44 research outputs found

    Control of Proton Exchange Membrane Fuel Cell System

    Get PDF
    265 p.In the era of sustainable development, proton exchange membrane (PEM) fuel cell technology has shown significant potential as a renewable energy source. This thesis focuses on improving the performance of the PEM fuel cell system through the use of appropriate algorithms for controlling the power interface. The main objective is to find an effective and optimal algorithm or control law for keeping the stack operating at an adequate power point. Add to this, it is intended to apply the artificial intelligence approach for studying the effect of temperature and humidity on the stack performance. The main points addressed in this study are : modeling of a PEM fuel cell system, studying the effect of temperature and humidity on the PEM fuel cell stack, studying the most common used power converters in renewable energy systems, studying the most common algorithms applied on fuel cell systems, design and implementation of a new MPPT control method for the PEM fuel cell system

    MODELING AND CONTROL OF DIRECT-CONVERSION HYBRID SWITCHED-CAPACITOR DC-DC CONVERTERS

    Get PDF
    Efficient power delivery is increasingly important in modern computing, communications, consumer and other electronic systems, due to the high power demand and thermal concerns accompanied by performance advancements and tight packaging. In pursuit of high efficiency, small physical volume, and flexible regulation, hybrid switched-capacitor topologies have emerged as promising candidates for such applications. By incorporating both capacitors and inductors as energy storage elements, hybrid topologies achieve high power density while still maintaining soft charging and efficient regulation characteristics. However, challenges exist in the hybrid approach. In terms of reliability, each flying capacitor should be maintained at a nominal `balanced\u27 voltage for robust operation (especially during transients and startup), complicating the control system design. In terms of implementation, switching devices in hybrid converters often need complex gate driving circuits which add cost, area, and power consumption. This dissertation explores techniques that help to mitigate the aforementioned challenges. A discrete-time state space model is derived by treating the hybrid converter as two subsystems, the switched-capacitor stage and the output filter stage. This model is then used to design an estimator that extracts all flying capacitor voltages from the measurement of a single node. The controllability and observability of the switched-capacitor stage reveal the fundamental cause of imbalance at certain conversion ratios. A new switching sequence, the modified phase-shifted pulse width modulation, is developed to enable natural balance in originally imbalanced scenarios. Based on the model, a novel control algorithm, constant switch stress control, is proposed to achieve both output voltage regulation and active balance with fast dynamics. Finally, the design technique and test result of an integrated hybrid switched-capacitor converter are reported. A proposed gate driving strategy eliminates the need for external driving supplies and reduces the bootstrap capacitor area. On-chip mixed signal control ensures fast balancing dynamics and makes hard startup tolerable. This prototype achieves 96.9\% peak efficiency at 5V:1.2V conversion and a startup time of 12μs\mu s, which is over 100 times faster than the closest prior art. With the modeling, control, and design techniques introduced in this dissertation, the application of hybrid switched-capacitor converters may be extended to scenarios that were previously challenging for them, allowing enhanced performance compared to using traditional topologies. For problems that may require future attention, this dissertation also points to possible directions for further improvements

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Applications of Power Electronics:Volume 1

    Get PDF

    Adaptive Boundary Control Using the Natural Switching Surfaces for Flyback Converters

    Get PDF
    The derivation and implementation of the natural switching surfaces (NSS) considering certain parametric uncertainties for a flyback converter operating in the boundary conduction mode (BCM) is the main focus of this paper. The NSS with nominal parameters presents many benefits for the control of nonlinear systems; for example, fast transient response under load-changing conditions. However, the performance worsens considerably when the converter actual parameters are different from the ones used in the design process. Therefore, a novel control strategy for NSS considering the effects of parameter uncertainties is proposed. This control law can estimate and adapt the control trajectories in a minimum number of switching cycles to obtain excellent performances even under extreme parameter uncertainties. The analytical derivation of the proposed adaptive switching surfaces is presented together with simulations and experimental results showing adequate performance under different tests, including comparisons with a standard PI controller

