βi = pi +
1

ni

ni∑
j=1

f i,j. (2.11)

We modeled the effect of the displacement field f i,j for each group of landmarks as a scaling

and a translation function. While Equation 2.7 optimizes f, we use Equations 2.10 and

2.11 to calculate the corresponding set of scale tuples {α1, . . . ,α7} and translation tuples

{β1, . . . , β7}. We refer to this as the grouped fast landmark manipulation method (GFLM)

for generating adversarial faces.

2.4 Experiments

We first describe the implementation details in Section 2.4.1. Then we investigate how

landmark information influences the prediction of a face classifier in Section 2.4.2. We

evaluate the performance of the proposed attacks in the white-box scenario in Section 2.4.3

and conclude the experiments by measuring and comparing the performance of our attacks

under several defense methods in Section 2.4.4.
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Figure 2.4: Examples of linearly interpolating face properties. Each column from Left to

right shows examples of interpolating one of the eight geometric variables of the face structure

described in Section 2.4.2. The probability of the true class is depicted on the bottom left

corner of samples. The green color specifies the face image with the maximum probability

of belonging to the true class. The red color shows the incorrectly classified face images.

2.4.1 Implementation Details

To evaluate the performance of the proposed method in the white-box scenario, we use

the FR model developed by Schroff et al. [68] that obtained the SOTA results on the La-

beled Faces in the Wild (LFW) [7] challenge as the victim model. We train two instances

of the model∗ on two datasets of face images. The first instance is trained to recognize

9,101 celebrities from the VGGFace2 dataset [69] with more than 3.3M training images

and the average of 360 images per subject. The second instance is trained on the CASIA-

WebFace [70] dataset which consists of more than 494,000 face images and 10,575 unique

∗https://github.com/davidsandberg/facenet

https://github.com/davidsandberg/facenet
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IDs. For extracting the landmark information of the input face images, we use the Dlib [71]

landmark detector which predicts the 2D coordinates for 68 landmarks. We divide land-

marks based on five facial regions as: 1) P1: jaw, 2) P2: right eye and eyebrow, 3) P3: left

eye and eyebrow, 4) P4: nose, and 5) P5: mouth. The number of landmarks in each group

is as: {n1=17, n2=11, n3=11, n4=9, n5=20}. Figure 2.3 demonstrates a similar grouping of

landmarks.

We opt to use the thin-plate spline (TPS) [72] to cover a broad range of spatial transfor-

mations that are capable of locally manipulating face images. TPS has 2(k + 3) parameters

for mapping k source landmarks P to their corresponding Padv. We first scale coordinates

to lie inside the range [–1, 1]2 where (–1, –1) is the top left corner and (1, 1) is the bot-

tom right corner of the image. We assume all coordinates are continuous values since TPS

has no restriction on the continuity of the coordinates because of the differentiable bilinear

interpolation [59].

We set the value of λflow for the fast landmark manipulation method (FLM) attack to

100. For the grouped fast landmark manipulation method (GFLM) we do not set any limit

for the amount of displacement since the structural condition developed in Section 2.3.4 is

enough to preserve the similarity of the generated adversarial examples. Therefore, we set

λflow for the GFLM attack to zero. To further condition the model to generate realistic

faces, we perform an extra modification for the symmetric parts, such as eyes. We set an

equal scale and an equal vertical position for these parts. Other conditions can be applied by

slightly changing Equation 2.9. For example, instead of manipulating the horizontal location

of the eyes independently, one can change the horizontal distance between them to preserve

the natural symmetry.

2.4.2 Interpolated Perturbation

The geometry of the face is unique and provides highly discriminative information for FR.

In this section, we perform an experiment to evaluate how spatially manipulating the face

regions affects the performance of a FR system. We extract landmarks for all faces in the

CASIA-WebFace [70] dataset and define eight variables based on the geometric properties
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Figure 2.5: Examples of the adversarial faces generated using FLM and GFLM. For each

subject, five images are shown including the original face image (middle face), the result of

GFLM (right face), the result of FLM (right image), displacement field f for GFLM (left

field) and displacement field f for FLM (right field). Tags on the bottom left of images

show the probability of the true class. Green and red tags denote the correct and incorrect

classified samples respectively.

of the face regions. The first four variables are the translation-based variables which are:

1) horizontal distance between the eyes and eyebrows, 2) vertical location of the eyes and

eyebrows, 3) horizontal location of the nose, 4) horizontal location of the mouth. The second

set of variables are the scale-related variables and are as follows: 5) scale of the jaw, 6) scale

of the mouth, 7) scale of the nose, and 8) scale of the eyes. We interpolated each of these

variables independently to measure the influence of each on the performance of the FR

model. Figure 2.4 shows several examples of the interpolation.

We calculate the prediction of the true class for faces which are correctly classified and

their manipulated versions. The predictions are averaged over all the ID’s to investigate

how manipulating face parts affects the predicted probability of the class. Figure 2.6 shows

the final averaged values for the predictions. As it is shown, the global maximum of the

model’s prediction for a sample face is around the ground truth value of the positions and

the scales. These results confirms that the geometry of the face contains highly discriminative
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Figure 2.6: Normalized probability of the true classes based on interpolating the eight vari-

ables of face geometry defined in Section 2.4.2.

information for FR. Indeed, the prediction of a FR model has a linear characteristic around

the actual size and location of face regions and enables us to directly use the gradient of the

prediction to manipulate landmark locations.
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Defense FGSM [2] stAdv [1] FLM GFLM

Adv. [2] 19.12 36.96 54.79 62.03

Ens. [63] 16.27 33.80 53.59 61.84

PGD [43] 18.95 39.15 55.65 67.43

Table 2.2: Comparing the success rate of the proposed FLM and GFLM attacks to FGSM [2]

and stAdv [1] attacks under the SOTA adversarial training defenses.

2.4.3 White-Box Attack

We evaluate the performance of both proposed methods of FLM and GFLM for the white-box

attack scenario on the CASIA-WebFace [70] dataset. We define six experiments to investigate

the importance of each region of the face in the FLM and GFLM attack methods. In the

first five experiments, we evaluate the performance of the attacks on each of the five main

regions of the face including 1) eyebrows, 2) eyes, 3) nose, 4) mouth and 5) jaw. In the

last experiment, we evaluated the performance of attacks using all five regions of the face.

Also, in Experiment 6, we compare the performance and speed of the proposed methods to

the method developed by [1] in which the displacement field f is defined for all pixels in the

input image. All the experiments are conducted on a PC with 3.3 GHz CPU and NVIDIA

TITAN X GPU. Table 2.1 shows the results for all the six experiments.

From the results, we observe that both the FLM and GFLM are generating powerful

adversarial face images that fool the classifier for more than 99.86% of the samples. An

important point is the computation time of these algorithms. The average time of generating

adversarial faces for the FLM and GFLM is 125 and 254 milliseconds respectively, which

is significantly shorter than the computation time of stAdv [1], which is 27.177 seconds on

average. Indeed, the FLM is 215 and GFLM is 106 times faster than stAdv [1] method.

Furthermore, we described in Section 2.3.4 that the FLM can generate faces with spatial

distortions, and grouping the landmarks in the GFLM overcomes this problem. Figure 2.5

demonstrates several examples of the adversarial faces generated by the FLM and GFLM.
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2.4.4 Performance Under Attacks

To evaluate the performance of the proposed methods under attack, we repeat the sixth

experiment in the previous section. For this purpose, we use three SOTA defenses of FGSM

adversarial training [2], PGD adversarial training [43], and ensemble adversarial training [63].

We compare the performance of our attacks to FGSM [2] and stAdv [1]. Results are shown

in Table 2.2. The FLM and GFLM attacks are extremely robust against adversarial training

compared to FGSM [2] and stAdv [1] because they are targeting the most important locations

in the benign samples using geometric perturbations. These locations contain the most

critical discriminative information that a FR model needs to identify an individual. Defenses

based on adversarial training use the intensity-based attacks to generate samples for training

the model. However, the generated samples do not lie on the manifold of natural images due

to the slight change of intensity of all pixels in the input image. Furthermore, the GFLM

is more robust against defenses than the FLM since samples generated by the GFLM are

conditioned to have the similar structure as a natural face.

2.5 Conclusion

In this paper, we introduced a novel method for generating adversarial face images by ma-

nipulating landmark locations of the natural images. Landmark locations contain highly

discriminative information for face identification. Therefore, manipulating landmark loca-

tions is a strong way to change the prediction of a FR system. We experimentally showed

that the prediction of a FR model has a linear trend around the parameters of the model

and the landmark locations of the input image. This finding indicates that one can directly

manipulate landmark locations using the gradient of the prediction with respect to the input

image.

Based on this idea, we introduced a fast method of manipulating landmark locations

through spatial transformation, which is approximately 200 times faster than the previous

geometric attacks, with the success rate of 99.86%. In addition, we developed a second

attack constrained on the semantic structure of the face. The second attack is extremely
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powerful in generating natural-looking samples that are hard to detect even for the SOTA

defense methods.
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Chapter 3

Smooth Adversarial Perturbations

3.1 Introduction

Despite revolutionary achievements of DNNs in many computer vision tasks [18,73–75], care-

fully manipulated input samples, known as adversarial examples, can fool learning models

to confidently make wrong predictions [32]. Adversarial examples are potential threats to

almost all applications of machine learning [34–36], but the case is more severe in the context

of computer vision, particularly, due to the complexity of tasks [39], huge cardinality of input

spaces [76], and sensitivity of applications [77–80]. Analyzing DNNs as differentiable transfer

functions have led to substantial studies exploring embedding spaces and their character-

istics in regard to training paradigms. However, the adversarial behavior has highlighted

the importance of studying the topology of decision boundaries and their properties in high

dimensional data spaces [39,40].

Considering a white-box scenario where the network architecture and all its parameters

are known, several approaches (attacks) have been proposed to explore the robustness of

decision boundaries in the presence of ℓp-bounded [10,11,32] and ℓp-minimal [3,57,58,81,82]

adversarial perturbations. However, the vulnerability of DNNs to adversarial perturbations

with specific statistical properties or frequency-domain characteristics, which lie beyond the

conventional ℓp-norm constraints, has remained less explored.

In this study, we seek to explore the landscape of robustness of DNNs to adversarial per-

turbations with modified frequency-domain characteristics. Specifically, we focus on smooth
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Figure 3.1: Comparing smooth adversarial perturbations with conventional adversarial per-

turbations. Each column from left to right shows the adversarial image and the corresponding

adversarial perturbations computed by DeepFool [3], SmoothFool (σg = 75) and IGSM [11],

respectively, on ResNet-101 [12]. The predicted label for each image is depicted above the

column. Perturbations are magnified for a better visibility.

adversarial perturbations due to several advantages they offer compared to the conventional

adversarial perturbations. First, they are more physically realizable than non-smooth ad-

versarial perturbations since printing devices are critically less accurate in capturing high

frequency structures due to the sampling noise [4]. Also, severe differences between adja-

cent pixels in the printed adversarial examples are unlikely to be accurately captured by

cameras due to their low-pass spatial frequency response [83]. Second, the high-frequency

structure of conventional adversarial perturbations has provoked an intensive adoption of ex-

plicit [50,84,85] and implicit [76,86,87] denoising methods to mitigate the adversarial effect.

However, we demonstrate that a slight modification of local statistics of adversarial pertur-

bations causes a vital failure of SOTA defenses. Third, smoothness significantly enhances the

transferability of adversarial perturbations across classifiers and data points by improving

the invariance of perturbations to translation [88]. This improves the performance of the

attack in the black-box scenario where the parameters of the target model are not known

to the adversary. Forth, smoothness enhances plausible deniability and allows the attacker

to disguise adversarial perturbations as natural phenomena such as shadows. In this way,

the magnitude of adversarial perturbations can be increased notably since imperceptibility

is less important.
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We formulate the problem of constructing smooth adversarial perturbations according to

a general definition of smoothness and exploit the geometry of decision boundaries to find

computationally efficient solutions. Our main contributions are the followings:

• We propose SmoothFool, a geometry inspired framework for computing smooth adver-

sarial perturbations which exploits the topology of decision boundaries to find efficient

adversarial perturbations.

• We analyze various properties of smooth adversarial perturbations and validate their

effectiveness for both the white-box and black-box attack scenarios.

• We show the susceptibility of two major group of defenses against smooth adversarial

perturbations by breaking several SOTA defenses.

• We integrate SmoothFool with previous studies on universal adversarial perturbations

and demonstrate the existence of smooth universal adversarial perturbations that gen-

eralize well across data samples and network architectures.

3.2 Related Work

3.2.1 Adversarial Attack

Despite the highly non-linear nature of DNNs, they have been observed to exhibit linear

characteristics around the actual parameters of the model and the input samples [10,89,90].

In particular, Goodfellow et al. [10] showed that the prediction of DNNs can be changed dras-

tically by translating the input sample toward the gradient of the classification loss. Hence,

they proposed the fast gradient sign method (FGSM) as a single step attack incorporating

solely the sign of gradients to craft adversarial perturbations. Kurakin et al. [11] improved

the performance of FGSM by adopting an iterative procedure called IGSM. Moosavi et al. [3]

proposed DeepFool to find approximately ℓp-minimal adversarial perturbations by iteratively

translating input samples toward the linearized approximation of the closest decision bound-

ary. Our methodology builds on DeepFool to find minimal smooth adversarial perturbations.
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Some prior studies have considered smoothness in adversarial attacks. Sharif et al. [4]

added a total variation (TV) loss to the main objective of the attack to enhance the phys-

ical realizability of the resulting perturbations and showed that smoothness of adversarial

perturbations improves their effectiveness for the real-world applications. Fong et al. [91]

demonstrated that smoothing important regions in the input example can deteriorate the

confidence of prediction. They utilized this observation to interpret the decisions of DNNs.

Hosseini et al. [6] proposed constructing semantic adversarial examples by randomly shifting

Hue and Saturation components of benign samples in the HSV color space. Dong et al. [88]

demonstrated that robustness of DNNs to slight translations can be exploited to improve

the trasferability of adversarial examples. Interestingly, the final perturbations crafted using

their approach exhibited low-pass frequency response. However, their methodology is appli-

cable for a limited level of smoothness since the prediction of DNNs is invariant for solely

small translations of the input sample.

Fundamentally, our work differs from previous approaches since we seek to find approx-

imately ℓ2-minimal adversarial perturbations capable of offering arbitrary levels of smooth-

ness. Also, our main goal is to formulate and compute smooth adversarial perturbations,

not to find smooth adversarial examples, since the latter can critically destroy the structure

of images.

3.2.2 Defense Methods

Since the first observation of adversarial perturbations, their noisy structure has been har-

nessed to find defense strategies. Several studies have incorporated explicit denoising tech-

niques to mitigate the adversarial effect. Liao et al. [50] showed that the distribution of

high-level representations in DNNs provides an effective guidance to denoise adversarial ex-

amples and proposed the high-level representation guided denoiser (HGD). Training DNNs

using adversarial examples, known as adversarial training [10, 76, 86], has been shown to

provide a relative adversarial robustness. Adversarial training can be considered as an im-

plicit denoising technique which reduces the sensitivity of predictions to slight changes in

the input domain. Manifold learning is another implicit denoising defense. A well-known



Ali Dabouei Chapter 3. Smooth Adversarial Perturbations 29

example for this type of defense is MagNet [92] which deploys autoencoders for mapping

input examples onto the manifold of natural examples. Later, we utilize these defenses to

evaluate the effectiveness of smooth adversarial perturbations.

3.3 Smooth Adversarial Perturbations

3.3.1 Problem Definition

Let f : Rn → Rm be a classifier mapping input sample x ∈ [0, 1]n to m classification scores

f j(x), associated with each class j ∈ {0, . . . , m – 1}. The class predicted by the network can

be computed as:

c(x) = arg max
j

f j(x). (3.1)

The problem of constructing smooth adversarial perturbations can be formulated as the

following optimization problem:

arg min
r

||r||2 + λΩ(r) subject to:

1. c(x+ r) ̸= c(x),

2. x+ r ∈ [0, 1]n,

(3.2)

where r ∈ Rn is the AP, Ω(.) is a measure of roughness, and λ is a Lagrangian coefficient

controlling the trade-off between roughness and magnitude of the perturbation. Generally,

the roughness of perturbations can be defined based on their local variations. Such variations

have an explicit interpretation in the frequency domain where the power of each frequency

component captures the specific range of variations. Considering this perspective, we use a

frequency response function H to formulate the definition of roughness since it can denote

how much each frequency component contributes to the intended roughness. For clarity,

we substitute H with Hhp to highlight the high-frequency nature of roughness and denote

Hlp = 1 – Hhp as the complementary low-pass filter which defines the equivalent smoothness.

We use the total energy of the high-frequency components of r as a general measure of

roughness, and define Ω as:

Ω(r, Hlp) :=

∫ +∞

–∞
R(ω)2(1 – Hlp(ω))

2dω, (3.3)
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Figure 3.2: Finding smooth AP for a linear binary classifier. Red and blue dots show the

ℓ2 projection and smooth projection of x onto the decision boundary, respectively. For an

easier demonstration, x is assumed to belong to class –1.

where R is the Fourier transformation of perturbation r, and Hlp is the frequency response of

a given low-pass filter defining the range of acceptable smoothness, and is a free parameter

of the definition.

The perturbation r in our problem is represented as a set of spatially discrete adversarial

perturbations for each pixel location u ∈ {0, . . . , n – 1}∗, and Ω can be conveniently computed

in the spatial domain as:

Ω(r;h) = ||r – r ∗ h||22, (3.4)

where ∗ denotes convolution, and h is the discrete approximation of Hlp in the spatial domain.

In the rest of the paper, our work builds on this definition of roughness (and, equivalently,

smoothness) and aims to find adversarial perturbations which are relatively smooth based

on any predefined h compared to perturbations crafted by other contemporary attacks. Due

to the non-convex nature of the problem, we exploit the geometric properties of the decision

boundary of DNNs to find a relaxed solution for the optimization problem given in Equation

3.2.

∗Here we assume the input image x is a 1D signal, and later in the experiments we adopt all formulations

for 2D images.
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3.3.2 Linearized solution

Based on previous findings [3, 89, 93], the decision boundary of a differentiable classifier,

f, around x can be well approximated by a hyperplane passing through the minimal ℓ2

adversarial example xp corresponding to x, and the normal vector w orthogonal to the

decision boundary at xp as H ≜ {x : w⊤(x – xp) = 0}. We assume xp and, consequently, w

associated with each x is available, and later we utilize an appropriate contemporary attack to

compute xp and w. Having xp provides two benefits. First, it allows us to linearize the closest

decision boundary around x. Second, we can reduce the problem to a binary classification

problem, where the goal of the attack would be to compute the smooth perturbation r which

yields c(x+r) = c(xp). Consequently, we rewrite the optimization problem given in Equation

3.2 as:

arg min
r

||r||2 + λΩ(r;h) subject to:

1. w⊤(x+ r) – w⊤xp = 0,

2. x+ r ∈ [0, 1]n.

(3.5)

In this setup, an efficient solution can be obtained from a smooth projection of x onto

the estimated hyperplane H . Such a projection can be computed by translating x using the

adversarial perturbation r = ρw̃, where w̃ is a smooth approximation of w, and ρ scales w̃

to map x+ r on H as:

ρ =
w⊤(xp – x)

w⊤w̃
. (3.6)

Figure 3.2 provides a simple visualization of this projection. It worth mentioning that for

the linear binary classifier choice of f, the optimal smooth perturbation has the closed-form

solution: r = –
f(x)

w⊤w̃
w̃. Generally, the estimation w̃ must hold two conditions to provide a

valid solution for the linearized problem. First, w̃ should not be orthogonal to w. Second,

the estimation should remove high-frequency components of w in order to keep Ω(ρw̃;h)

low. Without loss of generality, we consider a low-pass filter g to estimate w̃ by convolution

as: w̃ = g ∗ w, since it is easy to compute, and the only condition on g is that its cut-off

frequency should be less than the cut-off frequency of h.
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Figure 3.3: A demonstration of the topology of the decision boundary in the vicinity of

data point x. U illustrates the region where the decision boundary can be assumed to be

approximately flat. Smooth projection of x onto the estimated hyperplane H often results

in a solution out of U .

The final smooth perturbation that can project x on H can be computed as:

r =
w⊤(xp – x)

w⊤(g ∗ w)
(g ∗ w). (3.7)

In this formulation, the cut-off frequency of g is associated with λ in the optimization problem

given in Equation 3.5 since it controls the smoothness of perturbation r. ℓ2-DeepFool [3] con-

structs adversarial examples which are shown to be a good approximation of the ℓ2-minimal

adversarial example for an input sample, and the assumption of flat decision boundaries

around the constructed examples is believed to be practically valid [3, 82]. Therefore, we

utilize it to generate xp and estimate w using the first order Taylor expansion of f at xp as:

w = ∇fc(xp)(xp) –∇fc(x)(xp). (3.8)

In practice, the high-frequency structure of the gradients of DNNs increases the angle between

w and w̃. Consequently, ρ in Equation 3.6 takes large values which often maps the input

sample outside the legitimate range [0, 1]n. In the next section, we propose a smooth clipping

technique to overcome this problem.
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Algorithm 1 SmoothClip

1: input: Image x, perturbation r, low-pass filter g, step size ε.

2: output: Smoothly clipped perturbation rc.

3: Initialize rc ← r.

4: while max(x+ rc) > 1 or min(x+ rc) < 0 do

5: m0 = 1>0(–(x+ rc)) ∗ g,
6: m1 = 1>0((x+ rc) – 1) ∗ g,
7: ∆1 = max(x+ rc – 1)m1,

8: ∆0 = min(x+ rc)m0,

9: rc ← rc – ε(∆1 + ∆0),

10: end while

11: return rc.

3.3.3 Validating Perturbations

The final adversarial example should reside inside the valid range of the input domain.

An ordinary approach to hold this condition, especially in iterative attacks, is to clip the

resulting adversarial examples [11, 82]. The clipping function, Clip, takes the constructed

adversarial image and truncates each pixel value independently to fall within the valid range

of the input space. However, applying this to smooth perturbations as: rc = Clip(x + r) –

x, will deteriorate the smoothness of perturbation. This is because the clipping function

truncates each pixel individually and discards the local correlation between neighborhood

perturbations. Specifically, this issue happens at edges and high-frequency areas of x as

shown in Figure 3.5. A closed-form solution for smooth clipping, which should consider

neighborhood correlation of perturbations (based on g), results in a high complexity solution.

We propose a simple and iterative approach for smoothly clipping the out-of-bound pixels.

In the ith iteration, when the range of x + ri remains out of the valid range, we compute

masks m0 and m1 as indicators of pixels which exceed the valid bound as:

mi
0 = 1>0(–(x+ ri)), (3.9)

mi
1 = 1>0((x+ ri) – 1), (3.10)
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Figure 3.4: Visual demonstration of increasing smoothness of adversarial perturbations.

Each set of images, from left to right, show adversarial examples and smooth adversarial

perturbations computed for samples from ImageNet, CIFAR-10, and MNIST datasets on

ResNet-101, ResNet-18, and LeNet architectures, respectively. Samples are from ‘coucal’,

‘dog’, and ‘6’ classes and misclassified as ‘robin’, ‘bird’, and ‘0’.

Figure 3.5: An example of applying a normal clipping on a smooth AP. Left: a benign sample

correctly classified as ‘strawberry’ by VGG16. Middle: an adversarial example classified as

‘pineapple’. Right: the perturbation after normal clipping.

where 1>0(.) is an indicator function that outputs 1 for elements greater than zero. To

incorporate the neighborhood correlation of perturbations, we use the exact low-pass filter g

used in Equation 3.7 to propagate the out-of-bound error to the neighborhood perturbations

as: mi
1 ← mi

1 ∗ g and mi
0 ← mi

0 ∗ g. Then, using a step size ε and maximum value of the

out-of-bound error, we adjust the perturbation as:

ri+1 = ri – εmax(x+ ri – 1)mi
1 – εmin(x+ ri)mi

0. (3.11)

This iterative algorithm terminates when all pixels in x + ri reside within the valid range.

We refer to this algorithm as SmoothClip, and Algorithm 1 summarizes its functionality.
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Algorithm 2 SmoothFool

1: input: Image x, low-pass filter g.

2: output: Smooth perturbation r.

3: Initialize x0 ← x, i← 0.

4: while cf(x
0) = cf(x

i) do

5: rp = DeepFool(xi),

6: xp = xi + rp,

7: wi = ∇fc(xp)(xp) –∇fc(x)(xp),
8: w̃i = g ∗ wi,

9: ri =
wi⊤(xip – x

i)

wi⊤w̃i
w̃i,

10: ri ←SmoothClip(xi, ri, g),

11: xi+1 ← xi + ri,

12: i← i + 1,

13: end while

14: return xi – x0.

3.3.4 General Solution

In a general case for a non-linear classifier f, there is no guarantee that perturbations com-

puted by Equation 3.7 cause input samples to pass the actual non-linear boundary. Figure

3.3 demonstrates a visualization of this fact. To overcome this problem, we adopt an iter-

ative procedure. In each iteration, using the closest adversarial example, xip, corresponding

to the sample xi, we linearize the decision boundary and compute the smooth projection of

xi on the approximated hyperplane using Equation 3.7.

Afterward, we smoothly rectify the resulting perturbation, r, and repeat this procedure

until c(xi) ̸= c(x0), as detailed in Algorithm 2. Here, the smoothness of the final perturbation

depends on the smoothness in each iteration. Consider rtot = xi – x0 =
∑i

j=0 r
j, where i is the

total number of iterations, and rj is the jth smooth AP. It can be shown that the roughness

of the overall perturbation is bounded as: Ω(rtot; h) ≤ i2maxj Ω(rj; h). To compute an AP

with the desired level of roughness defined by h, we select g such that ∀j : Ω(rj; h)≪ ||rj||22,

i.e., the cut-off frequency of g should be smaller than h. In practice, maxj Ω(rj; h) ≪ i–2,

i.e., even for a significantly smooth choices of g the algorithm converges in few iterations.
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Figure 3.6: a, b, c) Fooling rate of the attack versus smoothing factor σg on MNIST, CIFAR-

10 and ImageNet, respectively. d) Magnitude of perturbations vs. σg on ImageNet.

3.4 Experiments

3.4.1 Setup

We evaluate our attack on three datasets including the test set of MNIST [94], the test set of

CIFAR-10 [95], and 10, 000 samples from the validation set of ILSVRC2012 [96] (10 images

per each class). For the MNIST dataset, a two-layer fully-connected network (FC2) and

a LeNet [97] architecture are used. For the CIFAR-10 dataset, we use a VGG-F [98] and

ResNet-18 [12] architectures. For the ImageNet dataset, we consider VGG16 and ResNet-

101. The accuracy of each model on benign samples is shown in Table 3.2. We set the step

size ε of the SmoothClip to 1, 0.5, 0.1 for MNIST, CIFAR-10, and ImageNet respectively,

which results in a fast and reasonable performance.

3.4.2 Definition of Smoothness

We define smoothness based on the Gaussian blur function since it is practical and the

cut-off frequency can be easily modified by the standard deviation. We assume h and g to

be Gaussian blur filters with isotropic standard deviations σh and σg, respectively. In this

setup, selecting any σg>σh will minimize the roughness defined by h. Increasing σg improves

the smoothness of adversarial perturbations but reduces the performance of the attack. To

implement the Gaussian kernel, we set the kernel width to 5σ.
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3.4.3 Comparisons

For σg≪1, the proposed approach converges to DeepFool [3]. Hence, we use it as a baseline

to compare magnitude of the generated perturbations. For the second baseline, we develop

an attack based on [4] by replacing the classical TV loss term with the roughness penalty

Ω(r;h) from Equation 3.4 to provide a fair comparison framework as:

arg min
r

(
– Jc(f(x+ r), yx) + λsΩ(r;σh)

)
, (3.12)

where Jc is the cross-entropy loss function, and yx denotes the ground truth label of sample

x. We refer to this method as the iterative smooth (IS) attack, and optimize it using gradient

descent with a initial step size (learning rate) of 10–3, and decay of 0.5 per each 100 iterations.

We set λs to 0.1, 0.01 and 0.05 for MNIST, CIFAR-10, and ImageNet, respectively, which

results in the most possible smooth perturbations for σh=1. We consider this attack as the

second baseline. We also compare the proposed method to the semantic adversarial examples

given in [6], and refer to it as the color-shift (CS) attack, and consider it as the third baseline.

We set the number of random trails of the CS algorithm to 100. Since CS adds perturbations

in the HSV color space, we compute the average magnitude of perturbations for this attack

in the HSV space to provide a fair comparison (the magnitude of adversarial perturbations

in RGB color space is observed to be approximately 10 times greater).

