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ABSTRACT

The derivation and implementation of the natural switching surfaces (NSS) considering certain
parametric uncertainties for a flyback converter operating in the boundary conduction mode
(BCM) is the main focus of this dissertation. The NSS with nominal parameters presents many
benefits for the control of nonlinear systems; for example, fast transient response under load-
changing conditions. However, the performance worsens considerably when the converter actual
parameters are different from the ones used in the design process. Therefore, a novel control
strategy for NSS considering the effects of parameter uncertainties is proposed. This control law
can estimate and adapt the control trajectories in a minimum number of switching cycles to obtain
excellent performances even under extreme parameter uncertainties. The analytical derivation of
the proposed adaptive switching surfaces is presented together with simulations and experimental
results showing adequate performance under different tests, including comparisons with a standard

PI controller.
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CHAPTER 1

Introduction and Contributions

1.1 FLYBACK CONVERTER

The flyback converter is one of the most popular isolated topologies for systems rated up to
200 W because of its simplicity, low cost, and wide voltage ratio [1]. Flyback converters are used
in many applications like AC/DC power supplies for LED loads and battery chargers[2]-[4],
photovoltaic microinverters [5], [6], and traditional DC/DC converters used for isolated switching
power supplies [7]. A flyback converter consists of a transistor Q, a flyback transformer 7 with a
magnetizing inductance L, a diode D, and an output capacitor Co as displayed in Fig. 1.1, where
the load is being modeled as a constant current source 7, [8].

When Q turns ON, the input voltage source Vi» is connected across Lm, so the magnetizing
current im increases linearly. Since the primary and secondary windings of the transformer are
wounded in opposite directions, the positive voltage Vi across Ln will be reflected to the anode of
diode D as a negative voltage, reverse biasing D as noted in Fig. 1.1(a). During the ON-period, the
load is supplied exclusively by Co. When Q turns OFF, the voltage across L reverses its polarity
forward biasing D. During this period, the energy stored in L» during the ON-period is released to
charge the output capacitor C, and supply the load needs.

Flyback converters can operate in three possible modes of operation: continuous conduction
mode (CCM), boundary conduction mode (BCM), and discontinuous conduction mode (DCM).
Those modes of operation are defined based on the state of the magnetizing current i»n. When the
magnetizing current is always greater than zero, the flyback converter is operating in CCM as
illustrated in Fig. 1.2 (a). Then, the flyback converter is operating in BCM as shown in Fig. 1.2 (b)

when the magnetizing current reaches zero and immediately becomes positive. Lastly, when the



(b)

Fig. 1. 1. Flyback converter equivalent circuits when: (a) Q is ON, and (b) Q is OFF.

magnetizing current becomes zero for a measurable period of time, the flyback converter is
operating in DCM as seen in Fig. 1.2 (c).

Fig. 1.3 shows the per-unit peak input current /inpr and the per-unit RMS value of the input
capacitor current /cinrms for CCM and DCM modes of operation as function of a normalized
switching frequency fsw/feririca. The critical switching frequency feriricar 1s that one where a given
flyback converter with certain parameters (Lm, Np/Ns, and Co) operates under BCM. The value of

feriicat can be calculated as [9]:
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Fig. 1. 2. Theoretical waveforms of a flyback converter operating in: (a) continuous
(CCM), (b) boundary (BCM), and discontinuous conduction (DCM) modes.
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Fig. 1. 3. (a) Per-unit peak input current Zinpk (p.u.) as function of the switching frequency fsw,
and (b) per-unit RMS input capacitor current Icin,zms (p.u.) as function of fow.

where, D is the duty cycle of the converter defined as the ratio between the ON-period 7o~ and the
switching period Tsw.

If fsw 1s greater than ferisicar the converter will operate in CCM, and if fiw is lower than ferisicar, the
converter will operate in DCM. With reference to Fig. 1.3, the peak and RMS currents for the
primary side devices decrease when the switching frequency increases, while for switching
frequencies lower than feriical the peak and RMS values increase. Similarly, Fig. 1.4 shows that for
operation in DCM, the diode requires to be rated for a higher level than for CCM. Also, the output

capacitor is subjected to a higher current when the converter operates under DCM.
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Fig. 1. 5. (a) Per-unit total flyback converter losses Piosses(p.u) as function of fiw.

Flyback converters operating in BCM are broadly used for high-frequency applications since

zero-current turn-ON for the switching device and zero-current turn-OFF for the diode are achieved



while keeping conduction losses and current stresses low in comparison with operation in the
discontinuous conduction mode (DCM) [3], [9]. As illustrated in Fig. 1.5, total converter power
losses (switching and conduction losses) are minimized when the switching frequency is close to
the critical frequency. Also, soft-switching transitions during BCM operation reduce
electromagnetic interference (EMI) and lead to lower power losses due to Joule effect than
operation under continuous conduction mode (CCM), simplifying the snubber design, EMI
filtering and thermal management [10]-[11]. Also, BCM operation leads to less voltage ripples

than under DCM operation.

1.2 BOUNDARY CONTROL

A flyback converter is a non-minimum phase system due to the presence of a right-half plane
zero in the control-to-output transfer function [12]. Using linear compensators to control such a
system requires a low crossover frequency to guarantee stability which implies a slow control
response [13]. Unfortunately, linear compensators are unsuccessful when there are large load
variations since the model is only valid around an equilibrium point [14]; therefore, nonlinear
controllers are used to improve the control dynamics.

By assuming that the magnetizing inductance current i» and output voltage v, are the converter
variables of interest, the state trajectories are the curves in the plane (im, vo) that a given flyback
converter follows from a certain initial condition when the transistor Q turns ON and OFF. Fig. 1.6
shows the flyback state trajectories with the ON-trajectories being straight lines and the OFF-
trajectories circles. The load line in Fig. 1.6 represents all the possible steady state points where
the converter can operate.

Variable structure control (VSC) is a discontinuous nonlinear control strategy whose structure

changes depending on the location of the state trajectories with respect to a designed switching
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Fig. 1. 6. Flyback state trajectories and load line when the output current is constant.

surface (SS) [14]-[18]. Boundary control (BC) and sliding mode control (SMC) are VSC
examples. Under SMC, the system remains close to the SS after reaching it. However, the SSs in
BC may not be related with sliding regimes [14].

BC is a large-signal geometric control method that does not distinguish between start-up,
transients and steady-state operation [12]-[16]. The intersection of the system trajectories with the
selected SS defines whether the switch turns ON or OFF. First-order SSs are commonly used in BC
because they are robust and simple to implement [18], [19]. However, the transient dynamics may
require several switching cycles before reaching a steady state after start-up or transient conditions
[20], [21]. As an example, Fig. 1.7 presents the transient response of a flyback converter when two
first-order SS are used. When the transistor Q is ON, and the OFF-first-order SS is intersected, Q
turns OFF. While Q is OFF and the ON-first-order SS is intersected, O turns ON. Both ON and OFF-
first-order SS contain the desired target operating point TP = (Vzpa, 0). As seen in Fig. 1.7, multiple
ON and OFF switching transitions are required to get to TP.

Furthermore, the optimal slope for the first-order SS is dependent on the load and supply

characteristics which reduce the overall system performance [12]. An ideal SS is the one that
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Fig. 1. 7. Flyback converter start-up response when first-order switching surfaces are used for
the control.

guides the system to the desired steady state with the minimum number of switching actions [16].
The ideal SS is derived from the intersection of the system OFF-trajectory that contains the

operating point with the ON-trajectory that leaves the operating point [14]-[16].

1.3 NATURAL SWITCHING SURFACES (NSS)

Multiple SSs have been proposed to estimate the ideal trajectories or natural response of
converters. For example, second-order SSs derived from capacitor charge-balance equations with
low ripple approximation have been proposed for buck converters operating under CCM [20] and
DCM [22]. Also, a fixed-frequency second-order SS using a variable-width hysteresis loop was
presented in [23]. A similar methodology was applied to single-phase [24]—[25] and three-phase
inverters [26]. Other types of second-order SSs derived using the state-energy plane were proposed

for single- and dual-output boost converters [12], [27]. Higher-order switching surfaces for



inverters were derived in [21] and [28], where logarithmic SSs were used to approximate the
system trajectories. Another method to approximate the ideal trajectories was derived from the
converter differential equations assuming a constant-current load [29]. Using those SSs called the
Natural Switching Surfaces (NSS) warrants no output voltage overshoot for a step load variation
under nominal design conditions, excellent response for any change of the load resistance and
much easier trajectory derivation because of the absence of the exponential decay, spirals or
hyperbolic terms related to the presence of the load resistance in the differential equations [15].
This method was first presented in [29] for buck converters and then extended to the inverters [30],
boost [13], [31], buck-boost [32], dual active bridge [33], full bridge [34] and flyback converters

[8], [35], [36].

1.4 ISSUES OF BOUNDARY CONTROL

The main drawback of BC is the dependence of the switching surfaces on the converter
parameters [14], [16], which are exposed to changes due to component tolerances, aging effects,
humidity and temperature [25]-[26]. Parameter variations, such as discrepancies between the
design output capacitor value and the real one, impact on the steady-state performance [21]-[22]
and lead to stability issues because of changes on the shape of the switching surfaces [31] and
converter operating modes [12]. This dissertation presents a solution to those issues by deriving
the NSSs and the control law for a flyback converter operating in BCM and considering parameter
uncertainties. The proposed control law can provide a very precise estimation of the parameter
variations in only a single switching action and then continuously adapt the control switching
surfaces before a new switching action occurs. Therefore, the converter can reach the steady-state
operation in a single switching action for sudden load changes even under extreme converter

parameter variations.



Another problem of the BC is the extensive number of current and voltage sensors needed to
control the converter. For the case of the flyback converter, two voltage (vi» and vo) and three
current sensors (ip, is, and io) are needed to provide a satisfactory control. Three of those sensors
require galvanic insulation, which increase cost and complexity. This dissertation proposes a novel
sensorless natural switching surface control that allows to eliminate some of the sensors and still

estimate converter parameter uncertainties to provide a satisfactory control response.

1.5 DISSERTATION ORGANIZATION

This dissertation is organized as follows. Chapter 2 presents the derivation of the NSS for a
flyback converter where the target point is carefully selected to operate in BCM. Multiple start-up
algorithms are proposed, and their performances are compared. Chapter 3 describes the derivation
of the NSS for a flyback converter with parameter uncertainties. An adaptive control law is
proposed and validated through simulations. Chapter 4 introduces an extensive study about the
influence of parasitic elements, such as diode voltage drop, in the previously derived natural
switching surfaces. Also, the effect of the parameter uncertainties on the steady-state and transient
characteristics of the converter are analyzed. Then, an adaptive BCM NSS control law is proposed,
simulated and tested experimentally. Also, the proposed NSS control is compared with a linear
compensator. Chapter 5 presents a sensorless approach for the adaptive BCM NSS control law that
eliminate the need of sensing some of variables in the secondary side of the transformer. Finally,

Chapter 6 presents the conclusions and recommendations for future work.
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CHAPTER 2

Control of a Flyback Converter Operating in BCM Using the Natural Switching Surface

L. A. Garcia-Rodriguez, E. Williams, J. C. Balda, J. Gonzalez-Llorente and H. Chiacchiarini,
"Control of a flyback converter operating in BCM using the natural switching surface," 2015 IEEE
6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG),

Aachen, 2015, pp. 1-8.

2.1 ABSTRACT

The derivation and implementation of natural switching surface (NSS) control for a flyback
converter operating in boundary conduction mode (BCM) is the main focus of this paper. The
flyback converter has been wildly utilized in the area of power electronics and BCM operation has
been proven to be successful in attaining high efficiencies. The NSS presents many benefits for
the control of non-linear systems such as fast transient response under load-changing conditions.
The NSS control technique has previously been implemented in non-isolated (e.g., buck and boost
converters) and isolated (dual active bridge) converter topologies demonstrating excellent
performances. The analytical derivation of the proposed switching surfaces is presented and
validated through simulations using MATLAB/Simulink™ and a 65W prototype was
experimentally tested.

Keywords—Flyback converter, non-linear control, boundary control, natural switching

surface, boundary conduction mode.
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2.2 INTRODUCTION

A flyback converter is commonly used in systems rated 20 W to 200 W due to its low part
count, electrical isolation and wide voltage ratio [1]. In addition to the traditional applications in
computers and TV sets, the flyback converter is utilized in photovoltaic microinverters where it
operates over a wide range of operating conditions [2]-[4]. Linear compensators are unsuccessful
for large load variations; therefore, nonlinear controllers, such as sliding mode controllers, are
suitable for these converters [S]-[6].

In recent years, the transient response of typical boundary schemes in power converters has
been improved by using the natural switching surfaces (NSS) [7], [8]. The NSS are the natural
trajectories of states for each switching position of the converter [9]. The NSS has been studied
for the basic non-isolated topologies [7], [8] and for isolated topologies like the dual active bridge
[10]. In this work, the NSS and its control law are derived for any generic flyback converter. It is
also proven that it is possible to design the converter to work in the boundary conduction mode
(BCM) for any loading condition by properly selecting the target point of the trajectories.

The organization of this paper is as follows: the normalized system trajectories are derived in
section 2.3; the selection of the operating conditions and target points are developed in section 2.4,
the presented control laws are presented in section 2.5. Finally, the simulation and experimental
results are given in section 2.6 and 2.7, and the conclusions and future work are provided in section

2.8.

2.3 NORMALIZED SYSTEM TRAJECTORIES

The system shown in Fig. 2.1 is a simplified version of a flyback converter which consists of
an ideal transistor O, a diode D, a flyback transformer, as well as input and output capacitors. The

load is represented by a current source which states the worst-case scenario in terms of stability [8].
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Fig. 2. 1. Flyback converter circuit.

The normalization of the system consists of a scale change of its differential equations which
enables a general solution. The presence of a transformer makes it necessary to refer the converter
parameters to one side; the secondary side is selected in this case. The normalization is performed
using the output voltage as the reference voltage V- = Vo, the characteristic impedance of the

combined magnetizing inductance referred to the secondary side and the output capacitor,
Z,=(1/n)\JL,/C, as the reference impedance Z and the natural frequency f, =n (27[ LC )as

the reference frequency fr. The normalizing equations of the voltage, current and time variables as

well as their derivatives for the secondary variables are as follows:

v dv
v o=—, dv, =—, 1
n Vr n er ( )
inzin, din:a’iZ’, (2)
v, V.
t,=tf., dt, =dt.f,., 3)

where v, i, t are the standard voltage, current and time variables of the secondary side, and vu, in,

and #» are the normalized versions. Due to the presence of a transformer, the normalizing equations
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must be reflected back to the primary side to normalize a primary variable. The normalizing

equations of primary variables are as follows:

N
y 2N, =il @)
V, N, v, N,
N Z N
dv, =dv ]\5/ , di, =di——+. Q)

r P r s

The following subsections present the derivation of the normalized ON- and OFF-state trajectories.

2.3.4 OFF-State Trajectory

During the OFF-state of transistor O, diode D conducts and the energy stored in the air gap of
the transformer during the ON-state is transferred to the load. The voltage applied to the
magnetizing inductance is the output voltage multiplied by the transformer turns ratio. The

following are the differential equations that describe this mode of operation:

di N,
_mn = -y ) 6
" dt °N, ©)
N
o dvo = lm - _io' (7)
dt N,

Using equations (1) through (5), the normalization of the differential equations (6) and (7)

becomes:
di
M= DTV, 8
dt, o ®
dv
o =2x(i —i ). 9
A ©)

Differentiating both sides of (8) and replacing it in (9) yields a differential equation having the

following solution:
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di,, (07)

i (t)=i, + (imn (0" ) —i )cos (27t,)+ %sin (27t,). (10)

. . A
By applying the trigonometric property Acos (x) + Bsin (x) =~ A*+ B* sin {x +tan”' (EJ] to

(10), taking the derivative of the resulting expression and applying the property

cos(sin‘1 (x)) =+/1—x?, the result is an equation which does not depend on the normalized time.

Then, the OFF-state trajectory can be expressed as:

//i’OFF ::V§n+(imn_i0iz)2_A2_Bz :07 (11)
iy | di,, (0) . o
where 4=1 (O )—zan and B = g Therefore, the OFF-state trajectory is a circle with
T t

n

its center at (imn, von) = (ion, 0) and a radius that is a function of the specifications of the converter.

2.3.B ON-State Trajectory

When the transistor Q is ON, the magnetizing inductance is connected to the input source and
the diode at the secondary side is reversed bias. The differential equations for this stage and their

normalized versions are:

V —Tm™m , —7 = C o , 12

IN dt lo o dt ( )
di d

27V, = CZ" , —ori, = dvt (13)

Equation (13) shows that when the transistor is ON, the magnetizing current and the output voltage
vary linearly with time. The slope of the straight line is obtained by dividing the two normalized

equations:
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di Vi
mn__ _ n 14
dv i (14)

By integrating (14), the natural trajectory of the flyback converter when the transistor is ON is

given by:

~K=0, (15)

where K is a constant which defines the point where the trajectory intersects the normalized
magnetizing current axis. This constant K is selected in such a way that the ON-state trajectory

intersects the target operating point.

2.3.C Graphical Analysis of the NSS Trajectories

Fig. 2.2 presents graphical renditions of the NSS trajectories previously derived. These graphs
are for a generic flyback converter, with arbitrary trajectory placement in the imn vs. von plane. As
previously described, the ON-state trajectory is a descending sloping line and the OFF-state
trajectory is a circle, arbitrarily pictured here with a center at (0, 0). This subsection shows the
interaction of the two trajectories with each other and their relationship with the converter
operation.

Evaluating the imn vs. von plane and analysing the operation of a flyback converter, immediately
quadrants of the plane can be recognized as unobtainable or undesirable operation zones based on
the polarity of the variables. For example, im» can only be positive for the flyback converter to be
operating correctly. Therefore, im» would not be reachable in quadrants III or IV. Also, vor would
not be negative either. This would imply that the load was transferring power to the input of the
converter, which is physically impossible due to the presence of D. Therefore, von should not

operate in quadrants II or III. That leaves only quadrant I as the operational quadrant which
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Fig. 2. 2. Normalized natural surfaces for a flyback converter.

satisfies both variables’ conditions. In quadrant I, im» and von are both positive and the flyback
converter would be transferring power to the load. The undesired quadrants have been grayed out
in Fig 2.2.

Movement along the trajectories during steady-state can be determined by considering the
flyback’s operation in each state. As previously discussed, during the ON-state imx is increasing,
storing energy in the transformer magnetizing inductance field from the input source, and von is
decreasing, due to the load consuming the energy stored in the output capacitor. Therefore, the
converter operating point would slide up the trajectory during the ON-state, as shown in Fig. 2.3.
During the OFF-state, imx is decreasing, supplying the transformer’s stored energy to the load and
output capacitor, while vor is increasing, due to the transformer’s supplied energy. Therefore, the

converter operating point would slide down the trajectory during the OFF-state.

If the converter’s trajectory was to reach an axis, the converter would then evolve on that axis.

Therefore, reaching the im» axis, the converter would change in» while the output voltage remained
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at zero. Likewise, reaching the vo» axis, the converter would change von while keeping the

magnetizing current zero. This is due to the unobtainable quadrants.

2.3.D NSS Trajectories and Modes of Operation

The interaction between the ON- and OFF-state trajectories determines which mode the flyback
converter operates in, whether Continuous (CCM), Boundary, and Discontinuous (DCM) Modes
of Operation. From this knowledge, a control law to force the converter into BCM, as desired, can
be designed. When the two trajectories intersect, the flyback converter switches from the ON- to
OFF-state or vice versa. Therefore, this intersection actually determines when the flyback

converter’s transistor Q actually switches.

There are three possibilities where the trajectories can intersect, correlating to the three modes
of operation. Fig. 2.3 depicts the three choices. Fig. 2.3(a) shows the converter trajectories in CCM,
where the magnetizing current never reaches zero. Fig. 2.3(b) illustrates when the magnetizing
current just reaches zero before turning transistor Q ON again, which correlates to BCM. Lastly,
Fig. 2.3(c) shows DCM operation, allowing the converter to evolve along the von axis with zero
magnetizing current before changing back to the ON-state. Fig. 2.3(b) depicts the intended

converter operation, since BCM operation is desired.

2.4 SELECTION OF THE OPERATING CONDITIONS AND TARGET POINTS

2.4.A Conventional Approach

The approach presented in [8] defines the initial conditions of the ON- and OFF-state trajectories
based on the target operating point of the converter. The target for the output voltage is equal to
the reference voltage von = Vi = 1, and the target for the magnetizing current is based on the

required output power. Assuming that the converter is ideal, the initial conditions of (11) are:
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Fig. 2. 3. NSS trajectories and modes of operation: (a) CCM, (b) BCM, and (c) DCM.
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di,,(07)
dt

n

-2, (17)

on

INn + Von

where D, = is the normalized duty cycle for the flyback converter. The OFF-state

trajectory is obtained by replacing (16) and (17) into (11):

. 2
ﬂ“OFF = an +(imn _ion )2 _1_[;”1 J = 03 (18)

cen

Similarly, evaluating (15) at the target point (imn, Von) = (imn,target, 1), the trajectory for the ON-

state is obtained as follows:
vV i vV
Aoy =1, +—2v —(z’on +l+#j =0. (19)

A control approach derived from similar equations than (18) and (19) but for a boost converter
was presented in [9]. That control approach leads to an operating area close to the target operating
point. This would cause the operation mode of the converter to mainly be CCM which would not

be the desired case for applications that require high efficiencies.

2.4.B Proposed Approach

A control law to keep the operation of a flyback converter in BCM operation for all load
conditions is desired. The goal of this section is to identify a known target operating point and
define the trajectories’ design parameters and unknowns to include this point.