    Development and Implementation of Some Controllers for Performance Enhancement and Effective Utilization of Induction Motor Drive

    Get PDF
    The technological development in the field of power electronics and DSP technology is rapidly changing the aspect of drive technology. Implementations of advanced control strategies like field oriented control, linearization control, etc. to AC drives with variable voltage, and variable frequency source is possible because of the advent of high modulating frequency PWM inverters. The modeling complexity in the drive system and the subsequent requirement for modern control algorithms are being easily taken care by high computational power, low-cost DSP controllers. The present work is directed to study, design, development, and implementation of various controllers and their comparative evaluations to identify the proper controller for high-performance induction motor (IM) drives. The dynamic modeling for decoupling control of IM is developed by making the flux and torque decoupled. The simulation is carried out in the stationary reference frame with linearized control based on state-space linearization technique. Further, comprehensive and systematic design procedures are derived to tune the PI controllers for both electrical and mechanical subsystems. However, the PI-controller performance is not satisfactory under various disturbances and system uncertainties. Also, precise mathematical model, gain values, and continuous tuning are required for the controller design to obtain high performance. Thus, to overcome these drawbacks, an adapted control strategy based on Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is developed and implemented in real-time to validate different control strategies. The superiority of the proposed controller is analyzed and is contrasted with the conventional PI controller-based linearized IM drive. The simplified neuro-fuzzy control (NFC) integrates the concept of fuzzy logic and neural network structure like conventional NFC, but it has the advantages of simplicity and improved computational efficiency over conventional NFC as the single input introduced here is an error instead of two inputs error and change in error as in conventional NFC. This structure makes the proposed NFC robust and simple as compared to conventional NFC and thus, can be easily applied to real-time industrial applications. The proposed system incorporated with different control methods is also validated with extensive experimental results using DSP2812. The effectiveness of the proposed method using feedback linearization of IM drive is investigated in simulation as well as in experiment with different working modes. It is evident from the comparative results that the system performance is not deteriorated using proposed simplified NFC as compared to the conventional NFC, rather it shows superior performance over PI-controller-based drive. A hybrid fuel cell (FC) supply system to deliver the power demanded by the feedback linearization (FBL) based IM drive is designed and implemented. The modified simple hybrid neuro-fuzzy sliding-mode control (NFSMC) incorporated with the intuitive FBL substantially reduces torque chattering and improves speed response, giving optimal drive performance under system uncertainties and disturbances. This novel technique also has the benefit of reduced computational burden over conventional NFSMC and thus, suitable for real-time industrial applications. The parameters of the modified NFC is tuned by an adaptive mechanism based on sliding-mode control (SMC). A FC stack with a dc/dc boost converter is considered here as a separate external source during interruption of main supply for maintaining the supply to the motor drive control through the inverter, thereby reducing the burden and average rating of the inverter. A rechargeable battery used as an energy storage supplements the FC during different operating conditions of the drive system. The effectiveness of the proposed method using FC-based linearized IM drive is investigated in simulation, and the efficacy of the proposed controller is validated in real-time. It is evident from the results that the system provides optimal dynamic performance in terms of ripples, overshoot, and settling time responses and is robust in terms of parameters variation and external load

    Investigations on Direct Torque and Flux Control of Speed Sensorless Induction Motor Drive