3.4.4 Evaluation metrics

To compare results, We measure the fooling rate of the attack and average smoothness of

constructed adversarial perturbations. The fooling rate is defined on the set of correctly

classified benign samples since it provides a more robust measure to evaluate the attack.

For the sake of brevity of explaining results, we define σA%
g as the maximum value of σg

(minimum among network architectures) that results in a A% fooling rate. In order to

evaluate the smoothness of constructed adversarial perturbations, we measure the expected

roughness Ω = EDs [Ω(rx,h)], where rx is the AP constructed for x, and Ds is the set of

successfully attacked samples. This measure is sensitive to the magnitude of perturbations.

Thus, we develop a second measure by normalizing Ω over the total power of perturbations
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Execution time (sec.)

Dataset Net. DF IS CS SF1 SF2 SF3

MNIST
1 0.02 1.43 - 0.03 0.07 0.43

2 0.02 1.94 - 0.03 0.13 0.47

CIFAR-10
3 0.06 8.25 0.03 0.07 0.11 0.38

4 0.12 10.43 0.06 0.13 0.16 0.51

ImageNet
5 0.41 24.53 0.19 0.55 0.59 1.13

6 0.87 29.47 0.24 0.94 1.22 1.49

Table 3.1: Comparing the execution time of the algorithm to other attacks. SF1, SF2 and SF3

are SmoothFool with different smoothing levels σg1 , σg2 and σg3 which are set to be {1, 3, 5},
{1, 5, 10}, and {1, 10, 20} for MNIST, CIFAR-10 and ImageNet, respectively. Numbers in

the second column are associated with corresponding network architectures in Table 3.2.

as: Ωn =EDs [Ω(rx, h)/||rx||22]. Indeed, Ωn relatively measures how much of the total power

of the adversarial perturbations is occupied by high-frequency components according to h.
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Figure 3.7: Examples of extremely smooth adversarial perturbations computed for ResNet-

18 and CIFAR-10 dataset with σg = 200.

3.4.5 General Performance

Figure 3.6 (a-c) shows the fooling rates of SmoothFool versus σg. We observe that the pair

(σ100%
g ,σ20%

g ) for MNIST, CIFAR-10 and ImageNet is (4.1, 7.8), (8.4, 124.4) and (19.3, 165.3),

respectively. As expected, the fooling rate is highly dependent on the smoothing factor σg.

However, the fooling rate remains high for significantly large (compared to the size of the

input image) values of σg on ImageNet and CIFAR-10. For instance, σ50%
g for CIFAR-10 is

32.8 which is approximately equal to the width of input images and shows that it is possible

to fool the classifier on 50% of samples solely by adding a carefully selected constant value to

all pixels of each color channel. The magnitude of smooth adversarial perturbations versus

smoothness is depicted in Figure 3.6 (d). Increasing smoothness results in larger magnitudes

of adversarial perturbations since the projection of w̃ onto w will become smaller. However,

smoothness of perturbations allows larger magnitudes since they are not as perceptible when

compared to the noisy structure of contemporary adversarial perturbations.

We observe in Table 3.2 that SmoothFool with σg=2 on all datasets, crafts significantly

smoother (based on Ω and Ωn with σh=1) adversarial perturbations compared to the baseline

attacks for the smoothness, while the magnitudes of adversarial perturbations are solely 1.8x

larger than the SOTA ℓ2-minimal adversarial perturbations crafted by DeepFool. In addition,

the execution time of the algorithm detailed in Table 3.1 shows that the proposed method

computes adversarial perturbations (with fooling rate > 99%) at least 20x faster than the
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VGG-F ResNet-18

Class
σg σg

20 60 100 20 60 100

airplane 75.0 29.5 25.0 67.3 34.7 28.2

automobile 58.7 10.8 6.5 33.3 6.6 2.2

bird 93.4 65.2 52.1 65.1 41.8 32.5

cat 100 58.3 43.7 65.3 21.1 17.3

deer 87.2 60.0 49.0 78.0 40.2 36.0

dog 78.7 48.9 40.4 75.1 55.5 52.7

frog 88.8 51.1 46.6 68.9 44.8 41.3

horse 74.5 29.0 23.6 70.3 25.9 22.2

ship 79.0 32.5 25.5 81.4 35.1 29.6

truck 73.9 32.6 21.7 68.5 31.4 22.8

all 83.8 45.8 37.6 67.2 33.0 27.9

Table 3.3: Per-class fooling rate (%) of SmoothFool for three values of σg on the CIFAR-10

dataset. Bold and underlined values show the fooling rate on classes with highest and lowest

robustness against smooth adversarial perturbations, respectively.
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Fooling rate under defense (%)

Defense IGSM DF CS SF1 SF2 SF3

Adv. 32.6 15.6 64.5 58.6 70.7 78.0

PGD 21.0 12.3 61.4 57.2 67.3 72.8

Ens. 18.7 14.0 62.2 54.5 62.8 73.6

SAT 22.8 37.2 21.0 11.5 42.9 53.4

HGD 9.3 11.2 46.9 43.7 57.2 66.2

MagNet 10.7 8.9 25.1 46.4 65.5 52.6

Table 3.4: Evaluating attacks under different defense strategies on a ResNet-18 trained

on CIFAR-10. SF1, SF2, and SF3 denote the proposed algorithm with σg of 1, 3, and 5,

respectively.

IS method (with fooling rate ≃ 65% on ImageNet). Figure 3.4 shows some examples of

smooth adversarial perturbations computed for different levels of smoothness. We observe

that each class responds differently as the smoothness of adversarial perturbations increases.

Table 3.3 shows the per-class fooling rate of the attack on CIFAR-10. Smooth perturbations

at σg = 100 fool the VGG-F classifier on more than 50% of samples of the ‘bird’ class,

while they are approximately not effective for the ‘car’ class. This shows that some classes

are severely sensitive to smooth perturbations while other exhibit lower sensitivity. The

network architecture has a direct effect on this observation since the most sensitive class

to smooth adversarial perturbations for each specific value of σg is different among network

architectures.

Figure 3.7 demonstrates some examples of extremely smooth adversarial perturbations

on CIFAR-10, showing a similar behavior (in RGB color space) as color-shifted adversarial

examples [6]. However, as the method in [6] randomly shifts Hue and Saturation of benign

samples, it often generates odd adversarial examples such as ‘blue apples’ or ‘red lemons’

which are no longer adversarial examples since the conceptual evidence of objects is de-

stroyed. However, since SmoothFool finds relatively small smooth perturbations, the whole

concept of an object will not change drastically after the attack.
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Performance under white-box defenses. Here, we evaluate the effectiveness of smooth

perturbations against defense methods. First, we evaluate the attack under defenses based

on adversarial training on FGSM (Adv.) [10], projectile gradient descent (PGD) [86] and

ensemble (Ens.) [76] adversarial examples. We consider an additional defense of training on

adversarial examples computed by the proposed SmoothFool with σg = 1, and refer to it

as Smooth Adversarial Training (SAT). Second, we consider the high-level guided denoiser

(HGD) [50] as a denoising based defense and MagNet [92] as a defense which evaluates

adversarial examples using a learned distribution of natural samples. In all experiments, we

assume that attacks have zero knowledge about the defense models.

Table 3.4 shows the performance of SmoothFool under defenses. Results suggest that in-

creasing the smoothness of adversarial perturbations elevates the chance of bypassing defense

methods. Such a characteristic had been observed before in adversarial examples constructed

by spatial transformations [1, 38]. Smooth adversarial perturbations with σg = 5 success-

fully bypass HGD defense and defenses based on adversarial training on more than 60%

of samples. Similarly, the CS attack shows significant robustness against all defenses ex-

cept MagNet. A reasonable explanation is that although the CS attack generates relatively

smooth adversarial perturbations compared to conventional attacks, changing the Hue and

Saturation of images considerably pushes samples outside the distribution of natural sam-

ples leaned by MagNet. SmoothFool bypasses MagNet by a notable margin which indicates

the closeness of generated samples to the distribution of natural images. However, for large

values of σg, the magnitude of smooth adversarial perturbations takes large values, and thus,

degrades the fooling rate of SmoothFool against MagNet defense. Furthermore, we observe

that SAT defense provides a relative robustness against smooth adversarial perturbations

constructed by σg = 1, but is susceptible to smoother perturbations. This suggest that

the frequency components of adversarial perturbations can play a crucial role in bypassing

adversarial training defenses trained on examples constructed by adversarial perturbations

of different frequency components.

Black-box performance and ablation on smoothing functions. Here, we evaluate the

black-box performance of smooth adversarial perturbations. Since our algorithm computes

ℓ2-minimal perturbations, we scale smooth adversarial perturbations to have the maximum
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Figure 3.8: Smooth universal adversarial perturbations crafted for VGG16 architecture (best

viewed in color).

ℓ∞-norm of 16 for pixel values in range 255 based on the conventional setting for black-box

attacks on ImageNet [88]. We consider two additional smooth functions including linear and

uniform kernels to evaluate the effect of smoothing functions on fooling rates and transfer-

ability of adversarial perturbations. The uniform kernel of size k has all values equal to 1
k2
.

The linear kernel of size k has the maximum value of 4
k2

at the center and minimum value

of zero at edges. Other values are the linear interpolation of the min. and max. values.

Table 3.5 presents the results for this experiment. The fooling rate of attacks is 100%

when the source and target models are the same. This suggests that the type of smoothing

functions does not constrain the performance of adversarial perturbations. Hence, a broad

range of smoothing functions can be deployed for generating smooth adversarial perturba-

tions. Transferability of adversarial examples consistently improves as the smoothness of

perturbations increases. This demonstrates that smoothness increases the transferability of

adversarial examples for black-box attacks which validates the results reported by Dong et

al. [88].

Universal adversarial perturbations.

We integrate the proposed approach with the universal adversarial perturbations (UAP)

[99] to explore the possibility of finding smooth UAPs. The implementation detail and the in-

tegrated algorithm is available in the Supplementary. We compute smooth UAPs for VGG16

and then evaluate their transferability on four networks including ResNet-101, ResNet-151,

DenseNet-161, and Inception-V3. Table 3.6 demonstrates the performance of smooth UAPs
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Net. Smoothing Param. VGG16 ResNet101 Inc-V3

- - 100 12.6 8.9

V
G
G
1
6

Gaussian
σ = 5 100 15.8 13.6

σ = 10 100 20.7 15.3

Linear
k = 25 100 17.7 11.6

k = 50 100 23.5 14.1

Uniform
k = 25 100 16.8 12.0

k = 50 100 21.8 14.6

- - 15.2 100 15.0

R
es
N
et
1
0
1

Gaussian
σ = 5 17.0 100 18.8

σ = 10 19.9 100 22.5

Linear
k = 25 19.8 100 16.9

k = 50 22.8 100 19.7

Uniform
k = 25 18.6 100 17.3

k = 50 21.0 100 22.1

Table 3.5: Transferability of smooth perturbations for black-box attack. Columns show

source networks and attack parameters, and rows show the target models.

σg VGG16 RNet101 RNet152 DNet161 Inc-V3

0 78.3 64.8 63.4 52.9 54.6

1 79.6 66.0 66.8 53.2 57.8

5 82.2 69.9 70.3 57.6 58.6

10 84.5 68.7 69.1 55.9 61.6

Table 3.6: Transferability of universal smooth adversarial perturbations computed for

VGG16 accross data points and network architectures.

versus smoothness. Increasing smoothness enhances the transferability of adversarial per-

turbations across both the data points and network architectures. The transferability on 3

networks deteriorates for σg > 5. We attribute this observation to the theoretical fact that

increasing smoothness also increases the magnitude of adversarial perturbations. Hence,

with the same threshold for the maximum ℓ∞-norm of smooth Uadversarial perturbations,

there always exist a σg after which the transferability decreases.
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3.5 Conclusion

In this study, we explored the vulnerability extent of DNNs to smooth adversarial perturba-

tions by proposing SmoothFool, a framework for computing ℓ2-minimal smooth adversarial

perturbations. The methodology is developed based on a broad definition of smoothness

and can be extended to pose any frequency-domain constraint on perturbations. Through

extensive experiments, we validated the effectiveness of smooth adversarial perturbations on

deep classifiers robustified by two major group of defense strategies. Smoothness of pertur-

bations improves the transferability of adversarial examples across network architectures and

data points. Furthermore, we observed that class categories exhibit variable susceptibility

to smooth perturbations. Our results suggest that adversarial perturbations with modified

frequency-domain characteristics can provide a new and powerful tool for evaluating the

adversarial vulnerability.
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Chapter 4

Exploiting Joint Robustness to

Adversarial Perturbations

4.1 Introduction

DNNs have played an astonishing role in the evolution of modern machine learning by

achieving SOTA performance on many challenging tasks [18, 100]. Despite their excellent

performance, scalability, and generalization to unseen test data, they suffer from a major

drawback: slight manipulations of the input samples can form adversarial examples causing

drastic changes in the predictions of the model [3,10,32]. Perturbations required for this aim

are often quasi-imperceptible to the human eye and can transfer across classifiers [56, 58],

data samples [99, 101], and input transformations [102, 103]. This issue has raised increas-

ing concerns regarding the deployment of DNNs in security-sensitive applications such as

autonomous vehicles, biometric identification, and e-commerce.

Initially, a large body of work has been devoted to addressing the problem by heuristic

approaches built upon the empirically observed characteristics of perturbations, such as their

noisy structure. However, the uncertainty of assumptions and lack of formal explanations

for the phenomenon has caused the majority of the defense attempts to be compromised

by more advanced attacks [38, 58, 104]. Recent studies have made significant progress in

explaining the cause of adversarial vulnerability by demonstrating that adversarial examples

are natural consequences of non-zero test error of classifiers in the data space [105, 106].
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Particularly, due to the huge cardinality of the input space, a small number of misclassified

points around a natural input sample forms a very close decision boundary which can be

reached by adversarial perturbations. This suggests that adversarial robustness can only be

certified for bounded perturbations [40, 106] since achieving zero error rate is nontrivial in

general [105].

The majority of studies on adversarial robustness have concerned single classifiers [10,

32, 40, 86, 105, 106]. However, exploring interactions of multiple classifiers has highlighted

the potential of ensembles for mitigating the adversarial vulnerability [107–110]. In this

paper, we exploit first-order interactions in ensembles to provably improve the robustness

of the ensemble prediction. We illustrate that the diversity of the gradient directions and

the balance of the gradient magnitudes are two key factors for enhancing the robustness

of deep ensembles. Specifically, we make the following contributions: i) We introduce a

practically feasible case of interactions within ensembles which is certified to improve the

robustness of the model against white-box attacks. ii) We propose a training framework

termed joint gradient phase and magnitude regularization (GPMR) to impose the desired

interactions among the members of the ensemble. iii) We validate the effectiveness of the

proposed method using extensive experiments including gradient-based and gradient-free

evaluations. iv) We demonstrate that the proposed training framework is orthogonal to

previous approaches that aim to provide adversarial robustness by bounding the magnitude

of the gradients, such as adversarial training.

4.2 Related Work

4.2.1 Methods for Crafting Adversarial Examples

Despite the highly non-linear nature of DNNs, they have been observed to exhibit linear

characteristics around the actual parameters of the model and the input samples [10,89,90].

In particular, Goodfellow et al. [10] showed that the prediction of DNNs can be changed dras-

tically by translating the input sample toward the gradient of the classification loss. Hence,

they proposed the fast gradient sign method (FGSM) as a single step attack incorporating
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solely the sign of gradients to craft APs. Kurakin et al. [11] improved the performance of

FGSM by adopting an iterative procedure called IGSM. Moosavi et al. [3] proposed Deep-

Fool to find approximately ℓp-minimal adversarial perturbations by iteratively translating

input samples toward the linearized approximation of the closest decision boundary. Our

methodology builds on DeepFool to find minimal smooth APs. For more detailed description

of the adversarial attacks please refer to [111].

4.2.2 Defending against Adversarial Examples

Myriad of studies have attempted to robustify DNNs employing approaches such as knowl-

edge distillation [112], manifold learning [87,92], data transformation and compression [113,

114], statistical analysis [115], and regularization [111]. However, the majority of the defense

schemes in the literature are compromised by more sophisticated attacks [58, 116]. An ef-

fective approach for improving the robustness of DNNs is adversarial training in which the

training set is augmented by adversarial examples crafted during the training process. This

approach is widely studied using different types of adversarial examples [3, 10, 11, 32, 86].

A major limitation of adversarial training is its dependence on the type of adversarial ex-

amples used for training the model. Thus, this approach cannot provide reliable robustness

against unseen adversarial examples and out-of-distribution samples, e.g. crafted by additive

Gaussian noise [105].

A group of studies proposed to directly limit the variation of predictions against slight

input changes by bounding the Lipschitz constant of networks [40,117,118]. However, control-

ling the Lipschitz constant involves incorporating highly non-linear and intractable losses to

the training objective, which results in restrictive computational costs for large-scale DNNs.

Besides, theoretical assumptions for regularizing the Lipschitz constant of DNNs reduces the

effectiveness of these approaches against strong attacks [119].

Another body of work has considered interactions of multiple classifiers to alleviate ad-

versarial vulnerability [107–110]. The majority of these approaches propose a method to

promote the diversity of predictions. Abbasi et al. [109] demonstrated that specializing

members of the ensemble on different subsets of classes can provide robustness against ad-
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versarial examples. Bagnall et al. [110] proposed a joint optimization scheme to minimize

the similarity of the classification scores on adversarial examples. Pang et al. [107] devel-

oped the adaptive diversity promoting (ADP) approach which diversifies the non-maximum

predictions to maintain the accuracy of the model on natural examples.

However, diversifying the predictions does not provide reliable robustness in the white-

box defense scenario, where all the parameters of the model are known by the adversary. In

this setup, the adversary can use the gradients of diversified predictions to fool all classifiers

at the same time. Moreover, we both theoretically and experimentally demonstrate that

diversifying predictions does not improve the robustness in gradient-free evaluations since

the gradient of classifiers can share similar directions. Recently, Kariyappa and Qureshi [108]

considered the diversity of gradients in ensembles to provide adversarial robustness and

proposed the gradient alignment loss (GAL).

However, this approach suffers from two limitations. First, gradient alignment loss (GAL)

does not consider the optimal geometrical bounds for diversifying the gradient directions.

This degrades the performance of the approach and causes significant fluctuations in the

training process as discussed in section 4.4. Second, GAL does not equalize the magnitude

of gradients of the members. Therefore, it is solely evaluated in the black-box threat model,

where the attacker has no access to the model parameters or gradients. In the white-box

attack scenario, the attacker can easily fool a few classifiers in the set which have the max-

imum gradient magnitudes at the input sample. In contrast, our work establishes a new

theoretical framework for analyzing the joint robustness by finding the optimal first-order

defensive interactions between the members of the ensemble in the white-box threat model.

4.3 Method

Altering the prediction of the classifier primarily changes the score of the predicted class.

Therefore, in our theoretical analysis, we focus on the change of the final output of a dif-

ferentiable classifier rather than the change in the index of the maximum argument of the

output, i.e., the predicted class. Considering ℓp-norm as the distance metric to measure

the magnitude of perturbations, we define the robustness to adversarial examples or, more
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specifically, adversarial perturbations as follows:

Definition A function f : X ⊂ Rn → Rm is said to be (ε, δ)p robust to adversarial perturba-

tions over the set X , if for all samples x, x′ ∈ X and ||x–x′||p ≤ ε, f satisfies ||f(x)–f(x′)||2 ≤ δ.

To compare the robustness of different classification schemes, we analyze the ℓp-norm lower

bound of the magnitude of perturbations, ε, that is needed to change the maximum prediction

by a fixed δ.

We analyze the robustness of a single classifier in Section 4.3.1. In Section 4.3.2, we

formalize the robustness of ensembles for the case where the adversary has to change the

prediction of all members to fool the ensemble prediction. Here, we introduce a practically

feasible scenario, i.e., a set of conditions, for interactions between the members of the ensem-

ble and prove that it enhances the robustness of the ensemble. Afterward in Section 4.3.3,

we adopt the proposed scenario for the practical threat models in which fooling a subset of

classifiers in the ensemble is sufficient to change the ensemble prediction. Finally, we present

our approach for imposing the desired defensive interactions in Section 4.3.4.

4.3.1 Robustness of a Single Classifier

Let f : X → Rm be a differentiable classifier mapping data point x ∈ X to m classification

scores f j(x), j ∈ {0, . . . , m – 1}. The true label for sample x is y, and the class predicted by

the network is denoted by c = arg max
j

f j(x). Any attempt to change the prediction of the

network by translating the input sample x using perturbation r changes fc(x). We develop

our methodology based on the first-order approximation of fc(x): fc(x+r)– fc(x) ≈ ⟨∇xfc, r⟩∗

since DNNs exhibit linear characteristics around the input samples [10,89,90] where we seek

to enhance the robustness. The minimal ℓp-norm perturbation r∗p, for p ∈ [1,∞), required

to change the classification score by δ can be computed using the Hölder inequality and

ℓp-norm projection [120,121] as:

r∗ ≈ δ

||∇fc||q
∂(||∇fc||q), (4.1)

∗We drop x from the gradient operator for the rest of the paper.
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where ℓp-norm and ℓq-norm are dual norms ( 1
p
+ 1

q
= 1), and ∂(.) denotes the subgra-

dient of the argument. For a differentiable ℓq-norm at ∇fc, the subgradient is equal to:

∂||∇fc||q/∂∇fc, and Equation 4.1 can be rewritten as:

r∗ ≈
(

δ

||∇fc||q

)(
|∇fc|q–1 ⊙ sign(∇fc)

||∇fc||q–1q

)
, (4.2)

where ⊙ denotes element-wise multiplication. Similar first-order approximation of the lower

bound of the ℓp-norm robustness has been previously derived [3,40]. Equation 4.2 implies that

the magnitude of the gradient plays a crucial role in the robustness of the classifier. Hence,

significant efforts have been made to directly smooth out fc by controlling the Lipschitz

constant [40,117,118] or adversarial training [10,86]. Here, we take an orthogonal approach

to the previous studies and seek to increase the lower bound of Equation 4.2 by exploring

the joint robustness of multiple classifiers.

4.3.2 Joint Robustness of Multiple Classifiers

Let F be an ensemble of k classifiers, F={f i}k–1i=0, where f i : X → Rm maps the data point

x ∈ X to m classification scores f ij(x), j ∈ {0, . . . , m – 1}. The class predicted for x by the

classifier f i ∈ F is denoted by ci = arg max
j

f ij(x). Following the previous studies on the

robustness of ensembles [107–110], we assume that the ensemble prediction is the average

of the prediction of individual classifiers as: F(x) = 1
k

∑
f∈F f(x), and the predicted class by

the ensemble is: c = arg max
j

Fj(x), where Fj is the predicted probability associated with

the jth class. In this section, we relax the problem by assuming that the adversary has to

fool all members in order to fool the ensemble prediction, i.e., the ensemble rejects the input

sample when ∃ i, j : ci ̸= cj.

The ℓp-norm minimal perturbation r∗p required to decrease the classification scores of all

classifiers at x by at least δ > 0 is the solution of the following optimization problem:

min ||r||p s.t. ⟨∇f ici , r⟩ ≤ –δ, ∀i ∈ {0, . . . , k – 1}. (4.3)

This interprets that the joint robustness within the ensemble is associated with the gradi-

ents of each individual member. Analyzing such interactions rely on the solution of this

optimization problem which does not have an analytic form for the general ℓp-norm case but
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Figure 4.1: An illustration of Theorem 4.3.1 for k = 2. Increasing the angle between gradients

∇f0 and ∇f1 by ∆φ increases the magnitude of the minimum perturbation from ||r||2 =
√
2

l
√

cos φ+1
to ||r′||2 =

√
2

l
√

cos(φ+∆φ)+1
.

can be computed using non-linear programming methods [122]. However, the ℓ2-norm case

when gradient vectors are linearly independent has the following closed-form solution:

r∗2 = –δΩ
T(Ω Ω

T)–11k×1, (4.4)

where Ω := [∇f0c0 ,∇f
1
c1
, . . . ,∇fk–1ck–1

]T and 1k×1 is an all-one matrix of size k× 1.

The worst-case scenario for the joint robustness of k classifiers occurs when gradients of

classifiers, ∇f ici for any given sample x, share the same direction. For this case, the magnitude

of the optimal ℓ2-norm solution for Equation 4.3 is: ||r∗2||2 ≈ δ

maxi{||∇fici ||2}
. Therefore, the

ℓ2-norm joint robustness offered by k classifiers in the worst-case scenario is of the same

order as the robustness of a single classifier depicted in Equation 4.2.

Analyzing the characteristics of the optimal perturbation, r∗2, for the multiple classifier

framework is not analytically possible without considering additional constraints. In The-

orem 4.3.1, we assume that the gradient vectors of all classifiers have an equal magnitude

at each x, and they are equiangular, i.e., the angle of any two gradient vectors is equal to

φ. Hence, we derive a lower bound for the joint robustness of k classifiers with equiangular

gradients.

Theorem 4.3.1. Let ∇f0, . . . ,∇fk–1 be k vectors in Rn with an equal length l, and for any

i ̸= j ∈ {0, . . . , k–1}, ⟨∇f i,∇f j⟩ = l2 cos φ, and let r ∈ Rn be a vector such that |⟨∇f i, r⟩| ≥ |δ|
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holds for any i, then:

||r||2 ≥
|δ|
√
k

l
√
((k – 1)cosφ + 1)

. (4.5)

Proof. Rewriting Equation 4.4 gives the minimal ℓ2-norm solution, r, satisfying |⟨∇f i, r⟩| ≥

|δ| as: r∗2 =
∑
i

αi∇f i, where αi is the ith element of the vector α = δ(Ω ΩT)–11k×1, and Ω =

[∇f0, . . . ,∇fk–1]T. Applying the equiangular condition, we have: αi =
δ

l2((k – 1)cosφ + 1)
,

which is independent of i. On the other hand, ||
∑k–1

i=0∇f
i||22 = ⟨

∑k–1
i=0∇f

i,
∑k–1

i=0∇f
i⟩ =

kl2((k – 1) cos φ + 1). Combining these two equations concludes the proof.

For the equiangular case, when k classifiers are identical, i.e., φ = 0, members of the

ensemble have the minimum defensive interactions since the joint robustness is equal to the

robustness of a single classifier obtained in Equation 4.2. For k classifiers with orthogonal

gradient vectors, the lower bound is equal to ||r||2 = δ

√
k
l
and the robustness is of O(

√
k
l

). As φ

grows, the robustness increases and approaches infinity when φ→ arccos( –1
k–1

). The robust-

ness for an arbitrary set of gradients, {∇f0, . . . ,∇fk–1}, is lower bounded by the robustness

of any set of inscribed equiangular vectors with φ = mini̸=j∠(∇f i,∇f j) and l = maxi ||∇f i||2.

Therefore, Theorem 4.3.1 provides a lower bound to the robustness of the general case of the

gradients. This implies that the robustness of ensembles can be improved by increasing the

minimum angle between gradients and decreasing the maximum gradient magnitude. Figure

4.1 illustrates how promoting the gradient diversity improves the robustness.

Diversity of the gradient directions has been studied before in GAL [108] as a heuristic

methodology to improve the robustness against black-box attacks. Theorem 4.3.1 highlights

two shortcomings of GAL limiting its effectiveness against white-box attacks. First, GAL

does not consider the optimal bound arccos( –1
k–1

) for the gradient diversity. We observe that

this causes a fluctuation in the training of GAL and reduces the effectiveness of diversi-

fying the gradient directions. Second, GAL does not regularize the gradient magnitudes

among members. Consequently, any white-box attack to the ensemble prediction can easily

circumvent the defensive strategy by targeting the least robust members.
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Figure 4.2: Visualizing gradients for an ensemble of k = 2 classifiers trained on CIFAR-10

(top block) and MNIST (bottom block) using GPMR. First, second, and third row in each

block illustrates the inputs to the model and gradients of the first and second classifiers,

respectively.

4.3.3 Threat Model in Practice

In the previous section, we formalized a geometric framework to analyze the robustness

according to the size of the ensemble, k = |F|, and the extent of the diversity of the gradient

directions. This methodology is built upon the optimization problem in Equation 4.3 which

assumes that the adversary must fool all classifiers at the input sample. However, it is

not practical to reject all samples which do not have the full agreement of the members.

