
Ann Math Artif Intell (2009) 55:295–354
DOI 10.1007/s10472-009-9129-6

Enhancing numerical constraint propagation
using multiple inclusion representations

Xuan-Ha Vu · Djamila Sam-Haroud · Boi Faltings

Published online: 18 March 2009
© Springer Science + Business Media B.V. 2009

Abstract Building tight and conservative enclosures of the solution set is of crucial
importance in the design of efficient complete solvers for numerical constraint satis-
faction problems (NCSPs). This paper proposes a novel generic algorithm enabling
the cooperative use, during constraint propagation, of multiple enclosure techniques.
The new algorithm brings into the constraint propagation framework the strength of
techniques coming from different areas such as interval arithmetic, affine arithmetic,
and mathematical programming. It is based on the directed acyclic graph (DAG)
representation of NCSPs whose flexibility and expressiveness facilitates the design
of fine-grained combination strategies for general factorable systems. The paper
presents several possible combination strategies for creating practical instances of
the generic algorithm. The experiments reported on a particular instance using
interval constraint propagation, interval arithmetic, affine arithmetic, and linear
programming illustrate the flexibility and efficiency of the approach.

Keywords Interval constraint propagation · Branch and prune ·
Interval arithmetic · Affine arithmetic

Mathematics Subject Classification (2000) 68T20

X.-H. Vu
Cork Constraint Computation Centre, University College Cork,
14 Washington Street West, Cork, Ireland
e-mail: vuxuanha@yahoo.com

D. Sam-Haroud (B) · B. Faltings
Artificial Intelligence Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Batiment IN, Station 14, 1015 Lausanne, Switzerland
e-mail: jamila.sam@epfl.ch

B. Faltings
e-mail: boi.faltings@epfl.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159149112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

296 X.-H. Vu et al.

1 Introduction

A numerical constraint satisfaction problem (NCSP) consists of variables that may
take on a value from a given set of values from R and of constraints that restrict the
possible value combinations between variables. A solution is a set of assignments of
values to variables so that all the constraints of the problem are satisfied. Constraints
that bear on numerical variables are equations and inequalities expressed using
arithmetic expressions. These expressions may be simple or complex, linear or non-
linear and may involve elementary transcendental functions. Chemical or mechani-
cal models, process descriptions, building codes, or cost restrictions are most often
expressed using this type of constraints.

A solution technique for NCSPs is said to be complete if it is able to find a solution
if there is one or else prove that there are no solutions to the problem. Only complete
solvers can be relied upon to provide all the relevant alternatives, to avoid any
inconsistencies and to guarantee that all the constraints—e.g. security or tolerance
criteria—are satisfied [35].

The most commonly used strategy for the complete solving of numerical CSP is
branch-and-prune, which interleaves branching steps with pruning steps. The role of
branching is to divide a given problem into subproblems whose union is equivalent
to the initial one with respect to the solution set. The role of pruning is to reduce the
search space by cutting off the regions that violate some of the constraints. Domain
reduction via constraint propagation algorithms [3, 6, 7, 11, 16, 42], which reduces
the domains of variables without discarding any solution, is a widely used pruning
technique. Constraint propagation has been the object of intensive research over the
last twenty years.

Building tight and conservative enclosures of the solution set for a given problem
is the key behind efficient domain reduction. Interval-analytic methods or linear
relaxations constitute the “usual machinery” employed for computing conservative
enclosures. In the reminder, we call inclusion representation any kind of representa-
tion providing a conservative enclosure of the solution set for a numerical CSP.

This paper builds on the idea that combining multiple inclusion representations can
significantly enhance the quality of domain reduction, as suggested by the example
of Fig. 1.

f (x)

g (x)

f (x)=g (x) f (x)=g (x)

x1

x2

x1

x2

Affine Arithmetic

Interval Arithmetic

Safe bounds in
Linear Programming

Fig. 1 Combining interval arithmetic, affine arithmetic, and safe linear programming provides a
tighter enclosure of the solution set (i.e., a smaller bounding box)

Enhancing numerical constraint propagation using multiple inclusions 297

We propose a novel generic algorithm called CIRD,1 which enables the cooper-
ative use of multiple inclusion representations during constraint propagation. The
CIRD scheme is based on the direct acyclic graph (DAG) representation of NCSPs
[38] and is applicable to virtually any factorable constraint system.

We propose concrete instances of the generic algorithm which involve inclusion
representations coming from interval arithmetic, affine arithmetic, constraint propa-
gation, and linear programming (see Section 5).

Our experiments (Section 6) show that the CIRD scheme is able to provide
propagation techniques superior in performance and quality to the state-of-the-
art interval-based constraint propagators. It is capable of outperforming some re-
cent mathematical and constraint programming techniques, even when specifically
designed to solve particular constraint systems.

2 Background and definition

In the following, we assume the reader familiar with the foundation of constraint
satisfaction and interval arithmetic. Extended introductions can be found in the
following:

– Apt [2] for constraint satisfaction techniques;
– Moore [33, 34], and [1] for interval analysis;
– Neumaier [37] for interval methods applied to systems of equations;
– Hansen and Walster [13] for interval methods applied to optimization problems;
– Jaulin et al. [16] for real-world applications.

An overview of standard affine arithmetic is given in Appendix A. As an incidental
contribution of the paper, we propose in this section a revised form of interval
arithmetic which is more accurate for particular computations that we focus on.

In this paper, we will target NCSPs expressed using factorable expressions and
build on the directed acyclic graph (DAG) representation of constraint systems to
extend the well known HC4 algorithm [4].

The reminder of this section gives the necessary background and definition related
to these concepts.

2.1 Factorable numerical constraint satisfaction problems

In practice, most functions for modeling real-world applications can be composed
of elementary operations or functions such as +, −, ∗, /, sqr, exp, ln, and sin. Such
operations or functions are said to be factorable. They play a significant role in
algorithms for solving not only numerical CSPs but also other numerical problems
such as optimization problems and automatic differentiation computations. For
completeness, we recall in this section the concepts of factorability.

Definition 1 (Elementary Operations) Denote by E1 the set of standard elementary
unary functions, namely, E1 =

{
abs, sqr, sqrt, exp, ln, sin, cos, arctan

}
. Denote by E2

the set of standard elementary binary operations, namely, E2 = {+,−, ∗, /, ^}.

1CIRD stands for “Combining Inclusion Representation using DAGs”.

298 X.-H. Vu et al.

If an expression is recursively composed of standard elementary operations and
functions, it is called an arithmetic expression [37, p. 13] or a factorable expression
[26, 27]. In this paper, we extend the concept of an arithmetic expression to include
other elementary operations.

Definition 2 (Factorable Expression) Let R be a nonempty set, {x1, . . . , xn} a set
of variables taking values in R, F a finite set of elementary operations of the form
f : Rk → R. An expression is said to be factorable in the (formal) variables x1, . . . , xn

using operations in F if it is a member of the minimal set F ≡ F(R, F; x1, . . . , xn)

satisfying the following composition rules:

1. R ⊆ F ;
2. xi ∈ F for all i = 1, . . . , n;
3. If f : Rk → R is in F and e1, . . . , ek ∈ F ; then f (e1, . . . , ek) ∈ F .

Definition 3 We denote E(x1, . . . , xn) ≡ F(R, E1 ∪ E2; x1, . . . , xn).

If an expression E is factorable in variables X ≡ {x1, . . . , xn} using operations in
F as in Definition 2 and if either F = E1 ∪ E2 ∧ R = R holds or F is known from the
context, then we say that E is factorable in X.

For example, the expression f (x, y) = 2xy + sin x is factorable using the elemen-
tary operations in {+, ∗, ^, sin}. The composition is given as follows: f1 = x^y (≡ xy),
f2 = 2 ∗ f1, f3 = sin(x), and f = f2 + f3.

Definition 4 (Factorable Function) A function f is said to be factorable in variables
x1, . . . , xn using the operations in a finite set F of elementary operations if it can be
expressed by an expression that is factorable in variables x1, . . . , xn using elementary
operations in F. If F = E1 ∪ E2 or F is known from the context, we could just say for
short that f is factorable, namely, in variables x1, . . . , xn.

For example, the function f (x, y) = 2xy + sin x is factorable using the operations
in {+, ∗, ^, sin}, and is not factorable using only the operations in {+, ∗, ^}.

The factorability can be defined for constraints as follows.

Definition 5 (Factorable Constraint) A constraint is said to be factorable in variables
x1, . . . , xn using a finite set F of elementary operations if it can be expressed as
a relation involving expressions that are factorable in variables x1, . . . , xn using
operations in F. In the composition of a factorable constraint, each constraint
representing an elementary operation is called a primitive constraint.

In this paper, we restrict, for simplicity, the relation in a factorable constraint to
be ≤, <, ≥, >, = or �=. For example, the constraint 2xy + sin x ≤ 0 is factorable in
variables x and y using the operations in {+, ∗, ^, sin}. Its primitive constraints are
f1 = x^y (≡ xy), f2 = 2 ∗ f1, f3 = sin(x), and f2 + f3 ≤ 0; where x and y are initial
variables, and f1, f2 and f3 are auxiliary variables.

The factorability can also be defined for a CSP as follows.

Definition 6 A CSP is said to be factorable (using a set F of elementary operations)
if all of its constraints are factorable (using operations in F).

Enhancing numerical constraint propagation using multiple inclusions 299

2.2 Numerical constraint propagation

As mentioned in the introduction, the usual strategy for the complete solving of
NCSPs is branch-and-prune. The pruning steps often compute domain reduction for
the variable using interval constraint propagation algorithms (see [3, 6, 7, 11, 16, 42]).
These algorithms enforce particular consistency properties such as hull consistency
[6, 7], kB-consistency [23] or box consistency [5] on the constraint network. In par-
ticular, [4] proposed an algorithm called HC4 which achieves hull consistency for
individual constraints, and then propagates the reduction of the variables’ domains
from constraint to constraint. The HC4 algorithm represents each individual con-
straint by a tree whose nodes and edges represent subexpressions and computational
flows, respectively. Each node of the tree is associated with the possible range
(an enclosure of the exact range) of the corresponding subexpression.

In order to reduce the variables’ domains of a given constraint, the technique
recursively performs a sequence of forward evaluations and then a sequence of
backward projections on the whole tree representing the constraint. These two steps
respectively compute the possible ranges of nodes based on their children’ and
parents’ ranges. When several constraints are involved, the HC4 algorithm performs
forward evaluations and backward projections individually on each constraint, and
then propagates the reduction of the variables’ domains from tree to tree by using a
variant of arc consistency, AC3 [24].

2.3 DAG representations for numerical CSPs

The fact that each constraint is propagated individually is one of the main limitations
of the HC4 algorithm. In particular, the fact that some subexpressions are shared by
several constraints is not properly taken into account : HC4 is unable to propagate
domain reduction of a given subexpression immediately to the other parts of the
constraints system where the same subexpression appears.

Recently, a fundamental framework for interval analysis on directed acyclic graphs
(DAGs) has been proposed in [38] which overcomes this limitation. The authors sug-
gested to replace trees with DAGs (see Fig. 3) for representing the constraint system
and showed how to perform forward evaluations and backward projections using
this particular representation. The shift to DAGs potentially reduces the amount of
computation on common subexpressions shared by constraints, and explicitly relates
constraints to constraints in the natural way they are composed. This enhances the
propagation process.

The CIRD algorithm we propose in this paper builds on the schema proposed by
[38]. The detailed description of DAG representations can be found in [39], among
which we recall the following fundamentals:

Definition 7 (Parent, Child, Ancestor, Descendant) Consider a directed acyclic
multigraph G ≡ (V, E, f). Let v1 and v2 be two vertices in V. We say that v2 is
a parent of v1 and that v1 is a child of v2 if there exists an edge e ∈ E such that
f (e) = (v1, v2)

T. The set of all parents (respectively, all children) of a vertex v ∈ V
is denoted by parents(v) (respectively, children(v)). We say that v2 is an ancestor of
v1 and that v1 is a descendant of v2 if there exists a directed path from v1 to v2. The
set of all ancestors (respectively, all descendants) of a vertex v ∈ V is denoted by
ancestors(v) (respectively, descendants(v)).

300 X.-H. Vu et al.

Theorem 1 For every directed acyclic multigraph (V, E, f), there exists a total order
� on the vertices V such that for every v ∈ V and every u ∈ ancestors(v), we have
v � u.

For convenience, we agree on the following notation and convention related to
DAGs.

Notation 2 Each node N in the DAG representation is associated with an interval,
denoted as τN and called the node range of N, in which the exact range of the associated
subexpression must lie. N is also associated with a real variable, denoted by ϑN, that
represents the value of the subexpression represented by N.

For efficiency and compactness, the standard elementary operations in the DAG
representation are replaced with more general operations. For example, multiple
applications of binary elementary operations such as {x + y, x − y, x + a, a + x,

x − a, a − x, ax} are replaced with a k-ary operation a0 + a1x1 + · · · + akxk, which
is interpreted as a k-ary operation + (see Fig. 2a), where 1 ≤ k ∈ N. Similarly, mul-
tiple applications of the binary multiplication x ∗ y are replaced with a k-ary multi-
plication a0 ∗ x1 ∗ · · · ∗ xk, which is interpreted as the k-ary operation ∗ (see Fig. 2b),
where 2 ≤ k ∈ N. In general, each edge of a DAG is associated with the coefficient
related to the operation represented by its target. When not specified in figures, this
coefficient equals to 1. The other constants involving an operation are stored at the
node representing the operation (see Fig. 2). As a result, the DAG representation no
longer has nodes representing constants as it is the case in the tree representation.

In fact, we use multigraphs instead of simple graphs for DAGs because some par-
ticular operations can take the same input more than once. For example, the expres-
sion xx can be represented by the binary power operation xy without introducing
a new unary operation xx. In all cases, a normal directed acyclic graph is sufficient
to represent a numerical CSP (NCSP), provided that we introduce new elementary
operations such as the unary operation xx. The ordering of edges is needed for non-
commutative operations like the division. For convenience, a ground node, called G,
is added to each DAG representation to be the parent of all nodes that represents
the constraints. The ground node can be interpreted as the logical AND operation.

Let us consider the following constraint system
⎧
⎪⎨

⎪⎩

√
x + 2

√
xy + 2

√
y ≤ 7,

0 ≤ x2√y − 2xy + 3
√

y ≤ 2,

x ∈ [1, 16], y ∈ [1, 16].

Fig. 2 A node and its
computational flows in a DAG
representation (a, b)

+ *

a1

xi

ai ak

a0

xkx1 xi

a0

xkx1

a b

Enhancing numerical constraint propagation using multiple inclusions 301

It can be written as follows:
⎧
⎪⎨

⎪⎩

√
x + 2

√
xy + 2

√
y ∈ [−∞, 7],

x2√y − 2xy + 3
√

y ∈ [0, 2],
x ∈ [1, 16], y ∈ [1, 16].

(1)

The DAG representation of the constraint system (1) is depicted in Fig. 3. The
two constraints of (1) are represented by two nodes N9 and N10. The two initial
variables, x and y, are represented by two nodes N1 and N2, respectively. The
sequence (N1, N2, . . . , N10) of nodes given in Fig. 3 is an example of an ordering
(see Theorem 1).

For the same constraint system, the DAG representation is much more concise
than the equivalent tree representation used in the HC4 algorithm.

2.4 Revised affine arithmetic

Affine arithmetic [9] is an extension of interval arithmetic which keeps track of
correlations between computed and input quantities. In particular, a real-valued
quantity x is represented by an affine form defined as follows

x ≡ x0 + x1ε1 + · · · + xnεn, (2)

where x0, . . . , xn are real coefficients and ε1, . . . , εn are noise variables (originally
called noise symbols [9]) taking values in the real interval [−1, 1]. Similarly to interval
arithmetic, affine arithmetic also enables the use of rounded floating-point arithmetic

Fig. 3 The DAG
representation of the
constraint system (1)

302 X.-H. Vu et al.

to construct rigorous enclosures for the ranges of operations and functions [40].
In affine arithmetic, affine operations such as αx + βy + γ (where α, β, γ ∈ R) are
exactly obtained, except the rounding errors, by the formula

αx + βy + γ = (αx0 + βy0 + γ)+
n∑

i=1

(αxi + βyi)εi (3)

However, non-affine operations can only be computed by approximations. In
general, the exact result of a non-affine operation has the form f ∗(ε1, . . . , εn), where
f ∗ is a nonlinear function. In practice, this result is then approximated by an affine
function f a(ε1, . . . , εn) = z0 + z1ε1 + · · · + znεn. A new term zkεk is used to represent
the difference between f ∗ and f a, hence, the result has the affine form

z ≡ z0 + z1ε1 + · · · + znεn + zkεk, (4)

where the maximum absolute error zk satisfies

zk ≥ sup
{| f ∗(ε)− f a(ε)| : ∀ε = (ε1, . . . , εn) ∈ [−1, 1]n}.