From Fig. 2.3(b), it is identified that if the target operating point is set to be at the reference
output voltage and zero magnetizing current, the converter will work in BCM for all load
conditions. Replacing this known trajectory point (imn, von) = (0, 1), in (15), the constant K in the

ON-state trajectory is given by:
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V

K =-2", (20)
ZOH
Therefore, the BCM ON-state trajectory is
v, v,
Aoy =1, +—y =), (21)
lO}'l lon

Moving onto the OFF-state trajectory, 4 and B can be simplified with the known trajectory

point. Knowing that vor = 1, (8) can be simplified to

di,, (07)
ZmA” ) o (22)
dt,
Then, 4 and B can be expressed as:
A=-i , B=-1. (23)

Substituting (23) into (11), the complete BCM OFF-state trajectory is defined as

dopp =V + (i, —i, ) —1-i% =0. (24)

on

2.5 STEADY-STATE BCM CONTROL LAW

The goal of a control law is to force the converter to move to or stay on the identified BCM
trajectories. Knowing the movements along the trajectories for each state of transistor O and the
above conditions, a control law can be developed. The control law decides between two options:
either QO should be ON or O should be OFF. The decision is based on the current state of transistor

Q and the relative location of the current operating point to the BCM trajectories.

Fig. 2.4(a) depicts the control law and possible converter trajectories for when Q is ON. As
previously discussed, while Q is ON, the converter will move up the plane. If the converter is
currently operating below the OFF-trajectory, O is kept ON while the converter continues to move

up the plane until the OFF-state trajectory is reached. Once the OFF-state trajectory is reached, Q is
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switched OFF. If the converter is operating anywhere above the OFF-trajectory, then transistor Q
should be turned OFF.
Fig. 2.4(b) shows the control law and possible converter trajectories for when Q is OFF.

Remembering the desire to operate in BCM, the first part of the law is that Q is not allowed to

imn
A
< < >
0,00 Aopr<0& Aop>0&
i, =0: = =
v OonN QO oFF
(b)

Fig. 2. 4. BCM control law trajectories: (a) Q is ON, (b) Q is OFF.
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switch back ON until im: = 0, once it has been switched OFF. Therefore, if the converter is operating
anywhere above the von axis (imn > 0), O is kept OFF until the converter reaches the vo, axis. Once
the von axis is reached, the current operating point is compared to the OFF-state trajectory. If the
converter is operating greater than the OFF-state trajectory, Q is kept OFF, allowing the converter to
evolve down the vor axis to the OFF-state trajectory. If the converter is operating below or at the
OFF-state trajectory, Q is switched ON, allowing the converter to ride the ON-state trajectory back
up to the OFF-state trajectory as previously described.

Fig. 2.5 shows a complete flow diagram for the developed BCM control law that forces the
converter to move to and operate on the BCM trajectories in one switching cycle, no matter where
the converter is currently operating. This allows the flyback converter to operate in BCM
continuously for any loading condition during steady-state. In a transient condition, where the
input voltage or load changes, the worst case scenario would be that the converter recovers in one
switching cycle. During that one transient switching cycle, a DCM operation with a slightly over
voltage output or a BCM of operation with a slightly under voltage output could be experienced.
This is because the desired ON- and OFF-state trajectories change with converter parameter
changes. Taking only one switching cycle to recover provides remarkable stability and transient
response time for all converter conditions.

Another significant benefit of keeping O OFF until im» = 0 after switching is that the possibliity
of chattering is eliminated because only two definite switching locations are identified: at the

intersection of the ON- and OFF-state trajectories and on the von axis.

2.5.A4 Steady-State Switching Frequency Derivation

The switching frequency of a converter is very important in considerations for EMI and

component selection including microcontroller or processor, semiconductor devices, current
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Fig. 2. 5. BCM control law flow diagram.

sensors, and analog-to-digital (ADC) converters. This section will derive an accurate approximation
for the steady-state switching frequency using the proposed control laws. The switching frequency
is dependent upon the average input and output voltages, turns ratio of the transformer, and the
transformer’s magnetizing inductance.

The normalized switching period, Tsw, can be described as

Ty =T, +1,

SWn ONn OFFn> (25)
where Tonn and Torra are the normalized values for the ON and OFF times, respectively; 7Ton» and

Torrn can be calculated from the differential equations for im» in each state:

Ai
— mn , 26
ONn ZﬂI/INn ( )
Ai
T, =—". 27
OFFn 27Z'V ( )

Noting that Aimn is equal for both ON- and OFF-states, the normalized switching period is obtained

by replacing (26) and (27) into (25):

Ai 1
Ty, =—"" [1+—]. (28)

INn

Therefore, the switching frequency is
2

f:S‘Wn = 1 ‘
Ai T (1 + j
V

inn

(29)
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The magnetizing current variation, 4ims, can be obtained from the intersection point of the ON-
and OFF-state trajectories in steady-state operation. One extreme is where im» = 0, which
corresponds to Von = 1. The other intersection defines 4im» and here it is realized that Von is close,
but not equal to 1. To find this intersection, and therefore Aims, the ON- and OFF-state trajectories
will be solved for Vo by setting them equal to each other in order to eliminate Von. Aimn 1s then

solved for

A, =2i (1 +Lj. (30)

INn
Substituting (30) into (29), and replacing the normalized converter values in terms of the non-

normalized ones, the switching frequency can be described as

S = : 31)

2.6 SIMULATION RESULTS

2.6.4 Steady-State BCM Control Law

The control law proposed above was implemented in MATLAB/Simulink®. The flyback was
simulated at 100 W, with device parameters equivalent to chosen devices used in the experimental
testing, detailed in Table 2.1.

Fig. 2.6(a) shows the simulation results for the ON- and OFF-state trajectories of the steady-state
BCM control law implementation for one switching cycle. From this figure, it is notable that the
ON-state trajectory is a straight line and the OFF-state trajectory is an arc of a circle (the circle is

distorted in the figure due to axis scaling). The converter changes from the OFF-state to the ON-state
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TABLE 2. 1. EXPERIMENTAL AND SIMULATION CONVERTERS PARAMETERS

Parameter Value
Vo 200 V
I 05A
P, 100 W
Lm 28 uH
Co 100 pF
Vin 24V

once the converter reaches in» = 0, meaning the converter is operating in BCM as desired. Fig.
2.6(b) displays the steady-state primary and secondary current while Fig. 2.6(c) the steady-state
output voltage. The primary and secondary currents are clearly operating in BCM; once the
secondary current reaches zero, the primary current instantly starts increasing. The output voltage
has a ripple less than 0.09 V (also shown by Fig. 2.6(a)), which corresponds to less than 0.05%.
The average value is equal to 199.97 V, which is only a 0.015% error from the desired 200 V
reference. From (2), the switching frequency is approximated to be 34.77 kHz for these operating
conditions. The switching frequency is measured to be 34.81 kHz from the simulations, yielding an

error of 0.12%.

2.6.B Transient Response of the BCM Control Law

A transient response happens when the input voltage or loading condition changes. The transient
lasts for only one switching cycle, assuming the change is completed in one switching cycle, due
to the proposed control law forcing the converter to the NSS. This allows for an extremely fast
transient response. Depending on when the voltage or load changes constitutes how the converter
will react. The only two options for the converter operation with the proposed control law is to
continue in BCM or to operate in DCM for one switching cycle.

If the OFF-trajectory radius is decreased (by a change in output current or input voltage) while

the converter is operating past the new radius value, the converter will operate in DCM for one
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Fig. 2. 6. (a) Steady-state simulation of trajectories, (b) primary and secondary currents and (c)
output voltage.
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switching cycle. This is due to the fact that to get back to a lower radius trajectory, the converter
must evolve down the vonr axis. This will result in a slightly larger overshoot of the output voltage
compared to steady-state for one switching cycle. If the change occurs while the converter is
operating below the new OFF-trajectory radius, no transient will occur. Fig. 2.7(a) presents an

example of a DCM transient. The key point of this figure is the transient trajectory which evolves
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Fig. 2. 7. Transient trajectory: (a) DCM, and (b) BCM.
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down the von axis. This is not the only situation where a DCM operation could occur, but just one
example.

In comparison, if the OFF-trajectory radius is extended, the converter will still operate in BCM.
If the change is during the ON-state, no transient will be experienced. If the change is during the
OFF-state however, the converter will undershoot the new trajectory. In the next switching cycle,
the converter will recover and operate back ON the desired trajectories. This will result in a slightly
lower output voltage and higher peak input current compared to steady-state value for one switching
cycle. Fig. 2.7(b) shows an example of an undershooting BCM transient. The undershooting
transient is observable with the larger peak current.

Analyzing the undershooting BCM transient, a modification of the control law could be
potentially proposed. During the OFF-trajectory, if Q was turned ON at the instant the OFF-trajectory
crossed the ON-trajectory, the undershooting voltage and increase peak current would be avoided.
This would force the converter to operate in CCM, never reaching 0 A during the transient. While
this is a viable solution to improve the transient, the modification was omitted due to creating
potential chattering issues during steady-state conditions and increasing control complexity.

Another note about Fig. 2.7 is that during steady-state, both loading conditions operated in BCM

automatically. This was intended and one of the main points of the proposed control method.

2.6.C Start-Up Operation and Max Input Current Protection

Using the proposed BCM control law during start up, the flyback converter would experience
an extreme input and magnetizing current peak. This is due to the control law bringing the output
voltage to the reference value in one switching cycle; this would obviously require a large amount
of energy since the converter is starting with 0 V output. The start-up trajectory is shown in Fig.

2.8(a). Here, the peak input current reaches 375 A, which is obviously unacceptable for typical
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Fig. 2. 8. Start-up trajectory: (a) conventional approach, (b) with BCM input current limit.

devices. The settling time (defined here as the time for the output voltage to be bounded within 5%
of its desired value) is only 0.841 ms, shown in Fig. 2.9.

To fix the large start-up input current, a maximum input current level can be set. This is a
desirable addition to the control law because it protects the input devices (such as the transistor and

transformer) from exceeding the current ratings and damaging the devices. Therefore, a peak input
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Fig. 2. 9. Start-up output voltage.

current value can be selected based of the device ratings. For this specific controller design, the
peak input current was set to a non-normalized value of 20 A. Fig. 2.10(a) shows the updated control
law flow diagram with the peak limitation addition. Fig. 2.8(b) shows the start-up trajectory with
the current maximum implemented. As expected, the current never exceeds 20 A. The converter
now takes multiple switching cycles to reach the desired voltage reference. As described before,
the load of the converter is modeled as purely resistive; therefore, the output current is actually a
function of the output voltage. In the start-up situation, the output current is increasing with the
output voltage until the desired voltage reference is reached. Here, the controller is still operating
in BCM during the start-up, forcing the magnetizing current to zero before turning Q back ON. Fig.
2.9 shows the effects of limiting the input current. The converter’s output voltage settling time
drastically increased from 0.841 ms to 30.1 ms, which is an undesirable effect.

To decrease the settling time, the start-up control was modified to operate in CCM, with a set
Aimn, instead of operating in BCM. This allowed for a larger amount of energy to transfer faster,

while still limiting the peak current. The current im» oscillated between the defined peaks, imnpx and
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imnpk - Aimn. This control was chosen to be implemented any time the converter is operating below
the settling range (5% of V7, which in this converter is 190 V). The transition location between the
CCM and BCM control method was selected arbitrarily and could be changed for each application,
depending on the expected peak current and settling times. The longer the CCM control method
operates during start up (the closer the transition is to steady-state operation), the faster the settling
time will be. A potential issue though is getting the transition too close to steady-state operation
and causing a chattering situation in the converter where the control law is switching from BCM to
CCM operation due to a transient situation. Therefore, the 5% of V- boundary was selected. For this
converter design, 4imn = 5 A. Again, this was an arbitrary selection. The smaller the Aimn, the faster

the settling time will be. The negative effect of a smaller 4imx 1s a higher switching frequency, which

0= OFF

(b)
Fig. 2. 10. BCM control law flow diagram with input current limit, (a) BCM start-up, and (b)
CCM start-up.
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could affect EMI, increase start-up losses, and cause higher average power dissipation through the
devices.

Fig. 2.10(b) depicts the updated flow diagram for the CCM start-up method. Figs. 2.8(c) and
(d) display the start-up trajectory with the CCM start-up control. Fig. 2.8(c) shows the first few
switching cycles of start-up. It is clear that the converter is now operating in CCM with a Aimn of 5
A and peak of 20 A. Fig. 2.8(d) highlights the transition from CCM to BCM at 190V (5% of V;).
From there, BCM control continues to and during steady-state. The benefit of this modified control
is shown in Fig. 2.9. The settling time decreased to 13.5 ms, a 55.1% reduction compared to the

BCM start-up of Fig. 2.8(b).

2.7 EXPERIMENTAL RESULTS

A 90W 24/200V flyback converter with the parameters of Table 2.1 was prototyped. The
proposed BCM controller was implemented using the DSP TMS320F28335 from Texas
Instruments.

Fig. 2.11(a) shows the start-up output voltage and current waveforms and the gate signal when
the start-up controller limiting the BCM input current is implemented. It can be seen that a non-
overshoot output voltage response with a settling time in the order of 30 ms is obtained which
agrees with the simulation results of section V. As desired, the operation of the converter is always
at BCM which is the most efficient operation point for a flyback converter [3].

The converter responds satisfactorily under sudden changes in input voltage and load. For
example, Fig. 2.11(b) depicts the output voltage and load current when the converter is put though

a rapid load variation. In that case the resistive load changes from 1000 € to 500 Q.

37



Chi 200mAGRCHZL 100V  &M10.0ms A Chl £ 24.0mA
2.00V
-~ 36.4600ms

Stop [ ]

ch 100mA QHEEE L 25.0 V&M 20.0[s A Chi  308mA

=+ 6.00000ps
(b)
Fig. 2. 11. (a) Start-up output voltage and current, and gate signal for the BCM Control Law
with BCM current limit, (b) output voltage transient under a sudden change in output current.
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2.8 CONCLUSIONS

The Natural Switching Surfaces for a flyback converter were obtained from the normalized
converter equations. The derived nonlinear control law showed no overshoot, zero steady-state
error and adequate response to sudden load changes. By careful selection of the target operating
point, the operational mode of the flyback converter can be defined. Trajectories for the ON- and
OFF-states were derived for both CCM and BCM. The simulation and experimental results for a
65W, 24/180V prototype validated the proposed techniques. Since the control law reaches the
reference voltage in one switching action, there is a large current peak during the start-up which
can be destructive for the converter components. Therefore, several modifications of the control

law were implemented under start-up conditions which showed an excellent performance.
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CHAPTER 3

Control of a Flyback Converter with Parametric Uncertainties Operating in BCM Using

the Natural Switching Surface

L. A. G. Rodriguez, H. Chiacchiarini and J. C. Balda, "Control of a flyback converter with
parametric uncertainties operating in BCM Using the natural switching surface," 2016 [EEE

Biennial Congress of Argentina (ARGENCON), Buenos Aires, Argentina, 2016, pp. 1-7.

3.1 ABSTRACT

The derivation and implementation of the natural switching surfaces (NSS) considering
parametric uncertainties for a flyback converter operating at boundary conduction mode (BCM) is
the main focus of this paper. The NSS presents many benefits for the control of non-linear systems;
for example fast transient response under load-changing conditions. However, the performance
considerable worsens when real parameters of the converter are slightly different from the
designed ones. Therefore, a novel control strategy that considers the effect of parameter
uncertainties is presented. This control law can estimate and adapt the control trajectories in one
switching action to obtain excellent performances even under extreme parameter uncertainties.

The analytical derivation of the proposed adaptive switching surfaces are presented.

3.2 RESUMEN

La derivacion e implementacion de las superficies naturales de conmutaciéon (NNS)
considerando incertidumbres paramétricas para un convertidor flyback operando en modo de
conduccion criticamente continuo (BCM) es el principal foco de este trabajo. NSS presenta

muchos beneficios para el control de sistemas no lineales; por ejemplo rapida respuesta transitoria
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bajo condiciones de carga variable. Sin embargo, el rendimiento empeora considerablemente
cuando los parametros reales del convertidor son un poco distintos a los parametros disefiados.
Este trabajo presenta una estrategia novedosa de control que considera el efecto de incertidumbres
paramétricas. Esta ley de control puede estimar y adaptar las trayectorias de control para obtener
un excelente desempefio incluso bajo incertidumbres paramétricas extremas. Se presenta la

derivacion analitica de las superficies adaptivas de conmutacidon propuestas.

3.3 INTRODUCTION

A flyback converter is commonly used in systems rated 20 W to 200 W due to its low part
count, electrical isolation and wide voltage ratio [1]. In addition to the traditional applications in
computers and TV sets, the flyback converter is used in photovoltaic microinverters where it
operates over a wide range of operating conditions [2]-[4]. Linear compensators are unsuccessful
when there are large load variations; therefore, nonlinear controllers, such as sliding mode
controllers, are suitable for these converters [5]—-[6].

In recent years, the transient response of typical boundary schemes in power converters has
been improved by using the natural switching surfaces (NSS) [7]-[8]. The NSS are the natural
trajectories of states for each switching position of the converter [9]. The NSS has been studied
for the basic non-isolated topologies [7]—[8] and for isolated topologies like the dual active bridge
[10]. In this work, the NSS and its control law are derived for any generic flyback converter. It is
also proven that it is possible to design the converter to work in the boundary conduction mode
(BCM) for any loading condition by properly selecting the target point of the trajectories. The
nominal case for NSS BCM control of flyback converters was addressed in [1].

The organization of this paper is as follows: the normalized system trajectories are derived in

section 3.4; the selection of the operating conditions and target points are developed in section 3.5
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and the control laws are presented in section 3.6. Finally, the simulation results are presented in

section 3.7 and 3.8, and the conclusions and future work are provided in section 3.9.

3.4 NORMALIZED SYSTEM TRAJECTORIES CONSIDERING PARAMETRIC

UNCERTAINTIES

The system shown in Fig. 3.1 is a simplified version of a flyback converter which consists of
an ideal transistor O, a diode D, a flyback transformer with magnetizing inductance L, as well as
input and output capacitors, Ci» and Co. These parameters are the real parameters of the converter
which may differ from the designed nominal ones. The components which determine the dynamics
of a flyback converter are the magnetizing inductance and the output capacitance [11]. The
designed output capacitance is called C, while the design magnetizing inductance is L.. . The load
is represented by a current source which states the worst case scenario in terms of stability [8]. The
normalization of the system consists of a scale change of its differential equations which enables
a general solution. The presence of a transformer makes it necessary to relate the converter

parameters to one side; the secondary side is selected in this case. The normalization is performed

Ideal Transformer

+e _o___i i +
r l ! | D_1_ .
l S )
m m: : CO o o

®
Vo —— === -
Cin
\ 0

Fig. 3. 1. Flyback converter circuit.
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using the output voltage as the reference voltage V,. =V, the characteristic nominal impedance of

the combined designed magnetizing inductance referred to secondary side and the nominal

designed output capacitor, Z, =(1/n)«/Zm /C, as the reference impedance Z, and the natural
frequency 70 =n (2m/Zm C, )as the reference frequency f-. The normalizing equations of the

voltage, current and time variables as well as their derivatives for the secondary variables are as

follows:
v, =v/V., dv,=dv]V,, (1)
i, =i.Z [V,, di =di.Z |V, (2)
t,=t.f., dt,=dt.f. 3)

Where v, i, and ¢ are the standard voltage, current and time variables of the secondary side, and vx,
in, and #» are the normalized versions. Due to the presence of a transformer, the normalizing
equations must be reflected back to the primary side to normalize a primary variable. The

normalizing equations of primary variables are as follows:
v, =v/(nV.), i, =inZ [V, (4)
dv, =dv/(nV,), di,=dinZ|V,. (5)

The following subsections present the derivation of the normalized ON- and OFF-state

trajectories.

3.4.4 OFF-State Trajectory

During the OFF-state of transistor O, diode D conducts, and the energy stored in the air gap of
the transformer during the ON-state is transferred to the load. The voltage applied to the

magnetizing inductance is the output voltage multiplied by the transformer turns ratio. The
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following are the differential equations that describe this mode of operation, where L, C, are the

real parameters of the converter:

di
L —2=—-pv, 6
W=y, ©)
dv
C —2>=ni —i. 7
o dt m o ()

Using equations (1) through (5), the normalization of the differential equations (6) and (7)

becomes:
dl zm
mn — _272. " 8
dtn Lm on ( )
dv Eo
N =2 i =i ). 9
it C (s =) 9)

Differentiating both sides of (8) and replacing it in (9) yields a differential equation with the
following solution:
di, (07)

b (£,) =1, + (6 (07) =1, ) cos (2;;@5 )+ 27[% sin(27\/aft, ). (10)

Where a =Ln /Lm, and f :EO/CO. By applying the trigonometric property

Acos(x)+ Bsin(x) =+ A4’ + B’ sin (x +tan”' (A/B)) to (10), taking the derivative of the resulting

expression and applying the property cos (sin" (x)) =+/1—x?, the result is an equation that does

not depend on the normalized time. Then, the OFF-state trajectory can be expressed as:

Aoy = V2, %+(z’mn —i,) —4>—B*=0. (11)
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1 di, (O_)
. Therefore, in the case where the designed
2r\ap Z,

Where 4=i,, (O* ) —-i, andB=

parameters are the same than the real ones (a/f = 1), the OFF-state trajectory is a circle with its
center at (imn, von) = (ion, 0) and a radius that is a function of the specifications of the converter
[11]. However, in case the real parameters differ from the designed ones, the normalized ON-

trajectory becomes an ellipse.