In real-world applications, changing the prediction of a subset of the ensemble, F ′ ⊂ F ,

is enough to alter the prediction of the ensemble. In this case, the lower bound of the

robustness, presented in Theorem 4.3.1, reduces based on k′ = |F ′|. Previous defenses based

on diversifying predictions [107, 109, 110] or gradients [108] do not control the magnitude

of the gradients of the members. Thus, the subset required to be fooled in order to fool

the ensemble is often smaller than ⌊ |F|
2
⌋ + 1 since the adversary can fool a set of locally

weak classifiers, i.e., members with large gradient magnitudes. In the next section, we

propose a gradient magnitude equalization loss that alleviate this problem by enforcing:

|F ′| ≥ ⌊ |F|
2
⌋+ 1.
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4.3.4 Joint Gradient Regularization

Here, we present the joint gradient phase and magnitude regularization (GPMR) scheme

as a theoretically-grounded approach for improving the robustness of the ensemble against

bounded alterations of the input domain. joint gradient phase and magnitude regularization

(GPMR) maximizes a lower bound to the robustness of the ensemble, according to Theorem

4.3.1, by jointly regularizing the gradient directions and magnitudes. First, we define the

gradient diversity promoting loss to increase the angle between the gradients by forcing the

cosine similarity of gradients to approach –1
k–1

as:

Ldiv =
2

k(k–1)

∑
0≤i<j≤k–1

(
⟨∇f ici ,∇f

j
cj
⟩

||∇f ici ||2||∇f
j
cj
||2

+
1

k – 1
)2, (4.6)

where 2
k(k–1)

normalizes the loss over the number of the pairs in the ensemble. Second, we

define the gradient magnitude regularization loss. To focus on regularizing the joint inter-

actions of the members, we opt to equalize the gradient magnitudes rather than minimizing

them as:

Leq =
1
k

∑
i

(||∇f ici ||2 –
1
k

∑
j

||∇f jcj||2)
2. (4.7)

This forces the gradient magnitudes to be roughly equal at each input sample and equalizes

the contribution of the members to the ensemble robustness. Consequently, the adversary

must fool at least the majority of classifiers and cannot fool the ensemble prediction by

fooling a few classifiers with the maximum magnitude of gradient at the input sample. The

equalization loss also makes GPMR orthogonal to defenses developed for single classifiers

controlling the smoothness of the predictions [3,10,11,32,40,86,117,118,123]. Hence, other

defenses can be employed to further robustify the ensemble by alleviating the vulnerability

of individual members. It must be noted that Leq does not constrain the magnitude of

gradients at two different input samples.

The final loss function for training the ensemble is:

Lt = Lxent + λeqLeq + λdivLdiv, (4.8)

where λdiv and λeq are Lagrangian coefficients controlling the importance of the regularization

terms. Lxent is the classification loss function which computes the average of the cross-
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entropy loss over all members. The classification loss can be defined on natural or adversarial

examples. The latter case combines the proposed framework with adversarial training to

further improve the robustness of the ensemble as studied in Section 4.4.3. It may be

noted that GPMR does not improve the robustness of the member classifiers. Indeed, it

regularizes the interactions of the members to mitigate the adversarial behavior using the

joint evaluation of the members. Moreover, GPMR aims to construct an ensemble classifier

for which the perturbations crafted for one classifier have less effect on other classifiers or

even increase the score corresponding to their predicted class.

Table 4.1: Classification error rate (%) on natural examples. Ensembles consist of k = 3

Conv/ResNet-20 classifiers, i.e.Net 1, Net 2, and Net 3. The maximum standard deviation

of error is 0.5%, 0.6%, 5.3%, and 0.7% for Base., ADP, GAL, and GPMR, respectively.

Dataset Classifier Base. ADP GAL GPMR

M
N
IS
T

Net 1 0.76/0.40 0.70/0.41 1.18/0.91 0.72/0.53

Net 2 0.78/0.43 0.67/0.48 1.14/0.96 0.78/0.57

Net 3 0.75/0.45 0.69/0.44 1.12/0.93 0.71/0.52

Ensemble 0.73/0.36 0.66/0.31 1.02/0.86 0.71/0.51

C
IF
A
R
-1
0

Net 1 10.43/8.50 10.72/8.93 11.92/9.58 10.37/9.11

Net 2 10.18/8.15 10.25/9.38 11.58/10.33 10.87/9.52

Net 3 10.50/8.72 10.80/9.28 11.45/10.19 11.05/9.83

Ensemble 9.28/6.94 9.12/6.85 11.40/9.16 9.30/7.22

C
IF
A
R
-1
00

Net 1 39.83/34.00 43.33/39.35 45.03/39.61 40.46/36.85

Net 2 38.65/35.58 43.45/40.53 42.32/37.77 40.47/37.48

Net 3 40.51/35.82 42.94/40.81 43.49/41.13 41.66/37.15

Ensemble 36.35/30.72 35.48/30.41 39.61/36.42 36.76/31.05
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4.4 Experiments

Here, we provide the experimental results to evaluate the effectiveness of GPMR. We eval-

uate the joint robustness of multiple classifiers on the MNIST, CIFAR-10, and CIFAR-100

datasets. We consider two base network architectures detailed in Table 4.4. We train models

using stochastic gradient descent with momentum equal to 0.9 and weight decay of 5e – 4.

The initial learning rate is set to 10–1, and decayed with the factor of 0.2 every 30 epochs

until the final learning rate 10–4. We run the training process for 60 epochs on MNIST, and

200 epochs on CIFAR-10 and CIFAR-100. The batch size for training models is set to 64

for all experiments. We observe that λdiv directly affects the classification accuracy of the

ensembles as depicted in Figure 4.3a. Consequently, the diversity loss coefficient, λdiv, is set

to 0.1 for MNIST and 0.04 for CIFAR-10 and CIFAR-100. We also observe that the accu-

racy of the ensembles on natural examples is roughly independent of λeq. This is expected

since the equalization loss does not minimize the magnitude of gradients. Hence, we select

λeq = 10 for all network architectures and datasets based on the experiments conducted in

Section 4.4.2 and Figure 4.3d.

We compare our method to three ensemble models. The first ensemble is trained without

any diversity encouraging criterion, i.e., GPMR with λeq = λdiv = 0. The second ensemble is

trained using GAL [108] which diversifies the gradient of predictions. ADP [107] is used as the

third method to promote the prediction diversity among classifiers. Due to the constraints on

the number of classifiers in ADP, we conduct the comparisons with this baseline on ensembles

of k = 3 classifiers. For GAL, the coefficient of the diversity loss, λ, is set to 0.5. For ADP

coefficients α and β are set to 2 and 0.5, respectively. These values are associated with the

best performance reported by the authors. Major parts of our experiments are adapted from

Pang et al. [107] to provide consistent evaluations for the future works. The results are the

average of 10 independent runs.

4.4.1 Performance on Natural Examples

Table 4.1 presents the classification error rate of the member classifiers and the ensembles.

Promoting diversity of gradient directions slightly degrades the classification performance
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Table 4.2: Classification accuracy (%) for adversarial examples on MNIST. The results for

Conv and ResNet architectures are separated by ‘/’. The coefficient ε for JSMA is set to

0.1. The coefficient β of the EAD attack is set to 0.01. The maximum standard deviation

of results is 6.3% and 0.20% for GAL and other methods, respectively.

Attack Setting
MNIST

Baseline ADPk=3 GALk=3 GPMRk=2 GPMRk=3

FGSM
ε=0.1 65.9/75.2 83.5/95.2 57.4/84.3 85.0/92.2 90.8/97.6

ε=0.2 18.2/20.6 45.1/51.2 31.9/39.2 38.9/54.1 58.7/65.4

BIM
ε=0.1 46.5/50.0 72.5/88.9 40.0/59.2 75.1/80.9 89.0/92.4

ε=0.15 12.1/13.8 68.0/72.7 41.5/51.3 67.0/74.3 73.8/79.6

PGD
ε=0.1 48.6/49.4 78.7/82.4 53.8/54.6 72.8/77.0 84.8/87.6

ε=0.15 4.3/7.6 38.2/41.1 26.7/30.8 36.9/42.5 51.4/59.3

MIM
ε=0.1 54.1/57.6 88.7/91.5 75.0/84.2 90.8/92.1 91.3/93.5

ε=0.15 6.4/15.9 70.9/76.8 64.4/69.6 74.1/79.8 76.5/82.4

JSMA
γ=0.3 79.5/83.1 90.1/95.0 76.4/83.6 90.7/94.0 95.0/96.7

γ=0.6 73.2/75.0 86.2/89.8 72.4/81.3 85.9/87.6 92.8/93.3

C&W
c=1.0 25.4/31.3 73.2/78.5 52.7/55.2 77.0/79.4 80.4/82.4

c=10.0 4.6/5.8 20.1/24.0 10.9/15.7 22.3/27.8 28.5/33.4

EAD
c=5.0 25.1/28.4 90.2/93.0 72.4/74.4 90.2/90.5 92.8/96.1

c=10.0 7.1/7.4 86.6/89.6 68.9/72.3 83.2/85.1 87.6/91.9
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Table 4.3: Classification accuracy (%) for adversarial examples on CIFAR-10. The results

for Conv and ResNet architectures are separated by ‘/’. The coefficient ε for JSMA is set

to 0.2 for CIFAR-10, respectively. The coefficient β of the EAD attack is set to 0.01. The

maximum standard deviation of results is 6.3% and 0.20% for GAL and other methods,

respectively.

Attack Setting
CIFAR-10

Baseline ADPk=3 GALk=3 GPMRk=2 GPMRk=3

FGSM
ε=0.02 30.3/35.2 50.5/60.4 27.6/34.9 53.2/55.2 61.0/66.8

ε=0.04 17.6/18.0 44.0/48.7 31.3/32.9 43.1/45.8 56.0/60.5

BIM
ε=0.01 15.4/16.9 41.8/43.9 31.8/33.8 45.5/48.5 50.3/55.2

ε=0.02 5.7/7.2 23.6/32.5 20.4/23.9 33.1/34.7 38.6/46.2

PGD
ε=0.01 16.9/23.1 44.4/49.2 27.4/36.9 44.8/53.8 62.5/64.9

ε=0.02 6.5/7.5 23.1/31.6 20.4/21.5 24.0/33.9 35.8/49.2

MIM
ε=0.01 22.3/24.2 46.3/54.6 43.3/47.6 49.0/58.4 63.4/66.8

ε=0.02 6.8/7.4 25.0/33.7 21.2/28.9 29.3/35.5 47.2/51.9

JSMA
γ=0.05 25.9/29.0 40.1/43.7 35.7/36.7 43.3/45.9 52.9/55.4

γ=0.1 23.9/26.2 31.2/38.2 32.8/35.7 35.6/40.2 48.1/50.6

C&W
c=0.01 41.8/46.3 50.9/54.8 32.3/36.6 53.5/58.0 60.9/66.9

c=0.1 15.8/18.5 22.6/25.4 18.7/20.4 22.1/27.3 32.9/35.1

EAD
c=1.0 12.3/17.1 65.6/70.4 52.6/54.2 63.0/68.8 76.6/79.8

c=5.0 2.4/3.3 30.1/30.3 10.5/18.5 27.4/31.2 45.8/50.2
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(a) (b)

(c) (d)

Figure 4.3: (a) Classification accuracy of ensembles versus λdiv on natural examples, (b)

expected cosine similarity of gradients versus the number of classifiers, (c) robustness of the

ensemble versus the number of classifiers, where B1 and B2 denote the optimal and practical

robustness at φ = π

2
, and the solid and dashed plots show the results for GPMR with λeq

equal to 10 and 0, respectively, (d) average fooling rate of members in the ensemble versus

λeq.
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Table 4.4: Network architecture of the base classifiers, consisting of Convolution (C), Max-

pooling (M) and Fully-connected (F) layers. Each RES block consists of two (C) with a skip

connection. All layers, except the last (F), are followed by ReLU. The number of classes is

denoted by m.

Model Structure

Conv 2×C64-M-2×C128-M-2×C256-M-2×C256-F512-F(m)

ResNet-20 C16-3×RES16-3×RES32-3×RES64-F512-F(m)

on natural examples. This is attributed to that by diversifying gradients classifiers learn to

discriminate input samples based on distinct sets of representative features, illustrated in

Figure 4.2. Minimizing the similarity of salient regions using the gradient diversity loss di-

vides important features between classifiers which reduces the accuracy on natural examples.

However, this enhances the robustness against adversarial examples as presented in experi-

ments on white-box defense performance. Table 4.1 also highlights the superior performance

of GPMR compared to GAL. As discussed in Section 4.3.4, GAL does not consider the opti-

mal bound for the similarity of gradients. During the training, it forces the cosine similarity

of gradients for k classifiers to approach –1 while the optimal bound is –1
k–1

. Consequently,

GAL suffers from the fluctuation in the loss and accuracy of individual classifiers during the

training.

4.4.2 Theory vs. Practice

Here, we evaluate the gap between the theory and practice of the proposed approach. To

this aim, we first measure the diversity of the gradient directions within the trained ensemble

using the expected cosine similarity as:

Θ(F) = 2
k(k–1)

Ex[
∑

0≤i<j≤k–1

⟨∇fici ,∇fjcj ⟩

||∇fici ||·||∇fjcj ||
]. (4.9)

Figure 4.3b presents the empirical values of the cosine similarity computed over 1, 000 test

samples. In all experiments, the cosine similarity is negative and close to the optimal value

which implies that the diversity of the gradient directions is better than the orthogonal case
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Table 4.5: Classification accuracy (%) on adversarial examples for CIFAR-100 with ResNet-

20 architecture .

Attack ε Base. ADPk=3 GALk=3 GPMRk=2 GPMRk=3

BIM
0.005 23.6 27.3 21.8 34.2 37.8

0.01 11.7 13.6 12.8 19.5 24.2

PGD
0.005 25.2 32.4 30.2 36.1 38.5

0.01 11.4 17.8 14.0 25.5 29.2

MIM
0.005 23.4 31.2 26.4 32.8 37.1

0.01 10.3 18.9 16.7 22.5 28.6

Table 4.6: Classification accuracy (%) of combined defenses on ResNet-20. The maximum

standard deviation is 1.4%.

Defense FGSM BIM PGD MIM

DefA 41.7 19.6 25.6 28.5

DefA + GPMR 70.9 54.0 55.1 58.9

DefB 41.3 25.4 32.1 33.8

DefB + GPMR 66.2 68.5 57.7 62.3
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where all gradients are perpendicular. Diversifying the gradients on MNIST achieves closer

values to the optimal bound compared to CIFAR-10 and CIFAR-100. We attribute this to

the capacity of members compared to the complexity of the task. Increasing the size of

the ensemble enlarges the gap between the practice and the optimal bound of the gradient

diversity.

For the second evaluation, we adapt the robustness measure proposed by Moosavi-

Dezfooli et al. [3] for the ensemble framework as:

ρ(F) := Ex

[
∆(x;F)

maxf∈F ∆(x; f)

]
, (4.10)

where ∆(x;F) is the minimum ℓ2-norm adversarial perturbation for the given classifier F

at x, and we approximate it using ℓ2-DeepFool [3]. Indeed, ρ(F) measures the expected

ratio of the robustness of the ensemble over the robustness of the most robust classifier

in the set. This measure can reliably characterize the effectiveness of a defense based on

ensembles since it measures the relative robustness of the set compared to its members.

We compute this measure over 1, 000 test examples. Figure 4.3c illustrates the results for

this evaluation. GPMR improves the robustness on all datasets as the size of the ensemble

grows. For instance, with k = 4 classifiers, GPMR increases the magnitude of the minimum

ℓ2 perturbation by 2.75, 2.5, and 2.4 on MNIST, CIFAR-10, and CIFAR-100, respectively.

We also ablate the role of gradient magnitude equalization by repeating this evaluation

using GPMR with λeq = 0. As depicted in Figure 4.3c, diversifying the gradients without

equalizing the gradient magnitudes significantly limits the effectiveness of GPMR.

We further analyze the role of the gradient equalization loss by measuring the average

ratio of the number of classifiers that are fooled by DeepFool [3] over the number of members

in the ensemble. We refer to this ratio as the average fooling ratio (AFR) of the members.

We train ensembles consist of k = {2, 3, 4} ResNet-20 networks on CIFAR-10. Figure 4.3d

presents the results for these experiments. We observe that without the equalization loss

(λeq = 0) AFR is 0.58, 0.37, and 0.34 for k equal to 2, 3, and 4, respectively. This illustrates

that the attack targets merely 1 or 2 classifiers at each input sample to fool the ensemble

prediction. However, by increasing λeq AFR improves significantly, which validates the

effectiveness of the gradient equalization loss for regularizing the contribution of members.
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4.4.3 White-box Defense Performance

We evaluate the performance of GPMR against several well-known and powerful white-box

attacks including fast gradient sign method (FGSM) [10], basic iterative method (BIM) [11],

projected gradient descent (PGD) [86], momentum iterative method (MIM) [56], Jacobian-

based saliency map attack (JSMA) [57], Carlini &Wagner (C&W) [58], and elastic-net attack

(EAD) [124]. A brief summary of these attacks can be found in [107]. For each attack, as

detailed in Tables 4.2,4.3, and 4.5, we consider two settings to demonstrate the effectiveness

of our approach against a wide range of adversaries. For BIM, PGD, and MIM, the iteration

of attack is set to 10 and the step size is set to ε

10
. Both C&W and EAD are implemented

with the learning rate of 0.01 and 1, 000 iterations.

Tables 4.2, 4.3, and 4.5 present the classification accuracy of ensemble models on ad-

versarial examples. GPMR consistently outperforms other ensemble-based defenses on both

network architectures and all datasets. Ensembles consist of k = 2 classifiers trained with

GPMR outperform GAL ensembles with k = 3 classifiers, and provide comparable perfor-

mance to ADP ensembles with k = 3 classifiers on MNIST and CIFAR-10. On CIFAR-100,

our ensemble model with k = 2 classifiers surpasses all other ensembles consisted of k = 3

classifiers. This can better demystify the effectiveness of GPMR since its functionality is

independent of the number of classes in the task. However, the number of classifiers required

by ADP increases as the number of classes grows.

In another set of experiments, we evaluate the orthogonality of GPMR to other defenses.

We consider adversarial training on FGSM (DefA) [10] and PGD (DefB) [86] to combine

with GPMR. Both defenses are implemented using the same training setup as GPMR. The

ℓ∞-norm magnitude of perturbations, ε, is uniformly sampled from the interval [0.01, 0.05] as

suggested by Kurakin et al. [125]. Table 4.6 shows the classification accuracy of combined

defenses against FGSM (ε = 0.04), BIM (ε = 0.02), PGD (ε = 0.02), and MIM (ε = 0.02)

on CIFAR-10. As we observe, the combination of other defenses with GPMR consistently

improves the performance of the defense. This is attributed to GPMR equalizing gradients

and not reducing their magnitudes, while the conventional defense methods seek to reduce the

magnitude of gradients. Hence, they can be combined to simultaneously diversify gradient
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(a) (b)

(c)

Figure 4.4: (a) Transferability of adversarial examples in ensembles of size k = 3 on CIFAR-

10. The rows and columns illustrate the source and target networks, respectively, (b)

Gradient-free evaluation of robustness using Gaussian random noise, and (c) ROC curves

for detecting adversarial examples using the standard deviation of predictions.

Table 4.7: Detection performance of ensembles on CIFAR-10 using AUC (10–2) score. Results

for ADP are cited from the original paper.

Attack Setting ADP GAL GPMR

FGSM ε = 0.1 91.19 90.98 95.29

BIM ε = 0.1 93.14 90.54 96.32

PGD ε = 0.1 97.03 93.15 98.45

MIM ε = 0.1 94.09 91.24 94.13

C&W c = 1.0 90.98 88.46 93.67

EAD c = 20.0 94.84 91.52 96.46
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directions, equalize gradient magnitudes, and reduce gradient magnitude. Combining GPMR

with adversarial training further improves the robustness since the lower bound in Theorem

4.3.1 improves when the magnitude of gradients decreases.

4.4.4 Transferability Across Individual Classifiers

Defensive interactions between several classifiers can be characterized by the transferability

of adversarial examples among them. We perform transferability experiments using PGD and

MIM which are powerful attacks for the black-box setting [107,126]. We compute adversarial

examples for each member classifier and then evaluate their transferability across other

members by computing the classification accuracy of the target classifier. The perturbation

size for both attacks is set to ε = 0.05. Figure 4.4a presents the results for ResNet-20

architecture on CIFAR-10 and suggests that diversifying gradients is an effective approach to

reduce the transferability of adversarial examples among members in the ensemble. However,

it may be noted that minimizing the transferability among every two members does not lead

to the maximum robustness of the ensemble since for k > 2 the optimal cosine similarity of

pair of gradients is greater than –1.

4.4.5 Gradient-free Evaluation of the Robustness

White-box attacks are not sufficient to assess the performance of a defense method since the

defense may cause obfuscated gradients and mislead the evaluation [127]. Therefore, in Fig-

ure 4.4b, we evaluate the performance of ensembles consist of k = 3 ResNet-20 classifiers on

CIFAR-10 samples augmented with random noise. The maximum standard deviation of the

results is 2.1%, 2.3%, 4.5%, and 2.3% for baseline, ADP, GAL, and GPMR, respectively. Re-

sults suggest that diversifying the predictions in ensembles does not improve the robustness

to random perturbations since the performance of ADP is similar to the baseline. However,

diversifying gradients improves the robustness to noisy input samples which demonstrates

the superiority of gradient diversity compared to prediction diversity.
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4.4.6 Joint Robustness for Detecting Adversaries

Here, we adopt a measure based on the prediction of all members to evaluate the detection

performance of ensembles trained by GPMR. We compute the standard deviation of the class

probability scores associated with the predicted class over all the classifiers and compare it

with a predefined threshold to accept or reject the input example. Figure 4.4c and Table 4.7

present the receiver operating characteristic (ROC) curves and AUC scores for the detection

performance on 1, 000 natural examples and 1, 000 adversarial examples from the CIFAR-10

dataset. All ensembles consist of k = 3 classifiers. Results validate the performance of our

model on detecting alterations of the input samples. Moreover, ADP outperforms GAL due

to the disparity in the robustness of subsets of classifiers in GAL. We observe that GAL

causes a notable robustness gap between the most and least robust sets of classifiers in the

ensemble since it does not regularize the contribution of members in the ensemble.

4.5 Conclusion and Future work

In this paper, we introduced a practically feasible scenario of first-order defensive interactions

between members of an ensemble. We both theoretically and empirically demonstrated that

imposing these interactions significantly improves the robustness of ensembles. We proposed

the joint gradient phase and magnitude regularization (GPMR) as an empirical tool to

regularize the interaction between members and equalize their role in the ensemble decision.

Furthermore, we concluded that the superior performance of GPMR is due to its capability

to increase the effective number of members contributing to the robustness. For the future

work, we plan to analyze the gradient diversity loss in more detail. We mainly aim to address

the deterioration of the classification accuracy on the natural examples. Hence the effect of

several factors such as the model capacity and the intrinsic characteristics of the gradients

in deep models will be explored. Moreover, employing multiple classifiers to improve the

robustness of the classification can cause notable computational costs. Hence, we also plan

to evaluate the possible choices of the network architectures that can reduce the capacity

of the final ensemble while preserve the flexibility of the model for promoting the gradient
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diversity.
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Chapter 5

Revisiting Outer Optimization in

Adversarial Training

5.1 Introduction

Susceptibility of DNNs to manipulated inputs has raised critical concerns regarding their

deployment in security-sensitive applications [11,128,129]. The worst-case manipulation can

be characterized by adversarial examples: carefully crafted input examples that can easily

alter the model prediction while remaining benign to the human perception [32,42]. A prin-

cipal approach to formalize the imperceptibility is to bound the perturbation using ℓp-norm.

Hence, the problem of finding a model robust to adversarial manipulation reduces to finding

the one that generalizes well merely on the bounded neighborhood of the input example.

Although this task seems effortless for humans, achieving such invariance is notoriously diffi-

cult for DNNs. The reason for this behavior has not fully understood yet, but several factors

have shown to be influential, including the high cardinality of the data space [105,106].

One of the most effective methods (defenses) to alleviate adversarial susceptibility is AT

which improves the robustness by training the model on the worst-case loss [42, 43]. Given

the deep model Fθ parameterized by θ and the surrogate loss function for the empirical

adversarial risk L, the training objective of AT is defined as:

min
θ

E(x,y)∼D

[
L∗
(
x, y; θ

)]
, (5.1a)
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Figure 5.1: Replacing MSGD with ENGM for outer optimization in AT results in consistent

improvement of robust accuracy and generalization.

L∗
(
x, y; θ

)
= max

||x–x′||p≤ε

L
(
Fθ(x

′), y
)
, (5.1b)

where the input example x and the corresponding label y are a sample from the data distribu-

tion D, x′ is the adversarial equivalent of x, and ε is the maximum ℓp-norm magnitude of the

perturbation. Throughout the paper, we refer to Equations 5.1a and 5.1b as the outer and in-

ner optimization in AT, respectively. The inner optimization finds the worst-case adversarial

example and the outer optimization minimizes the empirical adversarial risk over the net-

work parameters, θ. AT is known to be intrinsically more challenging than natural training

(NT), e.g. adversarially robust models require enormous over-parameterization [43,130].

Numerous efforts have been devoted to the development of AT analyzing its different

aspects, such as the inner optimization [43, 131, 132], adversarial objective [133–135], com-

putational cost [136–138], and evaluation methods [3, 13, 56, 58, 127]. Recent studies on the

topic have revealed two major shortcomings of AT which contradicts common observations

on NT. First, AT severely induces overfitting [139, 140], referred to as robust overfitting,

whereas in NT overfitting is known to be less prominent especially in over-parameterized

models [141–143]. Second, AT is highly sensitive to hyperparameter setting, e.g. a slight

change in the weight decay can drastically change the robust performance [144,145].

The majority of the previous works on AT have analyzed the inner optimization and its

properties. However, the potential impact of outer optimization on the performance and

shortcomings of AT has been critically overlooked. Furthermore, the success of the two

recent SOTA approaches of AT which indirectly affect the outer optimization by weight

perturbations [146] or weight smoothing [140] advocates for further investigation on outer

optimization. Based on these observations, we raise a fundamental question regarding outer
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Figure 5.2: Expected norm (µ) and variance (σ2) of gradients during NT and AT. Learning

rate is decayed from 10–1 to 10–2 at epoch 75. Note that the norm and variance in AT is

higher than NT and escalates after learning rate decay.

optimization in AT and attempt to address it in this work:

Is the conventional MSGD, developed for non-convex optimization in NT, a proper choice

for the outer optimization in AT? If not, what modifications are required to make it suitable

for the AT setup?

To answer the first question, we empirically evaluate and compare two statistical pa-

rameters of gradients, namely expected norm and expected variance, in NT and AT. Both

these parameters are known to be major determinants of the performance of MSGD in

NT [147–149]. We find that they are notably higher in AT compared to NT. Furthermore,

after decaying the learning rate in NT, both the gradient norm and variance deteriorate sug-

gesting convergence to a local minimum. However, in AT, they escalate after the learning

rate decay. These observations highlight substantial disparities between the characteristics

of the gradients in AT and NT. Consequently, we argue that MSGD, developed essentially

for NT, is not the most proper choice for outer optimization in AT since it is not designed

to be robust against high gradient norm and variance.

Motivated by these observations, the current work attempts to develop an optimization

method that is more suitable for AT, i.e.less sensitive to the gradient norm and variance.

The contributions of the paper are as follows:

• We investigate the effect of AT on gradient properties and provide empirical evidence

that AT induces higher gradient norm and variance. We argue that this hinders the

optimization since the convergence rate of MSGD is highly dependent on the variance of

the gradients.
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Figure 5.3: (a,b): Characterizing the linear correlation between ||∇xiLi|| and ||∇θLi|| using
Pearson correlation coefficient. (c, d): The absolute value of error (%) for estimating wi

using Equation 5.7. Dashed black line denotes the learning rate decay from 10–1 to 10–2.

• We propose an optimization method tailored specifically for AT, termed ENGM, whose

convergence rate is independent of the gradient variance.

• We empirically analyze the norm of gradients and provide insightful observations regarding

their correlation in DNNs. Harnessing this, we develop a fast approximation to ENGM

that significantly alleviates its computational complexity.

• Through extensive evaluations and ablation studies, we demonstrate that the proposed

optimization technique consistently improves the performance and generalization of the

SOTA AT methods.