An important goal is to keep the maximum absolute error as small as possible.
This is a subject of Chebyshev approximation theory—a well-developed field with a
vast literature.

In its standard version, affine arithmetic has several performance limitations when
used in long-running computations.

First, the number of noise variables grows quickly during computations since each
nonlinear operation adds a new noise variable. In general, the cost of operations
in affine arithmetic heavily depends on the number of noise variables (e.g., linearly
or quadratically). The computations in which affine arithmetic is used to generate
linear relaxations suffer a lot from this drawback. Second, standard affine forms are
not capable of handling half-lines like [−∞, a] and [a,+∞], while this is needed in
many computation methods such as constraint propagation and exhaustive search.

Inspired by the ideas in [18, 19, 30], we propose a revised affine form similar to (4)
but the new term zkεk is replaced by an accumulative error [−ez, ez]which represents
the maximum absolute error zk of non-affine operations. In other words, the revised
affine form of a real-valued quantity x̂ is defined as

x̂ ≡ x0 + x1ε1 + · · · + xnεn + ex[−1, 1], (5)

which consists of two separated parts: the standard affine part of length n, and the
interval part. Where the magnitude of the accumulative error, ex ≥ 0, is represented
by the interval part. That is, for each value x of the quantity x̂ (say x ∈ x̂), there exist
εx ∈ [−1, 1], εi ∈ [−1, 1] (for all i = 1, . . . , n) such that x = x0 + x1ε1 + · · · + xnεn +
exεx. We then say it is of length n. The affine operation ẑ ≡ αx̂ + β ŷ + γ is now
defined as (where ε0 ≡ 1)

ẑ ≡ γ +
n∑

i=0

(αxi + βyi)εi + (|α|ex + |β|ey)[−1, 1] (6)

Note that during computations the lengths of revised affine forms will never
exceed the number of noise symbols present at the beginning, i.e., the number of
variables of the input constraint system.

Enhancing numerical constraint propagation using multiple inclusions 303

We refer the reader to Appendix B for a detailed description of this arithmetic
and its theoretical foundation.

3 Generalization of inclusion concepts

3.1 Inclusion representation

We start by generalizing the concepts related to interval forms, as defined in interval
arithmetic. The objective is to provide a common view of different possible kind of
conservative enclosures. This will facilitate the presentation of our generic constraint
propagation scheme, presented in Section 4.

Definition 8 (Inclusion Representation) Given a set A, a pair I ≡ (R, μ), where R is
a nonempty set and μ is a function from R to 2A, is called an inclusion representation
of A if there exists a function ζ : 2A → R such that μ(ζ(∅)) = ∅ and ∀S ⊆ A : S ⊆
μ(ζ(S)). In this case, each T ∈ R is called a representation object in I (or in R), ζ is
called the representing function of I , and μ is called the evaluating function of I .

The function ζ in the previous definition expresses the fact that each subset of A
is “included” in at least one representation object of R. The next definition identifies
a special class of inclusion representations used in Section 4.

Definition 9 (Real Representation) Let I ≡ (R, μ) be an inclusion representation
of the real set R. It is called a real inclusion representation of R if each representation
object T ∈ R is a tuple consisting of real numbers, and the value of μ at T can be
represented as

μ(T) ≡ {
fT(VT) | VT ∈ DT [VT]

}
, (7)

where DT (with T as a tuple of parameters) is a sequence of the domains of a
finite sequence VT of variables and other auxiliary variables, DT [VT] denotes the
subsequence of the domains of VT in DT , and fT is a real-valued function on
variables VT . The representation (7) is called a real representation of μ.

The domains in DT can be explicitly given by constant domains such as an interval
[a, b], or implicitly given by constraints. If DT is given by

DT =
m⋂

i=1

{
fi,T(Vi,T) | Vi,T ∈ Di,T [Vi,T]

}
, (8)

and fT is an identity function, we then have

μ(T) ≡ {
x | x ∈ DT [x]

} =
m⋂

i=1

{
fi,T(Vi,T) | Vi,T ∈ Di,T [Vi,T]

}
. (9)

Hereafter, we give some examples to illustrate the concept of real inclusion
representation.

304 X.-H. Vu et al.

Example 1 Obviously, the standard representation of reals is directly equivalent,
although not exactly, to a real inclusion representation of R, where T=(x), VT =(x),
fT is an identity function, and DT = {x}.

Example 2 It is easy to see that the representation of intervals in the form

a ≤ x ≤ b (10)

is equivalent to a real inclusion representation of the form (7), called the interval
representation, by defining

T = (a, b) ∈ R
2, (11a)

VT = (x), (11b)

DT = [a, b], (11c)

fT(VT) = x, (11d)

μ(T) ≡ {x | x ∈ [a, b]} . (11e)

The function fT in (11) is an identity function.

Example 3 The union form of intervals can also be viewed as a real inclusion rep-
resentation. For example, the union

⋃m
i=1[ai, bi] can be interpreted by

T = (a1, b 1, . . . , am, b m), (12a)

VT = (x), (12b)

DT =
m⋃

i=1

[ai, bi], (12c)

fT(VT) = x, (12d)

μ(T) ≡
{

x

∣∣∣∣∣
x ∈

m⋃

i=1

[ai, bi]
}

. (12e)

The function fT in (12) is an identity function.

Example 4 The affine forms (2), namely x̂ ≡ x0 + x1ε1 + · · · + xnεn, can also be
seen as a real inclusion representation of the form (7), called the standard affine
representation, by defining that

T = (x0, . . . , xn), (13a)

VT = (ε1, . . . , εn), (13b)

DT = [−1, 1]n, (13c)

fT(VT) = x0 +
n∑

i=1

xiεi, (13d)

μ(T) ≡
{

x0 +
n∑

i=1

xiεi

∣∣∣∣∣
(ε1, . . . , εn) ∈ [−1, 1]n

}

. (13e)

Enhancing numerical constraint propagation using multiple inclusions 305

The function fT in (13) is a linear function on VT . Another real representation of the
form (7) for the above real inclusion representation is defined as follows:

T = (x0, . . . , xn), (14a)

VT = (x), (14b)

DT =
{

x0 +
n∑

i=1

xiεi

∣∣∣∣∣
(ε1, . . . , εn) ∈ [−1, 1]n

}

, (14c)

fT(VT) = x, (14d)

μ(T) ≡ {x | x ∈ DT} , (14e)

where DT is implicitly given via its variables.

Example 5 Similarly to the affine forms, the revised affine forms defined by (5) can
also be seen as a real inclusion representation of the form (7), called the revised affine
representation, by defining that

T = (x0, . . . , xn, ex), (15a)

VT = (ε1, . . . , εn, εx), (15b)

DT = [−1, 1]n+1, (15c)

fT(VT) = x0 +
n∑

i=1

xiεi + exεx, (15d)

μ(T) ≡
{

x0 +
n∑

i=1

xiεi + exεx

∣∣∣∣∣
(ε1, . . . , εn, εx) ∈ [−1, 1]n+1

}

. (15e)

The function fT in (15) is a linear function on (n + 1) variables in VT .

Example 6 The Kolev affine form (see Definition 15), a generalization of interval
and affine form, is also a real inclusion representation. It can be defined as an affine
function on the variables κi:

x̃ = cx +
n∑

i=1

xiκi + κx, κi ∈ vi, κx ∈ vx, (16)

where vi ≡ [−vi, vi] (for all i = 1, . . . , n) and vx ≡ [−vx, vx] are symmetric intervals,
xi (for all i = 1, . . . , n) are real coefficients, and cx ∈ R. Similarly to revised affine

306 X.-H. Vu et al.

forms, Kolev affine forms can also be interpreted as a real inclusion representation
(7), called the Kolev affine representation, by defining that

T = (cx, x1, . . . , xn, v1, . . . , vn, vx), (17a)

VT = (κ1, . . . , κn, κx), (17b)

DT = [−v1, v1] × · · · × [−vn, vn] × [−vx, vx], (17c)

fT(VT) = cx +
n∑

i=1

xiκi + κx, (17d)

μ(T) ≡
{

cx +
n∑

i=1

xiκi + κx

∣∣∣∣∣
(κ1, . . . , κn, κx) ∈ DT

}

. (17e)

The function fT in (17) is a linear function on (n + 1) variables in VT .

Note 1 In practice, a representation object T in the above affine forms often contains
many zero coefficients; hence, we should store only nonzero coefficients and their
indices instead of all coefficients. For example, an affine form 0.1 + 2.1ε2 + 9.1ε9

should be stored in T by (0.1, 2.1, 9.1; 2, 9) instead of (0.1, 0.0, 2.1, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 9.1).

Example 7 Hansen’s generalized interval [12] is given as follows

x̃ = [cx, cx] +
n∑

i=1

[xi, xi]κi, (18)

where the notations are the same as in the Kolev affine form (16). Hansen’s general-
ized interval can be interpreted as a real inclusion representation, called the Hansen
interval representation, by defining

T = (
cx, cx, x1, x1, . . . , xn, xn, v1, . . . , vn

)
, (19a)

VT = (κ1, . . . , κn, cx, x1, . . . , xn), (19b)

DT = [−v1, v1] × · · · × [−vn, vn] × [−vx, vx] × [x1, x1] × . . . [xn, xn], (19c)

fT(VT) = cx +
n∑

i=1

xiκi, (19d)

μ(T) ≡
{

cx +
n∑

i=1

xiκi

∣∣∣∣∣
(κ1, . . . , κn, cx, x1, . . . , xn) ∈ DT

}

. (19e)

Note that the function fT in (19) is a quadratic function on (2n + 1) variables in VT .

Example 8 Linear relaxations and (convex) polyhedral enclosures can also be
viewed as real inclusion representations. Indeed, they are given as the intersection
of m half-spaces

Hi ≡
⎧
⎨

⎩
(x1, . . . , xn) | ai0 +

n∑

j=1

aijx j ≤ 0

⎫
⎬

⎭
(for i = 1, . . . , m),

Enhancing numerical constraint propagation using multiple inclusions 307

and are often restricted to a domain B that is usually a box. We can therefore obtain
a real inclusion representation (9), called the linear relaxation representation, by
defining that

T = (a10, . . . , a1n, . . . , am0, . . . , amn), (20a)

VT = (xk), for some k ∈ {1, . . . , n} (20b)

DT = B ∩
m⋂

i=1

Hi, (20c)

fT(VT) = xk, (20d)

μ(T) ≡ {
xk | xk ∈ DT [xk]

} = B ∩
m⋂

i=1

Hi. (20e)

This is the intersection of B and the convex polyhedron
⋂m

i=1 Hi.

By a similar argument, one can see that the concept of inclusion representation
covers almost all existing inclusions for real numbers. It does not introduce new
inclusion techniques, but provides an abstract view of different existing inclusion
techniques.

The following theorems characterize the properties of inclusion representations.

Theorem 3 Let A be a nonempty set and A′ a subset of A. Suppose I ≡ (R, μ)

is an inclusion representation of A. Then the pair I ′ ≡ (R′, μ′) is an inclusion
representation of A′, where

R′ := {
T ∈ R | μ(T) �= ∅ ⇒ μ(T) ∩A′ �= ∅} , (21a)

μ′(T) := μ(T) ∩A′ for all T ∈ R′. (21b)

Proof By Definition 8, there exists a representing function ζ of I that maps from
2A to R. We define a function ζ ′ : 2A

′ → R simply by the rule ζ ′(S) := ζ(S) for
all S ∈ 2A

′
. It follows from (21) that ζ ′(S) ∈ R′ because μ(ζ ′(S)) = μ(ζ(S)) ⊇ S and

μ(ζ ′(∅)) = μ(ζ(∅)) = ∅. Hence, ζ ′ is a function from 2A
′
to R′ as required. Moreover,

for all S ∈ 2A
′
, we have μ′(ζ ′(S)) = μ(ζ(S)) ∩A′ ⊇ S. ��

Theorem 4 Let I ≡ (R, μ) and I ′ ≡ (R′, μ′) be inclusion representations of two sets
A and A′, respectively. Then I ′′ ≡ (R×R′, (μ,μ′)T) is an inclusion representation of
A×A′. We denote I ′′ by I × I ′.

Proof By Definition 8, there exist two representing functions ζ and ζ ′ of I and I ′,
respectively. The function ζ ′′ = (ζ, ζ ′)T is a representing function of I ′′. ��

Notation 5 I, Â, and A will refer respectively the real inclusion representations using:

– Interval arithmetic, as defined in (11);
– Affine arithmetic, as defined in (13);
– Revised affine arithmetic, as defined in (15).

308 X.-H. Vu et al.

As a result, we will use 0.1 + 2.1ε2 + 9.1ε9 to refer to the representation ob-
ject (0.1, 0.0, 2.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.1) in the standard affine representation(
Â, μ

Â

)
defined in (13). Similarly, we will use the form [1, 3] to refer to the represen-

tation object (1, 3) in the interval representation (I, μI) defined in (11).

3.2 Inclusion function

We now generalize the notion of inclusion function as defined in interval arithmetic
to make it compatible with the notion of inclusion representation.

Definition 10 (Inclusion Function) Given two sets X, Y and a function f : X → Y.
Let IX = (RX , μX) and IY = (RY , μY) be two inclusion representations of X and Y,
respectively. A function F : RX → RY is called an inclusion function for f if ∀S ⊆ X
and ∀T ∈ RX we have

S ⊆ μX(T) ⇒ f (S) ≡ { f (x) | x ∈ S} ⊆ μY(F(T)). (22)

The inclusion function defined in [16, p. 27] for intervals can be seen as special
cases of Definition 10. All interval forms of a function (or multifunction) f are
inclusion functions of f using the interval representation (11).

In practice, one often extends real-valued functions in a natural way to evaluate
the ranges of the real-valued functions as follows.

Definition 11 (Natural Extension) Let f : R
n → R

m be a factorable function that
is recursively composed of a finite set, E, of elementary operations defined on R

in a given way. Suppose that I = (R, μ) is an inclusion representation of R such
that there exist a set, ER, of elementary operations defined on R, and a bijection
η : E → ER.2 A function f : Rn → Rm is called the natural extension of f in I (using
operations in ER) with respect to the given composition of f if f is constructed from
the composition of f by replacing each real variable, constant, or operation by its
counterpart. If f is also an inclusion function for f , we call f the natural inclusion
function for f with respect to the composition.

Various interval inclusion functions are described in [16]; some among them are
natural, centered, mixed-centered and Newton inclusion functions.

Example 9 In the composition of the real-valued function f (x) = x ∗ (x − 1), the real
variable x occurs twice. The set of elementary operations used in the composition of
f is E = {−, ∗}. The exact range f ([0, 1]) = [−0.25, 0]. The natural extension of f
in the interval representation (I, μI) defined by (11) is a function f : I → I defined
as f(x) = x ∗ (x − 1), where 1 = [1, 1] = 1. Consider the representation object T =
(0, 1) in the interval representation (I, μI), which corresponds to the interval [0, 1].
In interval arithmetic, the value of f at T is

f(T) = [0, 1] ∗ ([0, 1] − 1) = [0, 1] ∗ [−1, 0] = [−1, 0].

2We then call e ∈ E the real-valued counterpart of η(e).

Enhancing numerical constraint propagation using multiple inclusions 309

We have f ([0, 1]) ⊆ f([0, 1]). Moreover, we can prove that ∀x ∈ x ∈ I : f (x) ∈ f(x).
Hence, f is the natural inclusion function of f in the interval arithmetic representa-
tion with respect to the specified composition of f .

Example 10 The natural extension of the real-valued function f (x) = x ∗ (x − 1) in
the standard affine representation is the function f̂ (x̂) = x̂ ∗ (x̂ − 1̂), where 1̂ = 1.
A representation object T = (0.5, 0.5) in the standard affine representation

(
Â, μ

Â

)

defined by (13), which corresponds to the affine form 0.5 + 0.5ε1, has the following
real evaluation at T:

μ
Â
(T) = {0.5 + 0.5ε1 | ε1 ∈ [−1, 1]} = [0, 1].