3.4.B ON-State Trajectory

When the transistor Q is ON, the magnetizing inductance is connected to the input source and
the diode at the secondary side is reversed bias. The differential equations for this stage and their

normalized versions are:

I/in = Lmdlm > _ir) = Co dVU b (12)
dt dt
Lo di c, d
2p =y, =L 28 =D, (13)
L dt, C, dt,

Equation (13) shows that when the transistor is ON, the magnetizing current and the output
voltage vary linearly with time. By dividing the two normalized equations, it is obtained:

di .
lmn :_ZM. (14)
dvon ﬂ ion

By integrating (14), the natural trajectory of the flyback converter when the transistor is ON is

given by:

E’ON = imn+zhvon_H:0’ (15)

1

on
where K is a constant which is selected in such a way that the ON-state trajectory intersects the

target operating point.
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3.4.C Graphical Analysis of the NSS Trajectories with Parametric Uncertainties

Fig. 3.2 presents graphical renditions of the NSS trajectories previously derived. These graphs
are for a generic flyback converter, with arbitrary trajectory placement in the imn vs. von plane. As
previously described, the ON-state trajectory is a descending sloping line and the OFF-state
trajectory is a circle with a center at (0, ion) for the case when o/f = 1 and an ellipse for the case
when o/f # 1. This subsection shows the interaction of the two trajectories and their relation with
the converter operation.

By evaluating the imn vs. von plane and analysing the operation of a flyback converter, quadrants
of the plane can immediately be recognized as unobtainable or undesirable operation zones based

on the polarity of the variables. For example, im» must be positive for the flyback converter to

ON-state trajectory
e OFF-state trajectory _ .
/

/
| (A2+B2)i2

r \
' ©,
l

ion) e

111
Unreachable Area v

Fig. 3. 2. Normalized natural surfaces for a flyback converter considering parametric
uncertainties.
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operate correctly. Therefore, im» would not be attainable in quadrants III or IV. Likewise, the
converter could not operate if von were negative. If the converter were operating when von were
negative, it would imply that the load would be transferring power to the input of the converter,
which is physically impossible due to the presence of D. Therefore, von should not operate in
quadrants II or III. This leaves quadrant I as the only operational quadrant that satisfies both
variables’ conditions. In quadrant I, im» and von are both positive and the flyback converter would
be transferring power to the load. The undesirable quadrants have been grayed out in Fig. 3.2.

Movement along the trajectories during steady-state can be determined by considering the
flyback’s operation in each state. As previously discussed, during the ON-state imn 1S increasing,
storing energy in the transformer magnetizing inductance field from the input source, and von is
decreasing, due to the load consuming the energy stored in the output capacitor. Therefore, the
converter operating point would slide up the trajectory during the ON-state, as shown in Fig. 3.3.
During the OFF-state, imn 1s decreasing, supplying the transformer’s stored energy to the load and
output capacitor, while von s increasing, due to the transformer’s supplied energy. Therefore, the
converter operating point would slide down the trajectory during the OFF-state.

If the converter’s trajectory were to reach an axis, the converter would then evolve on that axis.
Therefore, reaching the imn axis, the converter would change in» while the output voltage remained
at zero. Likewise, reaching the vo» axis, the converter would change von while keeping the

magnetizing current at zero. This is due to the unobtainable quadrants.
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3.4.D NSS Trajectories and Modes of Operation

The interaction between the ON- and OFF-state trajectories determines the instant when a
transition between one state and the other occurs. Fig. 3.3(a) shows the normalized trajectories
derived for a flyback converter operating at boundary conduction mode (BCM) [11]. At the
converter start-up, im» and von are zero. When Q turns ON, imn starts increasing while von keeps
being zero.

When the ON-trajectory intersects the OFF-trajectory (0, Lszup), O turns OFF and the magnetizing
current decreases while the output voltage increases. At steady-state conditions, the current and
voltage ripples of the flyback converter are determined by the intersection of the ON- and OFF-
trajectories. Fig. 3.3(b) depicts the time evolution of von and imn.

In case the load changes, the center and radius of the OFF-trajectory is modified producing new
intersection points with the ON-trajectory. The intersections of the ON- and OFF-trajectories define

the new current and voltage ripples in which the converter will operate.
3.5 SELECTION OF THE OPERATING CONDITIONS AND TARGET POINTS

3.5.4 Conventional Approach

The approach presented in [8], for the case of a boost converter, defines the initial conditions
of the ON- and OFF-state trajectories based on the target operating point of the converter. The target
for the output voltage is equal to the reference voltage von = Vin = 1, and the target for the
magnetizing current is based on the required output power. Assuming that the converter losses are

zero, the initial conditions of (11) are:

iV 1
I —_on_rm_ _ l 1 + , 16
mn,target D V on ( V J ( )

n" inn
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=-27na, 17
i (17)

where Dy = Vou/(Vinn + Von) 1s the normalized duty cycle for the flyback converter. The OFF-state

trajectory is obtained by replacing (16) and (17) into (11):

. 2
Aopr =V, —+(imn—i0n)2—ﬁ—(;’—"j =0. (18)

Similarly, evaluating (15) at the target point (imn, Von) = (imn,targer, 1), the trajectory for the ON-

state is obtained as follows:

Aoy ::imn+ﬁ@vm— ion+l‘i+£@ =0. (19)
ﬂ i{})’l V ﬂ i

This control approach leads to an operating area close to the target operating point. This would

cause the operation mode of the converter to mainly be CCM, which would not be the desired case

for flyback converter applications that require high efficiencies.

3.5.B Proposed Approach

A control law to keep the operation of a flyback converter in BCM operation for all load
conditions is desired. The goal of this section is to identify a known target operating point and
define the trajectories’ design parameters and unknowns to include this point.

From Fig. 3.3(a), it is identified that if the target operating point is set to be at the reference
output voltage and zero magnetizing current, the converter will work in BCM for all load
conditions. Replacing this known trajectory point (ims, von) = (0, 1), in (15), the constant K in the
ON-state trajectory is given by:

V.
a mnn . (20)

K=t
ﬂ ion
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Fig. 3. 3. (a) NSS trajectories for the flyback converter operating at BCM when a/f = 1, and
(b) Normalized output voltage von, magnetizing inductance current im» and output current ion.
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Therefore, the BCM ON-state trajectory is

Agy =i +ﬁ@vw —1@: 0. 1)
ﬂ lOn ﬂ lOYl

Moving onto the OFF-state trajectory, A and B can be simplified with the known trajectory

point. Knowing that von = 1, (8) can be simplified to
—=-2rna. (22)

Then, 4 and B can be expressed as:

A=—i | B=- % (23)

Substituting (23) into (11), the complete BCM OFF-state trajectory is defined as

Ao =V Zt (i, —1,, ) —%—iz —0. (24)

3.6 STANDARD STEADY-STATE BCM CONTROL LAW

This section explains how the control law is derived based on the trajectories of equations (21)
and (24). The goal of a control law is to force the converter to move to or stay on the identified
BCM trajectories. Knowing the movements along the trajectories for each state of transistor O and
the above conditions, the control law is developed. The control law decides between two options:
either O should be ON or Q should be OFF. The decision is based on the current state of transistor
0 and the relative location of the current operating point to the BCM trajectories.

While Q is ON, the converter will move up the plane. If the converter is currently operating
below the OFF-trajectory, Q is kept ON while the converter continues to move up the plane until

the OFF-state trajectory is reached. Once the OFF-state trajectory is reached, Q is switched OFF. If

55



the converter is operating anywhere above the OFF-trajectory, then transistor Q should be turned
OFF.

Since the desire is to operate in BCM, the first part of the law is that O is not allowed to switch
back ON until im» = 0, once it has been switched OFF. Therefore, if the converter is operating
anywhere above the von axis (imn > 0), O is kept OFF until the converter reaches the von axis. Once
the von axis is reached, the current operating point is compared to the OFF-state trajectory. If the
converter is operating at a level greater than the OFF-state trajectory, Q is kept OFF, allowing the
converter to evolve down the von axis to the OFF-state trajectory. If the converter is operating below
or at the OFF-state trajectory, O is switched ON, allowing the converter to ride the ON-state
trajectory back up to the OFF-state trajectory as previously described.

Fig. 3.4 shows a complete flow diagram for the BCM control law [11], which forces the
converter to move and operate on the BCM trajectories in one switching cycle, no matter where
the converter is currently operating. This allows the flyback converter to operate in BCM
continuously for any loading condition during steady-state. In a transient condition, where the
input voltage or load changes, the worst-case scenario would be that the converter recovers in one
switching cycle. During that one transient switching cycle, a DCM operation with a slightly over
voltage output or a BCM of operation with a slightly under voltage output could be experienced.
This is because the desired ON- and OFF-state trajectories change when converter parameters
change. The rapid recovery time of one switching cycle provides remarkable stability and transient

response time for all converter conditions.

3.6.4 Derivation of Steady-State Parameters

The proposed control method maintains the flyback converter operating at BCM under all load

conditions. Therefore, the switching frequency changes based on changes in the load condition
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and converter parameters. The switching frequency of a converter is a very important consideration
when selecting EMI and components such us microcontroller or processor, semiconductor devices,
current sensors, and analog-to-digital (ADC) converters. This section will derive an accurate
approximation for the steady-state switching frequency using the proposed control laws. The
switching frequency is dependent upon the average input and output voltages, the turns ratio of the
transformer, and the transformer’s magnetizing inductance. Therefore, knowing the power and
voltage operating range, a range in operating frequency can be derived.

As seen in Fig. 3.3 (b), the intersection points between the ON- and OFF-trajectories can

determine the output voltage and magnetizing current ripples which are expressed as:

2V,
Avon :+’ (25)
alV.
I+—|
ﬁ( iai'l j
-2 2173 2 2
Al — gﬂV;rmlm’l +a I/;m'l Zal/innﬂlon . (26)

mn 2.3 2 .
ﬁ lOl’l + aﬂV;nnlnn

Replacing (25) into (9) and (13), the time intervals when Q is ON (7Ton) and OFF (7Torr) can be

found. The normalized switching period, Tsw», can be described as
Ty = Tonn + Torrs (27)

where Tonn and Torrs are the normalized values for the ON and OFF times, respectively; Ton» and
Torrn can be calculated from the differential equations for im» in each state:

Av
1, =——%——, (28)
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Noting that Avon is equal for both ON- and OFF-states, the normalized switching period is obtained
by inserting (28) and (29) into (27):

T — Avon _I_ Avon 30
e on(iy, - ) 270, B (30)

Therefore, the switching frequency is

27[ (lmn - ion )ionﬁ
Av i '

on-mn

f:SWn =

(1)

Substituting (25) with (31), and replacing the normalized converter values in terms of the non-
normalized ones, the switching frequency can be described as

7(i,, —i,)(Bi2, +aVy,)
Vi '

inn“mn”on

fSW = (32)
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Fig. 3. 4. BCM control law flow diagram.
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3.7 SIMULATION RESULTS

3.7.A4 Steady-State BCM Control Law

The control law proposed above was implemented in MATLAB/Simulink®. The flyback was
simulated at 100 W, with device parameters equivalent to those of chosen devices used in the
experimental setup under development, detailed in Table 3. 1.

Fig. 3.5 shows simulation results for the transient response of a flyback converter with the
parameters shown in Table 3.I1. Fig. 3.5(a) and Fig. 3.5(b) represent the ideal case when the
designed parameters of the converter are the same than the real parameters (a/ff = 1). It can be seen
that the flyback converter is operating at boundary conduction mode (BCM) and the steady state
is reached in just one switching action. The output capacitor was intentionally selected small
enough so the ripple at the voltage output can be clearly appreciated. A sudden load change occurs
at 0.5 ms, but the controller keeps the converter operating at BCM.

Fig. 3.6(a) and Fig. 3.6(b) present the case when o/f > 1. This case was performed by keeping
the same magnetizing inductance of the transformer while reducing the amount of output
capacitance from 2 puF to 1 pF. It can be seen that the output voltage overpeak exceeds the target
voltage (100 V) for almost 50%. This is due to the fact that the magnetizing inductance stored the
amount of energy necessary to charge 100 V in one switching action into the output capacitor of 2
uF instead of 1 pF. The extra charge provided during the ON-time produces an overvoltage at Co.
When a/f > 1, the operating mode of the flyback converter is discontinuous conduction mode
(DCM) instead of BCM.

The transient response when o/f < 1 is shown in Fig. 3.7(a) and Fig. 3.7(b). This case was

obtained increasing the output capacitance from 2 pF to 4 pF while maintaining the same

59



TABLE 3.1 PARAMETERS FOR THE SIMULATED CONVERTER

Parameter Value
Vo 100 V
I 1A
P, 100 W
Lm 28 UH
Co 2 uF
Vin 24V
Ns/Np 6
110 -
100 -
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Fig. 3. 5. (a) Transient response, and (b) imn Vs. von state plane trajectory plot when a/f = 1.
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Fig. 3. 6. (a) Transient response, and (b) imn Vs. von state plane trajectory plot when a/f > 1.

magnetizing inductance. Since the output capacitance is larger than the expected one, it takes more
than one switching action to get the steady state reference voltage.
The simulation results demonstrated that the performance of the BCM NSS presented in [11]

is satisfactory when the difference between the nominal and real parameters is not very big.
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3.8 PROPOSED ADAPTIVE BCM NSS CONTROL LAW

One of the problems of the NSS control is that the response may not be as good as expected

when the real parameters of the converter L, and C, are not equal to the designed ones L» and
Co. This happens because the control trajectories are obtained normalizing the differential
equations of the converter with base values that differ from the real ones.

This section presents a novel BCM NSS controller that is able to compensate the parametric

uncertainties. The proposed controller responds adapting the ratio a/f whenever it detects that the

100

0 10 20 30 40 50 60 70 80 90 100
Yon (V)

(b)
Fig. 3. 7. (a) Transient response, and (b) state plane trajectory plot when o/f < 1.
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system is not evolving on the specified trajectories. The adaptation is performed at the end of each
switching cycle.

It should be noted that the trajectories presented in equations (21) and (24) are the trajectories
that allows to get the ideal BCM NSS response for a flyback converter with parametric
uncertainties ratio equals to a/f. Therefore, knowing the uncertainties ratio for a specific flyback
converter and applying the control laws based on (21) and (24) leads to the compensation of the
uncertainties problem because those trajectories contain the desired target point.

When the uncertainties ratio a/f equals one, the first time when the OFF-trajectory intersects
the imn = 0 axes is at von = 1, which is the target point. If the intersection of OFF-trajectory of (24)
with the im» = 0 axes is found, it can be seen that if a/f is not equal to 1, the voltage von will not be
equal to 1 as seen in Figs. 3.6(a) and Fig. 3.7 (a). The value of vo» when imn 1s zero for the first time

can be calculated replacing im» = 0 into (24) as:

Vo= (33)

Therefore, the first intersection of the OFF-trajectory can be used as valuable information to
produce a feed-forward term that can ideally compensate the uncertainties ratio in one switching
action. Fig. 3.8 presents the flow diagram of the proposed adaptive control method. At start-up
condition, the uncertainties ratio a/f is considered equal to one. The transistor will be turn ON until
the OFF-trajectory is reached. Then, the transistor is kept OFF until the current im» equals zero. The
voltage von at the first zero of im» will be the feed-forward term which will adapt the OFF-trajectory
in order to compensate for the uncertainties in the parameters. After the feed-forward term is
replaced on the control trajectories, during the next switching action the steady-state loop will

gradually adapt the controller every time the magnetizing current equals zero. The latest improve
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Fig. 3. 8. Adaptive BCM NSS control flow diagram.
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the robustness of the controller in case an estimation error is introduced with the feed-forward

term.

3.9 CONCLUSIONS AND FUTURE WORK

The Natural Switching Surfaces for a flyback converter were obtained from the normalized
converter equations. The derived nonlinear control law forces BCM in one switching cycle for all
initial conditions. When sudden load changes are produced, the controller instantaneously reacts
to compensate for the load change within a switching action.

Simulations showed that for the nominal system, the closed loop response has no overshoot,
zero steady-state error and an adequate response to sudden load changes. For the case of parameter
uncertainties, the performance of the closed loop system controlled with the nominal controller
degrades. To improve the performance, an adaptive scheme can be built by adjusting the relation
alfa/beta at the end of each switching cycle, after analyzing the locus of the true OFF-trajectory.
The simulations which validated the proposed control techniques were performed for a 100 W,
24/100 V converter, whose prototype is under construction.

Since the control law reaches the reference voltage in one switching action, there is a large
current peak during the start-up which can be destructive for the converter components. Therefore,
several modifications of the control law were implemented under start-up conditions which

showed an excellent performance.
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CHAPTER 4

Adaptive Boundary Control Using Natural Switching Surfaces for Flyback Converters

Operating in the Boundary Conduction Mode with Parameter Uncertainties

L. A. Garcia Rodriguez, H. G. Chiacchiarini, D. Carballo Rojas and J. C. Balda, “Adaptive Boundary
Control Using Natural Switching Surfaces for Flyback Converters Operating in the Boundary
Conduction Mode with Parameter Uncertainties,” IEEE Transactions on Power Electronics, vol. 34,

no. 8, pp. 8118-8137, Aug. 2019.

4.1 ABSTRACT

The derivation and implementation of the natural switching surfaces (NSS) considering certain
parametric uncertainties for a flyback converter operating in the boundary conduction mode (BCM)
is the main focus of this paper. The NSS with nominal parameters presents many benefits for the
control of nonlinear systems; for example fast transient response under load-changing conditions.
However, the performance worsens considerably when the converter actual parameters are different
from the ones used in the design process. Therefore, a novel control strategy for NSS considering
the effects of parameter uncertainties is proposed. This control law can estimate and adapt the control
trajectories in a minimum number of switching cycles to obtain excellent performances even under
extreme parameter uncertainties. The analytical derivation of the proposed adaptive switching
surfaces is presented together with simulations and experimental results showing adequate
performance under different tests, including comparisons with a standard PI controller.

Index Terms— Flyback converter, critical conduction mode (CRM), boundary conduction

mode (BCM), variable structure control (VSC), boundary control (BC), switching surface control
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(SSC), natural switching surface (NSS), parametric uncertainties, adaptive controller, nonlinear

control.

4.2 INTRODUCTION

The flyback converter is one of the most used topologies in systems rated up to 200 W due to
many benefits such as low part count, low cost, electrical isolation, and wide voltage ratio [1]. In
addition to the traditional applications in computers and TV sets, flyback converters are used in
AC/DC power supplies for LED loads and battery chargers [2]-[4], and in photovoltaic
microinverters [5], [6]. Flyback converters operating in the boundary conduction mode (BCM) are
broadly used for high-frequency applications since zero-current turn-ON for the switching device
and zero-current turn-OFF for the diode are achieved while keeping conduction losses and current
stresses low in comparison with operation in the discontinuous conduction mode (DCM) [3], [7].
The soft-switching transitions during the BCM operation reduce the electromagnetic interference
(EMI) and lead to lower power losses due to Joule effect than operation in continuous conduction
mode (CCM), simplifying the snubber design, EMI filtering and thermal management [8], [9].
Also, operation in BCM leads to less voltage ripple than operation in DCM.

A flyback converter is a non-minimum phase system due to the presence of a right-half plane
zero in the control-to-output transfer function [10]. Using linear compensators to control such a
system requires a low crossover frequency to guarantee stability which implies a slow control
response [11]. Unfortunately, linear compensators are unsuccessful when there are large load
variations since the model is only valid around an equilibrium point [12]; therefore, nonlinear
controllers are used to improve the control dynamics. Variable structure control (VSC) is a
discontinuous nonlinear control strategy whose structure changes depending on the location of the

state trajectories with respect to a designed switching surface (SS) [12]-[16]. Boundary control
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(BC) and sliding mode control (SMC) are VSC examples. Under SMC, the system remains close
to the SS after reaching it. However, the SSs in BC may not be related with sliding regimes [12].

BC is a large-signal geometric control method that does not distinguish between start-up,
transients and steady-state operation [12]-[14]. The intersection of the system trajectories with the
selected SS defines whether the switch turns ON or OFF. First-order SSs are commonly used in BC
because they are robust and simple to implement [16], [17]. However, the transient dynamics may
require several switching cycles before reaching a steady state after start-up or transient conditions
[18], [19]. Furthermore, the optimal slope for the first-order SS is dependent on the load and supply
characteristics which reduce the overall system performance [10]. An ideal SS is the one that
guides the system to the desired steady state with the minimum number of switching actions [14].
The ideal SS is derived from the intersection of the system OFF-trajectory that contains the
operating point with the ON-trajectory that leaves the operating point [12]-[14].

Multiple SSs have been proposed to estimate the ideal trajectories or natural response of
converters. For example, second-order SSs derived from capacitor charge-balance equations with
low ripple approximation have been proposed for buck converters operating in CCM [18] and
DCM [20]. Also, a fixed-frequency second-order SS using a variable-width hysteresis loop was
presented in [21]. A similar methodology was applied to single-phase [22], [23] and three-phase
inverters [24]. Other types of second-order SSs derived using the state-energy plane were proposed
for single- and dual-output boost converters [10], [25]. Higher-order switching surfaces for
inverters were derived in [19] and [26], where logarithmic SSs were used to approximate the
system trajectories. Another method to approximate the ideal trajectories was derived from the
converter differential equations assuming a constant-current load [27]. Using those SSs called the

Natural Switching Surfaces (NSS) warrants no output voltage overshoot for a step load variation
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under nominal design conditions, excellent response for any change of the load resistance and
much easier trajectory derivation because of the absence of the exponential decay, spirals or
hyperbolic terms related to the presence of the load resistance in the differential equations [13].
This method was first presented in [27] for buck converters and then extended to the inverters [28],
boost [11], [29], buck-boost [30], dual active bridge [31], full bridge [32] and flyback converters
[33], [34].