5.2 Analyzing Outer Optimization in AT

We first describe the notations in Section 5.2.1. Then, we analyze the properties of gradients

in AT and NT in Section 5.2.2. We briefly review MSGD and one of its variants that is

less sensitive to adversarial gradients in Section 5.2.3. In Section 5.2.4, we describe our

proposed optimization technique whose convergence rate is independent of the variance of

the gradients. Later in Section 5.2.5, we reveal an interesting phenomenon in DNNs that

enables us to approximate a fast version of the proposed optimization technique.
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5.2.1 Notations

Throughout the paper, we denote scalars, vectors, functions, and sets using lower case,

lower case bold face, upper case, and upper case calligraphic symbols, respectively. We use

notation || · ||p for the ℓp-norm and drop the subscript for p = 2. We employ the commonly

used cross-entropy loss as the empirical risk and denote the loss on ith example, L(Fθ(xi), yi),

as Li for the sake of brevity.

5.2.2 Comparison of Gradient Properties

We experiment to analyze two statistical parameters of gradients which are major determi-

nants in the performance of MSGD in NT and compare them with those in the setup of

AT. The first parameter is the expected norm of gradients µ := E(x,y)∼D

[
||∇θL

(
Fθ(x̂), y

)
||
]
,

where x̂ is the natural example, x, in NT and the adversarial example, x′, in AT. Change in

the expected norm of gradients directly affects the learning rate, the most important hyper-

parameter in NT [147, 148]. The second parameter is the upper bound for the variance of

gradients, and is defined as:

σ
2 := sup

θ

E(x,y)∼D

[∣∣∣∣∣∣∇θL
(
Fθ(x̂), y

)
– ḡ
∣∣∣∣∣∣2], (5.2)

where ḡ = E(x,y)∼D

[
∇θL

(
Fθ(x̂), y

)]
. It is shown that the convergence of MSGD is O(σ2)

[150]. We roughly estimate both parameters during the training by averaging the gradient

properties over 1, 000 training examples at the end of training epochs. NT and AT are

performed with ResNet-18 and VGG-8 on CIFAR-10 and SVHN datasets, respectively. Inner

optimization in AT follows the standard setup, i.e.10 steps of ℓ∞-norm PGD with ε = 8/255

and step size ε/4 to maximize the adversarial loss.

Figure 5.2 demonstrates µ and σ2 during 100 training epochs with the learning rate decay

from 10–1 to 10–2 at epoch 75. We observe that the expected norm and variance of gradients

is notably higher in AT compared to NT. The expected norm also increases continuously in

AT which is contrary to NT. After the decay of the learning rate, both parameters decreases

significantly in NT suggesting the convergence of the training to a local minima. However in

AT, the expected norm grows and the variance increases drastically. These findings highlight
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substantial disparities between the characteristics of the gradients in AT and NT. In the next

section, we theoretically analyze how these differences can affect the convergence of MSGD.

5.2.3 Revisiting Stochastic Gradient Descent

In this part, we analyze the functionally and convergence of MSGD to identify modifications

that improves its suitability for the AT setup. The update rule of MSGD at iteration t is as

follows:

vt+1 = βvt +
1

|It|
∑
i∈It

∇θLi, (5.3a)

θt+1 = θt – ηvt+1, (5.3b)

where η is the learning rate, vt+1 is the Polyak’s momentum with the corresponding modulus

β [151], It is the randomly selected set of indices for the mini-batch with size |It|, and Li

is the objective for optimization computed on the ith example. Assuming F has bounded

variance of gradients according to Equation 5.2, and is smooth in θ, i.e.Fθ1(x) ≤ Fθ2(x) +

⟨∇θFθ1(x), θ2 – θ1⟩ + c
2
||θ2 – θ1||2, Yu et al. [150, 152] have shown that the convergence rate

of MSGD for non-convex optimization in DNNs is O(σ2). Hence, MSGD is not suitable for

tasks with high gradient variance. Intuitively, higher variance implies that the gradients are

not aligned with the average gradients which are being used to update the model parameters.

This hinders the optimization process since the update is merely favorable for a portion of

examples in the mini-batch.

One alternative to MSGD that is less sensitive to the variance of the gradients is nor-

malized gradient descent with momentum (SNGM) [149]. SNGM is shown to provide better

generalization for training with large batch size, i.e.another cause of high gradient variance.

Concretely, SNGM modifies Equation 5.3a as:

vt+1 = βvt +

∑
i∈It ∇θLi

||
∑

i∈It ∇θLi||
, (5.4)

which limits the gradient norm by normalizing the magnitude of mini-batch gradients and

considers only the direction of the average gradient. Zhao et al. [149] have shown that the

convergence of SNGM is O(σ), and therefore, is more suitable for tasks with induced gradient

fluctuations. We also observe in Section 5.3.1 that SNGM improves the generalization in
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Algorithm 3 Fast ENGM

1: Initialize τ > 0, βγ ∈ [0, 1), α > 0, γ0 = 0, γ1 = 1, Boolean parameter Naive.

2: for t = 0 . . . t1 – 1 do

3: Compute Li, ∀i ∈ It; ▷ inner optimization

4: Compute Gx,t = {∇xLi : i ∈ It}; ▷ backprop. ×1
5: if mode(t, τ) = 0 and Naive = False then

6: Compute Gθ,t = {∇θLi : i ∈ It}; ▷ backprop. ×n every τ iterations

7: γ ′1, γ ′0 = LinearRegression(Gx,t,Gθ,t) ▷ estimate slope and intercept

8: γ0 ← βγγ0 + (1 – βγ)γ
′
0, and γ1 ← βγγ1 + (1 – βγ)γ

′
1;

9: end if

10: ŵi ← max(
α

||γ1∇xLi + γ0||
, 1), ∀i ∈ It;

11: Update θ with MSGD on the reweighted loss 1
|It|
∑

i∈It ŵiLi ▷ backpropagation×1
12: end for

AT. This suggests that reducing the sensitivity of the optimizer to the gradient variance has

a direct impact on the generalization and performance of the task with adversarial gradients.

5.2.4 Example-normalized Gradient Descent with Momentum

Although SNGM is less sensitive than MSGD to the variance of gradients, it does not impose

any constraint on the variance. Hence, the variance can still become large and impede

the optimization. To address this, we introduce a transformation on gradient vectors that

bounds the variance of the gradients in the mini-batch and makes the convergence rate of

the optimizer independent of the variance.

Theorem 5.2.1. For any arbitrary distribution P of random vectors, applying the transfor-

mation T(a) = min( α

||a|| , 1)a with α > 0 bounds the variance of vectors to 4α2.

(Proof is provided in Section 1 of Supp. material.)

We use the transformation in Theorem 5.2.1 to bound the variance of the gradients. To

this aim, we rewrite Equation 5.3a as:

vt+1 = βvt +
1

|It|
∑
i∈It

wi∇θLi, (5.5a)

wi = min
(

α

||∇θLi||
, 1
)
, (5.5b)
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Method MSGD MSGD+GNC SNGM F-ENGM N-ENGM A-ENGM ENGM

Ex. time (sec./iter) 0.60 0.61 0.63 5.05 0.75 0.83 5.06

Table 5.1: Execution time of the outer optimization methods. Experiments are conducted

on an NVIDIA Titan-RTX GPU.

where wi is the normalizing coefficient for ∇θLi, and α is the maximum allowed norm of

gradients. This update rule limits the maximum norm of the gradients on each input example

to α. Hence, it prevents high magnitude gradients from dominating the updating direction

and magnitude in the mini-batch. It might be noted that α scales with the square root of

the model size, and larger models require higher values of α. We refer to this approach as

example-normalized stochastic gradient descent with momentum (ENGM). ENGM recovers

MSGD when α≫ 1. The convergence properties of ENGM is analyzed in Theorem 5.2.2.

Theorem 5.2.2. Let A(θ) be the average loss over all examples in the dataset, and assume

that it is smooth in θ. For any α > 0 and total iterations of t1, optimizing A(θ) using

ENGM (Equation 5.5) has the convergence of O(α). (Proof is provided in Section 1 of Supp.

material.)

Theorem 5.2.2 shows that the convergence rate of ENGM is O(α) and is independent of

the variance of gradients. Hence, it is suitable for optimizing objectives with high gradient

variance. Later in Section 5.3.1, we empirically validate this and show that the enhanced

regularization of ENGM provides better optimization compared to SNGM and MSGD for

AT. Despite the intrinsic merits of ENGM, it is computationally expensive since evaluating

each wi requires a dedicated backpropagation and cannot be implemented in parallel. In

particular, Equation 5.5 requires |It| backpropagation for each mini-batch. In the next

section, we discuss an empirical observation on the gradients of DNNs that enables us to

estimate wi and consequently Equation 5.5 using merely one additional backpropagation.

5.2.5 Accelerating ENGM via Gradient Norm Approximation

During our evaluations, we observe an interesting phenomenon that enables us to develop

a fast approximation to ENGM. Particularly, we observe that the norm of gradients w.r.t.
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the network parameters, ||∇θLi||, is linearly correlated with the norm of the gradients w.r.t.

the input example, ||∇xiLi||. To illustrate this phenomenon, we track both gradient norms

on 1, 000 training examples during NT and AT using VGG-8 on SVHN and ResNet-18 on

CIFAR-10. We compute Pearson correlation coefficient to measure the correlation between

the two norms. Figures 5.3a and 5.3b show the correlation coefficient during AT and NT

with the model in the evaluation and training modes. We can see that there is a significant

correlation between the two norms in DNNs which becomes stronger as the training proceeds.

The correlation exists in both the training and evaluation modes of the model, and is slightly

affected by the update in the statistics of the batch normalization modules.

Harnessing this phenomenon, we can estimate the norm of gradient w.r.t. the network

parameters (computationally expensive) using the norm of gradients w.r.t. the inputs (com-

putationally cheap) with a linear approximation as:

||∇θLi|| ≈ γ1||∇xiLi||+ γ0, (5.6)

where γ0 and γ1 are coefficients for the slope and intercept of the linear estimation, respec-

tively. Employing this estimation, we can approximate the functionality of ENGM by a

simple modification of the loss on the ith input example, Li, and keeping the popular MSGD

as the optimizer. This provides two benefits. First, there is no need to implement a new

optimizer enhancing the applicability of the method. Second, the reweighting significantly

reduces the computational cost of ENGM. To this aim, we use the estimated value for the

norm of the gradients w.r.t. the input to normalize the gradients w.r.t. the network pa-

rameters indirectly by assigning a weight to the loss function computed on xi as L̂i := ŵiLi,

where:

ŵi := max(
α

||γ1∇xLi + γ0||
, 1). (5.7)

Here, optimizing the total loss 1
|It|
∑

i∈It L̂i using MSGD will approximately recover the

functionality of ENGM on 1
|It|
∑

i∈It Li. To analyze the accuracy of estimating ŵi, we measure

the average absolute value of the error during the training of the both models in AT and for

three different values of α ∈ {0.1, 1.0, 3.0}. Figures 5.3c and 5.3d visualize the error on two

different datasets and network architectures. We observe that the maximum absolute value

of error is less than 10% which advocates for the accuracy of estimating ŵi. For large values
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of α the error decreases during the training, while for small values of α the error increases.

This points to a trade-off between the estimation error across the training process. It might

be noted that the error is computed solely for AT since based on the evaluations in Figures

5.3a and 5.3d the correlation is stronger in NT.

Unlike∇θLi, ∇xLi can be computed in parallel for a batch of data using a single backprop-

agation. We consider two approaches for estimating γ0 and γ1 which result in two variations

of ENGM. In the first approach, referred to as Approximated ENGM (A-ENGM), we eval-

uate ∇θLi for a single mini-batch every τ iterations and use moving average to update the

latest estimate. Then for the intermediate iterations, we use the estimate values of γ to

approximate the norm of gradients using Equation 5.6. In comparison, A-ENGM reduces

the required number of additional backpropagations from |It| (for ENGM) to 1 + |It|/τ. In

practice, we observe that the interval, τ, for estimating γ values can be conveniently large

as investigated in Section 5.3.4. Furthermore, we consider a second approach in which we

simply set γ0 = 0 and merge γ1 into α. We refer to this approach as Naive ENGM (N-ENGM)

which solely requires a single additional backpropagation.

5.3 Experiments and Analysis

We evaluate ENGM on three datasets of CIFAR-10, CIFAR-100 [95], and TinyImageNet

[153]. Following the benchmark experimental setup for AT [133, 134, 146, 154], we conduct

ablation studies and exploratory evaluations on ResNet-18 with 64 initial channels, originally

developed for ImageNet. For SOTA evaluation, we use Wide ResNet-34 with depth factor

10 (WRN-34-10) [155].

Training Setup. Except for evaluations involving ENGM, all the models are trained using

MSGD with momentum 0.9, weight decay 5 × 10–4 [144–146], batch size equal to 128, and

initial learning rate of 0.1. The learning rate is decayed by 0.1 at epochs 75, 90, and the

total number of epochs is set to 120 unless otherwise noted. The standard data augmentation

including random crop with padding size 4 and horizontal flip is applied for all datasets. All

input images are normalized to [0, 1]. Based on ablation studies in Section 5.3.4, we set α

for ENGM, A-ENGM, and N-ENGM to 5, 5, and 0.5, respectively. The momentum for A-
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ENGM is set to 0.7 based on empirical evaluations. PGD with 10 steps (PGD10), ε=8/255,

and step size 2/255 is used as the attack to maximize the adversarial loss in ℓ∞-norm ball.

As suggested by Rice et al. [139], during the training we select the model with the highest

robust accuracy against PGD20 with ε=8/255 and step size 8/(255× 10) on a validation set

of size 1, 000 as the best model. Only for PGD20, we use margin loss instead of cross-entropy

due to its better performance in evaluating the robustness of the model [156].

Evaluation Setup. We evaluate the model against two major attacks. First is the same

PGD20 used in the training to find the best model. For a more rigorous evaluation of the

robust performance, we follow the setup of the recent SOTA defense methods [131–133,145,

146,154,157,158] and use the benchmark adversarial robustness measure of AutoAttack (AA)

[13]. AA has shown consistent superiority over other white box attacks such as JSMA [57],

MIM [56], and CW [58]∗. Both attacks in evaluations are applied on the test set, separated

from the validation set. Maximum norm of perturbation, ε, is set to 8/255 and 128/255

for ℓ∞-norm and ℓ2-norm threat models. In addition to the robust accuracy, the robust

overfitting of the model is computed as the difference between the best and the last robust

accuracies (PGD20) normalized over the best robust accuracy. All results are the average of

three independent runs.

5.3.1 Comparison of Optimization methods

In this section, we evaluate and compare the proposed method with other possible choices

for outer optimization in AT. As the fist baseline, we employ the conventional MSGD which

is the optimizer in all of the previous AT methods. A popular and well-known trick to

bound the gradient norm especially in recurrent neural networks is Gradient Norm Clipping

(GNC) [159, 160]. GNC clips the gradient norm when it is greater than a threshold. This

threshold is similar to α in our method. However, instead of bounding the gradient norm on

each individual input example, GNC bounds the norm of the average gradients of the mini-

batch. We consider the combination of MSGD with GNC as our second baseline and refer

to it as MGNC. The clipping threshold α for MSGD+GNC is set to 25 based on empirical

∗The benchmark is publicly available at github.com/fra31/auto-attack.
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Optim. Accuracy (%) Overfit.

Method Natural Best Last AA (%)

MSGD 84.70 50.87 44.15 46.77 13.2

MGNC 83.98 51.88 46.62 47.59 10.1

SNGM 83.73 51.95 46.80 47.75 9.9

F-ENGM 82.91 50.05 44.04 46.54 12.0

N-ENGM 84.36 52.19 48.79 48.06 6.5

A-ENGM 83.61 52.46 49.75 48.46 5.1

ENGM 83.44 53.04 52.76 49.24 3.9

Table 5.2: Comparison of ENGM with MSGD for outer optimization in AT (§5.3.1). ‘Best’

and ‘Last’ refer to the accuracy against PGD20 using the best and last checkpoints, respec-

tively.

evaluations. SNGM, discussed in Section 5.2.3, is used as the third baseline. For our method,

we compare the original ENGM with its accelerated versions, i.e.A-ENGM and N-ENGM.

The coefficients α and τ for our methods are set to the best-performing values from Section

5.3.4. As an additional baseline, we develop another version of ENGM in which instead of

bounding the norm of gradients, we normalize them to the constant value α, i.e.modifying

Equation 5.5a to: vt+1 = βvt +
1

|It|
∑

i∈It
∇θLi

||∇θLi|| . We refer to this method as Fixed ENGM

(F-ENGM).

Table 5.2 presents the results for these comparisons. We can see that the simple GNC

enhances robust accuracy providing the same performance as SNGM. These improvements

caused by simple modifications further confirms the negative effect of high gradient norm

and variance on outer optimization in AT. ENGM consistently improves the robust accuracy

over baselines. In addition, robust overfitting in ENGM is significantly lower than other

baselines. This suggests that a major cause of robust overfitting in AT is the high fluctuation

of gradients and the incompetence of MSGD in addressing it. The learning curves (robust

test accuracy) for different optimization methods are depicted in Figure 5.5h. We observe

that after the learning rate decay, the robust performance of ENGM and its variants does

not deteriorate which confirms that they alleviate robust overfitting.

The best natural accuracy is provided by MSGD supporting the commonly observed



Ali Dabouei Chapter 5. Revisiting Outer Optimization in Adversarial Training 82

AT Optim. Accuracy (%) Overfit.

Method Method Natural PGD20 AA (%)

C
IF
A
R
-1
0

Vanilla
MSGD 84.70 50.87 46.77 13.2

ENGM 83.44 53.04 49.24 3.9

TRADES
MSGD 82.40 50.94 47.85 5.9

ENGM 82.33 53.46 50.07 3.0

MART
MSGD 83.68 51.05 48.29 6.1

ENGM 83.03 53.56 50.48 4.6

AWP
MSGD 82.98 52.55 50.12 4.6

ENGM 83.10 54.07 51.93 2.7

C
IF
A
R
-1
00

Vanilla
MSGD 57.75 26.11 24.45 20.9

ENGM 56.91 28.43 26.60 7.4

TRADES
MSGD 56.00 29.04 26.93 10.6

ENGM 55.65 30.68 29.20 7.1

MART
MSGD 56.52 29.41 27.18 11.8

ENGM 56.20 30.89 29.30 8.6

AWP
MSGD 56.22 30.36 28.43 7.3

ENGM 56.82 31.24 30.46 6.3

T
in
y
-I
m
ag

eN
et

Vanilla
35.71 7.47 6.92 26.37

ENGM 29.78 11.29 8.54 10.10

TRADES
MSGD 37.26 14.13 10.95 14.79

ENGM 36.30 16.88 12.65 8.74

MART
MSGD 37.06 13.79 10.08 15.94

ENGM 36.53 16.90 12.99 8.20

AWP
MSGD 36.13 16.29 13.09 10.67

ENGM 36.81 19.14 16.02 7.97

Table 5.3: Comparison of MSGD and ENGM on different AT methods (§5.3.2). Note that

ENGM consistently outperforms MSGD.

trade-off between the natural and robust accuracies [133,161]. Table 5.1 presents the execu-

tion time for the optimization methods. The execution time of ENGM is roughly 8.5× longer

than MSGD. However, A-ENGM and N-ENGM achieve notable speed-up and robust per-

formance. As expected, the performance of A-ENGM is between N-ENGM (lower-bound)
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Method Optim. Nat. Acc. (%) AA (%)

ATES [132] MSGD 86.84 50.72

BS [158] MSGD 85.32 51.12

LBGAT [154] MSGD 88.22 52.86

TRADES [133] MSGD 84.92 53.08

MART [134] MSGD 84.98 53.17

BERM [157] MSGD 83.48 53.34

FAT [131] MSGD 84.52 53.51

AWP [146] MSGD 85.36 56.17

AWP N-ENGM 85.40 57.11

AWP ENGM 86.12 57.45

Table 5.4: Comparison of the benchmark robustness on WRN.

Magnitude of Perturbation, ε (× 1
255)

0 2 4 6 8 10

µ 4.25 5.10 6.09 7.73 10.04 14.21

σ2 118.1 118.7 121.8 141.7 185.2 253.5

ρMSGD 0.33 0.41 0.57 0.93 1.15 1.24

ρENGM 0.30 0.42 0.61 1.08 1.35 1.49

Table 5.5: Analyzing the impact of the perturbation magnitude on gradient properties and

final robustness obtained by MSGD and ENGM (§5.3.2). AT with ε = 0 is equivalent to

NT.

and ENGM (upper-bound) and is controlled by the estimation interval τ. Hence, we use

N-ENGM and ENGM for the major evaluations to clearly compare the two performance

bounds.

5.3.2 Combination with Benchmark AT Methods

In the this section, we incorporate the proposed optimization approaches into the benchmark

AT methods including the vanilla method [43], TRADES [133], MART [134], and AWP [146].

Here, AWP represents the weight perturbation method applied on top of TRADES. The

coefficient for the self-distillation loss in TRADES and MART is set to 6, and the maximum
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Figure 5.4: Visualization of the loss landscape on four examples from CIFAR-10 (§5.3.2).

The cross mark denotes the input example. Loss level sets are equalized on each column.

magnitude of weight perturbation for AWP is set to 5×10–3. The rest of the training setups

are set to the best setup reported by the original papers. However, the total training epochs

for all methods is set to 200 (learning rate decays by 0.1 at epochs 100 and 150) for the sake

of consistency.

Table 5.3 presents the results for ℓ∞-norm threat model. For results on ℓ2-norm threat

model please refer to Section 2 in Supp. material. We observe that ENGM consistently

outperforms MSGD on robust performance. The average improvement in robustness against

AA is 2.15% and 1.16% in ℓ∞-norm and ℓ2-norm, respectively. This suggests that the amount

of perturbation in AT affects the convergence of the outer optimization. Consider the ℓ2-

norm as the unified metric, the amount of noise in ℓ∞-norm threat model is roughly 3× the

norm of noise in the counterpart threat model. Combining these results with the evaluations

in Figure 5.2 advocates that the improvement offered by ENGM over MSGD depends on the

norm of perturbation. This observation is further investigated in Section 5.3.4.

AWP is previously shown to alleviate robust overfitting [146]. Interestingly, we find that

TRADES and MART also reduce the robust overfitting independent of the optimization

method. This suggests that the AT method can affect the robust overfitting. ENGM re-

sults in the lowest overfitting and consistently surpasses MSGD. On vanilla AT, replacing
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Figure 5.5: (a-g): Ablation studies on α, τ, λTRADES, and weight decay (§5.3.4). Note

that α of ENGM scales to that of N-ENGM with 1/γ1. Robust accuracy is measured using

AutoAttack [13]. (h): learning curves (robust test accuracy) for AT with different outer

optimization methods. Results on last 60 epochs are plotted for better visualization of the

robust overfitting. Robust accuracy is measured using PGD20.

MSGD with ENGM results in 9.3%, 13.5%, and 16.2% reduction of overfitting on CIFAR-

10, CIFAR-100, and TinyImageNet, respectively. These results advocate that, in addition

to the AT method, the outer optimization method also affects the overfitting and limiting

the sensitivity of the optimization method to the variance of the gradients can alleviate the

robust overfitting.

As the last evaluation in this part, we visualize the loss landscape on networks optimized

by MSGD and ENGM in Figure 5.4. This figure plots the loss values for the space spanned by

the adversarial perturbation (PGD20) and random noise, orthogonalized to the perturbation

via Gram-Schmidt. We can see that ENGM results in a smoother loss landscape, known as

an empirical evidence of the robustness [162]. This qualitative analysis further validates the

effectiveness of ENGM for outer optimization in AT.

5.3.3 Comparison with SOTA

Here, we evaluate ENGM in the benchmark of AT, i.e.WRN-34-10 on CIFAR-10 dataset

[131–133,146,154,157,158]. For training using ENGM, we set α = 10.4 which is obtained by
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scaling the best α for ResNet-18 with the factor of 2.08, square root of the ratio of the total

parameters of the two models (48.2M for WRN-34-10 vs. 11.1M for ResNet-18). To achieve

SOTA performance, we consider AWP as the AT scheme. We train the model for 200 epochs

with learning rate decay by 0.1 at epochs 100 and 150. The rest of the setting is the same as

our previous evaluations. Table 5.4 presents the results for this experiment. AWP combined

with ENGM and N-ENGM surpasses the previous SOTA by 1.28% and 0.94%, respectively.

This validates the effectiveness of ENGM on large models. We also find that ENGM results

in higher natural accuracy on AWP. This suggests that although AWP indirectly improves

the outer optimization, its impact is orthogonal to ENGM.

5.3.4 Ablation Studies

We conduct ablation studies to investigate the impact of hyperparameters on the performance

of ENGM and its two variants using ResNet-18 on CIFAR-10.

Impact of α: We measure the natural accuracy, robust accuracy (AA), and overfitting

versus α. We conduct this experiment on ENGM/N-ENGM since they upper/lower bound

the performance of A-ENGM.

Figures 5.5a, 5.5b, and 5.5c present the results for these evaluations. As expected, for

large values of α all three values converge to that obtained by MSGD. Small values of α can

be interpreted as training with a very small learning rate causing both the natural and robust

accuracies to drop. Interestingly, we observe that the overfitting decreases significantly for

small values of α. This confirms that the high variance of gradients in AT negatively affects

the functionality of MSGD, i.e.ENGM with large α. We find that ENGM and N-ENGM

achieve their optimal performance on ResNet-18 at α equal to 5 and 0.5, respectively. We

select these as the optimal values for training the models in other experiments. Note that

the optimal value of α is expected to be the same for ENGM and A-ENGM but different

for N-ENGM. This is because the formulation of ENGM and A-ENGM is the same except

that A-ENGM estimates the norm of gradients every τ iterations, and setting τ = 1 recovers

the exact ENGM. However, in N-ENGM, α is scaled by 1/γ1 according to the discussion in

Section 5.2.5. The optimal α is scaled for other networks based on their capacity.
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Impact of τ: We conduct experiments to evaluate the role of τ in AT setup with A-ENGM

(α = 5) as the optimizer and τ ∈ {1, 10, 50, 100, 300}. It might be noted that each epoch in

CIFAR-10 consists of 390 mini-batches of size 128. Hence, τ=300 is roughly equivalent to

estimating the correlation at the end of each epoch. Figures 5.5d and 5.5e present the results

for these evaluations. As expected, for small and large values of τ A-ENGM converges to

ENGM and N-ENGM, respectively. For τ = 50, obtained robustness is roughly 85% of the

robustness obtained by ENGM while the training time is significantly lower (0.83 vs. 5.06)

because the extra gradient computation is being performed every 50 iterations. Furthermore,

we can see that τ controls the trade-off between the natural and robust accuracies.

Perturbation norm: As an initial exploration in this paper, we observed that AT induces

higher gradient norm and variance. We also noticed in Section 5.3.2 that ENGM seems

to outperform MSGD with a larger margin when the magnitude of perturbations is higher.

Here, we further analyze the impact of the magnitude of perturbations on the gradient norm

and variance induced by AT. This allows us to identify the extent of suitability of MSGD

and ENGM for NT and AT. We train models in AT setup with ℓ∞-norm threat model and

varied size of perturbation, ε ∈ {0, 2/255, 4/255, 6/255, 8/255, 10/255}. Both MSDG and

ENGM are utilized for the outer optimization in these evaluations. We measure the average

norm and variance of gradients across all training epochs. For a fair comparison, we compute

the expected distance to the closest decision boundary as the unified robustness measure:

ρ := Ex[||x – x∗||], where x∗ is the closest adversary to x computed using DeepFool [3].

Table 5.5 presents the results for this experiment. In NT (AT with ε = 0), MSGD

provides slightly better performance than ENGM. This is because in NT the norm and

variance of gradients are naturally limited. As the ε increases, the expected norm and

variance of the gradients also increase. This confirms our initial observation that AT induces

higher gradient norm and variance. Consequently as expected, we find that in AT with larger

magnitude of perturbations ENGM works better than MSGD.

Sensitivity to hyperparameters: One intriguing shortcoming of AT is sensitivity to

hyperparameter setting. Several works have shown that a slight change in the modulus of

the ℓ2-norm regularization, i.e.weight decay, results in drastic changes in robust performance

[144,145]. Here, we analyze the sensitivity of the proposed optimization method and compare
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it with that of MSGD. Figure 5.5g presents the results for this evaluation. We observe that

ENGM exhibits significantly less sensitivity to changes in weight decay compared to MSGD.

We hypothesis that high weight decay helps MSGD to prevent the bias from input examples

with high gradient magnitude. ENGM achieves this goal by explicitly limiting the gradient

magnitudes, and thus, is less sensitive to weight decay. We believe this phenomenon calls

for more in depth analysis and defer it to future studies.