In affine arithmetic, the value of f̂ at T = 0.5 + 0.5ε1 is

f̂ (T) = (0.5 + 0.5ε1) ∗ ((0.5 + 0.5ε1)− 1)

= (0.5 + 0.5ε1) ∗ (−0.5 + 0.5ε1)

= −0.25 + 0.25εnew,

where εnew is a new noise variable taking its value in [−1, 1]. Hence, f̂ (T) has the
real evaluation μ

Â
(−0.25 + 0.25εnew) = [−0.5, 0]. We can prove that the natural

extension f̂ is the natural inclusion function of f in
(
Â, μ

Â

)
– the standard affine

representation.
Note that in revised affine arithmetic, f̂ (T) = −0.125 + 0.125εnew. Hence, it has

the real evaluation μA(−0.125 + 0.125εnew) = [−0.25, 0]. This evaluation provides a
tighter enclosure than the one provided by affine arithmetic.

Example 11 The natural extension of the real-valued function f (x) = x ∗ (x − 1) in
the revised affine representation is the function f̂ (̂x) = x̂ ∗ (̂x − 1̂), where 1̂ = 1. A
representation object T = (0.5, 0.5, 0.0) in the revised affine representation (A, μA)

defined by (15), which corresponds to the revised affine form 0.5 + 0.5ε + 0[−1, 1],
has the following real evaluation at T:

μA(T) = {0.5 + 0.5ε + 0[−1, 1] | ε ∈ [−1, 1]} = [0, 1].

In revised affine arithmetic, The value of f̂ at T is

f̂ (T) = (0.5 + 0.5ε) ∗ ((0.5 + 0.5ε)− 1)

= (0.5 + 0.5ε) ∗ (−0.5 + 0.5ε)

= −0.125 + 0.125[−1, 1].

Hence, f̂ (T) has the real evaluation μA(−0.125 + 0.125[−1, 1]) = [−0.25, 0]. We can
prove that the natural extension f̂ is the natural inclusion function of f in the revised
affine representation with respect to the given composition of f .

310 X.-H. Vu et al.

Next, we define the conversion from an inclusion representation to another one
without loss of the inclusion property.

Theorem 6 (Composite Inclusion Function) Let IX = (RX , μX), IY = (RY , μY)

and IZ = (RZ , μZ) be inclusion representations of three sets X, Y and Z , respec-
tively. If F : RX → RY and G : RY → RZ are inclusion functions of two functions
f : X → Y and g : Y → Z respectively, then the composite function G ◦ F is an
inclusion function of the composite function g ◦ f .

Proof Let T ∈ RX , U = F(T), V = G(U) and S ⊆ X ∩ μX(T). By Definition 10,
we have f (S) ⊆ μY(U), thus, f (S) ⊆ Y ∩ μY(U). Therefore, also by Definition 10,
we have g(f (S)) ⊆ μZ (G(U)) = μZ (V). That is, g ◦ f (S) ⊆ μZ (G ◦ F(T)) holds for
every S ⊆ X ∩ μX(T). That is, G ◦ F is an inclusion function of g ◦ f . ��

Corollary 1 Let I = (R, μ) be an inclusion representation of R. If elementary
operations defined over R are inclusion functions of their counterparts over R, then
all factorable functions built over R by using these elementary operations are also
inclusion functions of their counterparts over R.

Proof Corollary 1 is an obvious consequence of Theorem 6. Therefore, the proof is
omitted. ��

In our implementation, the elementary operations of interval arithmetic and affine
arithmetic are constructed to be inclusion functions of their real-valued counterparts.
It follows from Corollary 1 that all the factorable operations/functions defined in
interval arithmetic (or affine arithmetic) by using these elementary operations will
also be inclusion functions of their real-valued counterparts.

4 Combining multiple inclusion representations

Using the concept of inclusion representation as presented in Section 3.1, we now
propose a novel generic scheme to perform constraint propagation on DAG repre-
sentations. This scheme allows inclusion techniques to work in cooperation in order
to obtain the effect of domain reduction. The input constraint system is represented
by a DAG. The computational data stored at each node, N, of the DAG repre-
sentation consist of a representation object for each real inclusion representation
I = (R, μ) of R and a constraint range of node which is often an interval. Choosing
a node for constraint propagation is based on the computational data associated to
the node. Some specific combination will be described in Section 5. They are based
on interval arithmetic, affine arithmetic, interval constraint propagation, and linear
programming.

4.1 Node range evaluations

The following constraint system, an NCSP, will be used in examples throughout this
section.

Enhancing numerical constraint propagation using multiple inclusions 311

a b

Fig. 4 The DAG representation: a before interval evaluations; and b after interval evaluations

Example 12 The DAG representation of the following NCSP is depicted in Fig. 4:
〈
x2 − 2xy +√

y = 0, 4x + 3xy + 2
√

y ≤ 9; x ∈ [1, 3], y ∈ [1, 9]〉 .
The sequence (N1, N2, N3, N4, N5, N6, N7) is an ordering of the nodes (see
Theorem 1).

In order to combine multiple inclusion techniques during constraint propagation,
we use multiple inclusion representations at each node N of the DAG representation.
The computational data stored at N consists of a constraint range τN and multiple
representation objects.

Notation 7 For each real inclusion representation I = (R, μ) under consideration,
one representation object, denoted by R(N), in I is stored at N.

Notation 8 Let I = (R, μ) be a real inclusion representation, T ∈ R, T ′ ∈ R, and x ⊆
R. The notation T � x denotes some object T ′′ ∈ R such that μ(T) ∩ x ⊆ μ(T ′′) holds
and μ(T ′′) ⊆ μ(T) or μ(T ′′) ⊆ x holds. The notation T � T ′ denotes some object T ′′ ∈
R such that μ(T) ∩ μ(T ′) ⊆ μ(T ′′) holds and μ(T ′′) ⊆ μ(T) or μ(T ′′) ⊆ μ(T ′) holds.

During computations, the inclusion property at each node will be maintained.
That is, the exact value of the subexpression at a node N always lives in the node
range τN and in the image μ(R(N)) of every representation object R(N) stored at
N. Hereafter, we present a concept that allows reducing the node range of a node
basing on the node ranges of its children. This concept is a generalization of the idea
of forward evaluation [4].

Definition 12 (Node Evaluation, NEV) Let N be a node of the DAG representation
of a constraint system, {Ci}ki=1 the children of N, f : R

k → R the elementary op-
eration represented by N, and I = (R, μ) a real inclusion representation. Also let

312 X.-H. Vu et al.

fI : Rk → R be an inclusion function for f . The following assignment is called the
node evaluation at node N in the inclusion representation I (if N �= G):

NEV(N,I) ≡
{R(N) := R(N) ∩ τ(N) ∩ fI

({R(Ci)}ki=1

);
τ(N) := τ(N) ∩ μ(R(N));

}

Example 13 Consider the problem in Example 12 and the notations in Fig. 4. At the
beginning, we have (see Fig. 4a):

τN1 = I(N1) = [1, 3]; A(N1) = Â(N1) = 2 + ε1;
τN2 = I(N2) = [1, 9]; A(N2) = Â(N2) = 5 + 4ε2;
τNi = I(Ni) = [−∞,+∞]; A(Ni) = Â(Ni) = [−∞,+∞] (i = 3, 4, 5);
τN6 = I(N6) = [0, 0]; A(N6) = Â(N6) = 0;
τN7 = I(N7) = [−∞, 9]; A(N7) = Â(N7) = [−∞, 9];

The operation corresponding to N3 is the square operation; therefore, we have

NEV(N3, I) ≡
{

I(N3) :=
(
(I(N1))

2 � τN3

)
� I(N3);

τN3 := τN3 ∩ I(N3);

}

,

NEV(N3, Â) ≡
{

Â(N3) :=
((

Â(N1)
)2 � τN3

)
� Â(N3);

τN3 := τN3 ∩ μ
Â
(Â(N3));

}

,

NEV(N3, A) ≡
{

A(N3) :=
(
(A(N1))

2 � τN3

)
� A(N3);

τN3 := τN3 ∩ μA(A(N3));

}

.

After the node evaluation NEV(N3, I), we have

I(N3) =
(
([1, 3])2 � [−∞,+∞]) � [−∞,+∞] = [1, 9],

τN3 = [−∞,+∞] ∩ [1, 9] = [1, 9].
After performing NEV(N3, Â) and NEV(N3, A) by using affine arithmetic and revised
affine arithmetic, we have

Â(N3) =
(
(2 + ε1)

2 � [1, 9]) � [−∞,+∞] = 4.5 + 4ε1 + 0.5ε3,

τN3 = [1, 9] ∩ μ
Â
(4.5 + 4ε1 + 0.5ε3) = [1, 9],

A(N3) =
(
(2 + ε1)

2 � [1, 9]) � [−∞,+∞] = 4.5 + 4ε1 + 0.5[−1, 1],
τN3 = [1, 9] ∩ μA(4.5 + 4ε1 + 0.5[−1, 1]) = [1, 9].

Similarly, after performing node evaluations at the other nodes we have

I(N4) = τN4 = [1, 27], Â(N4) = 10 + 5ε1 + 8ε2 + 4ε4,

A(N4) = 10 + 5ε1 + 8ε2 + 4[−1, 1],
I(N5) = τN5 = [1, 3], Â(N5) = 2.125 + ε2 + 0.125ε5,

A(N5) = 2.125 + ε2 + 0.125[−1, 1],
I(N6) = τN6 = [0, 0], Â(N6) = −13.375 − 6ε1 − 15ε2 + 0.5ε3 − 8ε4 + 0.125ε5,

A(N6) = −13.375 − 6ε1 − 15ε2 + 8.625[−1, 1],
I(N7) = τN7 = [9, 9], Â(N7) = 42.25 + 19ε1 + 26ε2 + 12ε4 + 0.25ε5,

A(N7) = 42.25 + 19ε1 + 26ε2 + 12.25[−1, 1].

Enhancing numerical constraint propagation using multiple inclusions 313

In practice, the node range τN and the interval object I(N) should be merged into one
object because they are of the same type.

4.2 Induced constraint systems for domain reduction

In order to present the concept of a pruning constraint system concisely, we rely on
the following concept.

Definition 13 (Inclusion Constraint System, ICS) Let ({R} , μ) be a real inclusion
representation of R defined by (7), N a node of the DAG representation. The
inclusion constraint system induced by a object T ≡ {R} (N) and a constraint range
D ⊆ R is defined as

ICS(T, D) ≡
{{

ϑN ∈ DT ∩ D
}

(i.e., VT ≡ {ϑN}) if fT is the identity,
{

fT (VT) = ϑN;VT ∈ DT ;ϑN ∈ D
}

otherwise;

where the set of variables consists of the variable ϑN, the variables in VT , and the
variables used to describe DT .

Roughly speaking, the inclusion constraint system induced by a representation
object T at a node N is a set of redundant constraints that can be inferred from T
(the inclusion ϑN ∈ μ always hold). Some example of inclusion constraint systems
are given below.

Example 14 Inclusion constraint systems for different inclusion representations:

– An inclusion constraint system for the interval form (11):

ICS(T, [c, d]) ≡ {ϑN ∈ [c, d] ∩ [a, b]} ,

where the set of variables is {ϑN}. This system is conjunctive and has the form of
bound constraint.

– An inclusion constraint system for the interval union form (12):

ICS(T, [c, d]) ≡
{

ϑN ∈ [c, d]; ϑN ∈
m⋃

i=1

[ai, bi]
}

,

where the set of variables is {ϑN}. This system has the form of the disjunction of
bound constraints.

– An inclusion constraint system for the affine form (13):

ICS(T, [c, d]) ≡
{

x0 +
n∑

i=1

xiεi = ϑN; (ε1, . . . , εn) ∈ [−1, 1]n; ϑN ∈ [c, d]
}

,

where the set of variables is {ε1, . . . , εn, ϑN}. This system is conjunctive and linear.

314 X.-H. Vu et al.

– An inclusion constraint system for the revised affine form (15):

ICS(T, [c, d])

≡
{

x0 +
n∑

i=1

xiεi + exεx = ϑN; (ε1, . . . , εn, εx) ∈ [−1, 1]n+1; ϑN ∈ [c, d]
}

,

where the set of variables is {ε1, . . . , εn, εx, ϑN}. This system is conjunctive and
linear.

– An inclusion constraint system for the Kolev affine form (17):

ICS(T, [c, d])

≡
{

cx +
n∑

i=1

xiκi + κx = ϑN; κi ∈ [−vi, vi]; κx ∈ [−vx, vx]; ϑN ∈ [c, d]
}

,

where the set of variables is {κ1, . . . , κn, κx, ϑN}. This system is conjunctive and
linear.

– An inclusion constraint system for the Hansen interval form (19):

ICS(T, [c, d])

≡
{

cx +
n∑

i=1

xiκi = ϑN; κi ∈ [−vi, vi]; cx ∈ [cx, cx]; xi ∈ [xi, xi];ϑN ∈ [c, d]
}

,

where the set of variables is {κ1, . . . , κn, cx, x1, . . . , xn, ϑN}. This system is con-
junctive and quadratic.

– An inclusion constraint system for the linear relaxations/polyhedral enclosures
(20):

ICS(T, [c, d])

≡
⎧
⎨

⎩
ai0 +

n∑

j=1

aijx j ≤ 0 (i = 1, . . . , m); ϑN ≡ xk ∈ [c, d]; (x1, . . . , xn) ∈ B

⎫
⎬

⎭
,

where the set of variables is {x1, . . . , xn}. This system is conjunctive and linear.
Note that ϑN is one of the variables x1, . . . , xn.

We now define the constraint systems constructed for pruning the node ranges,
using the representation objects stored at related nodes.

Definition 14 (Pruning Constraint System, PCS) Let N be a node of the DAG
representation of a constraint system, (Ci)

k
i=1 the children of N, h : R

k → R the
operation represented by N, and S a finite set of real inclusion representations. The
following constraint system is called the pruning constraint system induced by S at N:

PCS(N,S) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{∧k
i=1 ICS(R(Ci), τCi);

}
if N is ground,

⎧
⎨

⎩
h(ϑC1 , . . . , ϑCk) = ϑN;
∧

(R,μ)∈S PCSub(N,R, μ);

⎫
⎬

⎭
otherwise;

Enhancing numerical constraint propagation using multiple inclusions 315

where PCSub(N,R, μ) is a pruning constraint subsystem defined as

PCSub(N,R, μ) ≡
(

ICS(R(N), τN) ∧
k∧

i=1

ICS(R(Ci), τCi)

)

.

Roughly speaking, the pruning constraint system induced by S at N includes all
inclusion constraint systems induced by all representation objects stored at N and the
children of N. The operation h is a constraint itself in the pruning constraint system.
The concept of a pruning constraint system is depicted in Fig. 5.

Notation 9 In the rest of the paper, we will abuse the notations I and A to denote
the real inclusion representations, (I, μI) and (A, μA), respectively defined on interval
arithmetic and revised affine arithmetic; where the function μI is defined by (11) and
the function μA is defined by (15).