The main drawback of BC is the dependence of the switching surfaces on the converter
parameters [12], [14], which are exposed to changes due to tolerance, aging effect, humidity and
temperature [23], [24]. Parameter variations impact on the steady-state performance [19], [20] and
lead to stability issues because of changes on the shape of the switching surfaces [29] and converter
operating modes [10]. This paper presents a solution to those issues by deriving the NSSs and the
control law for a flyback converter operating in BCM and considering parameter uncertainties.
The proposed control law can provide a very precise estimation of the parameter variations in only
a single switching action and then continuously adapt the control switching surfaces before a new
switching action occurs. Therefore, the converter can reach the steady-state operation in a single
switching action for sudden load changes even under extreme converter parameter variations.

This paper is organized as follows. The normalized system trajectories considering parametric
uncertainties are derived in Section 4.3. Then, the start-up and steady-state characteristics are
presented in Section 4.4. The adaptive control laws are developed in Section 4.5. The design
procedure and an example are given in Section 4.6. The feasibility of the proposed control law is
validated through simulation results in Section 4.7 and experimental results in Section 4.8. Finally,

Section 4.9 presents the conclusions.
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4.3 DERIVATION OF NORMALIZED SYSTEM TRAJECTORIES CONSIDERING

PARAMETRIC UNCERTAINTIES

The circuit shown in Fig. 4.1 represents a flyback converter either for resistive load R, or for
constant-current load /. It includes the following circuit and parasitic elements:
* Q: transistor,
* d:diode,
o T transformer,
* n= Np/N;: transformer turns ratio,
*  Ln: transformer magnetizing inductance,
* L transformer leakage inductance,
* Cin: input capacitor,
»  Co: output capacitor,
*  Rip: primary-side winding resistance,
* Ron: switch ON resistance,
* Ry =Rip+ Ron: total primary resistance,
* R4 diode ON resistance,
* Ris: secondary-side winding resistance,
* Rs=Ra+ Ruis: total secondary resistance,
* Va: diode forward voltage drop.
The stationary and transient responses of the circuit for both load conditions can be obtained
from the circuit equations. For the case of a resistive load, after some basic calculations, the

following steady-state solution can be obtained:

(V,,=1,R,)D=n(V,+V,+nl,R)(1-D), (1)
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Fig. 4. 1. Flyback converter with parasitic elements.
1,n(1-D)=V,/R, . (2)

By solving for the duty cycle D from (2) and replacing it in (1), the flyback converter load line

for a resistive load is given by:

R
ImeR() +IV_O(I/() +V%+ Vd j = I/o (717 - nRs J + I/INR()' (3)

Fig. 4.2 (a) shows the load line from (3), and ON and OFF-BCM flyback trajectories obtained
by solving the circuit equations for the ON- and OFF-switch states for different arbitrary initial
conditions. The load resistor R, is 48 Q and the input voltage source Vi, is 6 V. The value of the
parasitic elements of the flyback components are shown in Table 4.1 and they represent the same
actual parameters from the components used for the simulation and experimental results included
in this work.

For the constant-current load, the following steady-state solution can be derived after some

basic calculations:

(v,,—1,R,)D=n(1-D)(V,+V, +nI,R,), 4)

I,=n(1-D)I,. (5)
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Fig. 4. 2. Load line for a flyback converter with (a) a resistive load, and (b) a constant-current
load.
TABLE 4.1 FLYBACK CONVERTER PARASITIC ELEMENTS
Component Parasitic Element Value
Lk 1.58 uH
Transformer Rip 0.048 Q
Ris 0.110 Q
Transistor Ron 0.077 Q
Diode Va 0.58V
Ra 0.02 Q
By solving for the duty cycle D from (5) and replacing it into (4), the load line for

a flyback with constant-current load is obtained as:
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I RP+K"i0+(I/"+V")I” =IO[&—nst+V,N. (6)
Fig. 4.2(b) shows the load line for a constant-current load and the ON and OFF trajectories when
the actual converter parameters from Table 4.1 are used. The constant-current load I, was set to 0.5
A and the input voltage to Vin =6 V.
The load lines considering parasitic components derived for the resistive and constant-current
load cases are compared below to the load lines obtained without parasitic components to show
that the ideal model and the model considering parasitic elements behave very similarly under

steady-state conditions. The ideal load line for the resistive load case is obtained by making the

parasitic elements equal to zero on (3) as:

Vin+Vy, =1V,Rn. ()

Fig. 4.3(a) shows the ideal and real load lines, and the ON and OFF real BCM trajectories. It is
possible to see that they are very similar during most of the operating range. If the particular case
with Vo =24V, Vi =6 V and the turns ratio Np/Ns = 4 is considered, the ideal duty cycle D is 0.5.
However, D should be 0.53 under conditions with actual parameters, which represents a 6% of
duty cycle variation.

The actual and the ideal flyback load lines for the case of a constant-current load are shown in
Fig. 4.3(b). Like the case of a resistive load, the actual and ideal load lines for a constant-current
load are similar for the duty cycle range (0 < D < 0.8). For example, if Vo =24V, Vin=6 V and
the turns ratio Np/Ns = 4 is considered, the ideal duty cycle D is 0.5 while D = 0.53 is needed when
actual components are used.

It is concluded that flyback circuits with typical parasitic components can be analyzed under

ideal conditions (no parasitic components) without producing relevant errors.
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Fig. 4. 3. Actual and ideal flyback converter load lines for (a) a resistive load, and (b) a
constant-current load.

The system shown in Fig. 4.4 is a simplified version of a flyback converter which consists of
an ideal transistor O, and ideal diode d, flyback transformer 7 with magnetizing inductance L, as
well as input and output capacitors, Ci» and C,. These parameters are the converter actual
parameters which may differ from the nominal ones used in the design process. The components
which determine the dynamics of a flyback converter are the magnetizing inductance and output
capacitance [33]. The nominal output capacitance is C, and the nominal magnetizing inductance

is L.. The load is represented by a constant-current load which states the worst-case scenario in
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Fig. 4. 4. Flyback converter circuit including current and voltage sensors.

terms of stability [11]. The normalization of the system consists of a scale change of variables on
its differential equations which enables a general solution [27]. The presence of a transformer
makes it necessary to relate the converter parameters to one side; the secondary side is selected in
this case. The normalization is performed using the nominal output voltage as the reference voltage

Vr = vo, the characteristic nominal impedance of the combined nominal magnetizing inductance

referred to the secondary side and the nominal output capacitor, Z, =(1/n)\/Zm /EO as the

reference impedance Z and the natural frequency 70 =n (272\/ LnC, ) as the reference frequency

fr. The normalizing equations of the voltage, current and time variables as well as their derivatives

for the secondary variables are as follows:

Vn = V/Vr > dvn = dv/l/r > (8)
i, =iZ,)V,, di,=di.Z |V, ©)
t,=t.f., di,=dtf., (10)

where v, i, and ¢ are the standard voltage, current and time variables of the secondary side, and v,
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in, and t, are their normalized versions. The normalizing equations must be reflected back to the

primary side to normalize primary variables as follows:

v, =v/(nV.), i, =inZ [V, (11)

dv, =dv/(nV,), di,=dinZ|V,. (12)

The next subsections present the derivation of the normalized OFF- and ON-state general natural
trajectories on the plane imn vs. von, which depend on generic initial conditions, input voltage and
output current. Later, specific natural trajectories containing the point imn = 0, von = Vrrn will be
analyzed. This specific point characterizes the operation in BCM. As will be explained in the
sequel, voltage V'7rn is set as the desired target point voltage which leads to the converter producing

the required root-mean-square value (RMS) of the voltage output.

4.3.4 OFF-State Trajectory

Diode d conducts during the OFF-state of transistor O and the energy stored in the transformer
during the ON-state is transferred to the load. The voltage applied to the magnetizing inductance is
the output voltage multiplied by the transformer turns ratio. The following expressions are the
differential equations that describe this mode of operation, where L» and C, are the actual

parameters of the converter:

di
L —2=—-pv, 13

m dt o ( )
A (14)

Using (1) through (5), the normalization of (6) and (7) becomes:

di Ln
—=2r—v,_,
dt L

n m

(15)
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dv Co
on _ 2 P 7 .
7 T C (lmn lgn) (16)

n o

Differentiating both sides of (8) and replacing it in (9) yields a differential equation with the

following solution:

i (2,) =1, +Acos(2ﬂ\/@tn)+Bsin(zﬂ'@tn), (17)

_ _ o 1 di,(0) .
where a:Lm/Lm, ﬂzCo/Co, A:zmn(O )—zon and BzZﬂ@ i . By applying the

trigonometric property Acos(x)+ Bsin(x)=+ 4"+ B* sin (x +tan™' (A/B)) to (17), taking the
derivative of the resulting expression and using the property cos (sin’l (x)) =+/1—x?, the result is

an equation that does not depend on the normalized time. Then, the OFF-state trajectory can be

expressed as follows:
Aogp =Ve, =+ (i, —i,, ) — 4> — B> =0. (18)

Therefore, in the case where the nominal parameters are the same as the actual ones (a/ff = 1), Aorr
is a circle with its center at (imn, von) = (ion, 0) and a radius that is a function of the specifications
of the converter [33]. However, Aorr becomes an ellipse in the case where the actual parameters

differ from those used in the design process.

4.3.B ON-State Trajectory

The magnetizing inductance is connected to the input source and the diode in the secondary
side is reversed bias when the transistor Q is ON. The differential equations for this stage and their

normalized versions are:

v, =L —", (19)
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- =C —2, 20
=G (20)
di
2ray, =—2L, 21
mn dtn ( )
dv
2aBi =len 22
Bi,, 0l (22)

From (21) and (22), when Q is ON, the normalized magnetizing current and output voltage vary
linearly with time. Dividing these two normalized equations yields:

dlmn — _g Vinn
dv pi,

on

(23)

By integrating (14), the natural trajectory of the flyback converter when the transistor Q is ON is
given by:

dgy =i 2ty =, (24)

mn ﬂ i

where H is a constant that depends on the initial conditions selected for starting the ON-state. In
particular, if the initial conditions for the Aorr trajectory are properly imposed (i.e., designing the
controller adequately), the natural OFF-trajectory will intersect the state space target point (0, von),
and H in Aow can also be selected such that Aoy intersects the same target point.

The loci Aorr and Aow are the natural trajectories of the system when the switch is OFF and ON,
respectively. Those natural trajectories start from the initial conditions which correspond to the
time instants when the switch commutes. By properly selecting the switching times, specific
natural trajectories can be selected to be the NSS that lead the converter to the target operating

condition.
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Fig. 4. 5. Normalized natural surfaces for a flyback converter operating in BCM under
parametric uncertainties.

4.3.C Graphical Analysis of the NSS Trajectories with Parametric Uncertainties

Fig. 4.5 presents the graphical renditions of the NSS trajectories previously derived. These
graphs show different elliptic trajectories Aorr all passing through the point (Vzrn, 0) for the BCM
operation presented in the next subsection. As previously described, Aon is a descending sloping
line and Aorr is a circle with a center at (0, ion) for the case when o/f = 1 and an ellipse for the case
when o/f # 1. This subsection shows the interaction of the two trajectories and their relationship
with the converter operation.

Analyzing the operation of the flyback converter on the inmn vs. von plane, quadrants of the plane
can immediately be recognized as unobtainable or undesirable operation zones based on the
polarity of the variables. For example, in» must be positive for the flyback converter to operate

correctly. Therefore, im» would not be attainable in quadrants III or IV. Likewise, the converter
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could not operate if von was negative. If the converter was operating when von were negative, it
would imply that the load would be transferring power to the input of the converter, which is
physically impossible due to the presence of the diode d. Therefore, von should not operate in
quadrants II or III. This leaves quadrant I as the only operational quadrant that satisfies the
constraints for both variables. In quadrant I, im» and v are both positive and the flyback converter
would be transferring power to the load. The unreachable quadrants have been grayed out in Fig.
4.5.

If the converter’s trajectories were to reach an axis, the converter would then evolve on that
axis. Therefore, the converter upon reaching the im» axis would change im» while the output voltage
remained at zero. Likewise, the converter upon reaching the von axis would change von» while

keeping the magnetizing current at zero. This is due to the unobtainable quadrants.

4.3.D Selection of the Target Point for Operation in BCM

The free parameters of lov and Aorr in (11) and (15) should be selected for the natural
trajectories to contain a target operating point that maintains the converter operating in BCM for
all loading conditions. Selecting the target normalized magnetizing current as zero assures BCM
operation. The target for the normalized output voltage is selected as V7., whose value will be
calculated so the desired output RMS voltage equals to the reference voltage V. The expression
of Vrrn, will be derived in the next sections.

Replacing the target point (imn, von) = (0, Vrrn) in (24), the constant H in Aow is given by:

aV,
H ===V, (25)

ﬂ ian

Therefore, the normalized BCM ON-state trajectory noted as oow is given by:
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) av, av.
ooy =1, +—"vy ———2)  =0. (26)

mn ﬂ l.on on ﬁ l.on TPn —
Moving onto Aorr, A and B can be evaluated from the known target point as the initial

conditions:
i, (07)=0, i, (07)/dt, =27, (27)
Then, 4 and B can be expressed as:
A=—i,, B=—V, Jo/B. (28)

Substituting (28) into (11), the complete normalized BCM OFF-state trajectory which is named as

oorr 1s defined as follows:

. o 2 . . 2 (04 2 )
GOFF = Evnn + (lmn - lon) _EVTPn - l(m = 0 (29)

4.3.FE BCM Control Law

This section explains the derivation of the control law based on the BCM trajectories from (26)
and (29). The goal of the control law is to force the converter to move to and stay on the identified
BCM trajectories. The control law is developed by knowing the movements along the trajectories
for each state of transistor Q and the above conditions. Basically, the control law decides between
two options: either O should be turned ON or OFF. The decision is based on the current state of
transistor Q and the relative location of the current operating point with respect to the BCM
trajectories.

While Q is ON, the converter moves up the imn vs. von plane. If the converter is currently
operating below gorr, Q is kept ON if von < Vrp, while the converter continues to move up the plane
until oorr is reached. Then, Q is turned OFF. If the converter were operating anywhere above gorr,

0 should be turned OFF.
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Fig. 4. 6. Flow diagram of the BCM control law.

Since the objective is to operate in BCM, Q is not allowed to switch back ON until im» = 0 p.u.,
once it has been switched OFF. Therefore, if the converter is operating anywhere above the von axis
(imn > 0 p.u.) and Q is OFF, Q is kept OFF until the converter reaches the von axis. Once the von axis
is reached, the current operating point is compared to gorr. If the converter is operating at a point
higher than oorr, O is kept OFF, allowing for the converter to evolve down the von axis to the OFF-
state trajectory. After the converter is operating below or at gorr, Q is switched ON if von < Vrpn,
allowing for the converter to ride the ON-state trajectory back up to the OFF-state trajectory as

previously described.
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Fig. 4.6 shows a complete flow diagram of the BCM control law [33], which forces the
converter to move and operate under the BCM trajectories in one switching cycle, no matter where
the converter is currently operating. This allows the flyback converter to operate in BCM
continuously for any load during steady-state conditions. Under transient conditions where the
input voltage or load changes when Q is OFF, the worst-case scenario would be that the converter
recovers in two switching cycles. During that transient, a DCM operation with a slightly
overvoltage at the output or BCM operation with a slightly undervoltage at the output could be
experienced. This is because the desired ON- and OFF-state trajectories change when the converter
parameters change. If the disturbance occurs while O is ON, the converter will reach the target
point in only a single switching cycle. The rapid recovery time of one switching cycle provides

remarkable stability and transient response time for all converter conditions.

4.4 START-UP AND STEADY-STATE CHARACTERISTICS

The normalized trajectories and main waveforms for a flyback converter operating in BCM
when a/f = 1 are shown in Fig. 4.7 [33]. At the converter start-up, initially imn, von and ion are zero
(see point 4 in Fig. 4.7). When Q turns ON, imx starts increasing while von stays at zero. When gon
intersects corr at point B = (0 p.u., Lsrupn), O turns OFF so imn decreases while von increases. As
soon as Vo starts rising, io» moves towards its rated level lo:x if the load is connected. Therefore,
the first intersection of corr with the von axis will be at Vi, whose level is lower than the target
point Vzr, because ogorr was calculated for ion = 0 p.u.. When imn» = 0 p.u., QO turns ON at point C =
(Vxn, 0 p.u.) until oorr is reached at point D where Q turns OFF. The next intersection with the von
axis is at the target point 7P = (Vrrs, 0 p.u.) where steady-state conditions are reached and the
flyback operates between points £ and TP. In case of a sudden load change while Q is ON, the

controller will be able to reach steady-state conditions in only one switching cycle. In that case,
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the converter will be operating from points F to 7P. The expressions for the start-up and steady-
state conditions of Fig. 4.7 are calculated, and their dependence to the converter parameter

uncertainties is analyzed in the following subsections.

4.4.4 Start-Up Peak Current

The normalized start-up peak current s-upn With start-up initial conditions (ion, von) = (0, 0) p.u.

can be determined by evaluating corr (29) yielding:

Ist—upn = V a/IBVTPn : (30)

Fig. 4.8 shows Lswupn as function of a/f when Vren = 1 p.u.. Liupn = 1 p.u. that only happens
under ideal conditions (a/ff = 1). De-normalizing (30) by using (1) and (4), the start-up peak current

Lup can be calculated as follows:

a C,
Ist—up = EEVTP : (3 1)

Iseup is proportional to the square root of C,/L. and Vzp; so Ly could be very high for high-
voltage and low-ripple applications. This is because, Ls-up 1s the necessary magnetizing current to
reach the target point in a single switching action when io» = 0 p.u.. If necessary, the start-up current
can be limited to a lower value Inax at the expense of reaching the target point under start-up
conditions in more than a single switching action. Normally under start-up conditions, a/f = 1

since the flyback converter is supposed to have the parameters used in the design process.

4.4.B Start-Up Output Voltage

If the load is connected during start-up, the first intersection with the von axis will not be at the
target point Vzps. Instead it will be at a lower point defined as the start-up output voltage V. Also,

Vxn will be lower than V7pn if the start-up current is limited to Zmaxs, €ven if the load is disconnected.
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Fig. 4. 8. Normalized start-up current Ls-upn to reach the target point Vrr, = 1 p.u. with minimum
number of switching actions.

Modifying the initial conditions of (11), the normalized start-up output voltage V» can be derived

as follows:

V — \/Imaxn (Imaxn o 2ion ) ) (32)
xn a/,B

The use and importance of V. on the design of the proposed adaptive boundary controller will

be addressed in the following section. By de-normalizing (32), the start-up voltage Vs is given by:

v - \/1 Ln ﬁ(zm —2&}. (33)

axcoa n

4.4.C Output Voltage Ripple

Under steady-state conditions, the voltage ripple 4von 1s defined by the difference between the

maximum and minimum points of the voltage waveform. An expression for vor as function of imn
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can be obtained from oorr as follows:

v[)}’l = \/VTin + 2£imni0n _Eirin ¢ (34)
a a

Since the locus of corr is an ellipse whose principal axes are aligned with the ims, von axes, the

normalized maximum output voltage Vonmax is obtained for imn = ion as:

I/On,m(/vc = VTi’n + ﬁ iozn : (35)
V a

De-normalizing (35), the maximum output voltage Vo,max can be then expressed as:

> Ln B4
= |Vp +=——%. (36)
The minimum value for the normalized output voltage Vonmin is obtained from the intersection

of oorr with cow as:

ViV =12 (Vi + 2V, )

TPn inn

TPn "inn
voo= P . (37)

Then, the normalized output voltage ripple is calculated as:

.2 a 2
ﬂ lon (VTPn + 2vinn ) - VTPn ﬁ inn
2 .2
Avon = VTPn + lon ; + 5 a 5 . (38)
lun + E vinn

Fig. 4.9 illustrates (38) as function of i, for different values of o/ when Vin, = 1 p.u.. For low
output voltage ripple applications (4vo < 5% of V;), ion should not exceed 0.1 p.u. under ideal
conditions. If a/f > 1, Avon will decrease since the actual values of C, will be greater than that used

in the design process.
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Fig. 4. 9. Normalized output voltage ripple Avon with viun =1 p.u..

4.4.D Normalized Output Voltage Target Point

The target point of the output voltage Vzr, should be selected so that the normalized average
output voltage Vonave = 1 p.u. Vonave should be obtained by integrating von over a normalized
switching period Tsws; but the exact evaluation of Vonave is cumbersome. However, the integral
complexity is reduced if the RMS of von is calculated instead of the average value, and also, it is
possible to obtain an approximated expression which is useful for low ripple cases. Furthermore,
the RMS and the average values will be similar since 4von is small in comparison with the output
voltage.

Considering the complexity of the exact evaluation of Vare, different simplified calculations
can be made to obtain an approximated expression for Vaye.

Among them:

1) Evaluating Vrus instead of Vaye;
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2) VAVE ~ §(I/z2n,min + VTPn )/2+(1_5)(V

on,max

+Vip, ) / 2, where ¢ is the fraction of time where Vo

is lower than Vrpn;

3) VA VE ~ (I/on,max + Von,min )/2’

4) Ve = (VTPn Vi )/2 .

In all cases, Vonmax is the output voltage corresponding to the time in which im» matches ion
reflected back to the primary side, and Vonmin is the voltage value obtained at the time when Q is
turned OFF.

Those alternative expressions are compared with a numerical evaluation of Vaye in Fig. 4.10
for a specific design and fixed target operation point V'7p, = 1, and it is seen that the alternatives 1)
and 2) are better approximations to Vaye than 3) and 4).

Based on these results, Vzus can be considered a good approximation for Vayr and it is shown
below that it can be calculated in closed form rather easily.

Although expression 2) seems to be accurate enough and easier than Vaus, when Vonmin and
Vonmax are included as functions of the other variables and parameters, the complexity increases.
Also, parameter J needs to be defined on an empirical basis.