5.4 Conclusion

In this paper, we studied the role of outer optimization in AT. We empirically observed that

AT induces higher gradient norm and variance which reduce the effectiveness of the con-

ventional optimizer, i.e.MSGD. To address this issue, we developed an optimization method

robust to the variance of gradients called ENGM. We provided two approximations to ENGM

with significantly reduced computational complexity. Our evaluations validated the effec-

tiveness of ENGM and its fast variants in AT setup. We also observed that ENGM alleviates

shortcomings of AT including the robust overfitting and sensitivity to hyperparameters.
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Chapter 6

Boosting Deep Face Recognition via

Disentangling Appearance and

Geometry

6.1 Introduction

Using the face as a biometric trait has several advantages for identification purposes. First,

faces are naturally exposed and can be often captured remotely with suitable quality by

incorporating a ubiquitous, moderately priced camera system. Second, the convenience of

the acquisition procedure has promoted the acceptability of the modality compared to the

fingerprint and iris which require direct cooperation of individuals. Third, the consistent

morphological structure of faces, i.e., semantic parts of the face share similar spatial prop-

erties among different individuals, also facilitates the process of reducing the variations of

face images captured in unconstrained setups. In classical face recognition (FR) studies, the

major challenge was to devise hand-crafted features that offer high inter-class separability

and low intra-class variations [163–166].

The rapid development of technology over the last decade has had a profound impact on

the performance and methodology of FR approaches. It has led to the generation of large-

scale face datasets such as VGGFace [67], CASIA-WebFace [70], and MS-Celeb-1M [167].

Such comprehensive datasets of faces revealed detailed information regarding the manifold of
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Figure 6.1: The proposed approach disentangles deep representations of the appearance

and geometry of the face. Mg and Ma provide a schematic visualization of the manifolds

of appearance and geometry constructed using our framework, respectively. Manifolds are

superimposed at the input face representation.

natural faces and provided the supervision for training large-scale learning models. On the

other hand, the development of parallel processing units has allowed an efficient optimiza-

tion of DNNs which consist of millions of trainable parameters. Consequently, the classical

problem of FR has transformed into the new challenge of finding efficient and powerful net-

work architectures and suitable loss functions. To this aim, a myriad of approaches has been

proposed to learn discriminative face representations using DNNs [30,67,68,168,169].

Most recently, spectacular performance of carefully designed network architectures, such

as VGG [67] and ResNet [12], have concentrated attention on finding suitable loss functions

and training criteria [74,75]. A suitable criterion should force the model to learn discrimina-

tive representations for which the maximum intra-class distance is smaller than the minimum

inter-class disparity [30]. However, the challenging effects of unconstrained environmental

conditions, such as lightning and backgrounds, in addition to the intrinsic variations of hu-

man pose and facial expressions, complicates finding a suitable criterion. Contrary to the

object recognition problem, in the FR task, the number of classes is extremely large and the

number of available samples per each class is often limited and variable. This significantly de-

grades the performance of the well-established Softmax loss function, i.e., the combination of
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the Softmax normalization and cross-entropy loss function. Indeed, Softmax loss yields sepa-

rable features but cannot provide sufficient discrimination [30]. Pioneer deep learning-based

FR approaches have sought to increase the discrimination power of deep representations by

devising novel losses, such as contrastive loss [168], center loss [170] and triplet loss [68].

However, recent studies have demonstrated that considering angular distance instead of the

euclidean distance for the Softmax loss significantly improves the discrimination power of

representations [30, 169]. Hence, Softmax loss refined by angular distance has become the

SOTA method for training deep models.

In this paper, we seek to improve the performance of deep FR models by considering a

novel perspective: instead of modifying the classification loss functions to obtain compact

and discriminative representations, we propose disentangling of the appearance and geome-

try of the face. The core idea of the paper is to construct geometrically identical faces by

incorporating spatial transformations and exploiting their relative similarities to learn disen-

tangled embedding representations. Practically, the disentanglement provides two benefits

for the training procedure of deep FRs. First, it improves the generalization and training

accuracy by geometrically augmenting the training set. Second, it enhances the learned

knowledge of the early and intermediate layers of the deep model by enforcing them to sat-

isfy the relative properties of appearance and geometry representations in the corresponding

embedding spaces. We conduct extensive experiments to evaluate these benefits for the

face recognition task and demonstrate that the knowledge learned through the disentangling

approach can also be used to improve the performance of other face-related tasks, such as

attribute prediction.

6.2 Related Work

Classical face recognition. Face recognition has always been an important computer

vision problem due to its challenging aspects, such as the large number of classes and lim-

ited number of per-class samples. Classical approaches have mainly addressed the problem

by finding discriminative hand-crafted representations for the face. Most of the attempts

were strongly dependent on experimental observations since the prior knowledge needed for
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extracting hand-crafted features were scarce or hard to interpret. Besides, capturing large

intra-class variations was also a major hurdle. Similar to the hierarchy of cascaded compu-

tations in DNNs, hand-crafted methods, such as LBP [163] and Gabor [171], compute local

descriptors and combine them to obtain higher-level representations with more discrimina-

tive power. However, these heuristic methods can offer limited discrimination since they are

not directly supervised to optimize the classification objective [172]. In addition, although

they are data-independent, they cannot robustly capture intra-class variations.

Deep face recognition. In recent years, DNNs have achieved astonishing performance

in face recognition which has gone even beyond human-level expertise. As the pioneers of

the work, DeepFace [173] and DeepID [168] incorporated the well-known combination of

Softmax normalization and cross-entropy loss for learning very deep representations of the

face. These were accompanied by studies expanding the network architectures and gathering

large-scale datasets, such as VGG [67]. Although Softmax loss provides separability of

classes, the learned features are not discriminative enough. Hence, several novel training

criteria and loss functions have been proposed to enhance the discrimination power of learned

representations. Sun et al. [168] incorporated a verification loss to enhance the performance

of the identification loss. Schroff et al. [68] proposed a novel training criterion called triplet

loss in which the representations are forced to be discriminative based on the relations of a

triplet of embedding samples. Wen et al. [170] proposed center loss to increase the intra-class

compactness of representations. Finally, based on the observation that Softmax loss imposes

an angular distribution on the representations, several studies have proposed to enhance the

discrimination power of representations by mapping faces onto hyperspherical embeddings

and measure their similarities using the Cosine measure [30,169].

Disentangling geometry and appearance of the face. Geometry and appearance are

the two main characteristics of the face which are highly correlated with the corresponding

ID. Since the very first research on FR, the geometry is known to play a crucial role in

identification [38,174,175]. This has also been exploited to find suitable hand-crafted features

for face recognition [163]. Appearance is a major part of a general term called soft biometrics

which encompasses all characteristics of individuals which do not need to be unique but can
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help recognize the ID, e.g. , hair color and gender. Several approaches have been considered

in soft biometrics to enhance the FR performance [176, 177]. An important limitation of

these studies is their dependence on the soft biometrics information in the dataset. They

also require appearance information during the test phase.

Several prior studies attempted to disentangle the appearance and geometry of faces.

Shu et al. [178] proposed an unsupervised approach by using a coupled autoencoder model.

Each of the autoencoders is forced to learn the geometry or appearance representation of the

input sample. The model provides the supervision for disentangling by reconstructing the

original image using the combination of the two representations. Xing et al. [179] followed a

similar methodology but incorporated variational autoencoders to enhance the performance

of disentangling. These methods provided a novel insight toward the task. However, repre-

sentations learned using autoencoders do not contain enough identification information to

achieve SOTA performance in face recognition.

6.3 Disentangling Geometry and Appearance

In this study, the main supervision for disentangling appearance and geometry of faces is

provided by constructing two pairs of face images. In the first pair, the appearance of faces

is similar and the geometry is different, while, in the second pair, the geometry is similar

and the appearance is different. For this purpose, we geometrically map an input face image

to another ID in the training set using landmark information available for face alignment.

The combination of the manipulated face image with its original version and the target face

image construct the first and second pairs of faces, respectively.

6.3.1 Geometrically Identical Faces

Let xi be an input face image belonging to class yi and the set li = {(uj, vj) : ∀j ∈ {1, . . . , K}}

describe the 2D locations of K landmarks corresponding to xi. For each input face image,

we find the closest neighbor face, xi′ , from a different class, yi′ ̸= yi, in the geometry space
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Figure 6.2: Examples of geometrically identical faces generated for five different IDs. First

row shows input faces xi, and the second row shows the corresponding face images x̂i′ .

by computing i′ as:

i′ = arg min
j

||li – lj||∞
δ(yi – yj) + ε

, (6.1)

where δ(.) is one when the input argument is not zero and is zero otherwise, and ε≪ 1, e.g.

10–6. Here, ℓ∞-norm assures that the selected neighbor face has a similar structure and pose

as the input image in order to minimize the distortion caused by the spatial transformation

in the next step. We assume that the rotation, scale, and translation of faces are aligned for

the whole dataset, thus, the similarity of li and lj can be measured in the same frame. It

also worth mentioning that, for this work, we assume all landmark locations are vectorized

before performing ℓp-norm, || · ||p.

Although face image xi′ has a geometry similar to xi, their geometries do not completely

match. To further match the geometry of two samples, we incorporate a spatial transforma-

tion and map xi′ to xi such that the resulting image has the same set of landmark locations.

The deformed face image can be computed as:

x̂i′ = T(xi′ , li′ , li), (6.2)

where T is the spatial transformation, i.e.TPS [72], which has a suitable capacity for the

desired mapping compared to the affine transformation. The resulting face image, x̂i′ , has

the geometry of xi and the appearance of xi′ . Figure 6.2 shows examples of this mapping. It

may be noted that one can geometrically map all faces in the dataset to a canonical template

in order to provide the supervision for decomposing the appearance and geometry of faces.

However, computing a geometrically identical face for each input face provides two major
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Figure 6.3: Schematic for training face recognition models enhanced by the proposed DAG

approach.

benefits. First, it augments the training set by geometrically manipulating face images.

Second, it increases the performance of the spatial transformer in matching the geometry of

faces since each face is mapped to a face which is geometrically similar. In the next section,

we use the geometric similarity and appearance disparity of xi and x̂i′ as the main supervision

for the disentangling process.

6.3.2 Disentangling Networks

We define two networks for learning the discriminative representations of geometry and

appearance of faces. Let g : Rw×h×3 → Rdg be the function mapping input image x to the

geometric representation of the input face with the cardinality dg. Also, let a : Rw×h×3 → Rda

be the function mapping the same face to the representation of the appearance. For brevity,

we assume the cardinality of both representations are equal dg = da = d. We also define a

third function f : Rd × Rd → Rd′
which takes the geometry and appearance representations

and maps them to the final d′-dimensional representation of the input face.

Based on the properties of geometrically identical faces defined in section 6.3.1, represen-

tations of the appearance and geometry of the faces xi, xi′ , and x̂i′ should satisfy following

conditions: i) the geometry representations of the input face and the manipulated face should
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Figure 6.4: Architecture of the disentangling model. The network comprised of 3x3 convo-

lutions consisting of p filters with the stride of s followed by PReLU (C-[p, s]), and fully-

connected with p outputs (F-[p]). Each ResNet block consists of two consecutive convolu-

tional layers followed by a shortcut from its input to its output.

be equal, g(xi) ≈ g(x̂i′), ii) the appearance representations of the neighbor face and its trans-

formed version should be equal, a(xi′) ≈ a(x̂i′), and iii) integrating representations using f

should provide enough information for an accurate identification of the input samples xi and

xi′ . We define proper loss functions to enforce such conditions on the representations. Intrin-

sically, the conventional Softmax loss function imposes an angular distribution on the learned

representations [170]. Hence, we use the cosine similarity, which is a more suitable metric

compared to Euclidean distance, to define the loss functions. As a result, representations of

the appearance, geometry, and final ID in our framework follow an angular distribution.

We satisfy the first condition by defining a geometry-preserving loss function as:

Lg := –
1

N

∑
i

Φ(g(xi), g(x̂i′)) + max(0,Φ(g(xi), g(xi′)) – αgφg), (6.3)

where Φ(v1, v2) =
vT1 v2

||v1||||v2|| computes the cosine similarity of input vectors, and N is the

number of total samples in the batch. φ =
||li–li′ ||2
||li–li||2

is a normalized measure of the distance

of landmark locations, and li is the mean of landmark locations along two axes. αg is a

coefficient scaling φg to construct a margin which controls the angular distance between the

geometry representation of xi and xi′ . Indeed, Equation 6.3 forms an angular contrastive

loss which aims to maximize the cosine similarity of g(xi) and g(x̂i′) while assuring that g(xi)

and g(xi′) are dissimilar, proportional to the landmark disparity of xi and xi′ .

Similarly, we define the appearance-preserving loss function as:

La := –
1

N

∑
i

Φ(a(xi′), a(x̂i′)). (6.4)
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Face samples xi and xi′ are selected solely based on their geometric similarity, and their

appearance can be completely different or very similar. Hence, Equation 6.4 does not consider

a contrastive loss as the similarity of a(xi) and a(xi′) is ambiguous. However, the identification

loss function, described in the following, encourages appearance representations of different

faces to take large enough distances for providing accurate identification.

So far, we developed a technique for Disentangling the Appearance and Geometry

(DAG) representations of face images. The final step is to combine this approach with

conventional FR methods to establish highly discriminative representations. To this aim, we

combine DAG with the family of A-Softmax [30,169] loss functions which have demonstrated

significant performance for face recognition task. The main formulation of the loss function

is:

Lid =
–1

N

∑
i

log
es(cos(m1θyi,i

)–m2)

es(cos(m1θyi,i
)–m2)+

∑
j̸=yi

es cos(θj,i)
, (6.5)

where zi = f(a(xi), g(xi)) is the final representation obtained by combining geometry and

appearance information. Here, cos(θj,i) = 1
||zi||||Wi||W

T
i zi, where Wi is the weight vector

assigned to the ith class. Variables m1 and m2 are hyper-parameters controlling the angular

margin, and s is the magnitude of angular representations. Lid with (m1 = 4,m2 = 0, s =

||zi||) and (m1 = 0,m2 = 0.35, s = 64) denotes the loss functions defined in SphereFace [30]

and CosFace [169], respectively. Later in Section 6.4.3, we combine both these loss functions

with DAG to evaluate the effectiveness of the integrated model. The total loss for training

the proposed framework is Lt = Lid + λaLa + λgLg, where λa and λg are hyper-parameters

scaling the appearance and geometry- preserving loss functions. Furthermore, Lid is the

average recognition loss function on xi and xi′ . Figure 6.3 presents a schematic of the

training criteria.

6.4 Experiments

Here, we evaluate the effectiveness of the proposed disentangling approach. First, we describe

the implementation setup of the proposed model in section 6.4.1. Afterward, we conduct

exploratory experiments to tune the hyper-parameters and provide some visualizations of the



Ali Dabouei Chapter 6. Disentangling Appearance and Geometry 98

Figure 6.5: Accuracy (%) of Softmax loss enhanced by DAG trained with different values of

λa and λg on LFW [7].

learned embedding representations in section 6.4.2. Finally, we evaluate the performance of

the face recognition and attribute prediction tasks enhance by DAG in sections 6.4.3 and

6.4.7, respectively.

6.4.1 Implementation Details

Architecture and Hyper-parameters: We adopt ResNet [12] for the base network ar-

chitecture of our model. To reduce the size of the model, the convolutional networks for

extracting the geometry representation, g(x), and the appearance representation, a(x), are

combined in a single ResNet-64 architecture. This network produces feature maps of spatial

size 7 × 7 and the depth of 512 channels. Feature maps are then divided in depth into

two chunks, and the first and second chunks are dedicated to the appearance and geometry,

respectively. Feature maps are then reshaped to form vectors of size 12, 544 and passed

to dedicated fully-connected layers to generate the final representations of the appearance,

a(x), and geometry g(x). The cardinality of geometry and appearance representations is set

to d = 256. The linear mapping f takes the concatenated outputs of g and a and maps them

using a fully connected layer to the final embedding with the cardinality d′ = 512. Figure

6.4 details the network architecture of the model.

The model is trained using Stochastic Gradient Descent (SGD) with the mini-batch size

of 128 on four NVIDIA TITAN X GPUs. The initial value for the learning rate is set to 0.1

and multiplied by 0.9 in intervals of five epochs until its value is less than or equal to 10–6.
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Figure 6.6: Visualizing the geometry (left block) and appearance (right block) embedding

representations. For each probe sample, six nearest neighbors, based on cosine similarity in

the embedding space, are demonstrated.

All models are trained for 600K iterations. The average of the landmark disparity measure

φg on the training set of CASIA-WebFace [70] is ≈ 0.103. Accordingly to this value and

based on practical evaluations, we found that αg = 9.4, i.e.keeping the angle of g(xi) and

g(xi′) greater than
π

9
, yields significant discriminability of geometry representations. We also

set λa = 1.3 and λg = 0.75 based on experiments conducted in Section 6.4.2.

Preprocessing: Throughout the experiments, all faces are detected and aligned using DLib

[71]. For each face, 68 landmark locations are extracted, and the closest neighbor in the

geometry space is selected using Equation 6.1 over 1000 randomly selected face images from

different IDs. Neighbor faces are then transformed spatially using Equation 6.2, and again

aligned to compensate for the displacements caused by the spatial transformation. All face

images are then resized to 112× 112 and pixel values are scaled to [–1, 1].

6.4.2 Exploratory Experiments

In this section, we first conduct experiments to evaluate the role of two hyper-parameters

of DAG including λa, λg. Then, we perform a visualization experiment to demonstrate the

effectiveness of DAG in learning rich geometry and appearance representations. We train

a deep FR model using Softmax loss enhanced by DAG with different values of λa and
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λg in the range [0, 2], and evaluate the recognition performance on the LFW [7] dataset.

Figure 6.5 presents the results for this experiment. The model reduces to a conventional face

recognizer when λa and λg are zero. For large values of these parameters, the performance

deteriorates which shows that the appearance and geometry loss functions dominate the

identification objective. The maximum performance of the model occurs at λa = 1.3 and

λg = 0.75. This confirms that DAG can enhance the performance of face recognition models.

Furthermore, the performance of the model is more sensitive to λg compared to λa which

shows that matching geometry representations of xi and x̂i′ is harder than matching the

appearance representations of xi′ and x̂i′ . We attribute this to the slight mismatch between

the geometry of identical faces introduced because of the limited number of landmarks used

to match the geometry of faces. On the other hand, the geometric transformation does

not affect the appearance of faces. Hence, reducing the angular distance of appearance

representations is more compatible with the identification loss.

Figure 6.6 presents a visualization of the embedding space representations learned by

DAG. For this purpose, nearest neighbors of several probe faces are computed in the appear-

ance or geometry embeddings based on their cosine similarity. Inspecting neighbor faces in

geometry embedding suggests that DAG robustly captures geometry information of faces,

such as relative distance and sizes of parts. Also, the large appearance variations of neigh-

bors in the geometry embedding highlights that g(x) is invariant to the appearance. On the

other hand, neighbors in the appearance embedding illustrate semantic appearance charac-

teristics such as skin color, hair color, age, and gender. Interestingly, we observe that a(x)

also captures appearance properties, such as the presence of eyeglasses and a hat, which are

less prevalent compared to hair color and gender.

6.4.3 Face Recognition Enhanced by DAG

6.4.4 Performance of Combined Loss Functions

In this section, we combine DAG with several well-known face recognition methods and eval-

uate their performance on LFW, YTF, and MegaFace Challenge 1(MF1) [180]. We train

models on the CASIA-WebFace [70] dataset with the same network architecture of modified
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Method LFW YTF
MF1

Rank1

MF1

Veri.

Softmax [30] 97.89 93.1 54.88 66.31

Softmax+Aug. 98.15 94.5 58.90 70.02

Softmax+DAG 98.58 94.7 60.73 71.62

SphereFace [30] 99.40 94.9 73.19 86.38

SphereFace+Aug. 99.46 95.2 74.66 88.35

SphereFace+DAG 99.55 95.6 75.28 88.90

CosFace [169] 99.34 95.8 77.15 89.76

CosFace+Aug. 99.48 96.2 78.31 90.12

CosFace+DAG 99.59 97.2 79.24 91.04

Table 6.1: Evaluating the performance of well-known face recognition models enhanced with

DAG. Verification refers to true acceptance rate under FAR= 10–6.

ResNet-64 defined in Section 6.4.1. As discussed in Section 6.3.1, DAG utilizes geometri-

cally transformed faces to disentangle appearance and geometry. These transformed faces

augment the training set which potentially can improve the performance of deep face recog-

nition. Hence, to better analyze the effectiveness of disentangling we consider an additional

model trained on a quasi-augmented dataset. This dataset consists of around 1M images and

formed by appending 10,575 subjects from MS-Celeb-1M [167] to CASIA-WebFace. The size

of the quasi-augmented dataset is equal to the presumably augmented dataset constructed

by the geometric transformation of DAG. Table 6.1 demonstrates the results for these experi-

ments. As expected, training models on quasi-augmented dataset improves the performance.

However, combining face recognition models with DAG consistently outperforms baselines.

This suggests that disentangling the two major characteristics of faces enhances the train-

ing process of deep models and help them learn more abstract and representative features

compared to the case when solely the training set is enlarged.

6.4.5 Benchmark Evaluations

For a fair benchmark comparison, we train the model on a large dataset of face images formed

by combining VGGFace2 [69] and a private dataset. VGGFace2 contains 3.3M images from
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Method Training size LFW YTF

Deep Face [173] 4M 97.35 91.4

FaceNet [68] 200M 99.65 95.1

DeepFR [67] 2.6M 98.95 97.3

Baidu [181] 1.3M 99.13 -

SphereFace [30] 0.49M 99.42 95.0

CosFace [169] 5M 99.73 97.6

SphereFace+DAG 4M 99.67 96.2

CoseFace+DAG 4M 99.81 98.0

Table 6.2: Benchmark evaluation of face verification performance (%) on LFW and YTF.

9.1K identities with the average sample per identity of 362. The final dataset encompasses

4M images and 11.3K identities.

LFW and YTF. For evaluating the model on LFW, we follow the standard protocol of

unrestricted with labeled outside data [7] and report our results on 6,000 pairs constructed

using the test subset. YTF [183] consists of 3,425 videos of 1,595 unique IDs. Each video

contains 181.3 frames on average which are downloaded from YouTube. Again, we follow

the standard protocol of unrestricted with labeled outside data [7] and conduct experiments

on 5,000 video pairs. Table 6.2 presents the results for these experiments. Integrating DAG

with the well-known face recognition methods consistently enhances their performance on

both LFW and YTF datasets.

MegaFace. We further evaluate the identification and verification performance of face

recognition models enhanced by DAG using the challenging and large-scale benchmark of

MegaFace [180]. MegaFace consists of a probe and a gallery subset. The gallery contains

more than 1 million images from 640k individuals. The probe dataset is formed by combining

FaceScrub [184] and FGNet datasets. The first dataset contains 100K images from 530

unique IDs, and the second dataset contains 1,002 images from 82 IDs. Several standard

test scenarios are defined to evaluate the identification, verification, and pose invariance

performance of methods under two main protocols, i.e., small and large training sets. The

protocol is considered small or large when the training set involves less than or greater

than 0.5 million images, respectively. We also consider multi-patch models to measure the



Ali Dabouei Chapter 6. Disentangling Appearance and Geometry 103

Method Protocol Acc. Veri.

SIAT MMLAB [170] Small 65.23 76.72

DeepSense-Small Small 70.98 82.85

BeijingFaceAll V2 Small 76.66 77.60

GRCCV Small 77.67 74.88

FUDAN CS SDS [182] Small 77.98 79.19

SphereFace (1-patch) [30] Small 72.72 85.56

SphereFace (3-patch) [30] Small 75.76 89.14

CosFace (1-patch) [169] Small 77.11 89.88

CosFace (3-patch) [169] Small 79.54 92.22

SphereFace+DAG (1-patch) Small 77.32 91.25

SphereFace+DAG (3-patch) Small 78.83 92.24

CosFace+DAG (1-patch) Small 79.18 91.46

CosFace+DAG (3-patch) Small 82.54 94.79

Beijing FaceAll Norm 1600 Large 64.80 67.11

Google-FaceNet v8 [68] Large 70.49 86.47

NTechLab-facenx large Large 73.30 85.08

SIATMMLAB TencentVision Large 74.20 87.27

DeepSense V2 Large 81.29 95.99

Youtu Lab Large 83.29 91.34

Vocord-deepVo V3 Large 91.76 94.96

SphereFace (1-patch) [30] Large 77.44 91.49

SphereFace (3-patch) [30] Large 80.85 93.60

CosFace (1-patch) [169] Large 82.72 96.65

CosFace (3-patch) [169] Large 84.26 97.96

SphereFace+DAG (1-patch) Large 81.28 93.32

SphereFace+DAG (3-patch) Large 85.76 94.87

CosFace+DAG (1-patch) Large 85.62 97.26

CosFace+DAG (3-patch) Large 87.02 98.29

Table 6.3: Performance of face identification and verification on MegaFace dataset. Verifi-

cation measure (Veri.) denotes TAR at FAR = 10–6.



Ali Dabouei Chapter 6. Disentangling Appearance and Geometry 104

Figure 6.7: ROC curves for matching face images based on representations of appearance

(A), geometry (G), and their combination (A+G) on LFW [7].

Method a(x) g(x) f(a(x), g(x))

SphereFace+DAG 67.03 81.12 99.55

CosFace+DAG 68.56 87.45 99.59

Table 6.4: Identification performance of individual representations on LFW [7].

performance of an ensemble of the proposed model based on the setup described in [30].

Table 6.3 summarizes the results for these evaluations. On both protocols, integrating

DAG with SphereFace and CosFace enhances both the identification and verification perfor-

mances. Particularly, on three out of four test setups, the integration with CosFace achieves

superior performance compared to the previous approaches.
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6.4.6 Performance of Individual Representations

In previous sections, we demonstrated that disentangling appearance and geometry repre-

sentations of faces can enhance the recognition performance. We attribute this performance

boost to the highly representative and complementary features extracted by each of the geom-

etry and appearance branches. Indeed, forcing the model to learn disentangled embedding

spaces helps the early and intermediate convolutional layers to extract more representa-

tive features. Here, we examine the appearance and geometry representations individually

to evaluate their role in the recognition task. To this aim, we consider g(x), a(x), and

f(a(x), g(x)) for matching face images of LFW using the setup described in Section 6.4.5.

Figure 6.7 and Table 6.4 present the result for this experiment. The geometry representations

on both methods provide more informative representations for the identification task com-

pared to appearance representations. This was expected since the geometry of faces contain

rich discriminative information and appearance of faces has less variations intrinsically.

6.4.7 Knowledge Transfer for Attribute Prediction

Learning rich representations for faces can be beneficial for applications other than face

recognition. Another important task related to the face is attribute prediction. Lack of both

training data and variations in properties of faces in annotated datasets is the major factor

deteriorating the performance of facial attribute prediction models [188, 189]. To address

these problems, a major group of methods build their models upon representations learned

from large-scale face recognition datasets [187]. In this section, we transfer the knowledge

learned using a face recognition method integrated with DAG to evaluate its usefulness for

attribute prediction. We conduct our experiments on the widely used face attribute dataset

of CelebA [187] which contains 10,000 identities with around 200,000 samples. Eighteen

major attributes are selected for comparing the results.

We use the exact model trained in Section 6.4.4 using the Softmax loss function and drop

the last two fully-connected layers, i.e.preserving a(x) and g(x). Afterward, we define two

test models, namely ModelA and ModelB. In ModelA, we freeze a(x) and g(x), and train

a fully-connected layer to map the learned representations to the final prediction of each
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attribute. Hence, this model mimics the weakly-supervised framework in which all layers

except the last linear layer are trained solely using recognition supervision. In ModelB, we

also fine-tune a(x) and g(x) using 0.1× the learning rate of the fully-connected layers. For

each attribute, a dedicated fully-connected layer is used to perform binary classification using

the conventional softmax loss function. Fully-connected layers are optimized using SGD with

the initial learning rate of 0.01 and the decay rate of 0.9 every four epochs. All models are

trained for 40 epochs. We compare our results to FaceTracer [185], PANDA [186], and

LNets+ANet [187]. Following the setup for FaceTracer and PANDA, we use the landmark

information of faces to crop all faces.

Table 6.5 summarizes the results for this experiment. Transferring the knowledge learned

by the face recognition models enhanced by DAG consistently improves the performance of

attribute prediction. Particularly, for ModelA which is trained using a weakly-supervised

scheme, integration of DAG with the original face recognizer improves the performance

of attribute prediction by 8.34% on average. This confirms that the DAG approach can

help deep models to capture more informative representations of the face. Furthermore,

fine-tuning the trained face recognizer enhanced by DAG using the attribute classification

task outperforms baselines on 16 attributes out of 18. This also demonstrates that models

enhanced by DAG can provide more sophisticated knowledge compared to conventional face

recognition models.