Example 15 Let us consider the problem in Example 12 and continue the compu-
tations in Example 13. We have, for instance, the following inclusion constraint
systems:

ICS(I(N1), τN1) ≡
{
ϑN1 ∈ [1, 3]} ;

ICS(I(N2), τN2) ≡
{
ϑN2 ∈ [1, 9]} ;

ICS(I(N3), τN3) ≡
{
ϑN3 ∈ [1, 9]} ;

ICS(I(N4), τN4) ≡
{
ϑN4 ∈ [1, 27]} ;

ICS(I(N5), τN5) ≡
{
ϑN5 ∈ [1, 3]} ;

ICS(I(N6), τN6) ≡
{
ϑN6 ∈ [0, 0]} ;

ICS(I(N7), τN7) ≡
{
ϑN7 ∈ [9, 9]} ;

ICS
(
Â(N1), τN1

) ≡
{

2 + ε1 = ϑN1;
ϑN1 ∈ [1, 3]; ε1 ∈ [−1, 1];

}
;

ICS
(
Â(N2), τN2

) ≡
{

5 + 4ε2 = ϑN2;
ϑN2 ∈ [1, 9]; ε2 ∈ [−1, 1];

}
;

ICS
(
Â(N3), τN3

) ≡
{

4.5 + 4ε1 + 0.5ε3 = ϑN3;
ϑN3 ∈ [1, 9]; εi ∈ [−1, 1] (i = 1, 3);

}
;

Fig. 5 A pruning constraint
system at N: a in case N is
not the ground, all ICS
systems and the relation h
on the nodes N, C1, . . . , Ck
are included; and b in case N is
the ground, only ICS systems
on the child nodes C1, . . . , Ck
are included

a b

316 X.-H. Vu et al.

ICS
(
Â(N4), τN4

) ≡
{

10 + 5ε1 + 8ε2 + 4ε4 = ϑN4;
ϑN4 ∈ [1, 27]; εi ∈ [−1, 1] (i = 1, 2, 4);

}
;

ICS
(
Â(N5), τN5

) ≡
{

2.125 + ε2 + 0.125ε5 = ϑN5;
ϑN5 ∈ [1, 3]; εi ∈ [−1, 1] (i = 2, 5);

}
;

ICS
(
Â(N6), τN6

) ≡
{
−13.375 − 6ε1 − 15ε2 + 0.5ε3 − 8ε4 + 0.125ε5 = ϑN6;
ϑN6 ∈ [0, 0]; εi ∈ [−1, 1] (i = 1, . . . , 5);

}

;

ICS
(
Â(N7), τN7

) ≡
{

42.25 + 19ε1 + 26ε2 + 12ε4 + 0.25ε5 = ϑN7;
ϑN7 ∈ [9, 9]; εi ∈ [−1, 1] (i = 1, 2, 4, 5);

}

;

ICS(A(N1), τN1) ≡
{

2 + ε1 = ϑN1;
ϑN1 ∈ [1, 3]; ε1 ∈ [−1, 1];

}

;

ICS(A(N2), τN2) ≡
{

5 + 4ε2 = ϑN2;
ϑN2 ∈ [1, 9]; ε2 ∈ [−1, 1];

}

;

ICS(A(N3), τN3) ≡
{

4.5 + 4ε1 + 0.5εN3 = ϑN3;
ϑN3 ∈ [1, 9]; (ε1, εN3) ∈ [−1, 1]2;

}

;

ICS(A(N4), τN4) ≡
{

10 + 5ε1 + 8ε2 + 4εN4 = ϑN4;
ϑN4 ∈ [1, 27]; (ε1, ε2, εN4) ∈ [−1, 1]3;

}

;

ICS(A(N5), τN5) ≡
{

2.125 + ε2 + 0.125εN5 = ϑN5;
ϑN5 ∈ [1, 3]; (ε2, εN5) ∈ [−1, 1]2;

}

;

ICS(A(N6), τN6) ≡
{
−13.375 − 6ε1 − 15ε2 + 8.625εN6 = ϑN6;
ϑN6 ∈ [0, 0]; (ε1, ε2, εN6) ∈ [−1, 1]3;

}

;

ICS(A(N7), τN7) ≡
{

42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7;
ϑN7 ∈ [9, 9]; (ε1, ε2, εN7) ∈ [−1, 1]3;

}

.

Therefore, we can infer the following pruning constraint systems as examples:

PCS
(
G,

{
Â
}) ≡

⎧
⎪⎨

⎪⎩

−13.375 − 6ε1 − 15ε2 + 0.5ε3 − 8ε4 + 0.125ε5 = ϑN6;
42.25 + 19ε1 + 26ε2 + 12ε4 + 0.25ε5 = ϑN7;
ϑN6 ∈ [0, 0]; ϑN7 ∈ [9, 9]; εi ∈ [−1, 1] (i = 1, . . . , 5);

PCS(G, {A}) ≡

⎧
⎪⎨

⎪⎩

−13.375 − 6ε1 − 15ε2 + 8.625εN6 = ϑN6;
42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7;
ϑN6 ∈ [0, 0]; ϑN7 ∈ [9, 9]; (ε1, ε2, εN6 , εN7) ∈ [−1, 1]4;

PCS(N6, {I}) ≡
{

ϑN3 − 2ϑN4 + ϑN5 = ϑN6;
ϑN3 ∈ [1, 9]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN6 ∈ [0, 0];

Enhancing numerical constraint propagation using multiple inclusions 317

PCS
(
N6,

{
Â
}) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑN3 − 2ϑN4 + ϑN5 = ϑN6;
4.5 + 4ε1 + 0.5ε3 = ϑN3;
10 + 5ε1 + 8ε2 + 4ε4 = ϑN4;
2.125 + ε2 + 0.125ε5 = ϑN5;
−13.375 − 6ε1 − 15ε2 + 0.5ε3 − 8ε4 + 0.125ε5 = ϑN6;
ϑN3 ∈ [1, 9]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN6 ∈ [0, 0];
(ε1, . . . , ε5) ∈ [−1, 1]5;

PCS(N6, {A}) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑN3 − 2ϑN4 + ϑN5 = ϑN6;
4.5 + 4ε1 + 0.5εN3 = ϑN3;
10 + 5ε1 + 8ε2 + 4εN4 = ϑN4;
2.125 + ε2 + 0.125εN5 = ϑN5;
−13.375 − 6ε1 − 15ε2 + 8.625εN6 = ϑN6;
ϑN3 ∈ [1, 9]; ϑN4 ∈ [1, 27];ϑN5 ∈ [1, 3]; ϑN6 ∈ [0, 0];
(ε1, ε2, εN3 , εN4 , εN5 , εN6) ∈ [−1, 1]6;

PCS(N7, {I}) ≡
{

4ϑN1 + 3ϑN4 + 2ϑN5 = ϑN7;
ϑN1 ∈ [1, 3]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN7 ∈ [9, 9];

PCS
(
N7,

{
Â
}) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4ϑN1 + 3ϑN4 + 2ϑN5 = ϑN7;
2 + ε1 = ϑN1;
10 + 5ε1 + 8ε2 + 4ε4 = ϑN4;
2.125 + ε2 + 0.125ε5 = ϑN5;
42.25 + 19ε1 + 26ε2 + 12ε4 + 0.25ε5 = ϑN7;
ϑN1 ∈ [1, 3]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN7 ∈ [9, 9];
εi ∈ [−1, 1] (i = 1, 2, 4, 5);

PCS(N7, {A}) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4ϑN1 + 3ϑN4 + 2ϑN5 = ϑN7;
2 + ε1 = ϑN1;
10 + 5ε1 + 8ε2 + 4εN4 = ϑN4;
2.125 + ε2 + 0.125εN5 = ϑN5;
42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7;
ϑN1 ∈ [1, 3]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN7 ∈ [9, 9];
(ε1, ε2, εN4 , εN5 , εN7) ∈ [−1, 1]5.

We can see that either from PCS(N7, {I}) or from PCS(N7, {A}), we have ϑN1 = 1,
ϑN4 = 1, and ϑN5 = 1. Therefore, the system has a unique solution (x, y) = (1, 1).

4.3 CIRD – A combination scheme for propagation

We now describe our generic scheme for combining different real inclusion repre-
sentations during constraint propagation. Each input constraint system, a NCSP, is
represented by a DAG as described in Section 2.3. The computational data stored

318 X.-H. Vu et al.

Algorithm 1 CIRD—a Scheme for Combining Inclusion Representations on DAGs

1. Initialization Phase.
(a) Initial Node Evaluation. Traverse the DAG representation G in an order

described in Theorem 1. When visiting a node N ∈ G, perform the node
evaluation NEV(N,I) for each I ∈ E . It is encouraged to merge the assign-
ments of multiple NEV(N,I), where I ∈ E , into a single process to avoid
repeating the same assignments or computations.

(b) Initialization of Waiting Lists. Set Le := ∅, Lp := {the list of all nodes
representing the running constraints together with all the real inclusion
representations of E}.

2. Propagation Phase. Repeat this step until both Le and Lp become empty or the
limit, if any, on the number of iterations is reached.
(a) Getting the Next Node. Get a node N (and the set S of real inclusion

representations associated with N in the corresponding list) from the two
waiting lists Le and Lp, according to some choosing strategy.

(b) Node Evaluation. Do this step only if N was taken from Le at Step 2a.
For each I = (R, μ) ∈ S , do the following steps:
i. Perform the node evaluation NEV(N,I). If this returns an empty set, the

algorithm terminates with an infeasible status.
ii. If the changes of R(N) and τN at Step 2b(i) are considered enough to re-

evaluate the parents of N, then put each node in parents(N) (associated
with I) into Le, if N is not the ground node, or into Lp, otherwise.

iii. If the changes of R(N) and τN at Step 2b(i) are considered enough to
do a node pruning at N again, then put (N,I) into Lp.

(c) Node Pruning. Do this step only if N was taken from Lp at Step 2a.
i. Choose a subset T ⊆ S such that, for each I ∈ T , there are efficient

domain reduction techniques for the constraint system PCS(N,I).
ii. Partition T into subsets such that, for each subset U of the partition,

choose a domain reduction technique which may efficiently reduce the
domains of the variables of the system (or a subsystem of) PCS(N,U).
Afterward, apply the chosen domain reduction technique to each sys-
tem (or a subsystem of) PCS(N,U) in a certain order. If this process
returns an empty set, the algorithm terminates with an infeasible status.

iii. Let K be the set of all nodes for which the evaluating functions (in
the form (7)) contain some variables whose domains were reduced at
Step 2c(ii). Choose a subset H of K for node range updates, for example,
such that each node M in the set H is a descendant of N.
Node Range Update: For each node M in H and each real inclusion rep-
resentation I=(R, μ) ∈ E such that the representation of μ(R(M)) in
the form (7) contains some variables (in VT) whose domains have just
been reduced at Step 2c(ii), update R(M) by using these newly reduced
domains, then update τM :=τM ∩ μ(R(M)). If an empty representation
is obtained, the algorithm terminates with an infeasible status.
A. If the changes of R(M) and τM are considered enough to re-

evaluate the parents of M, put each node in parents(M) associated
with I into Le.

B. If the changes of R(M) and τM are considered enough to do a node
pruning at M, put (M,I) into Lp.

Enhancing numerical constraint propagation using multiple inclusions 319

at each node are representation objects as described in Section 4.2. The scheme uses
node evaluations and pruning constraint systems, as defined in Section 4.2. Relevant
domain reduction techniques are used to reduce node ranges and, in particular,
domains of variables.

Let G be the DAG representation of the input constraint system. The CIRD
algorithm, uses two waiting lists. The first one, Le, stores the nodes waiting for node
evaluation. The second waiting list, Lp, stores the nodes waiting for node range
pruning. Note that each node can appear once at a time in one waiting list, but may
appear in both waiting lists. The set of real inclusion representations used in the
scheme is denoted by E . Suppose each real inclusion representation in E provides
elementary operations that are inclusion functions of their real-valued counterparts.
In Algorithm 1, we present the main steps CIRD with inline detailed descriptions.

Proposition 1 We define a function F : I
n × 2Rn → I

n to represent the CIRD algo-
rithm. This function takes as input the variable domains (in the form of an interval
box B) and the exact solution set, S, of the input problem. The function F returns an
interval box, denoted by F(B, S), that represents the variable domains of the output of
the CIRD algorithm. The CIRD algorithm terminates at a finite number of iterations
and the following properties hold:

(i) F(B, S) ⊆ B (Contractiveness)
(ii) F(B, S) ⊇ B ∩ S (Correctness)

Proof The proof is trivial due to the finite nature of floating-point numbers and the
fact that the node ranges are never inflated during the computations. ��

Example 16 Figure 6 illustrates the distribution of auxiliary variables (ε1 and ε2)
when using affine arithmetic and interval arithmetic to perform node evaluations
on the DAG representation of the problem in Example 12. The sets S and T in
Algorithm 1 can be chosen as follows: S = T = {I, A}. The set T can be partitioned
into two subsets: U1 = {I}, U2 = {A}. Example 15 gives the pruning constraint systems
(PCS) for each node.

Consider the node N7 (Fig. 6a). Applying a linear programming technique to the
system PCS(N7, {A}), we get ε1 = 1 and ε2 = 1. Any node involving an auxiliary
variable of which the domain has just been reduced, ε1 or ε2, will be in the set K
in Algorithm 1, namely, K = {N1, . . . , N7}. Of course, only a subset H of K should
be considered for node range updates. More details are described in Section 5.5.2.
This shows that, in some cases, every node in a DAG representation may be chosen
for a node range update, not only the descendants of the current node. Therefore,
combination strategies based on the CIRD scheme can freely choose the set H of
nodes for node range updates, depending on the nature of the underlying inclusion
techniques.

Consider the node N6 (Fig. 6b). Suppose we do not applying linear programming
techniques to PCS(N6, {A}), but use some symbolic reasoning. For example, from the
first equation of PCS(N6, {A}), we have an equivalent equation: ϑN3 = 2ϑN4 − ϑN5 +
ϑN6 . Substituting ϑN4 , ϑN5 , and ϑN6 from the last three equations of PCS(N6, {A}) into
this equation, we will see that ϑN3 contains not only the auxiliary variable ε1 but

320 X.-H. Vu et al.

*SQR

+

x y

SQRT

-2
1

+

3
2

&

1

[1, 3] [1, 9]

[0, 0] [9, 9]
N6 N7

N3 N4 N5

N1 N2

[1, 9]

4
[1, 27] [1, 3]

G

ε 1, ε 2 ε ε1, 2

ε 1, ε 2 ε 2ε 1

ε 1 ε 2

*SQR

+

x y

SQRT

-2
1

+

3
2

&

1

[1, 3] [1, 9]

[0, 0] [9, 9]
N6 N7

N3 N4 N5

N1 N2

[1, 9]

4
[1, 27] [1, 3]

G

ε 1, ε 2 ε 1, ε 2

ε 1, ε 2 ε 2

ε 1 ε 2

ε 1, ε 2

a b

Fig. 6 The distribution of auxiliary variables (ε1, ε2) in the DAG representation in Example 12: the
grey nodes are the nodes involving a pruning constraint system (PCS): a at N7; and b at N6

also the auxiliary variable ε2, in general. This shows that the distribution of auxiliary
variables in a DAG representation may be changed during computations.

5 Specific combination strategies

In this section, we propose some simple strategies for each step in the CIRD
scheme. These strategies are based on two inclusion representations, I and A. By
combining different strategies at all the steps we get different combination strategies
for constraint propagation, as instances of CIRD.

5.1 Step 1a: Initial node evaluation

In our implementation, we use a recursive evaluation procedure given in Proce-
dure RecursiveNodeEvaluation for the visit at Step 1a. If this procedure exits with
an infeasible status, the main algorithm invoking it will terminate with an infeasible
status.

Enhancing numerical constraint propagation using multiple inclusions 321

Example 17 We continue to consider the problem of Example 12. After performing
the initial node evaluation by using interval arithmetic and revised affine arithmetic,
we have:

τN3 = I(N3) = [1, 9]; A(N3) = 4.5 + 4ε1 + 0.5[−1, 1];
τN4 = I(N4) = [1, 27]; A(N4) = 10 + 5ε1 + 8ε2 + 4[−1, 1];
τN5 = I(N5) = [1, 3]; A(N5) = 2.125 + ε2 + 0.125[−1, 1];
τN6 = I(N6) = [0, 0]; A(N6) = −13.375 − 6ε1 − 15ε2 + 8.625[−1, 1];
τN7 = I(N7) = [9, 9]; A(N7) = 42.25 + 19ε1 + 26ε2 + 12.25[−1, 1];

(see the distribution of auxiliary variables in Fig. 6).

5.2 Step 1b: Initialization of waiting lists

We use the process described in the CIRD scheme in Algorithm 1.

Example 18 Consider Example 12. After performing this step with S = {I, A},
we have:

Le = ∅; Lp = {(N6; I, A), (N7; I, A)} .

5.3 Step 2a: Getting the next node

At first, we assign a node level to each node in the DAG representation of the
considered constraint system such that each node has a level smaller than the levels
of their descendants. Hence, an ordering, as in Theorem 1, can be obtained easily by
sorting the levels of nodes.

Procedure NodeLevel gives a simple procedure to compute a vector Vlvl of
node levels (it must be invoked invoked at all the nodes representing the active
constraints). Figure 4 illustrates the node levels for the constraint system given in
Example 12. The node levels are given in brackets next to the node names. Figure 6
illustrates the distribution of auxiliary variables. The list Lp is sorted in the ascending
order of node levels. This ensures that each node will be taken into pruning processes
before its descendants, thus reducing redundant computations. Similarly, the list Le

is sorted in the descending order of node levels to ensure that each node will be
evaluated before its ancestors.

322 X.-H. Vu et al.

There are three simple strategies to get the next node from the union of two
waiting lists, Le ∪ Lp:

– Get the next node from Lp whenever Lp is not empty. This strategy is called the
pruning-first strategy, which gives the priority to the pruning phase.

– Get the next node from one of the two waiting lists until it becomes empty, then
switch to the other list.

– Get the next node from one of the two waiting lists in a rotational manner.