    Get PDF
    The Induction motors (IM) are used worldwide as the workhorse in most of the industrial applications due to their simplicity, high performance, robustness and capability of operating in hazardous as well as extreme environmental conditions. However, the speed control of IM is complex as compared to the DC motor due to the presence of coupling between torque and flux producing components. The speed of the IM can be controlled using scalar control and vector control techniques. The most commonly used technique for speed control of IM is scalar control method. In this method, only the magnitude and frequency of the stator voltage or current is regulated. This method is easy to implement, but suffers from the poor dynamic response. Therefore, the vector control or field oriented control (FOC) is used for IM drives to achieve improved dynamic performance. In this method, the IM is operated like a fully compensated and separately excited DC motor. However, it requires more coordinate transformations, current controllers and modulation schemes. In order to get quick dynamic performance, direct torque and flux controlled (DTFC) IM drive is used. The DTFC is achieved by direct and independent control of flux linkages and electromagnetic torque through the selection of optimal inverter switching which gives fast torque and flux response without the use of current controllers, more coordinate transformations and modulation schemes. Many industries have marked various forms of IM drives using DTFC since 1980. The linear fixed-gain proportional-integral (PI) based speed controller is used in DTFC of an IM drive (IMD) under various operating modes. However, The PI controller (PIC) requires proper and accurate gain values to get high performance. The PIC gain values are tuned for a specific operating point and which may not be able to perform satisfactorily when the load torque and operating point changes. Therefore, the PIC is replaced by Type-1 fuzzy logic controller (T1FLC) to improve the dynamic performance over a wide speed range and also load torque disturbance rejections. The T1FLC is simple, easy to implement and effectively deals with the nonlinear control system without requiring complex mathematical equations using simple logical rules, which are decided by the expert. In order to further improve the controller performance, the T1FLC is replaced by Type-2 fuzzy logic controller (T2FLC). The T2FLC effectively handles the large footprint of uncertainties compared to the T1FLC due to the availability of three-dimensional control with type-reduction technique (i.e. Type-2 fuzzy sets and Type-2 reducer set) in the defuzzification process, whereas the T1FLC consists only a Type-1 fuzzy sets and single membership function. The training data for T1FLC and T2FLC is selected based on the PIC scheme

    Discrete time current regulation of grid connected converters with LCL filters

    Get PDF
    Two important components of a grid connected power electronic converter are the line filter and the closed loop current regulator. Together they are largely responsible for system stability, power flow and power quality into the grid. The LCL filter is a smaller and cheaper line filter alternative because of its third order filtering capability. However the LCL filter has a resonance that must be appropriately damped using either passive or active techniques, generating more losses or adding complexity to the controller respectively. It is now generally accepted that the PWM transport delay due to discrete/digital implementations is the main limiting factor for controller bandwidth in L filtered systems. However, despite the large body of literature for the LCL filter, there is still only limited consensus regarding the implications of PWM transport delay on the current regulator and active damping controller for this type of filter. This thesis applies discrete time models to these systems to overcome these perceived limitations and hence develop the optimal controllers. This knowledge is then used to enhance the current regulator to overcome further practical problems. The first part of this thesis focuses on the development of discrete time current regulation for a grid connected inverter. The benefits of discrete time modelling and control for current regulation are demonstrated by using a discrete state feedback controller for an L filter system. A precise discrete time model of the LCL filter system is then developed to exactly identify the frequency region where active damping is mandatory, and the high frequency region where active damping is not required. The critical frequency, which separates these two regions, is identified as a fraction of the sampling frequency, demonstrating the controller's dependence on PWM transport delay. Controllers and gain selection methods are developed and verified for each region. A generalised approach for analysis of the LCL filtered system is then developed so that all forms can be evaluated on a precisely comparable basis. Using this generalised approach the particular advantages and disadvantages of each control method are readily identified. The second part of this thesis looks at the impact of two practical issues for current regulation of LCL filtered grid connected converters. It firstly identifies that practical converters generally do not match their ideal output current quality expectations. The reasons for this distortion are explained and harmonic compensators are then proposed as an effective solution to overcome it. Secondly the implications of a virtual neutral common mode EMI filter on the current regulator are investigated. A virtual neutral filter design is proposed that utilises the primary LCL filter components. The active damping current regulator is then enhanced to avoid interference from the additional current path and to actively damp the common mode resonance. All theoretical work is validated by extensive simulation and experimental results
    corecore