6.5 Conclusion

In this paper, we propose the disentanglement of appearance and geometry representations

for the face recognition task. We demonstrate that this approach boosts the deep face recog-

nition performance by augmenting the training set and improving the knowledge learned by

early and intermediate convolutional layers. Through extensive experiments, we validate the

effectiveness of the proposed approach for face recognition and facial attribute prediction

on challenging datasets. The individual capacity of the appearance and geometry represen-

tations are evaluated in additional experiments to analyze their semantic role in the face

recognition task. Our results suggest that task-specific considerations for the training phase
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can further improve the performance of deep learning models.
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Chapter 7

SuperMix: Supervising the Mixing

Data Augmentation

7.1 Introduction

Despite the revolutionary performance of DNNs, they easily overfit when the training set is

qualitatively or quantitatively deficient [190,191]. Quality of the data can be interpreted as

how well the data is expressive of the true distribution of inputs in the underlying task. This

helps the model to learn discriminative patterns likely to occur at inference time. Quantity

of the data, on the other hand, allows the model to observe discriminative patterns from

different views and generalize the task-specific notions according to the major factors of

variation in the input domain. Although analytical analysis of such important properties of

the data has remained arduous [192], empirical evaluations on training deep models often

highlight a common observation: incorporating more data leads to a better generalization

[193, 194]. Hence, data augmentation has become a fundamental component of the training

paradigms, aiming to enlarge the training set by transforming images in the given dataset.

Conventional image data augmentation involves combinations of context-preserving trans-

formations, such as horizontal flip, crop, scale, color manipulation, and cut out [95,195,196].

Recently, notable efforts have been devoted to improving the augmentation, e.g. , by

automating the search for the optimal augmentation policies [197–199]. The majority of

these methods have focused on transforming single images, while ignoring the potentially
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Figure 7.1: SuperMix combines salient regions in input images to construct unseen data for

training.

very useful combination of multiple images for augmentation. To address this shortcom-

ing, several studies have considered combining multiple images to construct novel images

[44–46,200,201]. However, these methods either mix images blindly and disregard the salient

regions [44–46, 202] or do not scale to large-scale problems [200]. Furthermore, the current

mixing functions are not expressive enough and often suppresses visual patterns by averaging

or covering features in one image with the trivial features in another image. The correspond-

ing pseudo labels are also not accurate and constrain the training performance [202].

This paper presents a mixing augmentation approach termed SuperMix, which exploits

the salient regions of input images to construct more advantageous mixed data. The supervi-

sion for this purpose can be obtained from the target model itself, i.e., self-training [203–208],

or a more sophisticated model aiming to guide a student network via knowledge trans-

fer [209,210]. Figure 7.1 provides a visual comparison of mixed images produced by different

methods. In a nutshell, the contributions of the paper are as follows:

• We formalize the problem of supervised mixing augmentation using a set of mixing

masks associating the pixel value at each spatial location in the mixed image to the

spatial locations in the input images.

• The optimization problem is carefully constrained to assure that the solutions are rich

in salient features and comply with the realistic image priors.

• We develop a modified Newton iterative algorithm for SuperMix, suitable for large-



Ali Dabouei Chapter 7. SuperMix: Supervising the Mixing Data Augmentation 111

scale applications. This approach provides 65× speed-up as compared to SGD on

ImageNet.

• We demonstrate that mixed images intrinsically induce smooth predictions, and thus,

help reveal knowledge of the teacher model in knowledge distillation.

7.2 Related work

Data augmentation: Data augmentation aims to improve the generalization of the model

by enlarging the train set using transformations preserving the context of inputs in the learn-

ing problem. Conventional image transformations for this purpose are horizontal flip, crop,

scale, color manipulation, and cut out [95, 195, 196]. A contemporary trend of research on

the topic has focused on selecting the best sequence of transformations according to the task,

dataset, and learning model. AutoAugment (AA) [197] automated the search for augmenta-

tion policies given a predefined set of transformations. Despite the significant performance

of AA, it suffers from prohibitive training complexity imposed by Reinforcement Learning.

Multiple approaches have attempted to reduce the training complexity by employing more

efficient search methods, e.g. , density matching in fast AutoAugment (FAA) [198], or pop-

ulation based augmentation (PBA) [211]. RandAugment (RA) [199] have shown that the

search space and selection criteria can be significantly simplified by carefully combining ran-

dom transformations. However, these methods ignore the potentially useful combination of

multiple images for augmentation.

Mixing augmentation: Several recent studies have considered employing multiple images

for data augmentation [44–46, 200, 202]. Smart Augmentation [200] proposed merging mul-

tiple images from the same class using a DNN trained concurrently with the target model.

However, training an additional deep model alongside every target model is resource exhaus-

tive and severely limits the scalability of the approach for large-scale problems. Moreover,

the method is restricted to merge images from the same class which limits the diversity and

novelty of visual patterns in the merged images. MixUp [44, 45] combined a pair of images

for the augmentation by convex linear interpolation. CutMix [46] proposed overlaying a



Ali Dabouei Chapter 7. SuperMix: Supervising the Mixing Data Augmentation 112

cropped area of an input image on another image to augment the data. Although MixUp

and CutMix have demonstrated notable improvements to the training of object recognition

models, they suffer from major shortcomings. First, they often average or replace salient

regions in one image with insignificant regions, e.g. , background, in another image. Second,

due to the lack of supervision the labels computed for the mixed images are not accurate

and limits the usefulness of the mixed images. However, SuperMix addresses these issues

by extracting the salient regions of inputs and carefully combining them according to the

realistic image priors and saliency-preserving constrains.

7.3 Supervised Mixing Augmentation

Given a training set D = {(xi, yi)}N–1
i=0 , mixing methods take a subset X ⊂ D to produce

the mixed image x̂ and the corresponding label ŷ. A crucial property of mixed images is

that they must reside close to the manifold of the training data since the goal of the mixing

is to enlarge the support of the training distribution. Previous mixing methods [44, 45]

have considered this requirement by employing operations that preserve local smoothness of

images. MixUp [44,45] combines a pair of images (xi, xj) using convex linear interpolation as:

x̂ = rxi+(1– r)xj, where r ∼ Beta(α,α) is a random mixing weight from the symmetric Beta

distribution with α ∈ (0,∞). Due to the lack of supervision, the soft label for x̂ is computed

using the same linear interpolation as: ŷ = rδ(yi) + (1 – r)δ(yj), where δ(·) is the one-hot

encoding function. This blind mixing suffers from two shortcomings. First, coefficient r

assigns an equal importance to the whole image which can suppress important features by

averaging with the background or less important features from the other image. Second, the

computed soft label, ŷ, does not accurately describe the probability of classes represented

by the mixed image and, thus, limits the effectiveness of the augmentation.

7.3.1 Mixing function

We formalize a general formulation for the augmentation function that allows multiple images

to be combined locally. We use a set of mixing masks M = {mi}k–1i=0, where mi : Λ → [0, 1]

associates each spatial location u ∈ Λ in xi with a scalar value mi(u). Using the mixing
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Figure 7.2: Schematic diagram of the proposed method for mixing k = 2 input images using

the supervision from fT.

masks, we define the mixing function as:

x̂ :=
k–1∑
i=0

xi ⊙mi, (7.1)

where xi is the ith sample in X, the operator ⊙ denotes the element-wise product, and∑
i mi(u) = 1 to hold the convexity of the combination. The mixing function recovers

MixUp [44] when k = 2 and all values in each mask are equal. It also recovers CutMix [46]

when k = 2 and all values except the cropped area in one of the masks are equal to one.

Figure 7.1 provides a visual comparison of the role of the masks in the mixing augmentation.

In the next section, we describe how knowledge of a teacher model can be used to compute

M such that the mixed image, x̂, encompasses the rich visual information of images in X.

7.3.2 Supervised mixing

Let fT : RW×H×C → [0, 1]n denote the probability vector predicted by the teacher (T) for

n classes and fTi be the probability for the ith class. We optimize the set of masks M in

Equation 7.1 such that all salient regions in X, according to the knowledge of the teacher,

be present in the mixed image, x̂. This can be interpreted as: fT(x̂) ≈ ŷ, where ŷ is high

for classes associated with images in X. We formulate the target soft label, ŷ, computed in

previous approaches [44,46] for k = 2 using the Beta distribution. We generalize for k ≥ 2 by

sampling the mixing coefficients from the Dirichlet distribution. Let (r0, . . . , rk–1) ∼ Dir(α)
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be a random sample from the symmetric multivariate Dirichlet distribution with parameter

α and size k, we define the target soft label as:

ŷ :=
k–1∑
i=0

riδ
(
yT(xi)

)
, (7.2)

where yT(xi) = arg max
j

fTj (xi) is the predicted class for xi ∈ X, and δ(·) is the one-hot

encoding function.

The set of mixing masks can be optimized to minimize the divergence between the output

of the teacher model on the mixed image and the target soft label computed in Equation

7.2. The masks must also hold two additional properties to comply with the realistic image

priors. First, generated images must reside close the manifold of the training data. In

practice, this interprets that each mask must be spatially smooth so that the generated

images resemble the spatial structure of the inputs. Second, masks must be sparse across

the input samples to ensure each spatial location in the output image is assigned merely

to a single image which prevents averaging multiple images at each spatial location and

suppressing important features. Considering these, the optimization problem for finding the

mixing masks can be written as:

arg min
m0,...,mk–1

KL(fT(x̂)||ŷ) + λσLσ(M) + λsLs(M) s.t.:

a. 0 ≤ mi(u) ≤ 1, b.
∑

i
mi(u) = 1,

(7.3)

where Lσ is a penalty term for the roughness of masks, e.g. , TV norm, Ls is a loss function

to encourage sparsity of masks across input samples, and KL(·||·) is the Kullback-Leibler

divergence.

Here, we provide an iterative algorithm to solve the optimization problem efficiently. At

each iteration t, the convexity conditions can be satisfied by the following normalization:

m̃t
i =

s(mt
i )∑k–1

j=0 s(m
t
j)
, (7.4)

where s(·) is the sigmoid function. Hence, the generalized mixing function in Equation 7.1

takes the normalized masks to construct x̂. Using the normalized masks, we define the

sparsity promoting loss as:

Ls :=
1

kWH

∑
u,i

m̃t
i (u)

(
m̃t

i (u) – 1
)
. (7.5)
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Figure 7.3: Visualizing the effect of smoothing factor, σ, and the sparsity promoting weight,

λs, on the mixed images. Masks are estimated using ResNet34 and are associated with the

‘horse’ class.

This loss function encourages the mask values to approach 0 or 1. Since the values of masks

at each spatial location sum to 1, due to the normalization in Equation 7.4, only one of the

masks takes the high value to minimize the loss.

7.3.3 Optimization Method

A proper set of mixing masks can be estimated by minimizing the objective of SuperMix

as LSM = KL + λσLσ + λsLs. A reduced form of this problem has been studied in saliency

detection and explanation of DNN predictions by employing SGD [91] or deep generators

[212]. However, the current problem is more complex since multiple images are involved in

the optimization and the roughness penalty and sparsity promoting loss should be minimized

on all the corresponding masks. As we discussed and evaluated in Section 7.4.4, SGD is very

slow and not feasible for solving the problem in case of large-scale image recognition tasks.

Furthermore, employing a dedicated deep model to mix data by extending [212] makes the

algorithm model-dependent and is not computationally efficient.

We develop a fast and efficient algorithm to optimize the mixing masks based on Newton’s

iterative method for finding roots of a nonlinear system of equations in the underdetermined

case [3, 213]. Specifically, instead of optimizing LSM, we optimize L′
SM = KL + λsLs using

a smooth projection (SP) [214] that directly satisfies the smoothness of masks. As we

analyze later in Section 7.4.4, this significantly improves the execution time of the mixing.

Considering the first-order approximation of L′
SM at M, each mask is updated at iteration t
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Figure 7.4: Visual comparison of the mixed images generated by SuperMix, MixUp, and

CutMix, with k ∈ {2, 3, 4} on ResNet34. Class activation maps [14] are computed for two

classes in mixed images.

to find the roots as: mt+1
i ← mt

i + ∆mt
i . Here, the update is computed using the Newton’s

method as:

∆Mt =
–|L′

SM|
||∇L′

SM||22
∇L′

SM, (7.6)

where the gradient is with respect to Mt, the concatenation of {mt
0, . . . , m

t
k–1}. Since both

the divergence and Ls are nonnegative, |L′
SM| = L′

SM. This formulation uses the ℓ2-norm

projection to compute ∆Mt. We modify it using SP to preserve the smoothness of masks

and compute the smooth update as:

∆̃M
t
=

–L′
SM

(gσ ∗ ∇L′
SM)

T∇L′
SM

(gσ ∗ ∇L′
SM), (7.7)

where gσ ∗ ∇L′
SM is a smoothed version of the gradients using the 2D Gaussian smoothing

filter g with the standard deviation σ. It must be noted that all matrices in Equations 7.6

and 7.7 are vectorized before the matrix operations, and are reshaped back at the end of

the iteration. In addition, due to the smoothness of masks, we optimize a down-sampled set

of masks and up-sample them before performing the mixing. Algorithm 4 and Figure 7.2

demonstrate the detailed algorithm and schematic diagram for SuperMix, respectively.

Termination Criteria: The algorithm terminates when the Top-k predicted classes of fT(x̂)
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Algorithm 4 SuperMix

1: inputs: Classifier fT, set of k images X,

low-pass filter gσ.

2: output: Mixed sample x̂.

3: Y = {argmaxjf
T
j (xi) : xi ∈ X}.

4: Sample (r0, . . . , rk–1) from Dir(α).

5: ŷ =
∑k–1

i=0 riδ(y
T(xi)).

6: Initialize (m0, . . . , mk–1)← 0,

x̂0 ← 1
k

∑
xi∈X xi, t← 0.

7: condition = Top-k predicted classes by f(x̂t) are not in Y.

8: while condition do

9: L′
SM = KL(fT(x̂t)||ŷ) + λsLs.

10: ∆̃Mt =
–L′

SM

(gσ∗∇L′
SM)T∇L′

SM
gσ ∗ ∇L′

SM.

11: mt+1
i ← mt

i + ∆̃mi for i ∈ {0, . . . , k – 1}.
12: m̃t+1

i = s(mt+1
i )/

∑k–1
j=0 s(m

t+1
j ).

13: x̂t+1 ←
k–1∑
i=0

xi ⊙ m̃t+1
i .

14: t← t + 1

15: end while

16: return x̂t.

are the same as the predicted class for samples in X. For instance, when X consists of two

images recognized as ‘cat’ and ‘dog’, the Top-2 classes in fT(x̂) should be classes of ‘cat’ and

‘dog’. This criterion assures that important features in the input set are visible in the mixed

image. Figure 7.4 provides a visual comparison of the mixed images produced by different

methods.
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Figure 7.5: Evaluating the role of augmentation size and hyper-parameters.

7.4 Experiments

We evaluate the performance of SuperMix on two tasks of object classification and knowledge

distillation [209, 210] using two benchmark datasets of CIFAR-100 [95] and ImageNet [96].

For knowledge distillation, we evaluate SuperMix on two major previous SOTA methods

[210, 215] and two mixing augmentation techniques including MixUp and CutMix. For the

sake of fair comparison, pseudo labels for these blind mixing methods are computed using

the same teacher employed in SuperMix. All training experiments use random horizontal

flip and random crop as the default augmentations. We perform the algorithm on random

sets of input samples drawn from D to generate D′. For the sake of brevity, we define the

augmentation factor κ = |D′|
|D| to show the ratio of the size of the mixed dataset over the size

of the original dataset.

For knowledge distillation on CIFAR-100, we also consider an additional baseline by

using unlabeled data from the training set of ImageNet32x32 [216] (ImgNet32) to construct

unlabeled sets. This helps to better evaluate the role of the data provided by the mixing

augmentation methods. We use SGD optimizer with an initial learning rate of 0.1 and

momentum of 0.9. Weight decay is set to 5e – 4. The learning rate is decayed by 0.1 at

epochs 200, 300, 400, and 500, and the maximum number of epochs is set to 600. Since in

our experiments κ ≥ 1, the number of epochs according to the mixed dataset will scale

with 1
κ
to keep the number of training iterations fixed for all experiments. For instance,

when κ = 5, the maximum number of epochs for the mixed dataset is 120. The batch

size is set to 128 and 256 for CIFAR-100 and ImageNet, respectively. For the CIFAR-100

dataset, we set σ of the Gaussian smoothing in SuperMix to 1 and the spatial size of the

masks to 8 × 8. For ImageNet, σ is set to 2 and the size of masks is set to 16 × 16. For
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all benchmark comparisons, we set α = 3 and λs = 25. Moreover, in all experiments, the

performance of SuperMix is evaluated by generating 5 × 105 and 106 images on CIFAR-

100 and ImageNet, respectively, unless otherwise noted. All the hyper-parameters for the

distillation experiments are selected according to the experimental setup of [215] and the

ablation studies in Section 7.4.3. Network architectures and settings for baseline methods

are provided in the supplemental material.

7.4.1 Object classification

We follow the standard setup of evaluation for automated augmentation [197, 198, 211] and

compare them with SuperMix on the task of object classification. For SuperMix, we first train

the target model on the original dataset and then use it to generate mixed data with k equal

to 2 and 3 for CIFAR-100 and ImageNet, respectively. Afterward, we train the target model

from scratch on the mixture of the augmented data and the original data. Rest of the result

are reported from the original papers. As an additional evaluation, we combine SuperMix

with RangAugment (RA) [199]. For this purpose, we first mix images using SuperMix and

then apply RA with the default parameters [199] for CIFAR-100 and ImageNet. Table 7.1

presents the results for these experiments. On four out of five experiments, SuperMix provide

performance competitive to SOTA approaches of automated augmentation. Furthermore,

combining RA with SuperMix further improves the performance of classification across all

the experiments. These evaluations highlight the effectiveness of mixing multiple images for

data augmentation.

7.4.2 Knowledge Distillation

In addition to KD [210] and CRD [215], we consider a simple method for distillation to

highlight the effectiveness of mixing augmentation. In this method, we train the student

models to classify mixed images labeled by the teacher model. The labels only show the

winner class and does not contain any information regarding the rest of the classes. We refer

to this method as Cross-Entropy (CE) distillation.

Results on CIFAR-100: Tables 7.2 and 7.3 presents the results for two challenging sce-
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narios of distillation. In the first scenario, teacher and student are from the same family of

architectures but have different depth/wideness and capacity. In the second scenario, teacher

and student are from completely different network architectures. Employing the simple CE

method using the mixed data consistently outperforms previous methods in both distilla-

tion scenarios. The data generated by SuperMix demonstrates the best performance across

all evaluations, and, on five out of seven teacher-student setups from the same architecture

family, students trained on the SuperMix data outperform their teachers. Last four rows in

Tables 7.2 and 7.3 present the results for knowledge distillation using the original KD [210].

More importantly, results on MixUp, CutMix, and SuperMix demonstrate that they can

notably enhance the performance of the distillation techniques.

These observations highlight three crucial points. First, the limited size of the training

set is a major factor constraining the performance of knowledge distillation. According to

Table 7.2, almost all of the students achieve comparable results to CRD when external data

of ImgNet32 is provided. Second, mixing augmentation provides more informative data for

distillation compared to unlabeled data from an external source. Third, the supervised mix-

ing results in rich images that are highly favorable for knowledge distillation and outperforms

blind mixing methods.
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Results on ImageNet: We showcase the effectiveness of the mixed data on ImageNet

by distilling the knowledge of ResNet-34 into ResNet-18. Table 7.5 presents the results

for the distillation on the ImageNet dataset. Using the simple CE method consistently

outperforms the previous SOTA approaches. In five out of eight experiments of distillation

using mixed images, the student outperforms the teacher. This demonstrates the scalability

and effectiveness of the mixing augmentation for the task of knowledge distillation. Moreover,

combining mixed data with the original distillation objective further enhances the distillation

performance validating the effectiveness of the mixing augmentation for knowledge transfer

in large-scale datasets.

7.4.3 Ablation studies

Impact of the size of the training set: In this part, we investigate how the size of

the dataset affects the distillation performance by measuring the Top-1 test accuracy of

WRN-16-2 versus the augmentation size on CIFAR-100. For all the mixing methods, we set

k = 2 and α = 1, i.e., sampling mixing coefficients from the uniform distribution. Figures

7.5a presents the results for these evaluations. The distillation performance improves by

increasing the augmentation size and plateaus at 5 × 105. All the datasets generated using

mixing augmentations outperform the unlabeled dataset of ImgNet32. This highlights the

superiority of mixed images for knowledge transfer compared to unlabeled data from an

external source. Based on these observations, we set the size of the mixed dataset to 5× 105

for all experiments on CIFAR-100.

Impact of k: We evaluate the role of k by conducting experiments on CIFAR-100 and

ImageNet datasets. Figures 7.5b and 7.5c present the results for this evaluation. A major

shortcoming of MixUp and CutMix is that they mix images without any supervision. Includ-

ing more input images to produce a mixed image increases the chance of incorrect cropping in

CutMix, and averaging overlapping features in Mixup. This explains the notable deteriora-

tion of the distillation performance in all experiments with k > 2 using these augmentation

methods. Both of these incidents degrade the quality and effectiveness of features in the

mixed image, which can also be observed from the visual comparisons provided in Figure
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Net SGD
Newton

w/o SP w/ SP

Im
g
N
et VGG16

ET(sec.) 15.41 6.59 0.23

iters 34.5 15.1 0.5

Res34
ET(sec.) 4.25 1.98 0.06

iters 23.6 11.7 0.3
C
IF
A
R VGG13

ET(ms.) 482 97 5

iters 19.5 3.7 0.2

WRN
ET(ms.) 509 122 6

iters 21.8 4.6 0.2

Table 7.4: Comparison of execution time.

7.4. We observe that the spatial size of the image can limit k. Performance of distillation

using SuperMix degrades for k > 2 on CIFAR-100. However on ImageNet, k = 3 yields the

best distillation performance.

Impact of α: Parameter α determines the probability distribution for the presence of each

input class in the mixed image. We measure the performance of distillation versus several

values of α to identify its optimal value. Figure 7.5d presents results for these experiments.

For α → 0, the mixing augmentation becomes inactive since only one input category will

appear in the augmented images, i.e., r0 = 1 or r1 = 1. For α → +∞, the contribution of

images become equal, i.e., r0 = r1 = 0.5. This is more favorable for distillation since both

input images contribute equally to the mixed image. For α = 1, contribution of each input

in the mixed image is selected from the uniform distribution Unif(0, 1). According to the

figures, we select α = 3 for all other experiments unless otherwise noted.
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Sparsity among masks: The sparsity promoting loss forces each spatial location in the

output image to be assigned to only one image in the input set. This improves the mixing

performance by preserving the most important features in each spatial location. We evaluate

the performance of distillation versus λs in Figure 7.5e. By increasing the weight of sparsity

the performance of distillation improves until λs ≈ 30. After that the accuracy of masks

degrades since the sparsity promoting loss dominates the KL loss. Figure 7.3 evaluates this

phenomenon by visualising the mixing mask versus λs.

7.4.4 Execution time

Here, we compute the execution time of SuperMix. To this aim, we define two baselines for

the sake of comparison. For the first baseline, we use SGD instead of the Newton method to

optimize the set of masks. The second baseline is the Newton method without SP. Hence,

the optimization in both baselines is performed on LSM = KL+λσLσ+λsLs. Inspired by the

previous work on saliency detection [91], we use the TV norm for the spatial smoothness loss

as: Ls =
1

kWH

∑
i

∑
u∈Λ
||∇mi(u)||33. Based on experimental observations, we set λs = 250,

learning rate of SGD to 0.1. All other parameters are set to the values identified in previous

sections. All algorithms are implemented with parallel processing on two NVIDA Titan RTX

with batch size of 128. For further implementation details, please refer to the released code.

Figure 7.4 presents the results for these comparisons. Newton method with SP, i.e.,

SuperMix, is at least 65× faster than SGD on both datasets. Moreover, due to SP which

directly satisfied the spatial smoothness condition, SuperMix is at least 19× faster than the

same algorithm when it has to include Ls.

7.4.5 Embedding space evaluations

We perform two sets of evaluations on CIFAR-100 to further analyze characteristics of the

mixed images. In the first set of experiments, we feed the original data and the mixed images

to VGG13 and visualize the output of the logits layer, in 2D for three random classes using

PCA. The SuperMix images are generated with k = 2. Figure 7.6 demonstrates these evalu-

ations. Representations for the SuperMix data has less overlap with the distribution of the
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Figure 7.6: Visualizing representations for the mixed images.

representations for the original data. This suggests that the SuperMix data encompass more

novel structure compared to the original data, unlabeled data from other mixing methods

or an external source. The SuperMix data are harder to classify for the model since the

representations are concentrated close to the center of the embedding. To better evaluate

this, we compute the class standard deviation (c-std) of representations for each class. The

computed values are reported on the top of the corresponding images in Figure 7.6.

Hinton et al. [210] pointed that smoothing out the predictions of a model can better

reveal its knowledge of the task. Since SuperMix generates images by combining multiple

inputs, the outputs of the model on SuperMix data are intrinsically more smooth compared

to that of the other augmentation types. We validate this by computing the average of the

sorted Top-5 probability predictions of VGG13 on the original and augmented images of

CIFAR-100. As demonstrated in Figure 7.7, predictions of the target model is significantly

smoother on mixed images. Moreover, SuperMix produces the data with the most smooth

labels.
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Figure 7.7: Distribution of top 5 predictions.

7.5 Conclusion

In this paper, we studied the potential of mixing multiple images using supervision of a

teacher for the data augmentation. We proposed SuperMix, a supervised mixing augmen-

tation method that combines salient regions in multiple images to produce unseen training

samples. The effectiveness and efficiency of SuperMix is validated through extensive ex-

periments, evaluations, and ablation studies. Specifically, incorporating SuperMix data for

distillation enhances the SOTA methods of knowledge distillation. SuperMix provides com-

parable performance to the automated augmentation methods, and when combined, notably

improves the generalization of the model.



130

Chapter 8

Fingerprint Distortion Rectification

using Deep Convolutional Neural

Networks

8.1 Introduction

The fingerprint is one of the most important biometric modalities due to its uniqueness and

easy acquisition process. Leveraged by rapid advances in sensor technologies and match-

ing algorithm development, automatic fingerprint recognition has been widely adopted as

a highly-accurate identification method. The operation of a typical fingerprint recognition

system consists of three main steps. In the preprocessing step, a raw fingerprint is enhanced

to reduce noise, connect broken ridges and separate joined ridges. In the second step, exact

ridge patterns are processed to extract local features, namely minutiae, from the enhanced

image. In the final step, a match score between two fingerprint features is calculated by ana-

lyzing properties of minutiae (location, orientation, etc.) using local and global relationships

between them.

In past decades, algorithms for fingerprint matching have advanced rapidly, resulting in

the development of numerous and varied commercial fingerprint recognition systems. These

algorithms have very high performance in identifying clean samples [217], but often fail in

identifying samples which are distorted. Consequently, recognizing dirty fingerprints is a
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challenging problem for fingerprint recognition systems. Most of the fingerprint matching

algorithms are based on calculating the relative properties between features within a finger-

print, and matching them with other fingerprints. However, distortion that can occur during

the collection process changes the relative properties of fingerprint features and causes a no-

table decrease in recognition performance [218].

There are two main types of recognition scenarios. In the positive recognition scenario,

the goal is user authentication, wherein the user cooperates with the recognition system in

order to be recognized and obtain access to locations or systems. In contrast, the negative

recognition scenario deals with an uncooperative user who is unwilling to be identified. Based

on the recognition goal, the quality of the fingerprint can lead to different consequences. In

the positive recognition scenario, low-quality fingerprints prevent legitimate users from being

authenticated. Although this brings inconvenience, users learn to reduce distortion after

several authentication attempts. Serious consequences of low-quality fingerprints are tied

with the negative recognition scenario in which users may deliberately decrease the quality

of fingerprint to avoid being identified [219]. Actually, attempts of altering and damaging

fingerprints in order to impair identification have been reported by law enforcement officials

[220, 221]. Hence, increasing fingerprint quality is a necessary task in negative recognition

systems. Additionally, it provides the added benefit of reducing the inconvenience of false

rejection of valid users in positive recognition systems.

The quality of fingerprint samples can be deteriorated by many factors, either geometri-

cally or photometrically. The primary cause of photometric degradation is artifacts on the

finger or sensor, such as oil, moisture or markings from previous impressions. Photometric

degradation in fingerprints has been widely investigated in terms of detection [222–224] and

compensation [225–229].