In our implementation, we use the pruning-first strategy. More involved strategies
for selecting the next node can be used as alternatives, for example, based on the
pruning efficiency of nodes.

5.4 Step 2b: Node evaluation

For the node evaluation at each node N, we can perform NEV(N, A) and NEV(N, I)

in any order, if N is not the ground node. At Step 2b(ii), Step 2b(iii) and Step 2c(iii),
we only count on the change of τN in our current implementation. The change of τN

is often considered enough if the ratio of the new width to the old width is less than a
number predefined rw ∈ (0, 1) and the difference between the old width and the new
width is greater than a predefined number dw > 0. More complicated criteria that
have been used in constraint programming can be used as alternatives.

5.5 Step 2c: Node pruning

The subset T (in the CIRD) at this step can be chosen as {I, A}. For node pruning, we
use PCS(N, {I}) and a linear subsystem of PCS(N, {A}) defined as follows:

PCS(N, {I}) ≡

⎧
⎪⎨

⎪⎩

f (ϑC1 , . . . , ϑCk) = ϑN;
ϑN ∈ τN;
∧k

i=1(ϑCi ∈ τCi);

⎫
⎪⎬

⎪⎭
if N is not ground;

PCSL(N, {A}) ≡
⎧
⎨

⎩

{∧k
i=1 ICS(A(Ci), τCi)

}
if N is ground,

{
ICS(A(N), τN) ∧∧k

i=1 ICS(A(Ci), τCi)
}

otherwise;

where the inclusion constraint systems are defined as

ICS(A(M), D) ≡

⎧
⎪⎨

⎪⎩

xM,0 +∑k
i=1 xM,iεi + eMεM = ϑM;

εi ∈ [−1, 1] (i = 1, . . . , n);
εM ∈ [−1, 1];ϑM ∈ D;

⎫
⎪⎬

⎪⎭
.

Enhancing numerical constraint propagation using multiple inclusions 323

In general, we have

PCS(N, {A}) ≡ PCS(N, {I}) ∧ PCSL(N, {A}).

The system PCSL(N, {A}) contains the linear constraints of PCS(N, {A}).

Example 19 We continue with Example 12. Some examples of pruning constraint
systems where given in Example 15. We then have:

PCSL(G, {A}) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−13.375 − 6ε1 − 15ε2 + 8.625εN6 = ϑN6;
42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7;
ϑN6 ∈ [0, 0];ϑN7 ∈ [9, 9];
(ε1, ε2, εN6 , εN7) ∈ [−1, 1]4;

PCSL(N6, {A}) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.5 + 4ε1 + 0.5εN3 = ϑN3;
10 + 5ε1 + 8ε2 + 4εN4 = ϑN4;
2.125 + ε2 + 0.125εN5 = ϑN5;
−13.375 − 6ε1 − 15ε2 + 8.625εN6 = ϑN6;
ϑN3 ∈ [1, 9]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN6 ∈ [0, 0];
(ε1, ε2, εN3 , εN4 , εN5 , εN6) ∈ [−1, 1]6;

PCSL(N7, {A}) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 + ε1 = ϑN1;
10 + 5ε1 + 8ε2 + 4εN4 = ϑN4;
2.125 + ε2 + 0.125εN5 = ϑN5;
42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7;
ϑN1 ∈ [1, 3]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN7 ∈ [9, 9];
(ε1, ε2, εN4 , εN5 , εN7) ∈ [−1, 1]5;

All these systems are linear; hence, we can use linear programming techniques to
reduce domains. Tight safe bounds can often be obtained by using the technique
proposed in [36].

The combination of the following backward propagation and affine pruning tech-
niques results in different strategies for the node pruning phase in the CIRD scheme.

5.5.1 Backward propagation

If N is not the ground, the domains of the variables of the constraint system
PCS(N, {I}) can be pruned by a domain reduction technique called backward prop-
agation. In brief, let f be the elementary operation represented by a node N, we
then have the relation ϑN = f (ϑC1 , . . . , ϑCk). The purpose of backward propagation
is to compute, at a low cost, an enclosure of the i-th projection of the relation
ϑN = f (ϑC1 , . . . , ϑCk) onto ϑCi by using interval arithmetic. Only k nodes C1, . . . , Ck

324 X.-H. Vu et al.

possibly contain the variables of which the domains are pruned in the above back-
ward propagation. Hence, after performing this backward propagation, at Step 2c(iii)
we only need to consider k nodes H = {C1, . . . , Ck} for node range updates and for
putting into the waiting lists.

5.5.2 Affine pruning

In revised affine arithmetic, A, each variable of the input constraint system is asso-
ciated with one noise symbol εi (for i = 1, . . . , n). The system PCSL(N, {A}) is a
linear constraint system; therefore, the domains of the variables of PCSL(N, {A})
can be pruned by using a linear programming technique supplemented with the
technique proposed in [36]. If the operation represented by N is linear, we can apply a
linear programming technique to PCS(N, {A}), instead of PCSL(N, {A}), to get tighter
bounds on the variables. For efficiency, only the domains of the variables ϑC1 , . . . , ϑCk

and/or ε1, . . . , εn need to be pruned. We can devise three possible pruning strategies
for Step 2c(iii):

1. The first strategy only requires to prune the domains of ϑC1 , . . . , ϑCk ;
2. The second strategy only requires to prune the domains of the auxiliary variables

ε1, . . . , εn;
3. The third strategy prunes the domains of both

{
ϑC1 , . . . , ϑCk

}
and {ε1, . . . , εn}.

For the first strategy, we only need to consider H = {C1, . . . , Ck} for node range
updates. For the last two strategies, the set H can be chosen as any subset of the
set of descendants(N) for which the noise variables in μA have just been pruned. In
our implementation, we use the second pruning strategy with two options for H: (i)
the set descendants(N); and (ii) the set of initial variables associated with ε1, . . . , εn.

If, for each i ∈ {1, . . . , n}, the new domain of the noise variable εi is [ai, bi] ⊆
[−1, 1], then the node range update at M ∈ H will be

τM := τM ∩
(

xM
0 +

n∑

i=1

xM
i [ai, bi] + eM[−1, 1]

)

, (23)

where A(M) = xM
0 +∑n

i=1 xM
i εi + eM[−1, 1], and xM

i (for i = 1, . . . , n) are real num-
bers. It seems that Kolev affine forms (Section A.4) are more suitable for the node
range update (23) than revised affine forms are because the radius of the domain of a
noise variable is allowed to be less than 1. Hence, Kolev affine forms do not need to
use the domain [−1, 1] when restarting the computations at M. In this case, we only
need to replace the previous node range [ai, bi] with the smallest symmetric interval
containing [ai, bi].

Remark 1 The cost of linear programming is high; therefore, we should use the affine
pruning technique only if the pruning ratio is predicted to be high. For this, we
propose to use the affine pruning technique only if the absolute accumulative error
eM of each node M involving the above linear systems is small enough. That is, the

Enhancing numerical constraint propagation using multiple inclusions 325

value of the operation represented by M lies in a thin slot between two hyperplanes,
xM

0 +∑n
i=1 xM

i εi − eM and xM
0 +∑n

i=1 xM
i εi + eM, in the space of the noise variables

(ε1, . . . , εn). Moreover, the affine pruning should only be used for nodes at low levels
(i.e., the nodes near roots).

6 Experiments

6.1 Comparisons with interval constraint propagation techniques

We have carried out experiments on an implementation of the CIRD[ai] algorithm
(an instance CIRD using affine arithmetic, interval arithmetic, interval constraint
propagation, and linear programming) and two other well-known state-of-the-art
interval constraint propagation techniques. The first one is a variant of box con-
sistency [5] implemented in the commercial product ILOG Solver (v6.0), hereafter
denoted by BOX. The second one is the HC4 algorithm [4]. The experiments are
carried out on 33 problems unbiasedly chosen form various published sources and
divided into five test cases:

– The test case T1 consists of eight easy problems with isolated solutions. These
problems are solvable in short time by search using the three propagators. (See
Section C.1.)

– The test case T2 consists of four average problems with isolated solutions. These
problems are solvable by the search using CIRD[ai] and BOX and cause the
search using HC4 being out of time without reaching 106 splits. (See Section C.2.)

– The test case T3 consists of eight hard problems with isolated solutions. These
problems cause the search using HC4 being out of time without reaching 106

splits and cause the search using BOX either being out of time or being stopped
due to running more than 106 splits. The search using CIRD[ai] accomplishes the
solving for six of eight problems in this test case and runs more than 106 splits for
the other two problems. (See Section C.3.)

– The test case T4 consists of seven easy problems with a continuum of solutions.
These problems are solvable in short time at the predefined precision 10−2. (See
Section C.4.)

– The test case T5 consists of six hard problems with a continuum of solutions.
These problems are solvable in short time at the predefined precision 10−1. (See
Section C.5.)

The timeout value is set to 10 hours for all the test cases. The timeout values will
be used as the running time for the techniques that are out of time in the next result
analysis. For the first three test cases, the precision is 10−4 and search is done by
bisection. For the last two test cases, we used UCA6 a search algorithm for NCSPs
with inequality constraints [44]. The comparison of interval constraint propagation
techniques is based on the following measures:

– The running time: The relative ratio of the running time of each propagator to
that of CIRD[ai] is called the relative time ratio.

326 X.-H. Vu et al.

Table 1 A comparison of three constraint propagation techniques CIRD[ai], BOX, and HC4 in
solving NCSPs

Prop. (a) Isolated solutions (b) Continuum of solutions

� Relative Relative Relative Relative Relative Inner Relative Relative
time reduction cluster iteration time volume cluster iteration
ratio ratio ratio ratio ratio ratio ratio ratio

CIRD[ai] 1.000 1.000 1.000 1.000 1.000 0.945 1.000 1.000
BOX 1429.660 5.323 30.206 4.263 3.414 0.944 1.102 1.056
HC4 17283.614 7.722 105.825 5.515 60.101 0.941 1.168 1.118

In the section (a), the averages of the relative time ratios are taken over all the problems in the test
cases T1, T2, T3; and the averages of the other relative ratios are taken over the problems in the test
case T1 (i.e., taken over the problems that are solvable by all the techniques). In the section (b), the
averages of the relative ratios are taken over all the problems in the test cases T4, T5

– The number of boxes: The relative ratio of the number of boxes in the output of
each propagator to that of CIRD[ai] is called the relative cluster ratio.

– The number of splits: The number of splits in search needed to solve the
problems. The relative ratio of the number of splits used by each propagator
to that of CIRD[ai] is called the relative iteration ratio.

– The volume of boxes (only for T1, T2, T3): We consider the reduction per
dimension d

√
V/D; where d is the dimension, V is the total volume of the output

boxes, D is the volume of the initial domains. The relative ratio of the reduction
gained by each propagator to that of CIRD[ai] is called the relative reduction
ratio.

– The volume of inner boxes (only for T4, T5): The ratio of the volume of inner
boxes to the volume of all output boxes is called the inner volume ratio.

The lower the relative ratio is, the better the performance/quality is; and the higher
the inner volume ratio is, the better the quality is.

The overviews of results in our experiments are given in Table 1 and Table 2.
Clearly, CIRD[ai] is superior to BOX and HC4 in performance and quality mea-
sures for the problems with isolated solutions on the chosen benchmarks. CIRD[ai]
still outperforms the others for the problems with continuums of solutions in the
benchmarks, while being a little better than the others in quality measures. Note

Table 2 The averages of the relative time ratios, which are taken over problems in each test case

Propagator (a) Isolated solutions (b) Continuum of solutions

� Test case T1 Test case T2 Test case T3 Test case T4 Test case T5

CIRD[ai] 1.00 1.00 1.00 1.00 1.00
BOX 8.33 6097.45 517.10 2.33 4.68
HC4 54.47 83009.81 1649.66 31.42 93.56

Enhancing numerical constraint propagation using multiple inclusions 327

that the ratios for the test case T3 are in fact much higher than shown because the
solving processes using BOX and HC4 do not terminate after 10 h while the one using
CIRD[ai] terminates in seconds or minutes.

6.2 Comparisons with linear relaxation based techniques

We now compare the proposed technique with a recent mathematical solution tech-
nique, called A2, in [19], which was specially designed to solve a nonlinear equation
system f (x) = 0. The A2 algorithm converts this system into separable form g(x) = 0,
and then uses Kolev affine arithmetic to evaluate g(x) and get a linear form L(x, y) =
−Ax + By + b , x ∈ x, y ∈ y; where A and B are real matrices, b is a real vector,
and x and y are interval vectors. This technique has to assume a posterior-condition
that the matrix A is invertible in order to use the domain reduction rule of the form
x := x ∩ (A−1 By + A−1b). No rigorous rounding control is performed in [19]. We
take the first problem in [19], which was used for illustrating the power of the A2
algorithm in [19], for our comparison:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((4x3 + 3x6)x3 + 2x5)x3 + x4 = 0,

((4x2 + 3x6)x2 + 2x5)x2 + x4 = 0,

((4x1 + 3x6)x1 + 2x5)x1 + x4 = 0,

x4 + x5 + x6 + 1 = 0,

(((x2 + x6)x2 + x5)x2 + x4)x2 + (((x3 + x6)x3 + x5)x3 + x4)x3 = 0,

(((x1 + x6)x1 + x5)x1 + x4)x1 + (((x2 + x6)x2 + x5)x2 + x4)x3 = 0,

x1 ∈ [0.0333, 0.2173], x2 ∈ [0.4000, 0.6000],
x3 ∈ [0.7826, 0.9666], x4 ∈ [−0.3071,−0.1071],
x5 ∈ [1.1071, 1.3071], x6 ∈ [−2.1000,−1.9000].

(24)

This system has a unique solution. It is known to be very hard for interval constraint
propagation techniques. To solve it on a 1.7 GHz Pentium PC at the precision 10−5

using a bisection search; A2 has to perform 917 iterations in 3.46 s to reduce the
problem to five boxes (see [19]); while an instance of the CIRD scheme, called
CIRD[ai], performs 54 iterations in only 0.118 s to reduce the problem to three boxes.
Hence, CIRD[ai] is about 29.3 times faster than A2 for the system (24), while it is
more rigorous and accurate than A2.

Another technique against which we have compared CIRD is Quad [22] which
was specifically designed to process quadratic constraints, and further extended to
address power terms [21]. Note that this technique only applies to systems with
(many) power terms. Again, we take as example two problems, called Gough-
Steward and Yama196, which were used to illustrate the power of Quad in [22] and

328 X.-H. Vu et al.

[21], respectively. Gough-Steward is a non-sparse quadratic equation system of nine
variables in robotics, which has four solutions [22]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 + y2

1 + z2
1 = 31,

x2
2 + y2

2 + z2
2 = 39,

x2
3 + y2

3 + z2
3 = 29,

x1x2 + y1 y2 + z1z2 + 6x1 − 6x2 = 51,

x1x3 + y1 y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50,

x2x3 + y2 y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34,

−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32,

−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8,

2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20,

x1 ∈ [−2.00; 5.57], y1 ∈ [−5.57, 2.70], z1 ∈ [0.00, 5.57],
x2 ∈ [−6.25, 1.30], y2 ∈ [−6.25, 2.70], z2 ∈ [−2.00, 6.25],
x3 ∈ [−5.39, 0.70], y3 ∈ [−5.39, 3.11], z3 ∈ [−3.61, 5.39].

(25)

Yama196 is a series of high-dimensional sparse problems of n variables and n
equations:

(n + 1)2xi−1 − 2(n + 1)2xi + (n + 1)2xi+1 + exi = 0, xi ∈ [−10, 10] (for i = 1, . . . , n),

where x0 = xn+1 = 0. Similarly to [21], we use the precision 10−8 for these problems.
Table 3 presents a preliminary comparison between CIRD[ai] and Quad.

The results of Quad in Table 3 are copied from [21, 22], except that the ones in
the cells filled with “n/a” are not yet available due to our limited access to the code
of Quad. In Table 3, #S denotes the number of splits and #B denotes the number of
boxes in the output.

Remark 2 We have also carried out experiments on the naive use of variants of
affine arithmetic as a replacement of interval arithmetic in constraint propagation.
That is, affine arithmetic is used only to get bounds on subexpression like in inter-
val arithmetic. However, the performance of the obtained techniques (using affine
arithmetic) is even (at least two times) worse than their counterparts (using interval
arithmetic).