Therefore, the RMS Vo rus is calculated as follows:

1 T 1
Von,RMS = \/T_ _[ (von (tn))z dt, = T_(Il +12), (39)

swn swn

Imn,max ﬂ l‘ 2 dl- 0 2 d .
where [, = I (Vm——ﬂian —*—and [, = .[ (\/V2 +2i i ﬁ—iz E] T

TPn mn“on mn :
; ) 2w, T a o) 2w,

Vonrms =1 p.u. is replaced in (39) since the desired output voltage is equal to the reference level V.

Solving for Vrps, the expression in (40) is obtained.
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Fig. 4.11 shows Vrra as function of ion when o/f =1 and 0.8 p.u. <vin» < 1.2 p.u., and Fig. 4.12
displays Vrp, as function of ion when vinn = 1 p.u. and 0.5 < a/f < 2. If ion < 0.1 p.u., Vzrrs should
only change about 1% to keep the RMS output voltage at the rated level. Therefore, while keeping
Vren =1, Vonrms will decrease by about 1.5% when ion < 0.1 p.u., and less than 0.05% when ion <
0.05 p.u. as seen in Fig. 4.13 and Fig. 4.14. Therefore, V'7p, could remain at 1 for a design where
Avon < 5% and ion < 0.1 p.u. without having a large output error. Otherwise, the target point can be

evaluated as a function of the load condition using (40) or using the following simplified
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approximation valid for low ripple cases which were obtained by first assuming vin» = 1 which

simplifies the square root term on (40), and then considering zero the terms ijn :

125 —————————————

Vinn : ll pu ad

1.2}

0 0.1 0.2 0.3 0.4
ion (p.U.)

Fig. 4. 11. Normalized output voltage target point V'zp, to obtain Vonrms =1 p.u. with a/ff =1
and vinn changing.
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Fig. 4. 12. Normalized output voltage target point Vzp, to obtain Von.rms = 1 p.u. with vin, = 1
p.u. and a/f changing.

96



S
o

Von,RMS (Pu)
o
%)

<
<

0.2 0.3 0.4
Ion (p.U.)
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Fig. 4. 14. Normalized RMS output voltage when Vrr, = 1 p.u. with viin = 1 and a/ff changing.

v, =(3Z+5i§n]/(3;+ij”j. (41)
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Fig. 4. 15. Normalized output voltage target point plotted from (40) and its low-ripple
approximation from (41).

Fig. 4.15 shows Vrp, as function of ion using expression (40) and compared to the approximation
(41) for different values of a/f illustrating that the approximation works very well under low-ripple

conditions.

4.4.E Normalized Magnetizing Inductance Current Ripple

The current ripple through the magnetizing inductance 4imn» is equal to the peak current Znun max
which can be calculated by replacing Vonmin on the BCM trajectory oon and then solving for the

magnetizing current yielding:

. a . . a
Imn,mwc = Almn = 2 Elonvinn (VTPn + Vinn )/(lozn + E viznn J (42)
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Fig. 4. 17. Normalized switching frequency fswx as function of the load current ion.

Fig. 4.16 shows the plot of (42) when vin» = 1 p.u. and o/f changes. De-normalizing (42), the
maximum magnetizing inductance current I max for a given operating steady-state condition can be

calculated by:
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Immax=2“iovin[Vr+"”’j plm a2 (43)
: Yii n C, p

4.4.F Switching Frequency

The converter switching frequency fsw will change based on the load, input voltage and
parameter variations because of the operation in BCM. The derivation of fsw is done by calculating
the normalized switching period 7sw. from the ON- and OFF-time periods obtained from (8) and

(21); in particular:

Ai (1 1
Z;wn = TONn +TOFFn :%(E—'—Zj (44)
By de-normalizing (44), fsw is obtained as:
ﬂw = f‘vwnﬁ = (avinI/r )/(ZmAlm (Vr + Vin /n)) (45)

Fig. 4.17 displays the normalized switching frequency fswx as function of the load current. The
switching frequency for BCM operation increases when the load current decreases. Due to the
converter topology, the averaged diode current must be equal to the averaged load current for a
constant averaged output voltage. So, the same must happen with the averaged diode current, which
depends linearly on the peak magnetizing current, if the load current decreases. During the whole
OFF interval, the diode current decreases at an approximately constant rate which depends on the
output voltage, and the switching frequency increases inversely proportional to the peak of the
magnetizing current.

As the maximum switching frequency is limited by the used hardware, BCM operation cannot
be sustained for load currents falling below a certain limit. For lower load currents, DCM operation

is necessary.
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4.5 ADAPTIVE BCM CONTROL LAW

As analyzed in the previous section, the transient and steady- state responses of the converter

under NSS control may not be as good as theoretically expected when the actual parameters of the

flyback Ln and Co are not equal to the nominal values L and C, used in the design. This occurs
because the derived BCM control trajectories are obtained by normalizing the differential
equations of the converter with base values that may differ from the actual ones. This section
presents a novel BCM NSS control method that compensates for the parametric uncertainties of
the converter. The proposed controller (29) responds by adapting the ratio o/ff whenever it detects
that the system is not evolving on the ideal trajectories. The adaptation is performed at the end of
each switching cycle using the following rule which produces small adjustments on a/f
proportional to the difference between the normalized target point V7p, and Vin:

a/B(n+1)=a/B(n)+(Vy, ~V,,(n))K, (46)
where the constant K is a real number selected by the designer, a/f(n) and Vix(n) are the actual
values of the parameter ratio and measured target point voltage to obtain the future value o/f(n+1).
A brief description and justification of the adaptation algorithm is presented below.

The proposed BCM trajectories (26) and (29) model the converter uncertainties with the
introduction of the parameter a/f, so an ideal control performance could be always obtained if a/f
is precisely estimated. The first estimation of a/f is performed during the start-up and then small
adjustments will be implemented based on the measured error to the desired target point after each
switching cycle. The complete control scheme is shown in Fig. 4.18 and explained in the following.
After each analog-to-digital conversion (ADC) the normalization is performed using (1) through
(5). The measured variables are the transformer primary- and secondary-side currents i, and is,

output current i, and output voltage vo. The magnetizing current in is obtained from i and is. When
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Fig. 4. 18. Flow diagram of the adaptive BCM NSS control law.

Q is ON, imn equals the normalized transformer primary side current iy, and when Q is OFF, imn 1S

the secondary side one is». The reference voltage V), the reference impedance Zr, the maximum
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start-up current /max, and the voltage target point Vrp (Vrr = V» for low-ripple applications as
presented in Section I1I-D) are the only constants required for the controller. At the beginning (see
point 4 in Fig. 4.7), imn, ion and von are zero, a/f is one, producing a negative value in the calculation
of oorr. Those are the initial conditions of the converter. The transistor remains ON until either
oorr 1s intersected (corr > 0) or the start-up current limit is reached (imn > Imaxn). Start-up is a
variable used to determine if the converter is under start-up or steady-state conditions; initially,
Start-up = 0 until Q turns OFF the first time.

Just before turning Q OFF for the first time (see point B in Fig. 4.7), the normalized start-up
current seupn 1S saved in the variable Imax» and the variable start-up is set to one. Later, Inaxn will
be used for the initial estimation of a/f. Transistor Q will be kept OFF until the vox axis is reached
and von < Vrpy (see point C in Fig. 4.7). As soon as the von axis is intersected, von will be saved into
the variable Vx: and start-up is set equal two. Then, the first estimation for a/f is derived using

(32):

o U =2) o
Vo

The next time corr is calculated, it will be using the just updated a/f obtained from (47). Then,
QO will turn ON again after von is less than the target point Vzr.. Therefore, the flyback in case of an
overvoltage will operate in DCM during that transient. The overvoltage is related to cases where
the true value of a/f is lower than the current estimation (see Fig. 4.11); otherwise, Q will turn ON
right after im» reaches zero and the new a/f is calculated.

Similarly, to start-up conditions, Q will stay ON until imn > Inax or gorr > 0 but now it is not
necessary to save anymore the peak value of the magnetizing current for the a/f calculation. After

Q turns OFF and when im» reaches zero p.u., von is saved into Vin.

The convergence and performance of the adaptation rule (46) are analyzed next. By
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differentiating (41) with respect to a/f, the following is obtained:
vy, [d(a) B) =122, /(3a/p+i2) =~G(n)<O. (48)

As this kind of converters do not operate adequately when the output current is zero because
the output capacitor which holds the output voltage cannot be discharged, it is reasonable to
consider that the output current is always greater than a minimum operating value ionmin. So, it will
always be G(n) > Guin, where Gmin 1s obtained evaluating (48) at ionmin. Also, a maximum value
Gmax can be evaluated from (48) by considering the maximum possible value of the output current
fon,max, and the minimum possible value for a/f. Since ionmax should be at most equal to 1 and a/f
will never reach zero because it would imply to consider a null nominal magnetizing inductance
in the design, it can be shown that for a/f > 0.1, G will never be greater than 10, and usually will
be lower than 4 considering a 50% error in the nominal parameters.

Approximating (48) as function of the actual and future values of Vi, and o/f yields:

V (n+1)—V (n)

xn xXn

a/f(n+1)—a/f(n)

= —G(n). (49)

By solving a/f(n+1) - a/f(n) from (46), replacing it into (49), and rearranging the actual and future

terms, the following expression is obtained:

V., (n+1)=V,, (n)(1+KG(n))+V,,,KG(n)=0. (50)
By applying the Z-transform to (50), assuming that the gain G is constant and the input V7p. is a
step signal, and solving for Viu(z), the stability of the target point can be analyzed:

Vo (2)=-

VTPnKG

z—(1+KG)' D

By analyzing the poles of (51), the target point is exponentially stable without oscillatory behavior

if and only if 0 < 14+K.G < 1 or, equivalently, -1/G < K < 0. So, considering the worst case, the
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TABLE 4. II FLYBACK CONVERTER PARAMETERS

Parameter Value
Vo 24V
io 05A
VIN 6V
A\/'o 4V
Aim 10 A
ﬁw 7 kHz
gain K should be
-1/G,.. <K <0 (52)

to assure exponential stability, and therefore Vx» will converge towards V7e, which also implies
from (46) that o/f will converge to a constant final value. That can be also noted from the final

value theorem applied to (51) and considering that V'7p, is a step signal:

z KG
lim| —(z-1)V. =V, . 53
z—)l( (Z ) TPnZ_lz_l_KG] TPn (53)

When considering G = Gmin in (50), the dynamic response will be the slowest one and will
provide an upper bound for any other dynamics obtained with other gains G such that Gmax > G >
Gmin for the same initial conditions and input signal. Therefore, any dynamic response obtained
from (50) for K satisfying (52) and considering a variable G(n), such that Gmax > G(1) > Gmin, will

also be exponentially asymptotically stable.

4.6 DESIGN PROCEDURE AND EXAMPLE

The specifications for the proposed BCM flyback converter are presented in Table 4.I1. The
output voltage and magnetizing current ripples in the proposed design example will be exaggerated
in order to improve the visualization and facilitate the plot of the trajectories. In addition, a low ripple

case will be illustrated. The step-by-step design process is given next assuming that a/f = 1.
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4.6.A4 Transformer Turns Ratio

The turns ratio » is calculated by dividing the transformer rated primary and secondary voltages.
The latest produces a duty cycle about 50% at rated conditions since vimn = Von.4ve (see Tonn and Torrn

from (44)). Then,

n=N,[N =v,/[v,=1/4. (54)

4.6.B Output Capacitance
The frequency fsw depends on the load conditions in BCM operation. However, a desired fw
can be selected for rated conditions. By de-normalizing and solving (14) for Aima, the following

expression for Ain is obtained:
Ai = o=? (55)
By substituting (55) into (45) and solving for C.,, the output capacitance needed to operate

with a voltage ripple 4v, and a switching frequency fsw when the output current is i, is obtained as

follows:

i
Co=—=2—~10uF. 56
27 A Iz (56)

Sw o

4.6.C Magnetizing Inductance

By de-normalizing (14) and solving for L., the following expression based on the design

specifications is derived:

Lo =(v,Av,Co) /(A0 ) = 45 H. (57)

106



There is a trade-off between 4im» and Lm since a lower 4imn implies a higher at the expense of
increasing the transformer cost. However, a higher 4imn increases the rating of the semiconductor

devices.

4.6.D Reference Impedance

The reference impedance Z, is obtained from the previously calculated parameters by using

(54), (56) and (57):

Z, =(1/n)\Ln/Cs =8.35Q (58)

4.6.E Start-Up Current

Lstup 1s obtained by substituting the calculated C, and L, parameters into (31):

I =ViA|Co/Lu =11.3A. (59)

4.6.F Steady-State Peak Magnetizing Current

The peak current during rated steady-state conditions /mmax 1s obtained from (43) as follows:

m,max _( o0 "in

I 4y, V) (22 L/ Co 49, ) =TT A. (60)

4.6.G Transistor Current and Voltage Ratings

The transistor current rating /o,max must be higher than /s, if the start-up current is not limited.
If it is desired to limit the transistor current to a lower value Imax, it should be greater than the
steady-state value; that is:

I, >I > (61)

st—up max m,max *

The transistor voltage rating Vomax, without considering the voltage spikes related to transformer

leakage inductance is given by:
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o

,max > Vin + von' (62)
Therefore, in practice, Vomax Will depend on the type of the snubber circuit used and the

transformer leakage inductance [35].

4.6.H Diode Current and Voltage Ratings

The current and voltage ratings of the diode d can be obtained from (61) and (62) referred to

the secondary side. Then, the breakdown voltage of the diode Vamax should be higher than:

%

d,max > vin/n + vo' (63)
In case that Isrup is limited to Zm max, the diode current rating should be:

n>1

st—up d,max > m,maxn'

(64)

4.7 SIMULATION RESULTS

Matlab/Simulink™ simulations for a flyback with electrical parameters from Table 4.1 and
nominal components from Table 4.II1 are presented under different a/f conditions starting with
the BCM NSS control scheme in Fig. 4.6. Initially, ideal conditions (a/f = 1) are considered.
During the start-up, vo and i, are zero, so the expected start-up voltage Vx and current [swyp are

calculated from (33) and (31) as:

21

I/x:\/lmax_ _(Imax_ .Oj_l/(izzo'gSV’
n

Ly =Vip|Co/ L =11.5A.

From the simulation results shown in Fig. 4.19, [y = 11.54 A and Vx = 21.08 V, representing

errors of 0.35% and 0.62%, respectively. Thus, there is good agreement between simulation and
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theoretical results. Moreover, the controller is able to react to an output current step change from

0.28 A to 0.48 A in only one switching cycle.
Next, a flyback with parameter uncertainties a/f = 4, which could be the case where C, = Co/4

and L, = Lm, is simulated. From (33) and (31), the expected start-up parameters should be sy =
5.75 A and Vx = 8.79 V. Simulation results are presented in Fig. 4.20(a) where lsp = 5.85 A and
Vx=9.06 V, representing errors of 1.7% and 3.07%, respectively. In this case, the errors are caused
by the quantization of the signals, as decreasing the sampling time reduces the error.

Moreover, the controller due to the parameter uncertainties will not reach the target voltage and

has poor voltage regulation as the output current changes.

TABLE 4. III EXPERIMENTAL PROTOTYPE CHARACTERISTICS

Parameter Value
Transformer T Coilcraft® NA5919-AL, L, = 45.8 uH, n = 1/4,
Lar=13.6 A @ Ln=38.5 uH
Transistor Q Vishay® IRFP140PBF
Vass =100 V, Ip=31 A @ 25 °C
Diode D Vishay® VS-8TQ100PBF
Ve=100V,Ip=8 A, V'Fr=0.58 V
Output Capacitor Co 10.52 pF Film

ip: 2.5A/d1v; ig: 2.5A/div; v, 5V/div; i, 0.3125A/div; ve: 5V/div;

. v\vvvvv\v\vVVVVVV

3 Ve E
o |
0 0.25 0.5 0.75 1 1.25 1.5
Time (ms)

Fig. 4. 19. Simulation results of the BCM NSS control law (a) under ideal conditions.
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ip: 2.5A/div; ig: 2.5A/div; v,: SV/div; i, 0.3125A/div; ve: SV/div;
E T -' L L L L L L ‘V‘O T T T T E
E lp 3

ﬁ

O:LI_LI
0 05 1 15 2 25 3 35 4
Time (ms)
(a)
ip: 2.5A/div; i 2.5A/div; v,: 5V/div; i, 0.3125A/div; vg: 5V/div;
;'"'I""I""I""I""}OI"":
iP

N N A N A B A R A I \ / \ /

: Vg :
N — e e e B
0 025 05 075 1 125 15
Time (ms)
(b)

Fig. 4. 20. Simulation results of the BCM NSS control law (a) when o/f = 4, and (b) when a/f =
0.64.

Next, a case where a/ff = 0.64 is considered. That case could occur if for example C, = C,/0.64
and L, = Ln. The calculated start-up parameters are Iy-sp = 14.38 A and Vx = 26.99 V while the
parameters from the simulation results in Fig. 4.20(b) are 14.41 A and 27.04 V, which represent
errors of 0.21% and 0.18%, respectively. In this case, the controller due to the parameter
uncertainties is operating in DCM instead of BCM. When the load increases, the time where the

diode current is zero also increases.

110



ip: 2.5A/div; i 2.5A/div; v,: 5V/div; i, 0.3125A/div; vg: 5V/div;

N v i vavavivivA N AR ARA VA RVA

Vo E
0 [ 1] I—II_II_I{I_II_II_II_II_II_II__

0 0.25 0.5 0.75 1 1.25 1.5

Time (ms)
(a)
ip: 2.5A/div; i 2.5A/div; v,: 5V/div; 7,0 0.3125A/div; ve: SV/div;
__l.p L L

3 Ve E
0 :
0 0.25 0.5 0.75 1 1.25 1.5
Time (ms)
(b)

Fig. 4. 21. Simulation results of the adaptive BCM NSS control law when (a) o/ = 4, and (b)
a/ff = 0.64.

Then, the novel adaptive BCM NSS controller was simulated to show its effectiveness against
parameter uncertainties. First, the adaptive controller is simulated for the case when o/f = 4, and
the results are shown in Fig. 4.21(a). In this case, the controller estimated a/f = 3.982, which
represents an error of 0.45%. Due to this estimation, the controller is able to track properly the

reference voltage and is able to react to disturbance in the output current in one switching cycle.
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Finally, the adaptive controller was simulated for the case when a/f = 0.64, and the simulation
results are illustrated in Fig. 4.21(b). In this case, the controller estimated a/f = 0.6401, which
represents an error of 0.016%. Due to this estimation, the controller is able to operate in BCM

instead of DCM.

4.8 EXPERIMENTAL VERIFICATION

A flyback converter with the specifications of Table 4.1 and the components of Table 4.I11
was built and tested. The output capacitor C, was specifically designed in this first experiment
with academic purposes to lead to a large output voltage ripple, so the figures can show clearly the
behavior of the system. Later in this section, other results are included after replacing this capacitor
by a larger one leading to a lower output voltage ripple to show a more realistic and practical
application. The traditional and novel adaptive BCM NSS control laws were implemented using
the TMS320F28335 DSP from Texas Instruments®. First, the BCM NSS control law was verified
under ideal conditions and with parameter variations. Then, the adaptive control law was executed
under similar conditions as those in the previous tests and a detailed comparison was performed.
Fig. 4.22(a) presents the transient response of the BCM NSS control law shown in Fig. 4.6 under
ideal conditions. The primary and secondary transformer currents, i, and is; the output voltage and
current i, and vo, as well as the DSP gate signal vg are shown in the same figure. At start-up i, and
Vo are zero, O turns ON until oorr is reached when Lsiup is 12.25 A which is slightly higher than the
11.52 A value calculated by replacing on (15) the converter parameters of Table 4. III. This is due
to the processing time delay introduced by the DSP while computing the control structure. Once
0 is OFF, i, increases to its steady-state value (~ 0.28 A) and the voltage Vx when is reaches zero

is 22.68 V while the calculated value using (33) is 22.95 V. These demonstrate the accuracy of the
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ip: 2.5A/div; i 2.5A/div; v,: 5V/div; i, 0.3125A/div; ve: 5V/div;
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Fig. 4. 22. (a) Transient response, and (b) state-plane trajectory for the BCM NSS control law
under ideal conditions.

derived trajectories and equations. During the next switching cycle, vo will reach to the target point
Vrp =24V and steady-state conditions as appreciated in Fig. 4.22 (a). At the tenth switching cycle,
there is a sudden load increase of about 100% of its initial value. The controller was able to reach
the target point in only a switching cycle since the load disturbance occurred while O was ON, so
oorr was recalculated before turning OFF the switch. If the disturbance were produced during the

OFF period, it would take two switching cycles to reach the target point. The state-plane trajectories
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are given in Fig. 4.22(b) illustrating the similarity with the theoretical waveforms shown in Fig.

4.7. Fig. 4.23(a) displays the transient response of the BCM NSS control law when o/f > 1. This

particular case was implemented by changing the reference impedance toZ, =27, during the

normalization process in the DSP code, which is equivalent to have a/ff = 4 and Ln / C,=1742if

n=4.
ip: 2.5A/div; ig: 2.5A/div; v,: SV/div; i,: 0.3125A/div; vg: 5V/div;
0
0°
0 0.5 1 1.5 2 2.5 3 3.5
Time (ms)
(a)
7 - =
6 F B 3 2 % E
5 r |
54 - = . E
<3 E
2 L 3
1 e ]
0 ¢ Cl ‘ T ¥ R EER ]
0 2.5 5 7.5 12.5 15 175 20 225 2
Vo (V)

(b)
Fig. 4. 23. (a) Transient response, and (b) state-plane trajectory for the BCM NSS control law
when o/ = 4.
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ip: 2.5A/div; i: 2.5A/div; v, SV/div; i,: 0.3125A/div; vg: 5V/div;
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Fig. 4. 24(a) Transient response, and (b) state-plane trajectory for the BCM NSS control law
when o/ = 0.64.