Fingers have cylindrical shape with relatively small radius compared to ridge pattern size.

Capturing fingerprint samples is a complex mapping from a 3D surface to a 2D image, since

the finger is being pressed onto a platen on a sensor. This mapping differs for each impression,

referred to as geometric distortion. Geometric distortion is related to mechanical properties,

such as the force and torque a user applies to the finger in the acquisition process. Different

from photometric distortion, geometric distortion introduces translational and rotational
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error in the relative distances and orientations of local features. These relative distances

and orientations of local features are the abstract identifiers of a user. In the presence of

photometric distortion, the match score decreases since many minutiae may be missing, or

false minutiae may be detected. On the contrary, in cases of severe geometric distortion, the

match score decreases because the new composition of minutiae forms a completely different

ID caused by the distortion. The issue is more critical in negative recognition systems,

since distorted samples are still of high quality compared to clean samples, but matching

algorithms fail to recognize them.

In this paper, we address the geometric distortion problem of fingerprint recognition sys-

tems by proposing a fast and effective distortion estimator which captures the non-linear

properties of geometric distortion of fingerprints. While recently proposed methods handle

distortion using a dictionary of distorted templates, for this work, we use a DCNN to esti-

mate the principal distortion components of input samples. Our approach has the following

contributions:

• There is no need to estimate the ridge frequency and orientation maps of input finger-

prints.

• Distortion parameters are being estimated continuously to achieve more accurate rec-

tifications.

• A notable decrease in rectification time due to embedding distortion templates in

network parameters.

The rest of the paper is organized as follows. In section 8.2, related works are reviewed.

Section 8.3 describes the proposed approach, and section 8.4 presents the experimental re-

sults. Finally, we conclude the paper in section 8.5.

8.2 Related Work

Various approaches have been proposed in the literature to tackle the issue of geometric

distortion in fingerprints. Designing specific acquisition hardware which detects distortion
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Figure 8.1: Flowchart of the proposed method for rectifying distorted fingerprints. The solid

line shows testing path and the dash line shows training path.

during recording procedure is a well-established approach. In this approach, the hardware

detects distorted samples using different techniques, such as measuring excessive force [230]

or the deformation of the acquisition surface [231], and motion processing during captur-

ing fingerprint video [232]. The hardware rejects severely distorted records and asks the

user to provide a new impression until the system requirements are satisfied. Despite the

improvements in recognition performance [16], there are certain drawbacks associated with

the use of hardware-based distortion detection techniques: (i) they need specific sensors and

additional capabilities; (ii) it is not possible to apply them on previously recorded samples;

(iii) it makes the system weak against malicious users who have altered their finger tips and

ridge patterns; (iv) it is merely detecting distortion, and there is no rectification process

since user is obligated to provide clean impressions.

Since geometric distortion essentially moves features in fingerprints, adding distortion

tolerance to fingerprint matching has shown promising results in compensating for the dis-

tortion problem [233–238]. Distortion can be modeled by different special transformations

such as rigid and thin plate spline (TPS) [239]. Although rigid transformation is not pow-

erful enough to model the complex properties of geometric distortion, combining a global

rigid transform and a local tolerant window have shown improvements in matching distorted

samples [233, 234]. TPS as a more complex transformation has been used to make match-
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ing algorithms tolerant to geometric distortion [235]. However, compensating for distortion

by adding tolerance to a fingerprint matcher inevitably results in a higher false positive

match rate, and is highly dependent on estimating parameters of a complex transformation

function.

Ross et al. [240,241] proposed a rectification technique based on learning deformation pat-

tern from the correspondence of ridge curvatures of the same finger in different impressions.

By computing average distortion based on corresponding ridges, it is possible to estimate

parameters of the TPS transformation. This method showed improvement in matching dis-

torted samples. However, the performance of the ridge curve correspondence method is

highly dependent on the number of impressions of the same finger, and in most databases

there are not enough samples per class to provide such an estimation.

Based on the assumption that the ridge frequency within a normal fingerprint is con-

stant, Senior and Bolle [242] introduced a mathematical method of distortion rectification

by equalizing the frequency map in distorted fingerprints. Their method improves matching

performance, especially when applying equalization to both distorted and original samples

before matching. Although it has been shown in [243,244] that the ridge frequency map has

discriminative information, and clearly it is not constant within the whole fingerprint area,

their approach offered two important accomplishments compared to previous works. First, it

does not need any specific hardware design, and second, it is possible to apply their algorithm

on a single fingerprint image. However, equalizing all ridge spacings in a fingerprint has the

following limitations: (i) some identification information will be lost and the false positive

match rate will increase; (ii) in severe distortion cases, ridges are mixed together, and it is

not possible to equalize the spacing between them; and (iii) equalizing the ridge frequency

map within the whole fingerprint introduces distortion in the ridge orientation map.

More recently, Si et al. [8] collected the Tsinghua distorted fingerprint database by induc-

ing 10 different types of force and torque to fingers during the fingerprint acquisition process.

They proposed a statistical model for distortion by computing minutiae displacements in dis-

torted and corresponding original samples. In this method, the top two significant principal

components of displacement are used to generate a dictionary of distorted samples. For

each input sample, the ridge frequency and orientation maps are computed and compared
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Layer Type Kernel Size Input Size Output Size

1 Conv, BN, ReLU, MP 3× 3× 32 256× 256× 1 128× 128× 32

2 Conv, BN, ReLU, MP 3× 3× 64 128× 128× 32 64× 64× 64

3 Conv, BN, ReLU, MP 3× 3× 64 64× 64× 64 32× 32× 64

4 Conv, BN, ReLU, MP 3× 3× 128 32× 32× 64 16× 16× 128

5 Conv, BN, ReLU, MP 3× 3× 256 16× 16× 128 8× 8× 256

6 Conv, BN, ReLU, MP 3× 3× 512 8× 8× 256 4× 4× 512

7 Conv, BN, ReLU, MP 3× 3× 1024 4× 4× 512 2× 2× 1024

8 Conv, BN, ReLU, MP 3× 3× 2048 2× 2× 1024 1× 1× 2048

9 Conv 1× 1× 2 1× 1× 2048 1× 1× 2

Table 8.1: Architecture of the proposed DCNN used for estimating the distortion fields. All

layers except the last one comprise Convolution (Conv), Batch Normalization (BN), ReLU

and Max Pool (MP). All max poolings are 2 × 2 with the stride of two. All convolution

strides are one, and all inputs to convolutions are padded to have the same size outputs.

to a dictionary in order to find the nearest distorted template. Their method shares all

advantages of previous works, and it does not equalize the ridge frequency map. Therefore,

discriminatory information of the frequency map is preserved and the ridge orientation map

is not distorted. Considering all advantages of using a dictionary of distorted templates,

there are still some limitations that need to be addressed: (i) computing frequency and

orientation maps for input samples and comparing them with all samples in the dictionary

takes a significant amount of time (from a second to several minutes depending on finger-

print properties); (ii) the performance of this method is related to the dictionary size, and

increasing the dictionary size makes system slower; and iii) this method is highly dependent

on computing the frequency and orientation maps of input samples which are not reliable

due to the presence of distortion.
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8.3 DCNN-based Distortion Estimation Model

Our method is inspired by the rectification approach proposed by Si et al. [8, 245]. The

major limitation of their method is related to identifying the nearest distorted template in a

dictionary of distorted samples. Finding the nearest neighbor to the distorted input sample

in the dictionary is not accurate due to unreliable frequency and orientation maps extracted

from the input sample. Instead of using a dictionary of the ridge frequency and orientation

maps of distortion templates, we use a DCNN to estimate distortion parameter of the input

sample. In this way, the non-linear transformations that caused distorted templates are being

learned by the deep neural network during the training phase. The input to the network

is the raw fingerprint image, and there is no need for computing the ridge frequency and

orientation maps for the input samples. Contrary to the dictionary-based approach, the

computational time of our proposed DCNN for estimating the distortion for an input, does

not change by increasing the number of training samples since the network has a fixed number

of parameters. On the other hand, the DCNN is capable of learning complex combinations of

geometric distortions. A flowchart depicting the rectification scheme of the proposed method

is shown in Figure 8.1. In the training phase, the network learns to estimate the distortion

parameters of the input training images by minimizing the difference between the estimated

parameters and the actual values. In the testing phase, the network estimates distortion

parameters by mapping the input fingerprint to a non-linear manifold of distortion bases.

Using the estimated distortion template and the input fingerprint, it is possible to rectify

the distorted fingerprint by the inverse TPS [239] transformation of the distortion.

8.3.1 Modeling Geometric Distortion to Generate Synthetic Dis-

torted Fingerprints

Training a DCNN requires a comprehensive database of labeled images. We generated a

synthetic database of distorted images in order to train our network. It is essential to

model distortion for this purpose. Similar to [8], we used the Tsinghua distorted finger-

print database to statistically model geometric distortion. To extract displacement due to

geometric distortion, we matched minutiae pairs from the original and distorted fingerprint
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samples. Minutia detection was performed using VeriFinger 7.0 SDK [246]. Since minutiae

are anomalies in the fingerprint ridge map and have random positions we defined a similar

grid of points as in [8] to have a reference of distortion to be compared among different

fingers. Using sampling grid pairs from the original and distorted fingerprints, it is possible

to represent distortion as a displacement of corresponding points on the original grid and

the distorted grid as follows:

di = xDi – xNi , (8.1)

where di is the displacement of minutia for the ith pair of distorted and the corresponding

normal fingerprint. Using distortion samples of the Tsinghua database and computing the

distortion fields, it is possible to statistically model distortion by its principal components

using PCA [247–249]. Approximation of distortion fields using PCA will be:

d̂ ≈ d +
t∑

i=1

ci
√

λiei. (8.2)

In the above equation, t is the number of selected principal components, ci is the coefficient

of the corresponding eigenvector component, ei is ith eigenvector and λi is its corresponding

eigenvalue. We used the first two significant eigenvectors of distortion to generate our syn-

thetic samples. We generated a dataset of synthetic distorted fingerprints using 1033 normal

fingerprints from the BioCOP 2013 dataset [250]. Each normal fingerprint was transformed

to 400 distorted images by sampling each of the two principal distortion components ex-

tracted from the Tsinghua database. Sampling was performed randomly with a uniform

distribution between -2 and 2. The generated dataset has 1033 × 401 = 414, 233 samples,

in which each ID has one normal sample and 400 distorted samples. Figure 8.2 shows two

generated samples for two different fingers.

8.3.2 Network Architecture

We used a deep convolutional neural network to learn the two eigenvector-based distortion

coefficients. Compared to the fully connected networks, DCNNs are more robust against

over-fitting due to weight sharing and fewer learning parameters. All layers except the last

one are convolutional layers. The input image to the network has a size of 256 × 256 × 1
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Figure 8.2: Examples of synthetic distorted fingerprint samples generated for training the

network. Each sample is generated by randomly sampling distortion bases c1, c2.

Figure 8.3: The ROC curves of three matching experiments for the following three databases

(a) Tsinghua DF database, (b) FVC2004 DB1 and (c) geometrically distorted subset of

FVC2004 DB1.

pixels (first dimension is width, second is height and third is the depth). Our network

consists of 9 convolutional blocks. Each layer, except the last one, comprises convolution,

batch normalization, Rectified Linear Unit (ReLU) and max polling with stride equal to two.

A detailed properties of the network is shown in Table 8.1.

The network minimizes the norm-2 distance between ground truth coefficients (c1 and

c2) and the DCNN outputs. For training the model, we first centered images according to

the center of mass of the fingerprint area, and then scaled and cropped inputs to a size

of 256 × 256. We used 401,000 synthetic distorted fingerprint images to train the model.
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Time (sec)

Method Tsinghua DF FVC2004 DB1

Si et al. [8] 8.373 7.816

Our 0.741 0.736

Table 8.2: Average time of distortion estimation. The proposed DCNN distortion estimation

method is approximately 10 times faster than the nearest neighbor method used by Si et

al. [8].

Figure 8.4: Confusion matrices for the following approaches (a) the nearest neighbor method

by Si et al. [8] and (b) the proposed DCNN-based distortion estimation.

The network was trained over 40 epochs, each epoch consisting of 6,265 iterations with a

batch size = 64. Adam optimization method [16,251] is used as the optimizer due to its fast

convergence with beta = 0.5 and learning rate = 10–4.

8.4 Experiments

Our first performance measure for evaluating the proposed distortion rectification is the

overall matching performance. To evaluate the contribution of the proposed method in

improving matching performance, we conducted three experiments on each of the follow-

ing three databases: FVC2004 DB1, distorted subset of FVC2004 DB1 and Tsinghua DF

database. VeriFinger 7.0 SDK [246] is used to match fingerprint samples.
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Figure 8.5: Match scores for three pairs of normal and rectified fingerprints by two different

approaches. The red grid on query fingerprints shows estimated distortion fields by our

method and the method proposed by Si et al. [8]. Two first samples are from the Tsinghua

DF database and the third sample is from FVC2004 DB1.
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The match score in each experiment is calculated for pairs of samples with the same

ID, and no imposter pairs are conducted since the match score of VeriFinger is linked to

the false acceptance rate (FAR). Higher match scores have a lower chance of falsely being

accepted. In all three matching experiments, the first sample in each pair is a normal

fingerprint without distortion, and the second one is the original distorted sample or the

rectified sample. Rectification is performed both by our method and the method proposed

by Si et al. [8]. ROC curves on three databases are depicted in Figure 8.3.

In the first experiment, samples from the Tsinghua DF database are rectified to evaluate

the training procedure of the network and the rectification performance. The Tsinghua DF

database consists of 320 pairs of normal and distorted fingerprints from 185 different fingers.

Network training is performed using a synthetic distorted dataset generated by randomly

sampling the first two significant principal components of the distortion manifold extracted

from the Tsinghua DF database. Although the network has never seen the original samples

from the Tsinghua DF database during the training procedure, distortion components used

to generate the synthetic dataset may bias the performance of the network. Therefore, it is

essential to evaluate matching performance on a dataset containing only geometric distortion

that is different from the Tsinghua DF database. In the second experiment, a geometrically

distorted subset of FVC2004 DB1 is used to evaluate the rectification performance of the

proposed method. The distorted subset of FVC2004 DB1 contains 89 samples with skin

distortions.

In the third experiment, FVC2004 DB1 is used to evaluate the rectification perfor-

mance on a distorted database containing a variety of geometric and photometric distortions.

FVC2004 DB1 consists of 110 classes and eight samples per class. Samples of each class are

acquired by deliberately inducing photometric or geometric distortions. Since FVC2004 DB1

contains different distortion types, the proposed method targets only geometrically distorted

samples and rejects other distortion types.

The quality of rectified distorted samples depends on the performance of the distortion

estimation algorithm. We conducted an experiment to compare distortion estimation of

DCNN with the nearest neighbor method used by Si et al. [8]. The synthetic distorted

database used in this paper was generated using random sampling of the first two significant
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principal components. For comparison purposes, we generated another distorted database

that was the same as Si et al. [8] to compare distortion classification of the two methods. The

proposed DCNN estimates continuous values of distortion basis. Therefore, we quantized the

network output to have 11 classes for each basis. In this order, class 1 is the first distortion

basis with coefficient equal to -2.0, and class 11 is the first distortion basis with coefficient

equal to 2.0. The confusion matrices for the two methods of classifying the first basis are

shown in Figure 8.4. The Distribution of diagonal values of the second confusion matrix

shows that the proposed DCNN is much more precise in estimating distortion coefficients.

Although nearest neighbor is not accurate enough, it contributes to distortion rectification

since it finds the target distortion class with an error margin of approximately two classes.

To compare the rectification results of our approach and the method proposed by Si

et al. [8], three examples from the Tsinghua DF database and FVC2004 DB1 are shown

in Figure 8.5. The rectified samples by both methods are very similar but the match score

measurement indicates that there is a significant difference between them. A slight estimation

error in distortion parameters prevents the spatial transformation from correctly restoring

minutiae displacements.

In a fingerprint recognition system, distortion rectification is one of the preprocessing

steps that can affect the total response time of the system. It is not possible nor efficient

to use a computationally slow rectification method in a real-time recognition system since it

brings inconvenience to users. Therefore, it is essential to evaluate the rectification speed.

We conducted two experiments to evaluate the average response time of the rectification

process on a PC with 3.3 GHz CPU and NIVDIA TITAN X GPU. Results are reported

in Table 8.2. From the average response time of the proposed approach and the matching

experiments, it can be observed that the proposed DCNN as a distortion estimator, not only

increases the accuracy of distortion detection, but also significantly reduces the detection

time.

An important fact to be considered is that the proposed algorithm is executed on the

GPU, but the nearest neighbor method is executed on the CPU because it is not possible to

implement a search method on parallel processors. Therefore, the reduction of the rectifica-

tion time is mainly because of the capability of neural networks to embed training samples in
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the network parameters which enables us to convert a search problem to a direct prediction

problem.

Additionally, contrary to the nearest neighbor method, the response time of the proposed

DCNN is independent of the properties of input samples to the network, and guarantees an

efficient lower bound for processing speed.

8.5 Conclusion

Geometric distortion significantly reduces the match score produced by a fingerprint verifi-

cation system. In the positive recognition scenario, this causes inconvenience for users, but

in the negative recognition scenario where users may intentionally distort their fingerprint,

this can be considered as a security vulnerability. Therefore, it is essential to implement

distortion rectification in order to prevent malicious users from hiding their identity, as well

as reduce the inconvenience of using identification systems in authentication tasks. We

proposed a novel approach to estimate distortion parameters from raw fingerprint images

without computing the ridge frequency and orientation maps. A deep convolutional neu-

ral network is utilized to estimate distortion parameters of input samples. We successfully

rectified distorted samples from the Tsinghua DF database and FVC2004 DB1 using the es-

timated distortion template. A comprehensive database of distorted samples was generated

in order to train our deep neural network. The experimental results on several databases

showed that the DCNN can estimate the non-linear distortions of samples more accurately.

Comparing to the previous works, our method decreased rectification time significantly by

embedding the training samples in the network parameters. In addition, since the estimation

time of the proposed method is independent of the training size, it is possible to increase the

number of principal components which are used to generate the synthetic distorted database

for the future works.
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Chapter 9

Latent Fingerprint Reconstruction

Using GANs

9.1 Introduction

Automatic fingerprint recognition systems have been widely adopted to perform reliable and

highly accurate biometric identification. Compared to other biometric traits, such as iris,

the fingerprint has a unique superiority of being collected indirectly from crime scenes from

latent friction ridge impressions. Fingerprint samples can be categorized into three main

groups based on the acquisition techniques such as: inked, live-scan, or latent samples. The

inked and live-scan samples are considered as clean samples for which users leave impressions

intentionally in access control or authentication scenarios. In addition, an agent, or the

acquisition process of the system itself, can monitor quality of the samples, and guide users

to leave appropriate fingerprints. In past decades, algorithms for preprocessing and matching

clean fingerprints have advanced rapidly, resulting in the development of numerous and varied

commercial fingerprint recognition systems.

In contrast, latent fingerprints are the marks of fingers unintentionally left on the surface

of an object in a crime scene. Typically, a latent fingerprint is a ‘noisy’ image with a

notable missing area, therefore containing a lower amount of ridge information (i.e. minutiae)

compared to inked or live-scan fingerprints. Processing latent fingerprints is a complex and

challenging problem due to the under-determined properties of the problem, and presence
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Figure 9.1: Examples of different latent fingerprint reconstruction methods: a) a latent

fingerprint with severe distortion and missing area, b) minutiae-based prediction using [15],

c) ridge-based reconstruction using [16], d) constrained ridge-based reconstruction using the

proposed algorithm.

of many disturbing factors introduced by background objects or patterns on the substrate

or surface, the force and torque involved in depositing the latent print, etc. Commercial

and state-of-the-art methods for recognizing the inked or live-scan fingerprints often fail to

process latent samples, even in the preprocessing stage [252]. Therefore, various approaches

have been proposed in the literature to tackle the problem of latent [253–257] and distorted

[245,258,259] fingerprints.

Enhancing latent fingerprints often leads to optimizing a cost function that measures the

quality of reconstruction by comparing reconstructed information and their ground truths.

Based on the type of the reconstructed information, latent fingerprint reconstruction methods

can be divided into two main categories: ridge-base and minutiae-based methods.

In the ridge-base methods [16,221,254–256], algorithms try to predict the ridge informa-

tion, which can be the orientation map or the ridge pattern itself, and minimize the similarity

between the generated information and their ground truths. Then minutiae information can

be extracted from the predicted ridge information. These methods are optimized to predict

the ridge information without estimating the local quality of the input samples. For parts

of the input latent fingerprint that there exists some information, typically these algorithms

produce useful results. However, for the parts in which there is a severe distortion, not

only these algorithms can not predict the missing information, but also, they can destroy

the ID information by generating erroneous minutiae. Figure 9.1(c) shows a reconstructed
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ridge map for a latent fingerprint with severe distortion. As the reconstructed ridge map

indicates, algorithm [16] generates meaningful ridge information for parts that contain some

ridge information in the input latent sample, but for other parts it produces random ridge

patterns which drastically decreases the matching score.

On the other hand, minutiae-based methods [15, 260, 261] directly predict the type and

location of minutiae of the latent fingerprints without reconstructing the ridge pattern.

Minutiae-based reconstruction methods are more robust against severe distortion or missing

areas of the input latent fingerprint, since they predict the probability of a minutia by ana-

lyzing a small area around each candidate ridge point, and they reject large missing areas.

Hence, this rejection drastically decreases the number of founded minutiae. Figure 9.1(b)

shows some minutiae that were detected using local processing of a latent fingerprint.

In case of severely distorted latent fingerprints, both ridge-based and minutiae-based re-

construction methods fail. Ridge-based reconstruction methods fail because they fill missing

areas with incorrect ridge patterns, therefore they introduce minutiae which change the ID

of reconstructed samples. Minutiae-based prediction methods fail because they reject most

of the missing areas, and at the end, they often predict fewer minutiae, which are not enough

to identify samples.

Recently, machine learning, especially deep learning, has demonstrated significant perfor-

mance in many fields including biometrics [48, 262–275]. In this study we developed a deep

convolutional neural network (DCNN) model to reconstruct the ridge information of latent

fingerprints. The core network in the model is a conditional generative adversarial network

(cGAN) that reconstructs the obscured ridge information of the latent samples. To over-

come the limitation of the previous ridge-based reconstruction methods, our model predicts

three extra maps in addition to the ridge map: the orientation, frequency and segmentation

maps. Generating the orientation and frequency maps ensure that the model is considering

the orientation and frequency information of the input latent fingerprints. Generating a

segmentation map prevents the model from filling large missing areas in the input latent

samples; thus, it optimizes the amount of ridge information that can be reconstructed. In

addition, to force the generator to preserve the ID information (type and location of minu-

tiae), we developed an auxiliary deep model to extract the perceptual ID information (PIDI)
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Figure 9.2: Examples of synthetically generated latent fingerprints: (a) is the original fin-

gerprint, (b) is the corresponding binary ridge map, and (c, d, e, f) are generated latent

fingerprints.

of the generated sample and fuse it into the cGAN model to enhance the reconstruction

process.

9.2 Method

9.2.1 Conditional Generative Adversarial Networks (cGANs)

GANs [27] are one of the most popular groups of generative networks. Generative networks

map a sample from a random distribution pz(z) to a target domain of desired samples

y = G(z, θg) : z → y, through training parameters (θg) of the network. GANs are different

from conventional generative models because they prosper from a discriminator network. The

discriminator network compares the generated samples (fake samples) y = G(z, θg) with the

real samples from the target domain, and tries to distinguish between them. Simultaneously,

the generator (typically an auto-encoder) tries to fool the discriminator by generating more

realistic samples. In each iteration, the generator produces better samples in an attempt to

fool the discriminator, and the discriminator improves by comparing the real samples with

the generated samples. In other words, the discriminator D and the generator G play a
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Figure 9.3: Training criteria of the discriminator. The discriminator receives two types

of inputs, (a) the generated fingerprint maps, and (b) the ground truth maps. In both

scenarios, the corresponding latent fingerprint is concatenated (C) to either the generated

or the ground truth maps to act as the condition. The auxiliary verifier module extracts the

PIDI from both generated maps and ground truths, and passes them to the discriminator.

The discriminator learns to distinguish between the real maps and fake maps based on the

quality and PIDI of generated maps.
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two-player minimax game with the following objective function:

VGAN(G,D) = Ey∼Pdata(y)[logD(y)] + Ez∼Pz(z)[log(1 – D(G(z)))], (9.1)

where generator G tries to minimize Equation 9.1 and discriminator D tries to maximize it.

An additional L2 or L1 distance loss is added to the objective function in the literature to

force the network to generate samples which are closer to the target ground truth. The final

generator model trains as follows:

Goptimal = min
G

max
D

VGAN(G,D) + λlL1(y
∗, G), (9.2)

where λ is the coefficient of L1 distance and lL1(y
∗, G) is:

lL1(G) = ||y∗ – G(z)||1, (9.3)

where y∗ is the ground truth for the output of the generator.

In the real-world application of restoring a latent fingerprint image, both the source and

target domains are available for training. Therefore, Isola et al. [276] proposed the conditional

GAN model which has two modifications compared to conventional GANs. First, instead of

using noise as the input to the network, real training samples from the source domain are

fed to the network y = G(x, θg) : x→ y. Second, they put a condition on the discriminator

by concatenating the input sample with the generated sample. Therefore, the discriminator

judges a generated sample based (conditioned) on the original sample which was fed to the

network. The new objective function for the cGAN is:

VcGAN(G,D) = Ex∼Pdata
[logD(x, y)] + Ex∼Pdata

[log(1 – D(x,G(x)))]. (9.4)

9.2.2 cGAN for Latent Fingerprint Reconstruction

The formulation and the network architecture of cGAN proposed by Isola et al. [276] is

a universal setup for image-to-image translation. However, processing a biometric image

such as latent fingerprints is often more complicated than other image types due to the

identification information that is embedded in the pattern of the image which should be
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preserved during the reconstruction process. For this purpose, we perform two modifications

to the formulation and the network architecture to emphasize the ID of the input sample.

First, to increase the quality of reconstruction, we force the network to generate four

fingerprint maps Y = G(x, θg) for each latent fingerprint input as follows:

Y = [yR, yF, yO, yS], (9.5)

where, Y is the new output of the generator, and consists of the ridge map (yR), the orien-

tation map (yO), the frequency map (yF) and the ridge segmentation map (yS) of the input

latent fingerprint. These four maps are concatenated depth-wise to form Y. Figure 9.4(b)

demonstrates the new output of the generator.

Equation 9.3 computes the direct reconstruction error. For the new outputs of the gen-

erator, the same formula is extended as:

lL1(G) = αR||y∗R – yR||1 + αF||y∗F – yF||1 + αO||y∗O – yO||1 + αS||y∗S – yS||1, (9.6)

where, y∗R, y∗F, y∗O and y∗S are the ground truth values for the ridge, frequency, orientation

and segmentation map respectively, and αR, αF, αO and αS are weights for scaling loss of

reconstruction of each generated map. Since all maps except the ridge map have low-pass

characteristic and may prevent the generator from predicting the ridge map with sufficient

detail, we set αR to 1.0 and all other coefficients (αF, αO and αS) to 0.1.

Second, the generator should preserve the identification information embedded in minu-

tiae and ridge patterns. To extract and preserve the identification information we developed

a method that is inspired by perceptual loss [51, 277–279] and multi-level feature abstrac-

tion [280–283]. For this purpose, we separately trained a deep Siamese CNN as a fingerprint

verifier. The trained model is used to extract the perceptual ID information (PIDI) of the

generated maps. Extracted PIDI are output feature maps of the first four convolutional

layers of the verifier module, and are concatenated to the corresponding layers of the dis-

criminator to emphasize the ID information on the discriminator’s decision. Figure 9.4(d)

shows how the output feature maps of the verifier contributes to the discriminator’s decision

making. Figure 9.3 shows the training criteria of the discriminator in more detail.
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Table 9.1: Architecture of the PIDI extractor. All layers except the last one comprise

Convolution (C), Batch Normalization (B) [9] and ReLU (R). The output of the last layer is

flatted after the convolution. Convolution strides of all layers are two, and the spacial size

of all kernels is 4× 4.