Table 3 A preliminary comparison of Quad and CIRD[ai], n is the number of variables

Propagator � Quad CIRD[ai] Time ratio
Problem #S #B Time CPU speed #S #B Time CPU speed Quad

CIRD[ai]
� (s) (GHz) (s) (GHz)

Gough-Steward (n = 9) 24 4 183.0 1.0 912 4 2.7 1.7 39.9
Yama196 (n = 30) 108 16 31.4 2.66 25 2 3.8 1.7 12.9
Yama196 (n = 60) n/a n/a n/a n/a 18 2 21.0 1.7 n/a
Yama196 (n = 100) n/a n/a n/a n/a 20 2 85.8 1.7 n/a
Yama196 (n = 200) n/a n/a n/a n/a 19 2 560.2 1.7 n/a
Yama196 (n = 300) n/a n/a n/a n/a 20 2 1878.1 1.7 n/a

Enhancing numerical constraint propagation using multiple inclusions 329

Finally, we conducted some experiments for comparing CIRD[ia] with FBPD [45].
The latter is a particular instance of CIRD that uses a single inclusion represen-
tation (interval arithmetic). Our experiments show that the strengths of FBPD
and CIRD[ai] are complementary. Namely, the FBPD algorithm outperforms the
CIRD[ai] algorithm by an order of magnitude or more in speed when solving NCSPs
with continuums of solutions. Conversely, the CIRD[ai] algorithm is superior to the
FBPD algorithm by 1 to 3 orders of magnitude or more in speed when solving
numerical CSPs with isolated solutions. Theoretically, it is easy to combine these
two algorithms to solve numerical CSPs, in most cases, at the highest speed of both :
it is only needed to heuristically predict if the constraints are equality, then resort to
the CIRD[ai] algorithm, otherwise use the FBPD algorithm.

Although still preliminary, the experimental results presented before corroborate
the intuition that combining multiple inclusion representations may have a strong
impact on the efficiency of constraint-based solvers. An in depth analysis of the
experimental results through:

– the comparison of the many possible combination strategies;
– and the confrontation with other existing solvers or approaches (such as

[3, 11, 20]),

is now needed to give a better insight on the capabilities of CIRD. This will also help
in identifying the most powerful combination strategies and the conditions for them
to perform efficiently.

The main contribution of this paper is to provide a general and flexible scheme,
CIRD, facilitating the experimental comparisons of many possible combination
strategies.

7 Conclusion

In summary, our contribution in this paper is twofold:

1. We propose a novel generic algorithm, called CIRD, which enhances numerical
constraint propagation by enabling the combination of multiple inclusion tech-
niques during constraint propagation. The scheme potentially allows bringing
into the constraint propagation framework the strengths of inclusion techniques
coming from different fields. It uses the DAG representations of constraint
systems whose flexibility and expressiveness enables devising fine-grained and
flexible combination strategies for any factorable constraint system.

2. We devise from the generic scheme specific combination strategies for numer-
ical constraint propagation. These strategies are designed to combine interval
arithmetic, affine arithmetic, and linear programming into the framework of con-
straint propagation. Our experiments on a particular strategy, called CIRD[ai],
show that the new approach outperforms previously available constraint prop-
agation techniques by 1 to 4 orders of magnitude or more in speed,3 while still

3Our observations show that the gain in speed quickly increases when the hardness of problems
increases.

330 X.-H. Vu et al.

being better in quality measures. It even outperforms some recent techniques
specifically designed to solve particular constraint systems. The largest gain is
obtained for well-constrained problems.

Moreover, the CIRD generic algorithm opens several potential directions for
future research among which we can cite:

– Study the replacement of linear programming techniques used in the affine prun-
ing by any domain reduction techniques for linear systems. Linear programming
is indeed expensive for this purpose. For example, we can use the Krawczyk
iteration for linear equations, the interval Gauss-Seidel iteration, the interval
Gauss elimination or the hull method.

– Integrate Kolev generalized affine arithmetic.
– Integrate linear relaxation techniques (e.g., the ones in [14] and [8]).
– Integrate the quadratic form proposed in [30] and Quad into CIRD.
– Investigate the ability to integrate high-order inclusion techniques, such as the

convexification techniques proposed in [15] and [41]. Rigorous bounds on poly-
nomials can be obtained by using the technique proposed in [10].

– Study the use of the new divisions for affine forms proposed in [19] and [31] in
place of the division x/y := x ∗ (1/y) implemented in CIRD[ai].

Acknowledgements Support for this research was partially provided by the European Commission
and the Swiss Federal Education and Science Office (OFES) through the COCONUT project
(IST-2000-26063). We would like to thank ILOG for the software licenses of ILOG Solver used
in the COCONUT project, and thank the COCONUT team of the University of Nantes for the HC4
source code.

Appendix

Appendix A: Affine arithmetic

Affine arithmetic [9] is an extension of interval arithmetic that keeps track of corre-
lations between input and computed quantities. Therefore, it is resistant to the
catastrophic loss of accuracy often observed in long-running interval computations.

Affine arithmetic is somewhat similar to Hansen’s generalized interval arithmetic
[12], but differs in several important details. For example, in Hansen’s model the
internal approximation errors are combined with the input uncertainties, whereas
in affine arithmetic they are represented separately, which makes it possible for
the approximation error introduced at one step to be canceled out at a later step.
Furthermore, in Hansen’s model, but not in affine arithmetic, the joint range of two
variables may be a nonconvex region. The ranges of functions obtained with affine
arithmetic may be substantially more accurate than those obtained with interval
arithmetic. However, the operations of affine arithmetic are often more expensive
than those of interval arithmetic.

Some comparisons on interval methods and affine arithmetic methods can be
found in [30, 40], and [25].

Enhancing numerical constraint propagation using multiple inclusions 331

A.1 Affine form

In particular, a real-valued quantity x is represented by an affine form as follows

x̂ ≡ x0 + x1ε1 + · · · + xnεn, (26)

where x0, . . . , xn are real coefficients and ε1, . . . , εn are noise variables taking value
in [−1, 1]. Affine arithmetic allows us to use rounded floating-point arithmetic to
construct rigorous enclosures for the ranges of operations and functions [40]. In long-
running computations, the number of noise variables may be very high, but their
distribution is often sparse. Therefore, we only need to store the nonzero coefficients
and the indices of the respective noise variables of the considered affine form (26).

A.2 Affine operations

In affine arithmetic, a general affine operation of the form αx̂ + β ŷ + γ (α, β, γ ∈ R)
can be obtained exactly, except the rounding errors, by the following formula:

αx̂ + β ŷ + γ ≡ (αx0 + βy0 + γ)+
n∑

i=1

(αxi + βyi)εi. (27)

In the computations on floating-point arithmetic, if the rounding error is enclosed
by [−c, c], a new term znewεnew is added to represent this error, where znew = c. The
rigorous result is

αx̂ + β ŷ + γ ≡ (αx0 + βy0 + γ)+
n∑

i=1

(αxi + βyi)εi + znewεnew. (28)

Note that the length of the result (28) is increased by one.

A.3 Non-affine operations

Unlike the affine operations, non-affine operations such as f (x̂, ŷ) can only be
computed by approximations. In general, the exact result of a non-affine operation
has the form f ∗(ε1, . . . , εn), where f ∗ is a nonlinear function corresponding to f . In
general, this result is then approximated by an affine function f a(ε1, . . . , εn) = z0 +
z1ε1 + · · · + znεn. A new term znewεnew is used to represent the difference between
f ∗ and f a, namely

znewεnew = f ∗(ε1, . . . , εn)− f a(ε1, . . . , εn). (29)

Hence, the result is an affine form

z ≡ z0 + z1ε1 + · · · + znεn + znewεnew, (30)

where εnew ∈ [−1, 1] and znew must not be less than the maximum absolute error;
that is,

znew ≥ sup
{| f ∗(ε1, . . . , εn)− f a(ε1, . . . , εn)| : ∀(ε1, . . . , εn) ∈ [−1, 1]n}.

An important goal is to find f a such that the maximum absolute error is as small
as possible or can be bounded by a value znew that is as small as possible. This is

332 X.-H. Vu et al.

a subject of Chebyshev approximation theory, which is a well-developed field with
a vast literature. In fact, a sub-theory of affine approximations is enough for affine
arithmetic because we only need to construct the elementary operations in affine
arithmetic. Factorable expressions/functions can be recursively composed of these
elementary operations.

The reader can find in [40] some detailed rigorous procedures for constructing
elementary operations, such as 1/x̂, x̂/ŷ, x̂2,

√
x̂, ex̂, and ln x̂, in affine arithmetic.

Hereafter, we recall briefly the two most special operations: the multiplication and
the division.

Multiplication In affine arithmetic, the multiplication of two affine forms x̂ = x0 +∑n
i=1 xiεi and ŷ = y0 +∑n

i=1 yiεi is another affine form ẑ = z0 +∑n
i=1 ziεi + znewεnew

defined as

z0 ≡ x0 y0, (31a)

zi ≡ x0 yi + y0xi (for i = 1, . . . , n), (31b)

znew ≡
(

n∑

i=1

|xi|
)(

n∑

i=1

|yi|
)

. (31c)

The number of real additions in (31) is 3n − 2. The number of real multiplications
(31) is 2n + 2. Hence, the total number of real operations for the multiplication
defined by (31) is 5n. The multiplication defined by (31) is however not tight.
Therefore, we can use the following tighter one at higher cost (it can be viewed as a
special case of (38)):

z0 ≡ x0 y0 + 1

2

n∑

i=1

xi yi, (32a)

zi ≡ x0 yi + y0xi (for i = 1, . . . , n), (32b)

znew ≡ 1

2

n∑

i=1

|xi yi| +
∑

1≤i, j≤n; i �= j

|xi y j|. (32c)

The number of real additions in (32) is n2 + 2n − 1. The number of real multipli-
cations in (32) is n2 + 2n + 3. Hence, the total number of real operations for the
multiplication defined by (32) is 2(n + 1)2. This cost is much higher than the cost, 5n,
of (31). Proving the inclusion property of the multiplications (31) and (32) is easy,
and hence is omitted.

Miyajima [32, p. 22] proposed to replace the multiplication (32) by the following:

z0 ≡ x0 y0 + 1

2

n∑

i=1

xi yi, (33a)

zi ≡ x0 yi + y0xi (for i = 1, . . . , n), (33b)

znew ≡ 1

2

n∑

i=1

|xi yi| +
∑

1≤i< j≤n

|xi y j + x jyi|. (33c)

The multiplication (33) provides a tighter enclosure than the multiplication (32)
does. They both have a number of similar real operations. However, the cost of each

Enhancing numerical constraint propagation using multiple inclusions 333

term |xi y j + x jyi| is more expensive than the cost of |xi y j| + |x jyi| when they need
to be rounded upwards.

Division The division x̂/ŷ can be written as x̂ ∗ (1/ŷ); hence it can be computed
by one reciprocal and one multiplication. Kolev [19] proposed an improvement
for computing the reciprocal 1/ŷ, hence for computing x̂/ŷ := x̂ ∗ (1/ŷ). This has
the interesting property that x̂/x̂ = 1, which does not hold for interval arithmetic.
Miyajima et al. [31] also proposed new methods to compute x̂/ŷ. However, these
methods are too complicated to be presented here. Hence, the reader should find the
details in [19, 31].

A.4 Variants of affine arithmetic

Kolev [17] showed that, under some assumptions, it is possible to enclose a (piece-
wise) continuously differentiable separable function f : x ∈ I

n → R
m in a linear

enclosure. Namely, let

f (x) =
n∑

j=1

f j(x j),

where x ≡ (x1, . . . , xn)
T is a vector of n real variables. It is possible to compute a

linear enclosure of f of the form

f (x) ∈
n∑

j=1

a jx j + d j, (34)

where d j ∈ I
m and a j ∈ R

m. Probably inspired by the similarity between (34) and
Hansen’s generalized interval [12, 18] proposed a modified form of Hansen interval.
However, Kolev’s arithmetic, which is defined on Kolev’s forms, is much similar
to affine arithmetic than to Hansen interval arithmetic. We recall here the formal
definition of Kolev’s form.

Definition 15 (Kolev Affine Form, Kolev Interval Form) A Kolev affine form is a
semi-affine function on n noise variables κ1, . . . , κn of the form

x̃ = cx +
n∑

i=1

xiκi + vx, κi ∈ vi, (35)

where vi ≡ [−vi, vi] (for i = 1, . . . , n) and vx ≡ [−vx, vx] are symmetric intervals;
x1, . . . , xn are real coefficients; and cx ∈ R. It can also be written in the interval form:

x̃ = cx +
n∑

i=1

xivi + vx, (36)

which is called a Kolev generalized interval associated with the above Kolev affine
form.

A Kolev affine form (and also its associated generalized interval) was originally
called a generalized interval or a G interval by [18]. The arithmetic that is defined on
Kolev generalized intervals follows the spirit of affine arithmetic rather than the spirit

334 X.-H. Vu et al.

of interval arithmetic; thus, we call it Kolev generalized affine arithmetic. Indeed,
one can see hereafter that it can be viewed as a generalization of (standard) affine
arithmetic.

Kolev generalized affine arithmetic An affine operation αx + βy + γ , where α, β,

γ ∈ R, of two Kolev affine forms, x̃ ≡ cx +∑n
i=1 xiκi + vx and ỹ ≡ cy +∑n

i=1 yiκi +
vy, is another Kolev affine form z̃ ≡ cz +∑n

i=1 ziκi + vz, where

cz ≡ αcx + βcy + γ, (37a)

zi ≡ αxi + βyi (for i = 1, . . . , n), (37b)

vz ≡ |α|vx + |β|vy. (37c)

The product z̃ of two Kolev affine forms, x̃ ≡ cx +∑n
i=1 xiκi + vx and ỹ ≡ cy +∑n

i=1 yiκi+vy, is another Kolev affine form z̃≡cz+∑n
i=1 ziκi+vz defined as follows:

cz ≡ cxcy + 1

2

n∑

i=1

xi yiv
2
i , (38a)

zi ≡ cx yi + cyxi (for i = 1, . . . , n), (38b)

vz ≡ vxvy + |cx|vy + |cy|vx +
∑

1≤i, j≤n; i �= j

|xi y j|viv j

+ vx

n∑

i=1

|yi|vi + vy

n∑

i=1

|xi|vi + 1

2

n∑

i=1

|xi yi|v2
i . (38c)

The number of real additions in (38) is n2 + 4n + 2. The number of real multiplica-
tions in these formulas is 3n2 + 4n + 8. In present computers, the cost of a floating-
point addition is quite the same as that of a floating-point multiplication, then the
complexity of (38) is 4n2 + 8n + 10 real operations.

Kolev [18] also extended the above arithmetic for continuously differentiable
elementary operations ψ : D ⊆ R → R by using the linear relaxation techniques. In
particular, given an interval x ⊆ D, for all x ∈ x we have

ψ(x) ∈ ax + d,

where a ∈ R, d ∈ I. Now let us consider a Kolev affine form x̃ ≡ cx +∑n
i=1 xiκi + vx

such that x̃ ⊆ x, we then have

ψ(x̃) ⊆ a

(

cx +
n∑

i=1

xiκi + vx

)

+ d.

Hence, a Kolev affine form z̃ ≡ cz +∑n
i=1 ziκi + vz can be obtained for ψ(x̃), w.r.t.

the inclusion property, by defining that

d′ ≡ d + a

(
n∑

i=1

vx

)

, (39a)

cz ≡ acx + mid(d′), (39b)

zi ≡ axi (for i = 1, . . . , n), (39c)

vz ≡ rad(d′). (39d)

Enhancing numerical constraint propagation using multiple inclusions 335

We can obtain a Kolev affine form (and its associated Kolev generalized interval)
for any factorable expression/function, with respect to the inclusion property, by
composing the expression/function using the above-defined elementary operations.
Since most elementary operations are continuously differentiable, a Kolev affine
form can be obtained for any factorable expression built on these elementary
operations.