From Fig. 4.23(a), the control performance worsens in comparison to the ideal case. At start-
up conditions, it takes several cycles to reach the target point as shown in the state-plane
trajectories presented in Fig. 4.23(b). Ly 1s calculated by replacing o/f = 1 into (15) as 5.75 A
while the measured sup is 6.5 A. The measured start-up voltage Vx was 11 V while the calculated
value using (26) when a/f = 4 is 10.19 V. When a sudden load increase occurs, the target point
will be lower than that one for the initial output current as noted in Fig. 4.11 which makes the

output voltage dependable on the loading conditions.
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Vo: SV/div; iy 0.3125A/div; vg: SV/div;

: T IR
Vo

A A
AVAVALAV VIV IV

I T T ] I I

0 -

P R e s o e e e e e
0 0.1 0203 040506 0708 09 1.0 1.1 12 1.3 1.4 1.5
Time (ms)
(a)
14 -
12
10 -
~8
<
30
40
2;
0 25 5 75 10 125 15 175 20 225 25
Vo (V)
(b)

Fig. 4. 25 (a) Transient response, and (b) state-plane trajectory of the adaptive BCM NSS
control law when a/f = 4.

TABLE 4.1V SUMMARY RESULTS FOR THE BCM NSS CONTROL LAW

Measured Calculated Error %
]st-up Vx ]st-up Vx Ist—up Vx
alf=1 122 A 22.9V 11.5A 233V 4 1.04
o/lff =4 6.5 A 11V 57A 102V 11 7.36
a/f = 0.64 15 A 28V 144A 281V 4.1 0.21
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Fig. 4.24(a) presents the transient response of the BCM control law when o/f < 1 which it is
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Fig. 4. 26. Transient response, and (b) state-plane trajectory of the adaptive BCM NSS control
law when o/ff = 0.64.

obtained by modifying the reference impedance Z = 0.8Z, on the DSP code which compares to

have a/ff = 0.64 and L./C, = 2.7870. Isup is measured as 15 A while the calculated value from
(15) was 14.38 A. The measured start-up voltage Vx is 28 V while the calculated value from (26)

when o/ff = 0.64 1s 28.06 V. When o/f < 1, Ln 1s overcharged. Therefore, the output overvoltage

produces DCM operation since the control law does not allow Q to turn ON again until vo < Vrzp.



The measured state-plane trajectories are shown in Fig. 4.24(b). The main results from the BCM
NSS control law are summarized in Table 4. I'V.

Fig. 4.25 presents the transient response and the state-plane trajectories when a/f = 4 and the
novel adaptive BCM NSS control law of Fig. 4.18 is implemented. From the start-up conditions,
the converter is able to reach the target point in only two switching cycles as in the ideal case.
Under a sudden load change, the converter is also able to reach V7p in a single switching cycle.
The start-up current Isup 1s measured as 6.95 A which is higher than the value obtained using the
non-adaptive BCM NSS control law since the computation time is higher in the adaptive case. The
start-up voltage Vx is measured as 12.1 V, so the first estimation of o/f using (26) is 4.093 which
represents a 2.325% error. The transient and the state-plane waveforms for the case where a/ff =
0.64 using the proposed adaptive controller are shown in Fig. 4.26. As in the previous case, the
converter is able to reach the target point from start-up conditions in only two switching cycles but
the flyback operates during the first switching cycle in DCM due to an initial output overvoltage.
Using the measured start-up current and voltage Is-up = 14.75 A and Vx =28 V, the first estimation
of a/f = 0.6685 based on (33) which means a 4.45% of error. During steady-state operation when
the sudden load change occurs, the adaptive BCM NSS controller is able to reach the target point
in one a single switching cycle as it occurs in the ideal case. The main results obtained from
adaptive controller to make its first approximation to a/f are shown in Table 4. V.

To illustrate a more realistic design where a low output voltage ripple is desired, Fig. 4.27
shows the experimental results for a case where Co 1s increased to 61.28 uF while keeping Ln as
before. By replacing the converter parameters on (31), Isr-up = 27.76 A which is much higher than
the value calculated in (59) for the parameters of Table 4.1. For designs with low ripple and high

output voltage, I~y may become many times greater than the steady-state magnetizing peak
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TABLE 4.V

SUMMARY RESULTS FOR THE ADAPTIVE BCM NSS CONTROL LAW

Measured Calculated Error %
Lst-up Vi (a/B)o (a/B)o
alf=1 6.95 A 12.1V 4.093 2.32
a/f =0.64 147 A 28V 0.668 4.45

ip: 2.5A/div; i 2.5A/div; v, 5V/d1V i: 0.3125A/div; vg: 5V/div;
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Fig. 4. 27(a) Transient response, and (b) state-plane trajectory for the adaptive BCM NSS control
law when the Iy is limited to 12 A.

current. Therefore, it is necessary in those cases to limit the start-up current using (61). In the

particular case of Fig. 4.27, Imax = 12 A was selected since the steady-state peak magnetizing
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current /mmax 1s 8 A from (60) when the load is at its maximum level. From Fig. 4.27, the ripple
has decreased considerably with respect to previous experiments. A photograph of the

experimental setup is provided in Fig. 4.28.

4.8.4 Comparison with a Linear PI Controller

To compare the new adaptive NSS controller with a standard linear controller under nominal
and uncertain parameters, a linear controller was designed following the basic ideas from
references [8] and [9]. The performances of the linear controller and of the novel NSS controller

are analyzed from experimental results where L» and C, are uncertain.

DSP Control Board
e bl

o =]

Current Source : Flyck Converter rtotype

Fig. 4. 28. Photograph of the experiment setup (Photo by author).

TABLE 4. VI EXPERIMENTAL PROTOTYPE PARAMETERS FOR COMPARISON WITH

A LINEAR COMPENSATOR
Parameter Value
Np/Ns 1/4
Co 20.52 uF (film)
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References [8], [9] present a linear control approach for a flyback converter operating in critical
conduction mode with a resistive load. In those papers, the model of the converter is obtained by
calculating the average current through the diode and then linearizing the expression of the output
voltage around a desired operating point. Then, the linear compensator is designed.

Based on those references, an extension is made to the case of a flyback converter operating
with a constant-current load. The necessary calculations to estimate the performance of the linear
controller for the nominal plant and parameter uncertainties are presented in the Appendix
including the step-by-step design procedure. Below, experimental results are presented. A
summary of parameters of the nominal plant is presented in Table 4.VI. The output capacitor is
selected for the application to have high output voltage ripple, so the figures can show clearly the
waveform characteristics.

A digital approximation to the designed continuous-time PI controller was implemented in a
DSP using a high sampling rate of 200 kHz for testing purposes. The implemented controller had
two main purposes: 1) to produce BCM operation by measuring constantly the diode current,
turning ON the transistor when the current reaches zero, and later turning OFF the transistor when
the magnetizing current reaches the desired value Impi; 2) to measure the value of the output
voltage and the reference voltage, evaluate the error signal and feed it to the PI compensator to
evaluate the necessary Impk value which adjusts the output voltage.

Three designs were made: The first one considering the plant with nominal parameters and the
latter considering variations of the nominal values. The experimental tests were made all on the
nominal plant where the implemented linear PI controller is designed on the basis of different
perturbed plant parameters. Each case is compared with the corresponding adaptive NSS design.

It is important to mention that the magnetizing current is limited to 12 A in all cases to avoid the
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saturation of the magnetic core (when the magnetizing current reaches 13.6 A, the value of the

magnetizing inductance diminishes to 75% of the nominal value).

4.8.4.(1) First Case: Nominal Design

A linear PI controller was designed for w. = 4681 s-1, & = 0.856, leading to K; = 7280, Kp =

2.5. Fig. 4.29(a) shows the performance of the experimental setup. Note the nonlinear effects of

ip: 2.5A/div; ig: 2.5A/div; v, SV/div; i,: 0.3125A/div; ve: 5V/div;

A%

4i, Ip wawwwwwwmwww

ip: 2.5A/div; ig: 2.5A/div; v,: 5V/div; i, 0.3125A/div; ve: 5V/div;
g K :

Time (ms)

(b)
Fig. 4. 29. Closed-loop response for a design with nominal plant parameters when Zs.yp is limited
to 12 A for (a) a PI controller, and (b) the novel adaptive NSS controller.
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the saturation of the magnetizing current during startup as well as when applying a step change in
the voltage reference at 4.693 ms from 18 V to 24 V. The PI controller demands approximately
1.3 ms to reach the new steady-state condition performing 11 switching actions, while the novel
adaptive NSS for the same conditions (Fig. 4.29(b)) responds to the step change at 1.493 ms in

approximately 0.4 ms performing two switching actions due to the limitation of the magnetizing

ip: 2.5A/div; ig: 2.5A/div; v,: 5V/div; i,: 0.3125A/div; v: 5V/div;

;ip 4i v, A
] A Iy
ﬁ LA
o LT A
—— V,= 18V | V,=24 V e .
0 ﬂ\ﬂHHHHﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂHHﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂHﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁ
E\Al“\)|\\|\||\|\‘l\ll‘l\\l‘\|\||\|\\|\|\\|\\|\|\\|\
0 gl 2 3 4 5 6 7 8 9 10
Time (ms)
ipl: 25A/d1V, {S: 2I.5‘A'/clliv;‘v?: '5%12)/d‘ivy; 10 0'3.1,2,5A/di,v.; V! 5\‘//(‘1ilv;‘
; . 4i
LA L
L T
e V,=18 V- |« V,=24 V- :
0 0 Ch 11 00n0nn ﬂJ—U—Lﬂ ﬂﬂﬂﬂﬂﬂﬂm
:\..\I.g‘\.‘l.ll.‘llll.‘\.ll.Jl.lllll.\’
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Fig. 4. 30. Closed-loop response for a design with uncertain plant parameters (a/f=4) when Lseup
is limited to 12 A for (a) a PI controller, and (b) the novel adaptive NSS controller.
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current. If the magnetizing current was not limited and the core would not saturate, it would need

just one switching cycle to reach the target output voltage.

4.8.4.(2) Second Case: Design Based on Uncertain Parameters (o/=4)

In this experiment, the plant remains the same, but the design of the PI controller is made on
the basis of uncertain plant parameters, considering C, = 5.13 pF. A linear PI controller was
designed for w, = 4682.7 s, £ = 0.8387, leading to Ki = 1821.6, K, = 0.4878. Fig. 4.30(a) shows
that the performance of the experimental setup is more oscillatory than the previous case due to
the parametric variations and demands more than 3 ms (i.e., more than 22 switching actions) to
reach a steady-state condition for a sudden change on the voltage reference V; from 18 V to 24 V
occurring at 5.03 ms. As predicted by (A25), since f < 1, the response will be slower than in the
ideal case. This case must be compared with Fig. 4.30(b) where the novel adaptive NSS controller
is used and, despite the parametric error, the closed-loop response to the step change at 1.68 ms is

very similar to the one obtained with the nominal design (Fig. 4.29(b)).

4.8.4.(3) Third case: design based on uncertain parameters (a/f=0.64)

The plant remains the same, but the design of the PI controller is made based on uncertain plant
parameters, considering Co = 32.06 uF. A linear PI controller was designed for w. = 4683.2 s}, &
= 0.8385, leading to Ki = 11387.2, Kp = 3.9131. Fig. 4.31(a) shows the performance of the
experimental setup. A rather unstable operation occurs during the first interval before the
application of a step change in the output voltage reference from 18 V to 24 V at time 3.952 ms.
The output voltage waveform is noticeable worse than the obtained with the nominal design (Fig.
4. 29(a)). The PI controller is reaching the new target point in about 1.3 ms after 13 switching

actions. This case must be compared with Fig. 4.31(b) where the novel adaptive NSS controller
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shows almost the same response to the step change at 1.494 ms as for the nominal case despite the

parametric variations, reaching a steady-state condition in two switching actions.

lp 2 5A/d1v 1S 2 5A/d1v vo 5V/d1v 10 03125A/d1v Vg 5V/d1v

i N SRN

|
i

I
[

- V, =18 Vit [, = 24V
o L[] Mkl imEalalshlslafalatalutalslalalalalul
“||||Vg\\lluuuw\\\luluuww\\luullwww\uuuu'
o 05 1 15 2 25 3 35 4
Time (ms)
(b)

U LTV il

L
i

Fig. 4. 31. Closed-loop response with uncertain plant parameters (a/ff = 0.64) when Lseup 18
limited to 12 A using (a) a PI controller, and (b) the novel adaptive NSS controller.
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4.9 CONCLUSION

The natural switching surfaces for a flyback converter with parameter uncertainties operating
in the boundary conduction mode were obtained from the normalized converter differential
equations. The derived nonlinear boundary control law brings the converter to the target point in
a single switching cycle if the load does not change when the transistor Q is OFF during transient
conditions. During start-up conditions where the load changes from zero to its rated value when
the transistor is OFF, the worst-case scenario will be approaching the target point in only two
switching cycles. During steady-state conditions, the controller will compensate for a sudden load
change within only a single switching cycle.

The experimental results showed that for the nominal system (o/f = 1, no parametric
variations), the closed-loop response had no overshoot, zero steady-state error and excellent
response to sudden load changes. When parameter uncertainties were present (o/f # 1), the
performance of the typical NSS control degraded considerably due to the dependence of the
normalized control trajectories to the converter parameters. To improve the system performance,
an adaptive control scheme was implemented predicting the variation on the converter parameters
by using the precisely derived converter natural trajectories. The controller made its first
estimation of the parameter variations during the start-up with a precision measured to be higher
than 95%. Then, small adjustments were made cycle-by-cycle to adapt the control trajectories by
measuring the error of the output voltage with respect to the target point producing a control

response similar to the ideal case even under extreme parameter variations.
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4.11 APPENDICES

4.11.4 Linear Controller for BCM Operation

The average current /s through the diode in the secondary side of the transformer can be

calculated from Fig. 4.32 as:

I  n(l-D -
I, :w:‘l_l)]}w_n'(l D), (AD)
2 L 2

m

where D is the duty cycle which is calculated by analyzing the steady-state voltage waveform

across the magnetizing inductance in BCM as:
D=n(V,+V,)/(v, +n.(V,+7,)), (A2)

where Va is the voltage drop across the diode.

-( VO + Vd)l’l

A Vgate

_DTSW —_(I'D)TSW_'

Fig. 4. 32. Main waveforms for a flyback converter operating in BCM.
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From (A1), 1z depends on the magnetizing inductance peak current /m pk. Therefore, Im px 1s used
as the control variable to set the required average diode current [8], [9]. By replacing (A2) into
(A1), 1a can be expressed as follows:

1 v,
I, =-"ry in . A3
d 2 v, + n(vo + Vd) (A3)

From (A3), Iz is a nonlinear function which depends on vin, vo and Impr. Linearizing (A3) around
an operating point, [, can be expressed by:

Iy = KinVin + KonIon i + KoV (A4)
Where Kin, Km and K, are calculated by:

I 2
Km _ a]d _ m,pkn (va +I/d) =, (AS)
Vo 2(V, +n(V,+V,))

170

ol nV
Km — d — in , (A6)
ol . 2(V,+n(V,+V,))

in

ol n'v,I,
=—4 - 2, (A7)
o, 2V, +n(V,+V,))

o

From the simplified flyback converter model shown in Fig. 4.33, the diode current in the
Laplace s-domain can be expressed as follows:
ta(s) = 1,(s) + 5Co Dy (s). (A8)
By combining (A4) and (AS8) the following expression is obtained:
KinVin + K pie + Koo = 15(s) + 5CoD, (). (A9)
To analyze the effect of Impt onD,, V;, and i, are assumed to be zero in (A9). Then, the

following transfer function is determined:

_n(G) K, /G
G)=1 sk

m, pk

(A10)
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Fig. 4. 33. Simplified averaged model of the flyback converter operating in BCM.

From (A7), K, is negative so (A10) is a stable transfer function. As (A10) is based on an
averaged model of the discontinuous diode current, it represents the averaged dynamics of the
output voltage variations as a function of the variations of /mp«. Therefore, the model is valid for a
frequency range whose upper limit is lower than the switching frequency of the flyback converter.

To evaluate the switching frequency, the ON and OFF time periods can be calculated from Fig.

4.32 as:

—_— I Lm
Toy =22 (All)

in

mopk Lm

AL (12

Torr =

Then, the nominal switching frequency is calculated by:

7. Vi (Vo + V) _ Ve
v I Z" (V; +Vd +V;n/n) - Im,pk

m,pk' me

(A13)

Similarly, it can be done for the actual switching frequency:

VeV, +V4) VD
- - Al4
f;w Im,pk'Lm'(Vu +I/d +Vm/n) I L ( )

m,pk "~m
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From the ratio between (A13) and (A14), the following relationship between fs and 7SW is

obtained:

Jo _ L =a. (A15)

So, changes on the magnetizing inductance will produce switching frequency fsw variations. The
reference peak magnetizing current Impr used in the controller defines the steady-state output
current level.

If a digital controller were to be designed to regulate the average output voltage of the plant
(A10) by adjusting Im pk, it should use a sampling rate lower than the switching rate of the converter
since the plant used for the design is an averaged model of the system. So, the minimum practical
value of the switching frequency (A14), which occurs when Vi, and D are minimum and L» and
I pk are maximum, would fix an upper limit to the closed-loop system bandwidth.

But, the following closed-loop transfer function is obtained if a continuous-time PI
compensator is used to regulate the output voltage:

v (s) (K,s+Ki)K,/C,

0 (5) T es(KoKy K. [Cor KR G (A1)

where K, and K are the proportional and integral gains of the PI controller.
If voltage V: is pre-filtered as seen in Fig. 4.34, the zero in (A16) introduced by the

compensator can be eliminated:

K, —  —\K
- K,s+K;|=" —2
VUES;_ Kp_ (_ )Co =— aj’ — (A17)
Vr S 1 K K _K _— n n
s+_p g +S( P f 0)+Igm Kl_ A +2§Cl) S+ w
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To guarantee that the model of (A10) is valid, the closed-loop dynamics should be selected to have
its natural frequency at least ten times slower than the nominal operating switching frequency

calculated from (A13). Therefore, the following identity should be established:

— K Ki 1— ——
On=,|—ZL—<—wwm=—"2rxf_. Al8
V¢, 10 "™ 10 S o (Al%)

Then, K; can be obtained as:

—— 1 - ? Eo
Ki<|—2rx . Al
(10 fsw] % (A19)

m

The proportional gain K, can be designed by selecting the adequate damping ratio & for the closed-

loop transfer function for the selected resonance frequency w, =K, K / C,:

E _ 2§a)nC0 +Ko .
K

m

(A20)

4

iin

Fig. 4. 34. Standard control strategy using a PI compensator [34] [35].
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If a PI compensator with nominal K: and Ep is used to control a flyback converter with actual

parameters Co and L, the closed-loop transfer function pre-filtering V» can be derived as follows:

Ei (E;;S+Et)
VO _ E Co m
V_r_s+%f . (KK,-K) k& e
K S *s +—=
P C C

o o

Therefore, the actual second-order parameters ¢ and w» are given by:

K,K K
2l = m__o, A22
o, cC (A22)
K K,
o =—"— (A23)
CO

By substituting K, and K, by the maximum allowable value obtained from (A19) and (A20)
into (A22) and (A23), the following relationships between the nominal and actual second-order

time response parameters are obtained:

E=¢p, (A24)

o, = o, (A25)
where f is the ratio between the nominal output capacitance C, and the actual value Co. Therefore,
the parameter § will change the dynamic response of the controller. This continuous PI controller

is implemented digitally by discretizing its dynamics at a high sampling rate of 200 kHz.
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CHAPTER 5

Adaptive Boundary Control Using Natural Switching Surfaces for Flyback Converters

Operating in the Boundary Conduction Mode with Reduced Number of Sensors

L. A. Garcia Rodriguez, H. G. Chiacchiarini, and J. C. Balda, “Adaptive Boundary Control Using
Natural Switching Surfaces for Flyback Converters Operating in the Boundary Conduction Mode

with Parameter Uncertainties,” to be submitted to /EEE Transactions on Power Electronics.

5.1 ABSTRACT

Boundary control using the natural switching surfaces (NSS) has been extensively studied for
multiple converter topologies with nominal parameters, showing an improved performance in the
control of nonlinear systems. However, the NSS performance considerably deteriorates when the
real parameters of the converter are different from the ones used in the design process. Therefore,
an adaptive NSS control strategy has been proposed elsewhere to compensate for the parameter
uncertainties of the converter in a minimum number of switching actions. This paper presents the
derivation of an adaptive sensorless boundary control using the NSS for a flyback converter. The
proposed approach eliminates the use of all sensors in the secondary side of the transformer, while
stills estimating the converter parameters and keeping a very completive performance. The
analytical derivation of the proposed adaptive sensorless switching surfaces is presented with

simulation results showing adequate performance under different situations.
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5.2 INTRODUCTION

Flyback converters are widely used in low power applications [1] as seen in computers and TV
sets, AC/DC converters for battery chargers and LED loads [2]-[4], photovoltaic microinverters
[5], [6] and others due to low part count, low cost, electrical isolation, and wide voltage ratio
among many other benefits. High frequency operation of flyback converters is broadly done in the
boundary conduction mode (BCM) due to zero-current turn-ON of the switching device and zero-
current turn-OFF of the diode [7]. Also, conduction losses and current stresses and voltage ripple
are kept lower in comparison with operation in the discontinuous conduction mode (DCM) [3],
[8]. Other relevant advantages are related to less electromagnetic interference (EMI) and lower
power losses respect to operation in continuous conduction mode (CCM) [9]-[10].