L # Type K. Size Input Size Output Size

1 C, B, R 64 256×256×4 128×128×64

2 C, B, R 128 128×128×64 64×64×128

3 C, B, R 256 64×64×128 32×32×256

4 C, B, R 512 32×32×256 16×16×512

5 C, B, R 512 16×16×512 8×8×512

6 C, B, R 512 8×8×512 4×4×512

7 C 512 4×4×512 2048×1

9.2.3 Network Architecture

The proposed model consists of three networks: a fingerprint PIDI extractor, a generator,

and a discriminator. The fingerprint PIDI extractor is one tower from a deep Siamese [284]

fingerprint verifier that is trained using a contrastive loss [284]. We fix all weights of the

CNN tower, and use it to extract the PIDI of samples generated by the generator. Figure

9.4(d) shows how the output of the first four layers of the PIDI extractor are fused into

the discriminator to provide the identification information for the discriminator. Table 9.1

details the architecture of the PIDI extractor.

The generator is a ‘U-net’ [23,276] auto-encoder CNN. In the ‘U-net’ architecture, some

layers from the encoder are concatenated to layers of the decoder to keep the high frequency

details of the input samples, and increase the quality of reconstruction in the decoder. Figure

9.4(a) shows a diagram of the generator, and Table 9.3 details the structure of the generator.

The discriminator is a deep CNN which maps the conditioned output of the generator

with a size of 256×256×5 to a discrimination matrix of size 16×16×1. To force the discrim-

inator to consider the ID information of the input samples, outputs of the first four layers

of the PIDI extractor network are concatenated to the output of the corresponding layers

of the discriminator. Table 9.2 details the architecture of the discriminator network. The
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discriminator judges the output of the generator in a patch-wise manner. Each element of

the discriminator’s output map represents the discriminator’s decision about a corresponding

patch in the generator’s output.

The whole generative model was trained over 400 epochs, each epoch consisting of 7,812

iterations with a batch size = 64. Adam optimization method [251] is used as the optimizer

due to its fast convergence with beta = 0.5 and learning rate = 10–4 .
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Figure 9.4: Complete diagram of the model. a) The deep generator takes the input latent

fingerprints and generates a ridge, frequency, orientation and segmentation map simultane-

ously. b) Generated maps are concatenated with the input latent fingerprint to provide a

condition for the discriminator. c) Real maps are extracted from the original clean finger-

prints that were distorted to provide synthetic latent samples. During the training phase

these maps are used to provide the supervision for the discriminator. d)One tower from a

deep Siamese fingerprint verifier that was trained separately takes the generated or real maps

and provides PIDI for the discriminator. e) The discriminator tries to distinguish between

generated maps and the real maps using the combined ID and quality information from the

generated maps.
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Figure 9.5: Evaluating the relation between the training performance, i.e. reconstruction

error, and the size of the training set.

9.2.4 Synthetic Datasets of Latent Fingerprints

Training a generative model requires a large number of training samples. We syntheti-

cally generated databases of latent fingerprints by distorting clean fingerprints from the

BioCOP 2012 and 2013 [250] databases. Initially, we distorted 5,000 fingerprints and for

each fingerprint 100 distorted versions are generated. This dataset consists of 500,000 latent

fingerprints and their corresponding clean samples. Examples of generated latent samples

are shown in Figure 9.2. During our evaluations, we observed that the size of the training

set significantly affects the reconstruction performance. Hence, we conducted an experiment

to verify this hypothesis. We trained a cGAN model on training sets with different sizes

of {10000, 50000, 100000, 200000, 300000, 400000, 500000} and measured the test error. Fig-

ure 9.5 presents the results for the evaluation. We clearly observe that the performance of

reconstruction is highly dependent on the size of the training set. However, unlike many

other domains that have abundant data for the training, in biometric identification espe-

cially latent fingerprint reconstruction, the data is scars and the annotation is laborious and

expensive. Hence, in the next Section, we consider several other approaches to address the

scarcity of the data in latent fingerprint reconstruction tasks.
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Figure 9.6: Examples of mixed fingerprints generated using our method. Each mixed image

is obtained by combing two clean fingerprints from the dataset.
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Figure 9.7: Examples of the fingerprint reconstructions on real latent fingerprints. For

each fingerprint image, the corresponding latent sample and the reconstructed sample are

demonstrated. Matching scores for the latent fingerprints and the reconstructed samples are

calculated using VeriFinger. All samples are from the IIIT-Delhi latent fingerprint database

[17].

Figure 9.8: Diagram of denoising autoencoder. The UNet autoencoder takes a noisy version

of the input fingerprint and tries to reconstruct the original input without noise.
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9.2.5 Addressing Scarcity of the Data

To address the scarcity of the data, we develop two approaches. In the first approach, we

constructed a second synthetic training set. We increased the number of clean source finger-

prints to 20,000 samples and reduced the number of random distortions to 50. In this way,

we enhanced the diversity of the dataset which has a direct impact on the generalization

of the training model. Furthermore, we designed a supervised mixing augmentation tech-

nique presented in Section 7 which augments the dataset by combining images in the given

dataset. Supervision for the mixing is obtained from the deep verifier network. In this way,

we increased the number of clean fingerprints which are used to generate the synthetic latent

fingerprints. Figure 9.6 provides several examples of our mixed fingerprints. The policy for

distorting fingerprints in this dataset consists of random combination of geometric (additive

noise, blurring, information drop, text overlay, dirt overlay, local contrast alteration, and

color manipulation) and photometric distortions (affine transformations, non-affine transfor-

mation mimicking the plasticity of finger tips) with random magnitudes. The final database

has one million distorted fingerprints and the corresponding ground truth fingerprints.

In the second approach, we used unsupervised pertaining to learn from the clean finger-

prints without any supervision, and then, we transferred the learned knowledge to a new

model for training on latent fingerprints. To this aim, we developed two models. In the first

model, the generator is trained as a denoising autoencoder, i.e.it takes noisy version of the

input fingerprints and tries to reconstruct the clean fingerprint without the noise. Figure

9.8 illustrates the diagram for this model. In the second model, we use contrastive learning

to train the encoder part of the generator. For this purpose, we build upon SimCLR [285]

approach in which the network tries to maximize the agreement between the representations

belonging to different views of the same input while minimizing the agreement of the rep-

resentations between two different inputs. Figure 9.9 presents the diagram for training this

model. After pre-training the model using either of these methods, we transfer their knowl-

edge to our target task, i.e.latent fingerprint reconstruction, by using the trained model as

the generator in our main model.
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Figure 9.9: Diagram of unsupervised pre-training using contrastive learning. The encoder

network learns to generate similar representations when the inputs are from the same finger-

print and generate dissimilar representations when the inputs are from different fingerprints.

9.3 Experiments

To evaluate the performance of the proposed latent fingerprint reconstruction technique, we

conducted three different experiments on publicly available datasets of latent fingerprints.

Unfortunately, NIST-SD27 [286] is no longer available, so the IIIT-Delhi Latent fingerprint

[287] and IIIT-Delhi Multi Sensor Latent Fingerprint (MOLF) [288] databases were used to

evaluate the proposed method. In all experiments, we used VeriFinger 7.0 SDK [246] and

the NIST Biometrics Image Software (NBIS) [289] to match the reconstructed samples. In

addition, to evaluate the role of the PIDI fusion which is developed to force the generator to

preserve the ID information, we developed a second model which is exactly the same as our

complete model but without the PIDI extractor module. Results for the complete model are

named ‘cGAN+PIDI’, and results for the second model are named ‘cGAN’.

9.3.1 Latent-to-sensor matching

For the first experiment, we used the IIIT-Delhi MOLF database. This database contains

19,200 fingerprint samples from 1000 classes (10 fingers of 100 individuals). For each ID, a
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Figure 9.10: CMC curves for the experiment of latent-to-sensor matching with NBIS. The re-

constructed ridge maps were matched to fingerprints captured by the Lumidigm (L), Secugen

(S) and Crossmatch (C) sensors.

Figure 9.11: CMC curves for the experiment of latent-to-sensor matching with VeriFinger.

The reconstructed ridge maps were matched to fingerprints captured by the Lumidigm (L),

Secugen (S) and Crossmatch (C) sensors.
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Figure 9.12: Improvement in CMC performance obtained using VeriFinger. Each bar shows

the increase in the average performance over three sensors in the latent-to-sensor matching

experiment.

set of latent fingerprint samples and the corresponding clean samples captured from three

different commercial fingerprint scanners (Crossmatch, Secugen, Lumidigm) are available. As

in the testing protocol established by Sankaran et al. [288], the first and second fingerprint

samples of each user captured by a sensor are selected as the gallery. The entire latent

fingerprint database consisting of 4,400 samples used as the probe set. CMC curves for this

experiment are shown in Figure 9.10 and Figure 9.11. Table 9.4 and Table 9.5 show rank-25

and rank-50 accuracy for the latent-to-sensor matching experiment.

9.3.2 Latent-to-latent matching

For the second experiment, we evaluated the proposed method on the IIIT-Delhi latent

fingerprint dataset which contains 1046 samples from all ten fingerprints recorded from 15

subjects. The experimental setup is defined the same as [287] by randomly choosing 395

images as gallery and 520 samples as probes. The CMC curves for this experiment is shown

in Figure 9.14. Rank-1, rank-10 and rank-25 results are also shown in Table 9.6.
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9.3.3 Improvement via Augmentation and Pre-training

In this part, we evaluate the improvement in the performance of the model obtained by

utilizing approaches in Section 9.2.5 that aim to address the scarcity of annotated data in

reconstructing latent fingerprints. This part consists of 5 experiments. In the first two

experiments, we initialize our best model (cGAN+PIDI) using the weights obtained by

pre-training approaches of denoising autoencoder and unsupervised contrastive learning,

referred to as the ‘pre-train 1’ and ‘pre-train 2’, respectively. Then we finetune the model

on our first synthetic dataset. In the third experiment, we train our cGAN+PIDI on the

second synthetic dataset which is constructed using the modified protocol combined with

supervised mixing augmentation, i.e., the dataset with over 1 million images. For the

last two experiment, we finetune our pre-tained models (experiments 2 and 3) using the

second dataset. Afterward, we reconstruct the missing ridge information using each of the

models and compare their matching performance in the latent-to-sensor paradigm using

VeriFinger. The final performance is obtained by averaging the matching performance over

the three sensors. To facilitate the interpretation, we plot the improvement obtained in each

experiment compared to the our best performing model presented in the previous sections.

Figure 9.12 illustrates the results for these evaluations.

We observe that both ‘pre-train 1’ and ‘pre-train 2’ improves the performance of re-

construction and result in an average improvement of 0.8% and 1.5%, respectively. This

suggests that unsupervised contrastive learning provide superior performance for the pre-

training task. Furthermore, we observe that using the second dataset which consists of more

than a million images constructed using supervised mixing provides notable improvement

over the same model trained on the first dataset. This further validates that our supervised

mixing augmentation is a powerful tool for augmenting the latent fingerprint datasets. In

addition, we observe that the combination of the pre-training with the extended dataset

further improves the performance of the reconstruction.
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Figure 9.13: Quality assessment of the reconstructed samples using NFIQ.

9.3.4 Quality of the reconstructed fingerprints

Using the NFIQ utility from NBIS, the quality of reconstructed samples is measured to

directly assess the performance of the reconstruction model. NFIQ assigns each fingerprint

a numerical score from 1 (high quality) to 5 (low quality). Quality scores are computed

for the reconstructed samples by our method and compared to score of both the raw latent

fingerprints and those enhanced by the generative model developed by Svoboda et al. [16].

Figure 9.13 shows the quality scores of the reconstructed samples, and Fig. 9.7 shows three

examples of the reconstructed fingerprints with different amount of distortion in the input

sample. We again observe that both pre-training and the mixing augmentation improves the

quality of the reconstructed ridge information.

9.4 Conclusion

Recognizing latent fingerprint samples is a challenging problem for identification systems

since a latent fingerprint image can be ‘noisy’ with a large portions of the fingerprint missing,

leading to a lower amount of ridge information compared to normal fingerprints. Following

the successful outcomes of exploiting deep generative models for the traditional image pro-

cessing problems, such as denoising, inpainting, and image to image translations, we propose
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Table 9.4: Latent-to-Sensor matching using NBIS on the MOLF database.

Accuracy (%)

Sensor Enhancement Rank-25 Rank-50

Lumidigm

Raw 3.52 6.06

Svoboda et al. [16] 16.71 23.03

cGAN 28.82 36.07

cGAN+PIDI 40.52 64.80

Secugen Raw 5.48 9.19

Svoboda et al. [16] 12.33 20.47

cGAN 23.68 32.16

cGAN+PIDI 37.67 60.58

CrossMatch Raw 6.01 10.64

Svoboda et al. [16] 14.39 22.73

cGAN 28.37 35.23

cGAN+PIDI 37.61 62.55

Table 9.5: Latent-to-Sensor matching using VeriFinger on the MOLF database.

Accuracy (%)

Sensor Enhancement Rank-25 Rank-50

Lumidigm

Raw 3.13 6.80

Svoboda et al. [16] 19.51 26.24

cGAN 30.47 39.38

cGAN+PIDI 42.04 70.89

Secugen

Raw 2.33 6.37

Svoboda et al. [16] 15.23 21.81

cGAN 26.44 34.32

cGAN+PIDI 37.14 66.11

CrossMatch

Raw 3.17 6.51

Svoboda et al. [16] 18.34 24.78

cGAN 28.30 37.31

cGAN+PIDI 41.27 68.61
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Figure 9.14: CMC curves for the experiment of latent-to-latent matching using NBIS and

VeriFinger.

Table 9.6: Rank-1, rank-10 and rank-25 results for the experiment of latent-to-latent match-

ing on the IIIT-Delhi latent database.

Accuracy (%)

Enhancement Rank-1 Rank-10 Rank-25

Raw +NBIS 52.31 58.90 63.42

[16] +NBIS 62.69 78.85 86.12

cGAN +NBIS 68.69 79.85 87.23

cGAN+PIDI+NBIS 77.16 86.04 92.10

Raw +VeriFinger 61.02 74.00 77.44

[16] +VeriFinger 71.04 82.56 88.28

cGAN +VeriFinger 74.92 86.51 91.11

cGAN+PIDI+VeriFinger 79.23 88.02 94.67
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a deep latent fingerprint reconstruction model based on conditional generative adversarial

networks. We applied two modifications to the cGAN formulation and network architec-

ture to adapt it for the task of latent fingerprint reconstruction. Generated ridge maps

using GAN models often contain random ridge patterns for severely distorted areas of the

input fingerprint. Main generator of our model is forced to generate three extra fingerprint

maps. One of these maps is the ridge segmentation map which shows the reliability of the

corresponding ridge map.

Opposed to the previous works in the literature, the proposed network directly translates

the input latent fingerprints to the clean binary ridge maps by predicting the missing ridge

information. Incorporating a discriminator network which measures both quality and PIDI of

the reconstructed samples simultaneously, along with the generation process in the training

phase, increases the quality of the generated samples directly without a need to define

multiple complex loss functions for minimizing the similarity between the generated ridge

patterns and the ground truth maps.

The proposed method successfully reconstructed latent fingerprints from the IIIT-Delhi

latent and IIIT-Delhi MOLF databases in different experimental setups of latent-to-sensor

and latent-to-latent matching. We achieved rank-50 accuracy of 70.89% for the latent-to-

sensor matching on the IIIT-Delhi MOLF database. For the latent-to-latent matching we

achieved rank-10 accuracy of 88.02%. Although the best results in both experiments were

obtained when VeriFinger was used as the matcher, NBIS matching algorithm also resulted

in high matching accuracy.

During our evaluations, we observed that the size and diversity of the training set has

a major impact on the performance of reconstruction. However, due to the scarcity of the

annotated latent fingerprints, it is not possible to gather a diverse dataset with abundant

data. Hence, we considered two approaches to address this shortcoming. In the first ap-

proach, we developed a mixing augmentation technique to combine ridge information of

several fingerprints to generate unseen training data and constructed a training set with

more than a million synthetic latent fingerprints. In the second approach, we used unsuper-

vised pre-training techniques of denoising autoencoder and contrastive learning to improve

the knowledge of the model for the task of latent fingerprint reconstruction. Harnessing these
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two approaches, our model achieved 1.5% and 2.6% improvement compared to our original

model using pre-training and the larger training set, respectively.

In addition, measuring the quality of reconstructed fingerprints using NFIQ shows that

the generated fingerprints are significantly enhanced compared to the raw latent samples.

For future work it is desired to directly extract minutiae from the latent input fingerprints.

On the other hand, increasing the size of the synthetic latent database by introducing more

complex distortions is another future direction for this work.
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Chapter 10

Conclusion and Future Work

10.1 Conclusion

In this dissertation, we analyzed adversarial machine learning and its applications in com-

puter vision and biometrics. In the first part of the dissertation, we investigated the suscep-

tibility of DNNs to adversarial manipulation of the geometry and frequency-domain charac-

teristics of the input examples. Then we proposed two methods for improving the robustness

of DNNs against adversarial manipulations. In the second part, we developed methods for

applications in computer vision and biometrics. Our conclusions on the analyses in each

part of the dissertation are provided in the following.

Geometric Adversarial Faces. We empirically demonstrated that the geometry of the

face is a major determinant for deep face recognition. According to this observation, we

developed two adversarial attacks, termed FLM and GFLM, that manipulate the geometry

of the face by tweaking landmark locations. FLM manipulates each landmark location inde-

pendently and ignores the semantic structure of the face. Therefore, we observed distortions

in the generated adversarial faces that increase the chance of detection by the human ob-

server or a defense method. To address this, GFLM manipulates the landmark locations in

a group fashion according to the semantic parts in the face. Our evaluations demonstrated

that deep face recognition models are critically susceptible to geometric manipulations of

the face. Furthermore, geometrically manipulated faces are closer to the manifold of natural

faces compared to the pixel-intensity based adversarial attacks. Consequently, this attack is



Ali Dabouei Chapter 10. Conclusion and Future Work 170

much more robust against conventional defense methods, especially the ones that built upon

denoising or manifold learning.

Smooth Adversarial Perturbations. A major limitation of the conventional adversarial

perturbations is their high-frequency pattern. This reduces the effectiveness of the pertur-

bations in several ways. First, defenses can notably reduce the performance of the attack by

performing denoising on the input examples before feeding them to the prediction model.

Second, these perturbations are less realizable for real-world applications since printing de-

vices often have a low-pass response. Third, they are less transferable to other models due

to their sensitivity to simple transformations such as translation and rotation.

We developed an adversarial attack for crafting smooth adversarial perturbations. The

proposed method is independent of the type of the smoothing kernel and the intensity of the

smoothing. Through extensive evaluations, we observed that it is possible to craft smooth

adversarial perturbations which alleviate the shortcomings of the common high-frequency

perturbations. Furthermore, our analyses suggest that crafting smoother adversarial pertur-

bations is more difficult than the conventional perturbations because DNNs intrinsically rely

more on high-frequency patterns in the input examples.

Adversarial Robustness of Ensemble Models. Ensemble models have demonstrated

improved performance compared to single models. We investigated the possibility of us-

ing ensemble predictions to improve the robustness against adversarial examples. Inspired

by geometric theoretical analyses, we introduced a practical scenario of first-order defen-

sive interactions between members of an ensemble. We both theoretically and empirically

demonstrated that imposing these interactions significantly improves the robustness of en-

sembles. We proposed the joint gradient phase and magnitude regularization (GPMR) as an

empirical tool to regularize the interaction between members and equalize their role in the

ensemble decision. Furthermore, we concluded that the superior performance of GPMR is

due to its capability to increase the effective number of members contributing to the robust-

ness. We demonstrated that, unlike previous heuristic methods that diversify the predictions

to improve the robustness, the gradients of the predictions must be diversified to achieve

theoretically grounded robustness.

Revisiting Outer Optimization in Adversarial Training. Adversarial training meth-
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ods generally adopt conventional momentum stochastic gradient descent (MSGD) for outer

optimization. We demonstrated that the statistical characteristics of the gradients in adver-

sarial training are fundamentally different than those in natural training. Hence, the common

MSGD cannot provide the expected performance in adversarial training. To address this is-

sue, we proposed a new optimization method which is more suitable for outer optimization

in adversarial training. In particular, our proposed optimizer is less sensitive to the chaotic

behavior of gradients. Through extensive evaluations, we validated the effectiveness of the

proposed method for several benchmark approaches of adversarial training. Furthermore,

our results suggest that regularizing the gradients in adversarial training alleviates its major

shortcomings including robust overfitting and high sensitivity to hyperparameter setting.

Boosting Deep Face Recognition via Disentangling Appearance and Geometry.

We proposed a novel approach for disentangling deep representations for the two major

characteristics of the faces, appearance and geometry. The core idea of the was to construct

geometrically identical faces by incorporating spatial transformations and exploiting their

relative similarities to learn disentangled embedding representations. We demonstrated that

the disentanglement provides two benefits for the training procedure of deep face recognition.

First, it improves the generalization and training accuracy by geometrically augmenting the

training set. Second, it enhances the learned knowledge of the early and intermediate layers

of the deep model by enforcing them to satisfy the relative properties of appearance and

geometry representations in the corresponding embedding spaces. We demonstrated that

the knowledge learned through the disentangling approach can also be used to improve the

performance of other face-related tasks, such as attribute prediction.

Supervised Mixing Data Augmentation. Mixing augmentation is a powerful approach

to augment the training set and improve the generalization of the model at test time. How-

ever, the current mixing methods combine images in a blind way. This reduces the effective-

ness of the mixing since salient features in input images can be deteriorated by averaging

or overlapping with trivial features in other images. To address this issue, we proposed a

supervised mixing augmentation method that combines input images based on their salient

regions. The objective function of the proposed methods forces the mixed images to reside

close to the manifold of natural images and also contain salient features of input images.
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Through extensive evaluations on two tasks of object recognition and knowledge distillation,

we demonstrate that the mixed images using the proposed approach notably improve the

generalization of the model.

Fingerprint Distortion Rectification. We proposed a novel approach to estimate dis-

tortion parameters from raw fingerprint images without computing the ridge frequency and

orientation maps. A deep convolutional neural network is utilized to estimate distortion

parameters of input samples. We successfully rectified distorted samples from the Tsinghua

DF database and FVC2004 DB1 using the estimated distortion template. A comprehensive

database of distorted samples was generated in order to train our deep neural network. The

experimental results on several databases showed that the proposed model can estimate the

non-linear distortions of samples more accurately. Comparing to the previous works, our

method reduced the rectification time significantly by embedding the training samples in

the network parameters.

Latent Fingerprint Enhancement. Following the successful outcomes of utilizing deep

generative models for the traditional image processing problems, such as denoising, inpaint-

ing, and image to image translations, we propose a deep latent fingerprint reconstruction

model based on conditional generative adversarial networks. We applied two modifications

to the cGAN formulation and network architecture to adapt it for the task of latent fin-

gerprint reconstruction. In the first modification, we forced the main generator to generate

three extra fingerprint maps to preserve the ridge structure of the input latent fingerprints.

In the second modification, we developed a novel approach for preserving the ID information

of latent fingerprints.

The proposed method successfully reconstructed latent fingerprints from the IIIT-Delhi

latent and IIIT-Delhi MOLF databases in different experimental setups of latent-to-sensor

and latent-to-latent matching. We achieved rank-50 accuracy of 70.89% for the latent-to-

sensor matching on the IIIT-Delhi MOLF database. For the latent-to-latent matching we

achieved rank-10 accuracy of 88.02%.

During our evaluations, we observed that the size and diversity of the training set has

a major impact on the performance of reconstruction. However, due to the scarcity of the

annotated latent fingerprints, it is not possible to gather a diverse dataset with abundant
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latent fingerprints. Hence, we considered two approaches to address this shortcoming. In the

first approach, we developed a mixing augmentation technique to combine ridge information

of several fingerprints to generate unseen training data and constructed a training set with

more than a million synthetic latent fingerprints. In the second approach, we used unsuper-

vised pre-training techniques of denoising autoencoder and contrastive learning to improve

the knowledge of the model for the task of latent fingerprint reconstruction. Harnessing these

two approaches, our model achieved 1.5% and 2.6% improvement compared to our original

model using pre-training and the larger training set, respectively.

10.2 Future Work

In this section, we discuss different aspects of the current methods and applications developed

in this dissertation that can be improved in the future or incorporated to other applications

to enhance their performance.

Geometric Adversarial Faces. As demonstrated in Chapter 6, manipulating the geom-

etry of the faces is a powerful approach for augmentation. Adversarial manipulation can

provide the most challenging geometric augmentation since it directly seeks to maximize the

identification loss. Hence, one major direction for the future research in this area is to adopt

adversarial training on geometrically manipulated faces. This can be formalized by designing

an adversarial game between the deep face recognition model and the adversary who aims

to alter the face geometry to change the identity of the face. Geometric adversarial faces

can also be used to augment the detests in other applications of face recognition such as face

alignment and landmark detection, face morphing, face generation tasks using GANs, etc.

Smooth Adversarial Perturbations. In this work, we analyzed smooth adversarial per-

turbations for natural images. Another possible work in this direction can be to adopt the

smooth perturbation for other tasks with different types of input signals such as voice recog-

nition or depth estimation. Especially in voice recognition crafting smooth perturbations

can be desirable for adversaries since the perturbation signal can be transmitted from an ex-

ternal source and there is no need to alter the main source of the signal. Furthermore, since

natural phenomena such as lighting, shadow, and occlusions often have smooth frequency-
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domain characteristics, analyzing the robustness of machine learning based predictions to

such effects can be beneficial for applications in the wild such as autonomous vehicles.

Adversarial Robustness of Ensemble Models. The current research on the robustness

of ensemble models lacks an adversarial attack tailored specifically for the ensemble models.

Hence, one future work in this direction can be to develop an adversarial attack for ensemble

models. This attack can be generally built upon the well-known attack for single models.

However, considering the ensemble predictions and local susceptibility of the members of the

ensemble would be an interesting approach to focus on. Furthermore, adopting adversarial

training as an approach for diversifying the gradients in the ensemble is another possible

task for future investigation.

Outer Optimization in Adversarial Training. In this work, we proposed an approach

for reducing the sensitivity of the optimizer to the chaotic behavior of gradients in adver-

sarial training. Analyzing other approaches to control and regularized the gradients would

be highly interesting. For instance, given supervision on the characteristics of the gradi-

ents, the inner optimizer can dynamically craft perturbations that cause limited overshoot

in the statistics of the gradients. Furthermore, improving the computational efficiency of

the proposed method is an important challenge that calls for fundamental research in this

direction.

Disentangling Appearance and Geometry. In the current work, we constructed geo-

metrically identical faces to disentangle the representations of the face. This disentanglement

can be further improved by incorporating adversarial manipulations of the face geometry.

Hence, while the model learns to disentangle the representations, it can simultaneously learn

to discriminate between different manipulations of the face according to their impact on the

recognition performance. Furthermore, another problem for future work can be to adopt

the current approach to the general case of object recognition. To this aim, a discrimina-

tive model can provide the supervision to pair similar objects during the training and then

transform them geometrically to construct the geometrically identical pairs for the disentan-

glement.

Mixing Augmentation. The current mixing augmentation method is evaluated in two

tasks of object recognition and knowledge distillation. As future work, one can adopt the



Ali Dabouei Chapter 10. Conclusion and Future Work 175

method to other computer vision and learning tasks such as object detection, semantic seg-

mentation, key-point detection, un/semi-supervised learning, etc. Considerations according

to the specifications of the underlying task can perhaps help improve the performance of the

mixing augmentation. Furthermore, adopting the current approach for 3D tasks would be

highly desirable since the size of 3D datasets is often limited compared to the huge size of

the associated learning models.

Distortion Rectification. Since the estimation time of the proposed method is indepen-

dent of the training size, it is possible to increase the number of principal components which

are used to generate the synthetic distorted database for the future works. In this way, the

proposed model can rectify distortions more accurately. In addition, by increasing the prin-

cipal components of the distortion, the diversity of the synthetic dataset will be increased

which eventually can lead to an improved performance.

Latent Fingerprint Enhancement. In our evaluations, we observed that the diversity of

the training set can significantly contribute to the final reconstruction performance. How-

ever, due to the scarcity of annotated latent fingerprints, we generated synthetic latent

fingerprints for the training of the model. The synthetic data is constructed by deliberately

distorting clean fingerprints. A major direction for the future work can be to generate latent

fingerprints using another generative adversarial network. In this way, the reconstruction

model can be trained using latent fingerprints which may not exist in the real-world, but

provide invaluable information regarding the distribution of ridge patterns in the real-world

fingerprints. In addition, we observed that it is not possible to rectify the geometric dis-

tortion of latent fingerprints since the main generator has a UNet architecture. developing

non-UNet architecture to address the shortcoming of UNet in correcting geometric distortion

can be another prominent direction of research for the future work.
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