Messine affine arithmetic Historically, [28] proposed a simpler version of Kolev
affine form/arithmetic before [18] did propose the above generalized version. Affine
forms of [28–30] nearly resemble to Kolev affine forms in Definition 15 when fixing
vi = 1 for all i, and the idea of Messine affine arithmetic is similar to that of Kolev
affine arithmetic in (37) and (38). In particular, a Messine affine form has the form

x̆ ≡ x0 +
n∑

i=1

xiεi + xn+1[−1, 1] + xn+2[0, 1] + xn+3[−1, 0], (40)

where εi, . . . , εn are the noise variables taking values in the interval [−1, 1], as in
affine forms, and the coefficients xn+1, xn+2 and xn+3 are nonnegative. Suppose the
Messine affine form of y̆ written similarly to that of x̆. For all real numbers α = −β ≥
0 and γ , Messine affine arithmetic defines that

x̆ + y̆ ≡ (x0 + y0)+
n∑

i=1

(xi + yi)εi + (xn+1 + yn+1)[−1, 1]

+ (xn+2 + yn+2)[0, 1] + (xn+3 + yn+3)[−1, 0]; (41)

x̆ − y̆ ≡ (x0 − y0)+
n∑

i=1

(xi − yi)εi + (xn+1 + yn+1)[−1, 1]

+ (xn+2 + yn+3)[0, 1] + (xn+3 + yn+2)[−1, 0]; (42)

α ∗ x̆ ≡ αx0 +
n∑

i=1

αxiεi + αxn+1[−1, 1] + αxn+2[0, 1] + αxn+3[−1, 0]; (43)

β ∗ x̆ ≡ βx0 +
n∑

i=1

βxiεi + αxn+1[−1, 1] + αxn+3[0, 1] + αxn+2[−1, 0]; (44)

γ + x̆ ≡ (γ + x0)+
n∑

i=1

xiεi + xn+1[−1, 1] + xn+2[0, 1] + xn+3[−1, 0]. (45)

The multiplication in Messine affine arithmetic is defined as follows:

x̆ ∗ y̆ ≡ x0 y0 +
n∑

i=1

(x0 yi + xi y0)εi + K1[−1, 1] + K2[0, 1] + K3[−1, 0], (46)

336 X.-H. Vu et al.

where K1, K2, and K3 are computed by:4

K1 ≡ |x0|yn+1 + |y0|xn+1 + xn+1 yn+1 +
∑

1≤i, j≤n+3; i �= j

|xi y j|, (47a)

K2 ≡ K〈0〉
2 + xn+2 yn+2 + xn+3 yn+3 +

n∑

i=1; xi yi>0

xi yi, (47b)

K3 ≡ K〈0〉
3 +

n∑

i=1; xi yi<0

|xi yi|, (47c)

where K〈0〉
2 and K〈0〉

3 are, in turn, defined as follows:

K〈0〉
2 =

⎧
⎪⎪⎨

⎪⎪⎩

x0 yn+2 + y0xn+2 if x0 ≥ 0 and y0 ≥ 0,

x0 yn+2 − y0xn+3 if x0 ≥ 0 and y0 < 0,

−x0 yn+3 + y0xn+2 if x0 < 0 and y0 ≥ 0,

−x0 yn+3 − y0xn+3 if x0 < 0 and y0 < 0;
(48a)

K〈0〉
3 =

⎧
⎪⎪⎨

⎪⎪⎩

x0 yn+3 + y0xn+3 if x0 ≥ 0 and y0 ≥ 0,

x0 yn+3 − y0xn+2 if x0 ≥ 0 and y0 < 0,

−x0 yn+2 + y0xn+3 if x0 < 0 and y0 ≥ 0,

−x0 yn+2 − y0xn+2 if x0 < 0 and y0 < 0.

(48b)

The numbers of real additions and multiplications are n2 + 7n + 13 and n2 + 8n + 16,
respectively. Hence, the total is 2n2 + 15n + 29. One can easily see that Messine’s
multiplication is a special case of Kolev’s definition in (38). Notice that this multipli-
cation is not as tight as the one in (33) when adapted to Messine affine forms or vice
versa.

Kolev affine arithmetic Fortunately, Kolev [19] improved the multiplication in
affine arithmetic by revising the formulas in (38) and (46) for computing an affine
form of the product.

ẑ ≡ cz +
n∑

i=1

ziκi + znewκnew, (49)

where κnew is a new noise variable taking its value in [−1, 1], and all the other noise
variables are also in [−1, 1]. The new formulas are:

Sx ≡
n∑

i=1

|xi|, Sy ≡
n∑

i=1

|yi|, P ≡ 1

2

n∑

i=1

xi yi, (50a)

cz ≡ cxcy + P, (50b)

zi ≡ cx yi + cyxi (for i = 1, . . . , n), (50c)

znew ≡ vxvy + vy(|cx| + Sx)+ vx(|cy| + Sy)+ SxSy − |P|. (50d)

4There is a minor error in the multiplication of Messine affine arithmetic in [28–30]. To be correct,
a term xn+1 yn+1 must be added to K1 and removed from K2 therein. We correct this error in the
version presented here.

Enhancing numerical constraint propagation using multiple inclusions 337

In computations with rigorous rounding controls, I propose to replace P in
(50a) with 〈P〉 ± eP, where 〈Z 〉 ± z denotes some floating-point number such
that 〈Z 〉 − z ≤ Z ≤ 〈Z 〉 + z and z ∈ F, and then replace (50d) with znew ≡⌈
vxvy + vy(|cx| + Sx)+ vx(|cy| + Sy)+ SxSy + 2eP − 〈P〉⌉. By this way, we avoid

computing P and |P| as if they were completely different expressions in order to
reduce the computation cost. The other parts of (50) are rounded in the same way.
In (50), the number of real additions is 4n + 5 and the number of real multiplications
is 3n + 7. The total number of real operations is 7n + 12. Therefore, the new
multiplication (50) is much faster than the previous multiplication in (32) and (38),
when n is big.

Note 2 By substituting the term znewκnew in the (standard) affine form ẑ in (49)
with vz ≡ [−znew, znew], we get a Kolev affine form z̃′ ≡ cz +∑n

i=1 ziκi + vz, which
is equivalent to ẑ. However, it is not tighter than the Kolev affine form z̃ obtained by
(38), namely,

z̃′ ≡ {
ẑ | κnew ∈ [−1, 1]} ⊇ z̃. (51)

Remark 3 All affine forms presented here are easily converted to (standard) affine
form by replacing each interval of them with a new noise variable. All the above
improvements to variants of affine arithmetic can also be easily adapted to (standard)
affine arithmetic.

Appendix B: Revised affine arithmetic

B.1 Revised affine form

Inspired by the ideas of Messine affine arithmetic and Kolev generalized affine
arithmetic (see Section A.4), we propose a kind of affine form, called revised affine
form, which is similar to the affine form (30); namely, it is similar to

ẑ ≡ z0 + z1ε1 + · · · + znεn + znewεnew (52)

but the new term znewεnew is replaced with a symmetric interval ez[−1, 1], called
the accumulative error, that bounds the maximum error of non-affine operations.
Namely, a revised affine form of a real-valued quantity/variable x is defined as

x̂ = x0 + x1ε1 + · · · + xnεn + ex[−1, 1]. (53)

This form consists of two separated parts: an affine part of length n and an interval
part; thus, it is said to be of length n. This form is similar to, but more concise than,
the Messine affine form (40). The magnitude of the accumulative error, ex ≥ 0, is
identified by the interval part. We write x ∈ x̂ if, for each real value x of the quantity
x̂, there exist εx ∈ [−1, 1] and εi ∈ [−1, 1] (for i = 1, . . . , n) such that x = x0 + x1ε1 +
· · · + xnεn + exεx.

In fact, revised affine form (53) is a special case of Kolev affine/interval form (see
Definition 15). The two parts of a revised affine form are computed separately in an

338 X.-H. Vu et al.

affine operation. For example, an affine operation on two revised affine forms is now
defined as

ẑ ≡ αx̂ + β ŷ + γ = (αx0 + βy0 + γ)+
n∑

i=1

(αxi + βyi)εi + (|α|ex + |β|ey)[−1, 1].
(54)

Therefore, during long-running computations the lengths of revised affine forms will
not exceed the number of noise symbols at the beginning (which equals the number
of variables of the input constraint system). Note that we should implement special
affine operations separately to gain in speed. In rigorous computing, ez is used to
accumulate the rounding errors in floating-point arithmetic; namely, (54) can be
interpreted as follows:

z0 = 〈αx0 + βy0 + γ 〉 ± e0, (55a)

zi = 〈αxi + βyi〉 ± ei, (55b)

ez =
⌈

|α|ex + |β|ey +
n∑

i=0

ei

⌉

(55c)

Theorem 10 The affine operation defined by (54) or (55) is an interval form of its
counterpart (i.e., the real-valued operation).

Proof This theorem is obvious; hence, the proof is omitted. ��

We propose to associate each quantity x̂ with a data field x∞ ∈ {−1, 0,+1} to
represent the half-lines of the form [−∞, a] and [a,+∞]. The revised affine form
is then interpreted as follows:5

x̂ ≡

⎧
⎪⎪⎨

⎪⎪⎩

[−∞,+∞] if ex = +∞,

[−∞, x0] else if x∞ = −1,

[x0,+∞] else if x∞ = +1,

x0 + x1ε1 + · · · + xnεn + ex[−1, 1] otherwise.

(56)

Remark 4 In an operation, if the domain of a variable is unbounded (i.e., in the
first three cases of (56)), the other variables are converted into interval forms for
that operation performed in interval arithmetic, then the result is converted back to
revised affine form. Therefore, we only need to discuss about the last case of (56) in
the rest of this thesis.

Notation 11 We denote by Â the set of all affine forms and by A the set of all revised
affine forms of the form (56).

5For simplicity, we allow zero coefficients in the formulae here, however in implementation one
should keep only nonzero coefficients and their indices.

Enhancing numerical constraint propagation using multiple inclusions 339

B.2 Multiplication

Since every revised affine form of the form (53) is a special case of Kolev
affine/interval forms (see Definition 15), we can apply Kolev generalized affine
arithmetic to revised affine forms. Indeed, by letting the radius (vi) of all noise
variables in (38) be 1, the multiplication of revised affine forms in Kolev generalized
affine arithmetic, ẑ := x̂ ∗ ŷ, is defined as follows:

z0 ≡ x0 y0 + 1

2

n∑

i=1

xi yi, (57a)

zi ≡ x0 yi + y0xi (for i = 1, . . . , n), (57b)

ez ≡ exey + |x0|ey + |y0|ex + ey

n∑

i=1

|xi| + ex

n∑

i=1

|yi|

+
∑

1≤i, j≤n; i �= j

|xi y j| + 1

2

n∑

i=1

|xi yi|. (57c)

The number of real additions in (57) is n2 + 4n + 2, which is the same as that in
(38). However, the number of real multiplications is n2 + 2n + 8, which is less than
that number of (38), 3n2 + 4n + 8. The total number of operations is 2n2 + 6n + 10;
hence, it is about half of that number of (38), 4n2 + 8n + 10. Roughly speaking, the
multiplication in Kolev generalized affine arithmetic is about two times slower than
its simplification (57) for revised affine forms.

Moreover, we propose a faster multiplication in which the product of two revised
affine forms x̂ = x0 + x1ε1 + · · · + xnεn + ex[−1, 1] and ŷ = y0 + y1ε1 + · · · + ynεn +
ey[−1, 1] is another revised affine form ẑ = z0 + z1ε1 + · · · + znεn + ez[−1, 1] defined
as follows:

Sx ≡
n∑

i=1

|xi|, Sy ≡
n∑

i=1

|yi|,

S1 ≡ 0.5
n∑

i=1; xi yi≥0

xi yi, S2 ≡ 0.5
n∑

i=1; xi yi<0

xi yi, (58a)

z0 ≡ x0 y0 + (S1 + S2), (58b)

zi ≡ x0 yi + y0xi (for i = 1, . . . , n), (58c)

ez ≡ exey + ey(|x0| + Sx)+ ex(|y0| + Sy)+ SxSy − (S1 − S2). (58d)

The number of real additions in (58) is 4n + 5, the number of real multiplications
in (58) is 3n + 7. The total number of real operations in (58) is 7n + 12. This is the
same as in Kolev’s multiplication (50) (see Section A.4). It however provides tighter
enclosures than what is provided by Kolev’s multiplication (50) (see Section A.4),
because |P| = 0.5|∑n

i=1 xi yi| ≤ 0.5
∑n

i=1 |xi yi| = (S1 − S2). Note that in [43], we pro-
posed another version of the multiplication (58) with the same tightness and the cost
8n + 10, but with simpler formulas. These improvements can be easily transferred
to other variants of affine arithmetic such as Kolev generalized affine arithmetic

340 X.-H. Vu et al.

in Section A.4. In rigorous computations, we use the following formulas with error
rounding controls:

Sx ≡
⌈

n∑

i=1

|xi|
⌉

, Sy ≡
⌈

n∑

i=1

|yi|
⌉

, (59a)

S1 ≡
〈

0.5
n∑

i=1; xi yi≥0

xi yi

〉

± en+1, S2 ≡
〈

0.5
n∑

i=1; xi yi<0

xi yi

〉

± en+2, (59b)

z0 ≡ 〈x0 y0 + (S1 + S2)〉 ± e0, (59c)

zi ≡ 〈x0 yi + y0xi〉 ± ei (for i = 1, . . . , n), (59d)

ez ≡
⌈

exey + ey(|x0| + Sx)+ ex(|y0| + Sy)+ SxSy + (S2 − S1)+
n+2∑

i=0

ei

⌉

. (59e)

Theorem 12 The multiplication defined by (58) (or by (59)) is an interval form of the
real multiplication; that is, ∀x ∈ x̂, ∀y ∈ ŷ : xy ∈ ẑ ≡ x̂ŷ.

Proof Let x ∈ x̂ and y ∈ ŷ be two revised affine forms as defined in (58) or (59). By
definition, there exist two real numbers ex, ey ∈ [−1, 1] such that

x = x0 +
n∑

i=1

xiεi + exεx, y = y0 +
n∑

i=1

yiεi + eyεy.

Let e ≡ [−1, 1]. Since aε2
i ∈ 1

2 (a + |a|e) for all a ∈ R and i ∈ {1, . . . , n}, we have

xy = x0 y0 +
n∑

i=1

(x0 yi + xi y0)εi + x0eyεy + y0exεx + exeyεxεy

+ ey

n∑

i=1

xiεyεi + ex

n∑

i=1

yiεxεi +
∑

1≤i, j≤n; i �= j

xi y jεiεi +
n∑

i=1

xi yiε
2
i

∈ x0 y0 +
n∑

i=1

(x0 yi + xi y0)εi + |x0|eye + |y0|exe + exeye

+ ey

n∑

i=1

|xi|e + ex

n∑

i=1

|yi|e +
∑

1≤i, j≤n; i �= j

|xi y j|e + 1

2

n∑

i=1

(xi yi + |xi yi|e)

=
(

x0 y0 + 1

2

n∑

i=1

xi yi

)

+
n∑

i=1

(x0 yi + xi y0)εi

+ e ×
(

exey + ey

n∑

i=0

|xi| + ex

n∑

i=0

|yi| +
n∑

i=1

|xi|
n∑

i=1

|yi| − 1

2

n∑

i=1

|xi yi|
)

⊆ z0 +
n∑

i=1

ziεi + eze = ẑ (It follows from (58) or (59)).

That is, ∀x ∈ x̂,∀y ∈ ŷ : xy ∈ ẑ ≡ x̂ × ŷ. The proof is hence completed. ��

Enhancing numerical constraint propagation using multiple inclusions 341

B.3 Division

The division x̂/ŷ can be written as x̂ ∗ (1/ŷ), hence can be computed by a reciprocal
and a multiplication. It is worth mentioning that [19] proposed an improvement
for computing the reciprocal 1/ŷ, hence for computing x̂/ŷ := x̂ ∗ (1/ŷ). This has
the interesting property that x̂/x̂ = 1, which does not hold for interval arithmetic.
Miyajima et al. [31] also proposed new methods to compute x̂/ŷ. However, these
methods are too complicated to be presented here. The reader should find the details
in [19, 31].

B.4 Non-affine unary operations

First, we recall the fundamental result in affine arithmetic, which is a result in
Chebyshev approximation theory (see [40, Theorem 2]).

Theorem 13 Let f be a bounded and twice differentiable function defined on some
interval [a, b] of which the second derivative f ′′ does not change sign inside [a, b],
where a < b. Let f a(x) = αx + β be its minimax affine approximation in [a, b]. Then

– The coefficient α is (f (b)− f (a))/(b − a), the slope of the line l(x) that interpo-
lates the points (a, f (a)) and (b , f (b));

– The maximum absolute error will occur twice (with the same sign) at the endpoints
a and b of the range, and once (with the opposite sign) at every interior point c of
[a, b], where f ′(c) = α;

– The independent term β is such that αc + β = (f (c)+ l(c))/2 and the maximum
absolute error is δ = | f (c)− l(c)|/2.

Second, we propose the following constructive theorem, which is inspired by
Theorem 13 and the related procedures in [40], that serves as a basis to compute
affine approximations of elementary univariate functions in a rigorous manner.