A detailed study of a flyback converter operating in BCM under natural switching surfaces
(NSS) was done in [11] considering also parametric uncertainties. There, an adaptive control
strategy was presented, including experimental results and simulations. The proposed control law
provided a very precise estimation of the parameter variations in only the first switching action
while continuously adapting the control switching surfaces before a new switching action occurs.
Therefore, the converter reached the steady-state operation in a single switching action for sudden
load changes even under extreme converter parameter variations. Although, a drawback of the
proposed strategy is the need of fully measuring all electrical variables for feedback: output voltage
and current, primary and secondary currents. Three of the four measured variables require a voltage
insulation which increases the system cost and complexity.

Sensorless alternatives for closed loop control of flyback converters are readily available in the
literature, but actually there are not many results for flyback converters operating in BCM mode

under natural surface control. Other authors have worked on control schemes which are sensorless,
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or need a reduced number of sensors, either for flyback converters or other topologies. For
example, an estimator is constructed in [12] for the output current of a boost converter that can be
operated either in BCM, quasiresonant mode (QRM), or discontinuous conduction mode (DCM).
The estimator needs the knowledge of the input and output voltage, and the duration of the ON-
interval. In [13] is presented the inner current control of a flyback converter operating in BCM,
where the duration of the freewheeling and conduction phase can be readily determined just by
measuring the output voltage, without current measurement. Other authors [14] proposed the
incorporation of a tertiary winding in the flyback transformer, used to estimate the magnetizing
current, thus eliminating the current sensor. This solution requires a more complex transformer.

But up to these author’s knowledge, no previous reports exist in the literature for adaptive NSS
BCM control of flyback converters with reduced number of sensors.

This paper presents an alternative to reduce the number of sensors in the adaptive NSS BCM
control scheme presented in [11], estimating the output current while preserving the adaptation
capacity and original performance. This is a novel result. The proposed control law can provide a
very precise estimation of the parameter variations and the output current in only two switching
actions, and then continuously adapt the control switching surfaces before a new switching action
occurs. Therefore, the converter can reach the steady-state operation in two single switching
actions for sudden load changes even under extreme converter parameter variations and constant
output load current. The analytical derivation of the proposed adaptive sensorless switching
surfaces is presented together with simulations and experimental results showing adequate
performance under different tests, including comparisons with the standard sensored strategy.
This paper is organized as follows. The basic theory is exposed in-Section 5.3. Then, the proposed

strategy without sensing any variable at the secondary side of the transformer is presented in
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Fig. 5. 1. Flyback converter with constant load current.

Section 5.4. Simulations are included in Section 5.5, while experimental results are in Section 5.6.

Finally, Section 5.7 presents the conclusions.

5.3 BASIC DESCRIPTION AND PROBLEM FORMULATION

A detailed description of the topology, circuit analysis and definition of the natural switching
surfaces is presented in [11] where also an adaptive BCM control strategy is shown, analyzed and
tested experimentally. The control strategy presented there does need the measurement of four
signals: output voltage and current, and primary and secondary currents of the transformer. As
measurements add complexity to the hardware implementation, it is worth studying sensor-less
alternatives. This work presents a strategy where no signals at the transformer secondary side are
measured, while preserving the performance characteristics and adaptive behavior of the original
proposal [11].

The first part of this section extracts from [11] some basic information for completeness. The
reader should consult it for further details. Fig. 5.1 shows the circuit of a flyback converter with a

constant current load I, which is considered the worst-case scenario in terms of stability [15]. Also,
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these parasitic elements are included: Rrp: primary-side winding resistance, Ron: switch ON
resistance, Rp = Rip + Ron: total primary resistance, Li: transformer leakage inductance, Ln:
transformer magnetizing inductance, Rs: diode ON resistance, Ris: secondary-side winding
resistance, Rs = Ra + Ris: total secondary resistance, Vz: diode forward voltage drop, and N,/N;:
transformer turns ratio.

A detailed analysis included in [11] shows that flyback circuits with typical parasitic
components can be analyzed under ideal conditions (no parasitic components) without giving rise
to relevant errors in the calculation of system trajectories. So, a simplified version of a flyback
converter will be used, just considering a transistor O, a diode d, a flyback transformer 7 with
magnetizing inductance L, as well as input and output capacitors, Ci» and C,. The magnetizing
inductance and output capacitance determine the dynamic behavior of the flyback converter [7].
A general solution for the dynamic flyback behavior is obtained after a normalization of the main
variables, which allows a scale change of the differential equations [16]. Due to the transformer,
it is necessary to relate the system parameters to one side. In this case the secondary side is chosen.

The normalization process requires the definition of nominal voltage, nominal impedance and
nominal frequency as reference values. The nominal reference output voltage is defined as V= vo.
The characteristic nominal reference impedance Z; is defined considering the combined nominal

magnetizing inductance referred to the secondary side and the nominal output capacitor:

Z_0=(NS /N p)\/Zm /C, . The reference frequency f- is defined as the natural frequency

Z:(NP/NS)/(%rm).

The normalizing equations of the voltage, current and time variables as well as their derivatives

for the secondary variables are as follows:
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y dv
v =—, an =, 1
Ty v (1)
inzié, di, :dii, (2)
Z v,
t, =tf, dt, =dt.f,, 3)

where the standard voltage, current and time variables of the secondary side are v, 7, and ¢, and va,
in, and t» are their normalized versions. To normalize primary variables, the normalizing equations

must be reflected back to the primary side as follows:

v N, . .Z N,
vn = ln :l_r_’ (4)
V. N, V. N,
N N
av, =dv—=—, di, = dié—p. (3)
V; p r N?

The nominal parameters used for the normalization process, C,, L, may differ from the
actual converter parameters L and Co.

The two possible states of the transistor Q determine two natural behaviors for the circuit which
depend on the generic initial conditions, input voltage and output current. The normalized OFF-
and ON-state general natural trajectories evolve on the plane imn vs. von. Signal imn is equivalent to
the normalized primary current ip» when QO = ON, and to the normalized secondary current is» when

O = OFF.

5.3.4 OFF-State Trajectory

During the OFF-state of transistor O, the energy stored in the transformer during the ON-state is
transferred to the load through diode d. The primary equivalent voltage, applied to the magnetizing

inductance, is the output voltage multiplied by the transformer turns ratio.
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The locus of the OFF-state trajectory is the solution of:

o
2 -
Aopr = Viy — +(i

. \2 2 2
on mn - lon ) - A - B =Y, (6)
B

1 di, (0)
2rJap dt,

where azzm/Lm, ﬂ:a,/Co, A=i, (O’)—iﬂn and B =

5.3.B ON-State Trajectory

When transistor Q is ON, the magnetizing inductance is connected to the input voltage source
and the diode in the secondary side is reverse biased. The natural trajectory is given by:

Aoy =i+ S ey, o, 7
ﬂ iOﬂ

where the constant H depends on the initial conditions selected for starting the ON-trajectory.

The loci Lorr and Aon are the natural trajectories of the system when the switch is OFF and ON,
respectively. The switching times of O determine the initial conditions for each locus. By properly
selecting the ON-and OFF-switching times, the NSS can be selected to lead the converter to the

target operating condition.

5.3.C Selection of the Target Point for Operation in BCM

To maintain the converter operating in BCM for all loading conditions, the initial conditions
of Ao~ and Aorr in (6) and (7) should be selected for the natural trajectories to contain a specific
target operating point. BCM operation requires that the target normalized magnetizing current be
zero. The target voltage Vrp, for the normalized output voltage is selected in order to have the
desired output RMS voltage equal to the reference voltage V». The normalized BCM ON-state

trajectory noted as gow is given by:
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AV, AV,

+ _Lvn
mn ﬂ l.on on ﬂ l.on TPn

=0. (8)

Ooy
The complete normalized BCM OFF-state trajectory oorr is defined as follows:

o 4 . .2 Ao -2
O-OFF = Evon + (lmn - lon ) -, VTPn - lon = O’ (9)

B

where von and ion are the normalized output voltage and current, imn is the normalized magnetizing

current, and a/f collects the estimated parameter variations.

5.3.D BCM Control Law

The goal of the control law is to force the converter to move to and stay on the identified NSS
trajectories for each state of transistor Q and the above conditions. Basically, the control law
decides between two options: either Q should be turned ON or OFF, based on the current state of
transistor O and the relative location of the current operating point with respect to the NSS
trajectories.

The control law in BCM mode is detailed in [11] and briefly explained below for completeness.
While Q is ON, the converter state moves up the imn vs. von plane. If the converter is currently
operating below corr, Q is kept ON if von < V7, while the converter continues to move up the plane
until oorr is reached. Then, Q is turned OFF. If the converter were operating anywhere above gorr,
0 should be turned OFF.

Since the objective is to operate in BCM, once Q has been switched OFF, it is not allowed to
switch back ON until im» = 0 p.u. and von < V7rn, where the ON-state trajectory starts again.

In resume, the control law is defined based on the previously calculated BCM trajectories as:
o If Q= OFF, imn =0 and von <= 1 then Q = ON

e If O =ON and corr >= 0 then Q = OFF
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As seen from the definition of gorr, its evaluation requires the knowledge of von, ion and a/p.
The following section shows how to estimate those variables from measurements done on the

primary side, and the estimated parameter o/f is obtained from an adaptive algorithm.

5.4 ESTIMATION OF ISOLATED MEASUREMENTS AND PARAMETER

UNCERTAINTIES

Avoiding insolated measurements is critical when it is desired to increase the reliability and
reduce the complexity and cost of a system. In the case of a flyback converter, the output voltage
Vo, Output current i,, and transformer secondary current is are the insulated measurements that many
control approaches use to perform correctly. In the proposed novel solution, the drain voltage varainn
is used to estimate all the needed insulated measurements for the boundary control using the natural
switching surfaces of the converter. Therefore, the shape of the varainn signal must be maintained
free of any distortion. Auxiliary snubber circuits may happen to be necessary for this, as shown
later. This section explains in detail how the estimation of the required variables is done. Finally,

the proposed control diagram is presented in Fig. 5.2.

5.4.4 Approach to estimate von

By measuring varainn, the output voltage can be indirectly obtained during the OFF-time when
isn > 0 since Vdrainn = Vinn + von if Q = OFF and is» # 0. Therefore, v,,= Vdrainn — Vinn 1S an estimation
of von during Q = OFF.

Since vdrainn = 0 when Q is ON, von cannot be estimated directly from the instantaneous vdrainn
measurement. However, since dvon/dimn 1s constant during the ON-period (due to (7), as can also
be seen in Fig. 5.3(a) below), the following expression derived from (7) is obtained to estimate von

when Q is ON:

150



¥ pm-on ﬂ
Von = vdminn,O " Vinn —> O’ (10)
inn a
Initialization
startup =0 v
a . (Begin Main Loop)
E(n) =11i,=0
— — A
Zr zf(Lm’Co’Vr)
I/r" VTP’ Imax
|—>— ipn; Vinng, Vdrainn
Y@= OF >y
on rainn mnn eS
no y
< Vo =V, i nl:n
no drainn in Vo= Vd o= V p ﬁ
+yes yes on rainn nn . a
startup <1 v v
on0 — " onl yes
Y
(04 (04 * yes
- = — >
startup =3 ’g(n+l) ﬂ(n)+(VTP" Vonl)K @_::
()= o o 7 startup <1
E(”) =(16) E(n) :E(}Hl) > o P =210
s Q V;~0 - ;,m,-n . a Vo: = V; . |startup = startup + 1| Y
on = 7 Vinn Ji on — 5 Vi —_—
B phn p 1, v
* * * * =1
I/‘mo - V;”] on0 = V:ml Pf’l P
=V, . =V,
| _ | on,min drainn inn
v
< < >
- no Von - VTPn
\ 4 yeSV \4
O = OFF 0=ON O = OFF

v

[ Start New ADC Conversion |

End Main Loop

Fig. 5. 2. Flow diagram of the sensorless adaptive BCM NSS control law.
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where Varainn,0 1s the value of varainn before Q turns ON, and i, is the estimated value of the output

current whose derivation is shown later. It is worth noticing that only positive values for v,,, are

valid from (3).

5.4.4 Approach to estimate ion

During the ON-time, the normalized differential equations representing current and voltage

dynamics, are [11]:

Lm d

p} ST (11)
L dt,
Ty

pley D (12)
c " dr

Since ion and vinn are considered to remain constant over a switching period, from (3) and (4), the
derivative of im» and von respect to time is constant, as can be seen in any of the simulations and

experiments in [11]. Dividing these two normalized equations, i,,, can be expressed as:

=2y Do (13)

dvin

An approximation for can be easily obtained upon considering that it is rather constant during

imn

: : - in . Vono—Vonmi .
the entire ON-period, as can be seen in Fig. 5.3. Therefore, —2& = %2R The normalized

imn I pkn

peak primary current lpin 1s directly obtained from the measuring. The voltage values are obtained
as follows: The voltage Vono when Imn = 0 is obtained by measuring varinn at the beginning of the
ON-period and subtracting Vim. Similarly, the voltage Vonmin Wwhen Imn = Ipkn is obtained by
measuring vdrainn at the end of the ON-period and subtracting Viva. The estimation of ion is performed

after the end of each OFF-period, once a/f is updated, as:
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Fig. 5. 3(a) Normalized output voltage von, drain source voltage varqinn, magnetizing inductance
current imn, and real and estimated output currents ion and i, . (b) NSS trajectories for the
proposed sensorless flyback converter operating in BCM when o/f = 1.
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+ a ¥ v,

on,0 - Van,min a rainn 0 - I/drainn,min
=Ly Zond onmin 2 . (14)

low = vinn Ji - vinn Ji
ﬂ phkn ﬁ phkn

As soon as the switch Q is OFF, the energy stored in the transformer magnetizing inductance creates
a current in the secondary winding, turning ON the diode d and thus charging the output capacitor.
The phenomenon creates also a transient response which produces undesired oscillations in the
current and voltage waveforms due to the existence of parasitic elements such as the drain-source
capacitance and the transformer leakage inductance. The parasitic oscillations will perturb the
measurement of vainn unless they are adequately damped. Since, virainn is usually a noisy signal,
designing a snubber circuit correctly is fundamental to preserve the shape of the varainn waverform.

The design process is shown in the Appendix 5.9.A.

5.4.B Approach to estimate o/

The first estimation of a/f is implemented at the end of the second switching action after start-
up conditions, and an adaptation is performed cycle by cycle as will be shown below.
During the first switching cycle in start-up conditions, no estimation for a/f is performed because
the initial estimation of io» will be wrong if the load is connected to the output of the flyback
converter, and that affects the estimation of a/f. Therefore, during the first switching cycle i, =
0 and o/ff = 1.

In the second switching cycle, once Q turns OFF, the flyback converter evolves on its actual
OFF-trajectory, as described in (6), with initial conditions (imn, Von) = (Ipkn, Vonmin). By replacing
the point where the imn axis is intersected (imn, von) = (0, Von 1), the following expression for a/f is

obtained:

(04 kan (kan - 2i:n )
S o) (15)
ﬂ on,l - V:m,min
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By replacing (6) in (15) and solving for a/f, an expression that only depends on measured

parameters is found as:

o 112,/(
== " . (16)
ﬁ I/031,1 - VZ + 2I/inn (I/on,O - I/on,min )

Equation (16) provides the first estimation for o/f. Then, i}, is calculated from (14) at the end of
the switching period.

Later, as presented in [11], the ratio a/f can be adapted following a recursive procedure

E(n+l)=E(n)+K(VTP -, (n)). (17)

where the constant K is a real number selected by the designer, o/f(n) and V;, are the actual values
of the parameter ratio and measured target point voltage to obtain the future value a/f(n + 1). A
brief description and justification of the adaptation algorithm is presented in the mentioned
reference. This adaptive adjustment is designed by proper selection of constant K so to provide a
smooth and extremely slow variation of the parameters, which in real life change mainly due to

aging of the components.

5.4.C Approach to estimate isn = ()

Ideally, when is» = 0, the diode d turns OFF and varainn = Vinn. However, virainn Will oscillate
around Vinn due to the presence of the parasitic components. A circuit that detects the oscillation

N Varainn (the moment when is» = 0) is shown in the Appendix 5.9.B.

5.4.D Start-up and steady-state characteristics

The normalized trajectories and main waveforms for the sensorless flyback converter operating
in BCM are shown in Fig. 5.3. At startup conditions (point A, Fig. 5.3(b)), imn, Von, and ion are zero.

When Q turns ON, imn starts rising while von remains at zero. At point B, gon intersects gorr and O
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turns OFF. If the load is connected, since gorr was calculated with io» equals zero, intersection of

the OFF-trajectory with the von axis (point C) will be at a point lower than the target point. At this

point no estimation of io» and @/ is performed because from (6) i is zero which will generate
errors in the calculation of /. However, the value of von is estimated from varainn (v, , is saved).

Then, Q turns ON until oorr is intersected (point D) and Ly and v,

mmin are saved. O turns back OFF
until imn equals zero (point E). Since corr was calculated with io» equals zero, the intersection of
the OFF-trajectory is produced at a voltage lower than the target one V7p.. At point E, after von is

estimated as v, |, a/f and i, are calculated for the first time from (6) and (16), and Q turns back

on,l?
ON.

O turns OFF when corr is intersected at point F, and new values for Ii» and v/ are obtained.

Since this time oorr was calculated with the estimation of ios, the intersection with the vor axis will
be at the voltage target point Vzp, and steady-state conditions are reached. Then, at the end of each
switching period, a new calculation of ior is performed, and o/f is adapted cycle by cycle based on
the error to the target point. During steady-state conditions, in case of a sudden load change, ion

can be estimated in a single switching action if the load is kept stable during a switching period.

5.5 SIMULATION RESULTS

Simulations using Matlab/Simulink™ for a flyback converter with electrical parameters from
Table 5.1 and nominal components from Table 5.1I are presented under different o/f conditions
using the proposed sensorless BCM NSS control scheme shown in Fig. 5.2. To consider a realistic
situation, the sampling frequency of the analog signals is selected to be 200 kHz.-First, a case with
ideal conditions (a/f = 1) is analyzed and presented in Fig. 5.4. After the start-up, at the end first

switching cycle there is no calculation of ion, and a/f remains equal to one. The first estimations
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TABLE 5.1
FLYBACK CONVERTER PARAMETERS

Parameter Value
Vo 24 Y4
Vin 6V
io 05A
TABLE 5. 11
EXPERIMENTAL PROTOTYPE CHARACTERISTICS
Parameter Value
Coilcraft® NA5919-AL
Transformer T’ Ln=458 yH, n =4, Lat=13.6 A @ Ln =
38.5 uH
Vishay® IRFP140PBF

Transistor QO Vass =100V, Ip=31 A @ 25 °C

: Vishay® VS-8TQ100PBF
Diode D V=100V, Ip=8 A, V=058 V
Output Capacitor Co 10.52 pF Film

of a/f and ion are performed using (6) and (16) at the end of the second switching cycle. The
estimation of io» has an error of 1.57% and the one of o/f and error of 1.45%. At approximately
0.7 ms, just before Q turns ON, a sudden load increment of 71.42% is applied to the converter, and
in a single switching period, the current is estimated with an error of only 1.58 %. At 1.25 ms the
load decreases to 37.5% of its current value, creating a discontinuous conduction mode operation
(DCM). The latter is because oorr was calculated for a much higher current which made the
inductor to overcharge, producing an output overvoltage, so O was not allowed be turned back ON
until von < V7Pa. Once the current is stable for a switching period, the estimation of iox s satisfactory
with an error of only 1.55%. Then, the converter returns to BCM.

A case when a/ff = 4 is shown in Fig. 5.5. Like the case when o/f = 1, during the first two

cycles i, =0 and @/ = 1. At the end of the second switching period, the first calculation of ion is
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Fig. 5. 4. Simulation results of BCM NSS control law under ideal conditions.
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Fig. 5. 5. Simulation results of BCM NSS control law under a/f = 4.
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performed as seen in Fig. 5.5(b) with an error of only 0.96%. At the same time, the first estimation
of a/f 1s completed with an error of 0.82% (see Fig. 5.5(c)). When the load increases from 0.28 A
to 0.48 A, ion is estimated with an error of 0.94%. When the load decreases from 0.48 A to 0.18 A,
the first estimation of ion is 0.1817 A which represents a 0.94% of error.

The last case is when o/f = 0.64 as shown in Fig. 5.6. The first estimation of io» has an error of

9.07% while the first estimation of a/f has an error of 8.95%. When i, increases from 0.28 A to

0.48 A, i’ equals 0.52 A which represents a 9.06% of error. Lastly, when io» decreases from 0.48

> “on

At00.18 A, i equals 0.1963 A which represents a 9.05% of error.

> “on

5.6 CONCLUSIONS

A novel sensorless control approarch for a flyback converter operating in the boundary
conduction mode using the natural switching surfaces with parameter uncertainties was proposed
in this paper. All the isolated measurements used in the conventional adaptive control approach
were estimated by measuring the variables at the primary side of the transformer. Therefore, the
required number of sensors not only got reduced but also isolated measurements were not required.

The proposed sensorless approach was able to indirectly measure and estimate the output
voltage vo, the output current io, the moment when the secondary currents is becomes zero, and the
converter parameter variations a/f. After startup conditions, the controller was able to estimate i,
and a/f in only two switching cycles with a minimum error for different operating conditions.
During steady-state conditions, the controller was able estimate a sudden load change in a single

switching cycle if the load is kept constant during an entire switching period.
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5.9 APPENDICES
5.9.4 Snubber Design for Flyback Converters: When the Vas Waveform Matters

5.9.4.(1) Drain-source waveform calculation

Fig. 5.7 and Fig. 5.8 show the schematic circuit of a flyback converter with parasitic
components before and after the switch Q is opened. Before transistor Q turns OFF, the current
flowing through the primary winding of the transformer i, is equal to the magnetizing current in
and has a peak magnitude of Impx (Fig. 5.7).

