2,420 research outputs found

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed

    A Logical Product Approach to Zonotope Intersection

    Full text link
    We define and study a new abstract domain which is a fine-grained combination of zonotopes with polyhedric domains such as the interval, octagon, linear templates or polyhedron domain. While abstract transfer functions are still rather inexpensive and accurate even for interpreting non-linear computations, we are able to also interpret tests (i.e. intersections) efficiently. This fixes a known drawback of zonotopic methods, as used for reachability analysis for hybrid sys- tems as well as for invariant generation in abstract interpretation: intersection of zonotopes are not always zonotopes, and there is not even a best zonotopic over-approximation of the intersection. We describe some examples and an im- plementation of our method in the APRON library, and discuss some further in- teresting combinations of zonotopes with non-linear or non-convex domains such as quadratic templates and maxplus polyhedra

    Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular jacobians of genus 2 curves

    Get PDF
    This paper provides empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves. The second of these conjectures relates six quantities associated to a Jacobian over the rational numbers. One of these six quantities is the size of the Shafarevich-Tate group. Unable to compute that, we computed the five other quantities and solved for the last one. In all 32 cases, the result is very close to an integer that is a power of 2. In addition, this power of 2 agrees with the size of the 2-torsion of the Shafarevich-Tate group, which we could compute

    The Parma Polyhedra Library: Toward a Complete Set of Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems

    Get PDF
    Since its inception as a student project in 2001, initially just for the handling (as the name implies) of convex polyhedra, the Parma Polyhedra Library has been continuously improved and extended by joining scrupulous research on the theoretical foundations of (possibly non-convex) numerical abstractions to a total adherence to the best available practices in software development. Even though it is still not fully mature and functionally complete, the Parma Polyhedra Library already offers a combination of functionality, reliability, usability and performance that is not matched by similar, freely available libraries. In this paper, we present the main features of the current version of the library, emphasizing those that distinguish it from other similar libraries and those that are important for applications in the field of analysis and verification of hardware and software systems.Comment: 38 pages, 2 figures, 3 listings, 3 table

    Enhancing numerical constraint propagation using multiple inclusion representations

    Get PDF
    Building tight and conservative enclosures of the solution set is of crucial importance in the design of efficient complete solvers for numerical constraint satisfaction problems (NCSPs). This paper proposes a novel generic algorithm enabling the cooperative use, during constraint propagation, of multiple enclosure techniques. The new algorithm brings into the constraint propagation framework the strength of techniques coming from different areas such as interval arithmetic, affine arithmetic, and mathematical programming. It is based on the directed acyclic graph (DAG) representation of NCSPs whose flexibility and expressiveness facilitates the design of fine-grained combination strategies for general factorable systems. The paper presents several possible combination strategies for creating practical instances of the generic algorithm. The experiments reported on a particular instance using interval constraint propagation, interval arithmetic, affine arithmetic, and linear programming illustrate the flexibility and efficiency of the approac

    Inner approximated reachability analysis

    Get PDF
    International audienceComputing a tight inner approximation of the range of a function over some set is notoriously di cult, way beyond obtaining outer approximations. We propose here a new method to compute a tight inner approximation of the set of reachable states of non-linear dynamical systems on a bounded time interval. This approach involves a ne forms and Kaucher arithmetic, plus a number of extra ingredients from set-based methods. An implementation of the method is discussed, and illustrated on representative numerical schemes, discrete-time and continuous-time dynamical systems

    Accurate and efficient evaluation of the a posteriori error estimator in the reduced basis method

    Full text link
    The reduced basis method is a model reduction technique yielding substantial savings of computational time when a solution to a parametrized equation has to be computed for many values of the parameter. Certification of the approximation is possible by means of an a posteriori error bound. Under appropriate assumptions, this error bound is computed with an algorithm of complexity independent of the size of the full problem. In practice, the evaluation of the error bound can become very sensitive to round-off errors. We propose herein an explanation of this fact. A first remedy has been proposed in [F. Casenave, Accurate \textit{a posteriori} error evaluation in the reduced basis method. \textit{C. R. Math. Acad. Sci. Paris} \textbf{350} (2012) 539--542.]. Herein, we improve this remedy by proposing a new approximation of the error bound using the Empirical Interpolation Method (EIM). This method achieves higher levels of accuracy and requires potentially less precomputations than the usual formula. A version of the EIM stabilized with respect to round-off errors is also derived. The method is illustrated on a simple one-dimensional diffusion problem and a three-dimensional acoustic scattering problem solved by a boundary element method.Comment: 26 pages, 10 figures. ESAIM: Mathematical Modelling and Numerical Analysis, 201

    Solving Polynomial Systems via a Stabilized Representation of Quotient Algebras

    Get PDF
    We consider the problem of finding the isolated common roots of a set of polynomial functions defining a zero-dimensional ideal I in a ring R of polynomials over C. We propose a general algebraic framework to find the solutions and to compute the structure of the quotient ring R/I from the null space of a Macaulay-type matrix. The affine dense, affine sparse, homogeneous and multi-homogeneous cases are treated. In the presented framework, the concept of a border basis is generalized by relaxing the conditions on the set of basis elements. This allows for algorithms to adapt the choice of basis in order to enhance the numerical stability. We present such an algorithm and show numerical results
    corecore