If O turns OFF and immediately the diode d turns ON, i flows to the secondary side and charges
the output capacitor while the energy stored in the leakage inductance Lx will make Lk to resonate
with the transistor output capacitance Cus (Fig. 5.8).

The time response of varain(f) during the natural oscillation driven by the opening of switch Q
is obtained by circuit analysis. Analyzing the transformer primary side, the circuit equations

expressed in Laplace Transform are:

ﬁ-]p (5)(Ryy + R,y )= L (51, (5) =1, (07)) =V, ()= Vi (5) = O, (18)

I, (s):CdS (sVdS (S)—Vdmm (O_)). (19)

By replacing (19) in (18), and the initial conditions ip(07) = Impr and varain (07) = 0, the following

equation is obtained:

Q—(SszCds +5C, (RLp +Ron)+l)V

drain
S

(s)+ L1, —~V,(s)=0. (20)

mpk - P
By considering that the output voltage v, is constant during the ON-OFF transition time,

. (S):_n(Va +V, +10(RLS+Rd)). an

P s
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V(/:_ Vviu_ K}
1 Cj(/

Im

) = i
+ Vdrain

Fig. 5. 7. Flyback equivalent circuit during the ON-time.

Q == Cys Vdrain

o -

Fig. 5. 8 Flyback equivalent circuit in the transition between ON- and OFF-times.

By replacing (21) in (20), and solving for Varain(s), the following is obtained:

1 Vy+n(V,+V,+1,(R, +R,))
L L
vdrain (S) = Im kLk deS + deS (22)
P 52+sRL”+R0"+ 1 2, RLp+Ron+ 1
s|s”+s
Lk chds Lk Ldes
R +R C
Then, defining »,, = and & = % LdS , and considering that & <1, vVarain(?) is
k™~ ds k

expressed as:
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Virain (t) = (Vln + n(Vo +Vd +Io (RLs +Rd )))+I !

a,
L M—Sin w 1_521)
mpk ™~k 5 ( no o
NIET

(23)
—&,0,,t - :
_(Vm +n(V0 el (RLS +Rd))) eli§2 sin{a)m, l—fft+tan*1 (@N

o

As for an arbitrary phase shift and for generic values of a, b, x, y, it is true that

asin(x)+bsin(x+y)=csin(x+z), (24)

c=\/a2+b2+2abcos(y), (25)
[ bsin(y)

z =tan (—a +bcos(y)]' (26)

Then, varain(f) from (23) can be expressed as:

a

X

o e bt | T —
no . 2
L, ————sin| o, \1-&t

NS

) o) @D
oS! —— 1[ 1—55]

sin| @, \/1-&EX¢+tan”
1-&

Vin ()= (Vi #0(V, +V, + 1, (R, +R,)))+1

mpk

—(Vm +n(V0 +V,+1,(R,, "‘Rd)))

o

The parameter ¢ can be expressed as a function of the converter component values by replacing

(23) and (24) in (25),
Co@pol ? —&o Dot ?
A=l L% | (voan(V 4V, +1 (R, +R,)))
[mpk k 1_502 } [( in ( o d 0( Ls d)))\/@

(28)

. 4,0, _ £
2{Impkl‘k %J{(th +n(Va +V,+1, (R, +R, ))) jﬁ}cos[tan{ lé_f” B

Similarly, z from (26) can expressed as function of the converter parameters as follows:
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g ol 1— 52
~(v, +n(V,+V,+1,(R, +R,))) sin| tan”' °
tan (z) = (29)
. e 5! oS! L[ 1=&
Ly Ly ==V, +n(V, +V, + 1, (R, +R,))) cos| tan °

g =

By applying to (29) the following trigonometric identities, the following expression of z is found

in (32):

sin(tan’1 (x)) -_* (30)

JI+x? ’

1

. 31
V1+x? Gh

~(V, +n(V, +V, +1, (R, +R,)))e =

in

cos(tan"l (x)) =

tan(z)= o F o (32)
1L, \/@ ~(V,+n(V,+V,+1,(R,, +R,))) "1 =
Then varain(f) can be expressed as function of the converter parameters as:
Vo () = (Vm +n(V, +V,+1,(R, +R, ))) + csin(wno\/@t + z). (33)
Then, the upper and lower exponential decay limits of (27) can be found as:
Van ()= (Vs #2(V, +V, + 1, (R, +R,))) +c, (34)
Virain aon ()= (Vs #1(V, +V, + 1, (R, + R,))) —c. (35)

Fig. 5.9 presents the drain to source voltage waveform varin(f) using the parameters of Table
5.IIT (light gray) and considering no parasitic elements (dark gray). For the particular case of Table
5.1, the real varain(f) signal has a peak value about 20 times greater than the ideal one. The

oscillation frequency of the varin(f) corresponds to approximately 8.275 MHz.
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TABLE 5. 111

EXPERIMENTAL PROTOTYPE CHARACTERISTICS

Parameter Value
n 1/4
st 20 kHZ
Ipk 25A
L 0.16 A
Vo 24V
Vin 6V
Va 0.7V
R 0.1Q
Ry 0.05Q
RIS 05 Q
Ra 05Q
Ron 0.05Q
Lk 1.85 uH
L 45 uH
Cis 200 pF
300
200 - ]
100 ]
S
- 0
5
~ -100 ]
-200 L ]
-300 : ‘ ‘ ‘ \ \ \ ‘ \
0 0.2 04 0.6 0.8 1
Time (s) 107

X

Fig. 5. 9. Drain source voltage Vain as function of time using (27) for a flyback converter

with the parameters of Table 5.111.
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5.9.4.(2) Snubber Design

As seen from previous section, varin(t) is a voltage signal that oscillates at a frequency f'=
wn/2m, and whose peak could be multiple times higher than the same signal without parasitic
elements. In the proposed control law, the signal varain(f) 1s used to measure indirectly the output
voltage vo, to estimate the output current i», and to detect when the secondary side current is
becomes zero. Therefore, varain(t) should be kept as close as possible to the ideal case. Since, it is
impossible to reduce up to zero the leakage inductance of the transformer and the output
capacitance of the transistor, a snubber circuit should be added to the flyback converter to reduce
the peak magnitude of vain(f) and the oscillation frequency, as shown in Fig. 5.10.

Before turning QO OFF, the diode d was OFF, and the primary side current i, was creating the
magnetizing and leakage fluxes through the magnetizing L» and leakage inductances Lx. When Q
turns OFF, by assuming that ds and d turns ON at the same time, the magnetizing flux creates the
secondary current is while the leakage flux defines the current i, according to the following
equations (already transformed to the Laplace domain):

Vi _ 1, () Ry, =L (51, (5) =, (07)) =, ()= Vi (8) = CocRou (5Vipuin (5) = Vi (07)) = 0, (36)

S

1,(s)=1I, (s)+ 1 (5)+C, (sVdmm ()= Vi (0‘)), (37)

O
Ut

R Cds Vdrain
1CdsY

Fig. 5. 10. Flyback schematic circuit with a passive snubber.
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L (s)= RARON C, %(s V ain (5) =V (07)), (38)

SR, R g
I, (5)=C, sV, (5)=ve, (07)), (39)
Vet (5) = =22y () Cuy (Vi ()04 (07): (40)

V,+V,+1,(R,+R,)
n .

S

(41)

By replacing the initial conditions varain(0) =0 V, ves(07) = 0 V, and ip(0-) = Impk in (36) to (41),
neglecting the transistor ON resistance Ro» because of being significatively smaller than the usual
snubber resistance Rs, and solving for Varain(s), the following equation is found:

VR Impk V I/in+V;nRLp/Rs+n(I/o+I/d+10(RLS+Rd))
TL ¢, CR, sL,C,

C,+C, E EWL 1/R, N 1+R,, /R,
C L, C,+C ) L(C,+C)

Vitrain (8) = (42)

The steady-state value of varain(t): = Varainss can be found by applying the final value theorem to

(42):
V. +V. R, | R V+V,+1 (R,.+R
Vdmin’ss _ }LIEVM”, (Z) _ ISE%ISV,;W-,, (S) _ _in + in" ‘Lp s -;Z(Ro -i/_Rd + 0( Ls + d )) ) (43)
Lp s
Cst

Back to the time domain by Laplace anti-transforming (42), the following expression for varain(f)

1s obtained:
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—Sw,t _ g2
Van (1) == G, V’” ¢ sin| @, /1—&E*t—tan™ I=¢
CS ds 1- 52 é:

(RCV.R, oL (R, + V) oo e

s s in s~ mpk . ( 2
sin(w,\/1-¢& t) (44)
R +R,, /1_4:2
Rn(V +V,+1 (R, +R —Sw,t _ g2
+H Y, +— VotV +1, (R + Ry)) 1-——sin| w,[1- &+ tan” )
R + RLp - 52 ¢
Where wn and & are calculated as:
R +R
o, = SR A (45)
Rs (Cs + Cds )Lk
RR,,(C,+C,)+L,
. (46)
2JRL (C,+C,)(R +R,)
Since Rs >> Ryp and Cs >> Cus, wn, &, and varain(f) can be approximated as:
1
0, = |—o, (47)
Cst

RR C +L
é:: sTLp s k (48)

2R \JL,C,

VL, \we "
( s’ in mpk R jﬁsln(a)n l_gzt) (49)

The oscillation frequency fx (w» = 27fx) should be chosen to be much higher than the converter
switching frequency fiw, so it does not affect the shape of the varain(f) waveform. Also, the damping

parameter ¢ is selected to be closed to 1 to minimize oscillations. When ¢~ 1, but not greater than
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1, the small angle approximation for the trigonometric functions in (35) can be applied, SO Vdrain(?)
can be expressed as:

1 V.
vdrain (t) = _Vin (a)nt _Ej e*f“’nt + [Cvl/inRLp + Lk [Impk +#J] wjteigwnt

s

(50)
ottt empfcem{ere L]

From (47) and (48), the snubber components Rs and Cs can be expressed as function of the second

order response parameters w» and &, and the flyback converter parasitic components Lt and Ry as:

1
C =——-, 51
e 5D
2
o) (52)
’ 2§Lka)n - RLp

0 1 2 3 4 5

Time (S) XIO -7

Fig. 5. 11. Varain as function of time after connecting an RCD snubber with Cs = 3.42 nF and
Rs=11.75 Q.
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By using the parameters of Table 5.11I, and considering that £ = / and f» = 100fsw, the Snubber
components can be calculated from (51) and (52) as: Cs = 3.42 nF and Ry = 11.75 Q. Fig. 5.11
presents a plot of vawin(f) from (50) using the flyback converter parameters from Table 5.111 and
the Snubber parameters just calculated. The peak value varain(f) is multiple times higher than the
steady-state value Varain,ss.

By replacing (51) and (52) in (50), varin(f) can be expressed as function of &, wn and the

converter parameters:

—&w,t
Vo (1) = (kaLkwj +2V,m, (& —1))ze*‘f“'~f +V, +n(V,+V,+1,(R, +R, ))[1 —e ! eT”]

(53)
The time at the peak of varin(f) can be found by first calculating the time derivative of varain(f), then
equating it to zero, and last solving for z. The peak time is found as:

_ ImpkLka)n +2I/m (f_l)
ty = . (54)
(_n(Vo + Vd + I() (RLS + Rd ))+ ImpkLka)n + 2I/m (5 _1))§a)n

Since the denominator of #x from (54) should be greater than zero for it to be valid, the minimum

value for wx can be obtained as:

n(V,+V,+1, (R +R,))-2V, (5-1)
a)n,min - ] Lk

mpk

. (55)

By evaluating varain(t) at the peak time #p, Varainpk can be found as a function of ¢ and w.. Since
the maximum value of w» occurs when no snubber is connected, wnmax = Wno. Fig. 5.12 presents a
plot of Virainpk/ Virain.ss as function of wx for ¢ ranging from 0.9 to 1. For example, if it is desired a
drain to source peak voltage 4 times larger than its steady-state value, the snubber components R
and C; should be selected from (51) and (52) so wn 1s in the range from 0.41 and 0.46 times wno

depending on the selected value of £.
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Fig. 5. 12. Peak drain source voltage divided by the steady state value of ras as function of
C()n/a)n.

5.9.B Detecting the time when isn = 0

A circuit that detects the oscillation in varain(f), which determines the moment when is» = 0, is
shown in Fig. 5.13(a). The op-amp circuit at the left side is a derivator which consists of two
resistors R; and Rz and a capacitor C; which Laplace domain transfer function can be obtained as:

Vder - _ RZCZS . (56)
I/drr/zin 1+R1C1S

The resistor R; and the capacitor C; introduce a pole that limits the derivative effect for higher
frequencies to prevent noise amplification and to improve stability. When is =0 A, Varain drops and
starts oscillating around Vi.. Therefore, the derivative of Vawin is negative, so the output Vier is
positive. The second op-amp stage is a comparator which output will be read by the digital

controller.
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Fig. 5.13(b) presents the experimental waveforms of the proposed circuit to detect when is =0
A from the drain voltage signal. As seen from the Fig. 5.13(b) when Q is OFF and the current is is
greater than zero, Vs is positive and can be used to estimate V5 if the snubber circuit was designed
correctly. As soon as is = 0, the proposed circuit detects the slope of Vis, so a signal Iszero is

generated and read by the controller, so O can get turned ON and BCM operation is obtained.

s,zero

_ls ‘—“)drqin —qur —1

5 1 1.5 2
Time (s) 0™

X
(b)
Fig. 5.13. (a) Circuit to detect from Vas when is = 0, and (b) experimental waveforms of the
proposed circuit.
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CHAPTER 6

Conclusions and Future Work

This chapter summarizes the novel contributions and conclusions presented in each chapter of

this dissertation. Also, some recommendations for future work are proposed by the author.

6.1 CHAPTER 2 CONCLUSIONS [1]

6.1.A4 Derivation of the Natural Switching Surfaces for a flyback converter operating under BCM

The normalized switching trajectories for a flyback converter were obtained from the
differential equations for boundary and continuous conduction mode of operation by carefully
selecting the target operating point. The proposed control law using the derived trajectories was
tested in simulations and in an experimental prototype. As anticipated, the obtained transient
response had no voltage overshoot, zero steady-state error, and an adequate response to sudden

load changes.

6.1.B Comparison of different start-up methods to avoid over currents

A large magnetizing current peak during a transient could occur depending on the values of the
converter parameters since the proposed control law made the converter reach a target point in
only one switching action. Such a transient current could destroy the converter components if the
control law would not be modified correctly. Therefore, several modifications of the control law

were successfully implemented under start-up conditions which showed excellent performance.

6.2 CHAPTER 3 CONCLUSIONS [2]

6.2.A Derivation of the Natural Switching Surfaces considering parameter uncertainties
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The shape of the system trajectories of a flyback converter depends on two main parameters,
the output capacitance C, and the magnetizing inductance Ln. If there are uncertainties in those
parameters, the slope of the ON-trajectory changes, and the OFF trajectory becomes an ellipse
instead of a circle affecting notably the control performance. In order to overcome that issue, the
Natural Switching Surfaces for a flyback converter were obtained considering parameter
uncertainties. A new parameter named “o/f” was first introduced which, if estimated correctly,
can compensate the trajectories for uncertainties in the parameters.

Simulations showed that for the nominal system, the closed-loop response has no overshoot,
zero steady-state error and an adequate response to sudden load changes. For the case of parameter
uncertainties, the performance of the closed-loop system controlled with the nominal controller
degraded. An adaptive scheme was successfully proposed to improve system performance by
adjusting the parameter o/f at the end of each switching cycle, after analyzing the locus of the true

OFF trajectory.

6.3 CHAPTER 4 CONCLUSIONS [3]

6.3.4 Analysis of influence of parasitic elements in the system trajectories

A flyback converter was analysed with parasitic elements such as winding resistance,
transformer leakage inductance, diode forward voltage drop, diode resistance, and transistor
resistance. The load lines for the ideal flyback and the flyback with parasitic elements were derived
and compared. The actual and the ideal load lines were alike when the duty cycle was within the
0 < D < 0.8 range; therefore, it was concluded that the flyback converter could be analysed under

ideal conditions (no parasitic components) without producing relevant errors.

6.3.B Start-up and steady-state characteristic when parameter are uncertain
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Each start-up and steady-state parameter of the flyback converter was derived analytically as
function of a/f. For example, the start-up current Is-up, the start-up output voltage Vx, the output
voltage ripple 4von, the target point V'7p and the switching frequency fsw among others were

plotted as function of a/f to determine the influence of the variation in the converter parameters

[3].

6.3.C Experimental validation of the Natural Switching Surfaces considering parameter

uncertainties

The natural switching surfaces for a flyback converter with parameter uncertainties operating
in the boundary conduction mode were obtained from the normalized converter differential
equations. The derived nonlinear boundary control law brought the converter to the target point in
a single switching cycle if the load did not change when the transistor Q was OFF during transient
conditions. During start-up conditions where the load changes from zero to its rated value when
the transistor is OFF, the worst-case scenario will be approaching the target point in only two
switching cycles. During steady-state conditions, the controller would compensate for a sudden
load change within only a single switching cycle [2], [3].

The experimental results showed that for the nominal system (a/f = 1, no parametric
variations), the closed-loop response had no overshoot, zero steady-state error and excellent
response to sudden load changes. When parameter uncertainties were present (o/f # 1), the
performance of the typical NSS control degraded considerably due to the dependence of the
normalized control trajectories to the converter parameters. An adaptive control scheme predicting
the variation of the converter parameters by using the precisely derived converter natural
trajectories was implemented to improve the system performance. The controller made its first

estimation of the parameter variations during the start-up with a precision measured to be higher
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than 95%. Then, small adjustments were made cycle-by-cycle to adapt the control trajectories by
measuring the error of the output voltage with respect to the target point producing a control

response like that one in the ideal case, even under extreme parameter variations.

6.3.D Comparisson with a linear compensator

A linear proportional integral PI compensator was implemented in a DSP with the sample ADC
sampling frequency than the NSS controller with the purpose to produce BCM operation by
measuring the diode current and the output voltage. The performances of the linear and the NSS
controller were compared for the cases with ideal parameters and with parameter uncertainties,
respectively.

For the case with ideal parameters, a voltage reference change from 18 V to 24 V was
implemented. The PI controller demanded approximately 1.3 ms to reach the new steady-state
condition performing 11 switching actions, while the novel adaptive NSS for the same conditions
responded to the step change (at 1.493 ms) in approximately 0.4 ms performing two switching
actions due to the limitation of the limit in the magnetizing current. If the magnetizing current was
not limited and the core would not saturate, it would just need one switching cycle to reach the
target output voltage.

For the case when a/ff > 1 (a/ff = 4), the performance of the PI controller became oscillatory
and slower demanding more than 3 ms (after 22 switching actions) to reach the steady-state
condition for a sudden load change on the voltage reference from 18 V to 24 V. In the case of the
NSS adaptive control, the performance was like that one for the ideal case.

When a/f <1 (a/f = 0.64), the system controlled by the PI controller became rather unstable
reaching the target point in about 1.3 ms (after 13 switching actions) while the novel NSS control

presented almost the same response as that one for the ideal case.
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6.4 CHAPTER 5 CONCLUSIONS

6.4.A Sensorless Natural Switching Surface control considering parameter uncertainties

A novel sensorless control scheme was proposed to estimate all the needed variables that are
located at the secondary side or the flyback transformer. Therefore, isolated sensors are not used
in this control unlike the conventional approach which requires sensing output voltage, output
current, and transformer secondary current.

By sensing the transistor drain voltage, the transformer primary current, and the flyback
converter input voltage, precise estimations for the isolated variables were obtained. Also, the
converter parametric uncertainties were estimated in only two switching cycles from a start-up
condition.

Simulation results considering a realistic sampling frequency of 200 kHz showed that the
greatest errors for the first estimations of the output current and the converter parameter
uncertainties were less than 9%. In those tests, extreme parameter variations and sudden load

increase or decrease were considered and in all cases the performance of the control was adequate.

6.5 RECOMMENDATIONS FOR FUTURE WORK

There are multiple research areas in which the material of this dissertation could be applied

and extended. Some examples are proposed below.

6.5.4 Implementation of the proposed controllers in a integrated circuit (IC)

One of the main drawbacks of the proposed controller is the need of high processing and
sampling speeds in order to obtain a satisfactory performance. The proposed first step is moving
from a Digital Signal Processor (DSP) to a Field Programable Gate Array (FPGA) implementation.

Once the FPGA control is working satisfactorily, an integrated circuit (IC) could be fabricated.
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6.5.B Converter operation at high-temperature conditions

Operating at high temperatures could be one suitable application for the proposed controller if
an integrated circuit is fabricated on a Silicon Carbide (SiC) wafer. No optocouplers are needed
since no isolated measurements are required which increases the reliability of the system. Also, in
case flyback converter components degrade with the temperature, the controller should be able to

adapt performing always as in ideal conditions as shown in the dissertation.

6.5.C Detecting when components age

If the ideal components of a flyback converter are known and it is detected a certain change in
the uncertainty parameter o/f, a fault signal could be generated to advice about the converter aging
or a possible failure. More in depth research could be done to determine what range of a/f is an
indicator of a possible failure. That information could be used to implement preventive

maintenance to sensible equipment.

6.5.D Self-tuning IC controllers

A control IC solution could be proposed as one that does not require any configuration,
compensation or adjustment. Simply as that, a single chip could be used for any flyback converter

without need to add external circuits or compensation networks.

6.5.E Extending the proposed controller to other topologies

Another research area could be implementing the adaptive Natural Switching Surface (NSS)
control to other converters. Starting with the buck and boost converters and following with more

complicated ones like the dual-active bridge.
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