Theorem 14 (Chebyshev Affine Approximation) Let f be a differentiable function
on [a, b], where a and b are real numbers and a ≤ b; that is, f ∈ C1([a, b]). Denote
dα(x) ≡ f (x)− αx. Then

1. (a) If ∀x∈[a, b] : α≥ f ′(x), then ∀x∈[a, b] : αx+dα(b)≤ f (x)≤αx + dα(a);
(b) If ∀x∈[a, b] : α ≤ f ′(x), then ∀x ∈ [a, b] : αx+dα(a)≤ f (x)≤αx+dα(b).

2. If f ′ is continuous and monotone increasing on [a, b], we have

(a) ∀α ∈ [f ′(a), f ′(b)], ∃c ∈ [a, b] : f ′(c) = α;
(b) Let g : R → R be a function such that g(α) = dα(c), then

∀x ∈ [a, b] : αx + g(α) ≤ f (x) ≤ αx + max {dα(a), dα(b)} .

342 X.-H. Vu et al.

3. If f ′ is continuous and monotone decreasing on [a, b], we have

(a) ∀α ∈ [f ′(b), f ′(a)], ∃c ∈ [a, b] : f ′(c) = α;
(b) Let g : R → R be a function such that g(α) = dα(c), then

∀x ∈ [a, b] : αx + min {dα(a), dα(b)} ≤ f (x) ≤ αx + g(α).

Proof Hereafter, we prove the results for the cases 1a and 2. The proof is analogous
for the other cases. Considering the case 1a, we have

f (x)− (αx + dα(b))

= f (x)− (αx + f (b)− αb)

= (f (x)− f (b))− α(x − b)

= f ′(ξ)(x − b)− α(x − b) for some ξ ∈ [x, b] (by the mean value theorem)

= (x − b)(f ′(ξ)− α) ≥ 0 since x ≤ b , f ′(ξ) ≤ α

By a similar argument, we also have f (x)− (αx + dα(a)) ≤ 0. Hence, the proof of the
case 1a is completed.

Because α ∈ [f ′(b), f ′(a)] and f ′ is continuous on [a, b] then there exists c ∈ [a, b]
as required by the case 2a. The proof is then completed for the case 2a. Here we give
the proof of the case 2b. For all x ∈ [a, b] we have

f (x)− (αx + g(α))

= f (x)−(αx+ f (c)−αc)

= (f (x)− f (c))−α(x−c)

= f ′(ξ)(x−c)−α(x−c) for some ξ between x and c (the mean value theorem)

= (x − c)(f ′(ξ)− f ′(c)) since α = f ′(c)

≥ 0 since ξ is between x and c, and f ′ is increasing

Moreover, if x ∈ [a, c], we have

f (x)− (αx + dα(a))

= f (x)− (αx + f (a)− αa)

= (f (x)− f (a))− α(x − a)

= f ′(η)(x − a)− α(x − a) for some η ∈ [a, x] (by the mean value theorem)

= (x − a)(f ′(η)− f ′(c)) since α = f ′(c)

≤ 0 since η ≤ c, f ′ is monotone increasing

Enhancing numerical constraint propagation using multiple inclusions 343

Table 4 Examples of functions f ∈ C1([a, b]) satisfying the conditions of Theorem 14

f (x) [a, b] is a subset of f ′(x) f ′ g(α)

x2 [−∞,+∞] 2x ↗ −α2/4√
x [0,+∞] 1/(2

√
x) ↘ 1/(4α) : α > 0

ex [−∞,+∞] ex ↗ α(1 − log α) : α > 0
log x (0,+∞] 1/x ↘ −(1 + log α) : α > 0
1/x [−∞, 0) −1/x2 ↘ −2

√−α : α < 0
1/x (0,+∞] −1/x2 ↗ 2

√−α : α < 0
xn : n ≥ 2 is even [−∞,+∞] nxn−1 ↗ (1 − n) n−1

√
(α/n)n

xn : n ≥ 3 is odd [−∞, 0] nxn−1 ↘ (n − 1) n−1
√

(α/n)n : α ≥ 0
xn : n ≥ 3 is odd [0,+∞] nxn−1 ↗ (1 − n) n−1

√
(α/n)n : α ≥ 0

1/xn : n ≥ 2 is even [−∞, 0); (0,+∞] −n/xn+1 ↗ (n + 1) n+1
√

(−α/n)n

1/xn : n ≥ 1 is odd [−∞, 0) −n/xn+1 ↘ −(n + 1) n+1
√

(−α/n)n : α < 0
1/xn : n ≥ 1 is odd (0,+∞] −n/xn+1 ↗ (n + 1) n+1

√
(−α/n)n : α < 0

xr : r /∈ [0, 1] (0,+∞] rxr−1 ↗ (1 − r)(α/r)(r/(r−1)) : αr > 0
xr : r ∈ (0, 1) (0,+∞] rxr−1 ↘ (1 − r)(α/r)(r/(r−1)) : α > 0

By a similar argument, we have f (x)− (αx + dα(b)) ≤ 0 for all x ∈ [c, b]. Hence, we
have f (x)≤αx+ max{dα(a), dα(b)} for all x ∈ [a, b]. The proof is then completed. ��

To illustrate the usefulness of Theorem 14, we give in Table 4 the derivative f ′
and function g for some elementary operations. In Algorithm 2, we also propose
an algorithm, called SafeChebyshevApprox↑, to find a safe Chebyshev affine
approximation of a function f ∈ C1([a, b]) such that f ′ is monotone, when given
the function g satisfying the conditions in Theorem 14. The following theorem
guarantees the rigor of the SafeChebyshevApprox↑ algorithm, even in the presence
of rounding errors.

344 X.-H. Vu et al.

Theorem 15 Let αx̂ + β + δ[−1, 1] be the revised affine form produced by the
SafeChebyshevApprox↑ algorithm in Algorithm 2, where [a, b] is a closed interval
containing x̂ ∈ A. Suppose f ∈ C1([u, v]) and f ′ is monotone on [u, v], where [u, v] ⊇
[a, b], such that f ′(v) ≥ ⌈

f ′(b)
⌉

if f ′ is monotone increasing or such that f ′(u) ≥⌈
f ′(a)

⌉
if f ′ is monotone decreasing. Then

∀x ∈ x̂ : f (x) ∈ αx̂ + β + δ[−1, 1]. (60)

Proof By the mean value theorem, there exists c∗ ∈ [a, b] such that

α∗ ≡ f ′(c∗) = (f (b)− f (a))/(b − a)

⇒ α∗ ≤ !(! f (b)" − # f (a)$)/(b − a)" = α

⇒ α ≥ f ′(c∗) ≥ min
{

f ′(a), f ′(b)
}

(since f ′ is monotone).

Hereafter, we give a proof for the case that f ′ is monotone increasing. The proof for
the case that f ′ is monotone decreasing is similar, where (a, u) and (b , v) exchange
their roles with each other. In case α >

⌈
f ′(b)

⌉
, we have α > f ′(x) for all x ∈ [a, b].

Hence, according to the case 1a of Theorem 14, for all x ∈ [a, b], we have

αx + (f (b)− αb) = αx + dα(b) ≤ f (x) ≤ αx + dα(a) = αx + (f (a)− αa)

⇒ αx + dmin ≤ αx + dα(b) ≤ f (x) ≤ αx + dα(a) ≤ αx + dmax,

because dmin=# f (b)$−!αb" and dmax=! f (a)"−#αa$ (see Line 1 in Algorithm 2). In
case α≤ f ′(b), it follows from the case 2 of Theorem 14 and Line 2 in Algorithm 2
that

αx + dmin ≤ αx + g(α) ≤ f (x) ≤ max {dα(a), dα(b)} ≤ αx + dmax.

In the rest, we consider the case f ′(b) < α ≤ ! f ′(b)". According to the case 1a of
Theorem 14, for all x ∈ [a, b], we have αx + dα(b) ≤ f (x) ≤ αx + dα(a). Moreover,
applying the case 2 of Theorem 14 to [b , v], we have

x ∈ [b , v] : αx + g(α) ≤ f (x)

⇔ x ∈ [b , v] : g(α) ≤ f (x)− αx

⇒ g(α) ≤ f (b)− αb = dα(b).

Therefore, for all x ∈ [a, b], we have

αx + g(α) ≤ f (x) ≤ αx + dα(a) ≤ max{αx + dα(a), αx + dα(b)}
⇒ αx + dmin ≤ f (x) ≤ αx + dmax. (See Line 2 in Algorithm 2.)

Enhancing numerical constraint propagation using multiple inclusions 345

As a result, in all cases, we have αx + dmin ≤ f (x) ≤ αx + dmax for all x ∈ [a, b], thus,
∀x ∈ x̂ : f (x) ∈ αx̂ + β + δ[−1, 1]. The proof is hence completed. ��

The rigor of the SafeChebyshevApprox↑ algorithm requires that f ′(v) ≥ ! f ′(b)"
if f ′ is monotone increasing, or f ′(u) ≥ ! f ′(a)" if f ′ is monotone decreasing (see
Theorem 15). In very special cases, the domain of f may not be extended in the
required side, we can use the SafeChebyshevApprox↓ algorithm in Algorithm 3
as an alternative. These two algorithms are sufficient for the standard elementary
operations.

The following theorem states the rigor of the SafeChebyshevApprox↓ algorithm.

Theorem 16 Let αx̂ + β + δ[−1, 1] be the revised affine form produced by the
SafeChebyshevApprox↓ algorithm in Algorithm 3, where [a, b] is a closed interval
containing x̂ ∈ A. Suppose f ∈ C1([u, v]) and f ′ is monotone on [u, v], where [u, v] ⊇
[a, b], such that f ′(u) ≤ # f ′(a)$ if f ′ is monotone increasing or such that f ′(v) ≤
f ′(b)$ if f ′ is monotone decreasing. Then

∀x ∈ x̂ : f (x) ∈ αx̂ + β + δ[−1, 1]. (61)

Proof The proof is similar to the proof of Theorem 15, but (a, u) and (b , v) exchange
their roles with each other. For example, the interval [b , v] is replaced with the
interval [u, a], in the last part of the proof of Theorem 15. Note that the first result is
replaced with α ≤ α∗ = f ′(c∗) ≤ max

{
f ′(a), f ′(b)

}
. ��

346 X.-H. Vu et al.

Appendix C: Test cases

C.1 Test case T1: Problems with isolated solutions

C.1.1 Problem BIF3

A bifurcation problem:
⎧
⎨

⎩

5x9 − 6x5 y2 + xy4 + 2xz = 0;
−2x6 y + 2x2 y3 + 2yz = 0;
x2 + y2 = 0.265625;

where x, y, z in [−108, 108].

C.1.2 Problem ECO5

An economic problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x1 + x1x2 + x2x3 + x3x4)x5 − 1 = 0;
(x2 + x1x3 + x2x4)x5 − 2 = 0;
(x3 + x1x4)x5 − 3 = 0;
x4x5 − 4 = 0;
x1 + x2 + x3 + x4 + 1 = 0;

where x1, . . . , x5 in [−10, 10].

C.1.3 Problem ECO6

An economic problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(x1 + x1x2 + x2x3 + x3x4 + x4x5)x6 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5)x6 − 2 = 0;
(x3 + x1x4 + x2x5)x6 − 3 = 0;
(x4 + x1x5)x6 − 4 = 0;
x5x6 − 5 = 0;
x1 + x2 + x3 + x4 + x5 + 1 = 0;

where x1, . . . , x6 in [−10, 10].

C.1.4 Problem ECO7

An economic problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6)x7 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6)x7 − 2 = 0;
(x3 + x1x4 + x2x5 + x3x6)x7 − 3 = 0;
(x4 + x1x5 + x2x6)x7 − 4 = 0;
(x5 + x1x6)x7 − 5 = 0;
x6x7 − 6 = 0;
x1 + x2 + x3 + x4 + x5 + x6 + 1 = 0;

where x1, . . . , x7 in [−10, 10].

Enhancing numerical constraint propagation using multiple inclusions 347

C.1.5 Problem ECO8

An economic problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7)x8 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6 + x5x7)x8 − 2 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6)x7 − 2 = 0;
(x4 + x1x5 + x2x6 + x3x7)x8 − 4 = 0;
(x5 + x1x6 + x2x7)x8 − 5 = 0;
(x6 + x1x7)x8 − 6 = 0;
x7x8 − 7 = 0;
x1 + x2 + x3 + x4 + x5 + x6 + x7 + 1 = 0;

where x1, . . . , x8 in [−10, 10].

C.1.6 Problem NEU6

A neurophysiology problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 + x2

3 = 1;
x2

2 + x2
4 = 1;

x5x3
1 + x6x3

2 = 5;
x5x1x2

3 + x6x2
4x2 = 4;

x5x3
3 + x6x3

4 = 3;
x5x2

1x3 + x6x2
2x4 = 2;

x1 ≥ x2;
x1 ≥ 0;
x2 ≥ 0;

where x1, . . . , x6 in [−100, 100].

C.1.7 Problem REI3

A neurophysiology problem:
⎧
⎪⎪⎨

⎪⎪⎩

x2 − y2 + z2 = 0.5;
x3 − y3 + z3 = 0.5;
x4 − y4 + z4 = 0.5;
2xy + 6y2 + 2yz − 2x − 4y − 2z + 1 = 0;

where x, y, z in [−10, 10].

C.1.8 Problem WIN3

A neurophysiology problem:
⎧
⎪⎪⎨

⎪⎪⎩

4xz − 4xy2 − 16x2 − 1 = 0;
2y2z + 4x + 1 = 0;
2x2z + 2y2 + x = 0;
2xy + 6y2 + 2yz − 2x − 4y − 2z + 1 = 0;

where x, y, z in [−105, 105].

348 X.-H. Vu et al.

C.2 Test case T2: Problems with isolated solutions

C.2.1 Problem CYC5

A cyclic problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a + b + c + d + e = 0;
ab + bc + cd + de + ea = 0;
abc + bcd + cde + dea + eab = 0;
abcd + bcde + cdea + deab + eabc = 0;
abcde − 1 = 0;

where a, b , c, d, e in [−10, 10].

C.2.2 Problem GS5.1

A Gough Steward problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 + y2

1 + z2
1 = 31,

x2
2 + y2

2 + z2
2 = 39,

x2
3 + y2

3 + z2
3 = 29,

x1x2 + y1 y2 + z1z2 + 6x1 − 6x2 = 51,

x1x3 + y1 y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50,

x2x3 + y2 y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34,

−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32,

−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8,

2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20,

where x1 ∈ [0.00; 5.57], y1 ∈ [0.00, 2.70], z1 ∈ [0.00, 5.57], x2 ∈ [−6.25, 0.00], y2 ∈
[−2.00, 0.00], z2 ∈ [0.00, 6.25], x3 ∈ [−5.39,−1.00], y3 ∈ [−5.39, 0.00], z3 ∈
[0.00, 5.39].

C.2.3 Problem KOL2

Kolev’s benchmark:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

((4x3 + 3x6)x3 + 2x5)x3 + x4 = 0,

((4x2 + 3x6)x2 + 2x5)x2 + x4 = 0,

((4x1 + 3x6)x1 + 2x5)x1 + x4 = 0,

x4 + x5 + x6 + 1 = 0,

(((x2 + x6)x2 + x5)x2 + x4)x2 + (((x3 + x6)x3 + x5)x3 + x4)x3 = 0,

(((x1 + x6)x1 + x5)x1 + x4)x1 + (((x2 + x6)x2 + x5)x2 + x4)x3 = 0,

where x1 ∈ [0.0333, 0.2173], x2 ∈ [0.4000, 0.6000], x3 ∈ [0.7826, 0.9666], x4 ∈
[−0.3071,−0.1071], x5 ∈ [1.1071, 1.3071], x6 ∈ [−2.1000,−1.9000].

C.2.4 Problem YAM60

The Yama160 problem:

(n + 1)2xi−1 − 2(n + 1)2xi + (n + 1)2xi+1 + exi = 0, (for i = 1, . . . , n),

where n = 60, x0 = xn+1 = 0, and xi ∈ [−10, 10] (for i = 1, . . . , n),

Enhancing numerical constraint propagation using multiple inclusions 349

C.3 Test case T3: Problems with isolated solutions

C.3.1 Problem CAP4

A Caprasse problem:

⎧
⎪⎪⎨

⎪⎪⎩

y2z + 2xyt − 2x − z = 0;
−x3z + 4xy2z + 4x2 yt + 2y3t + 4x2 − 10y2 + 4xz − 10yt + 2 = 0;
2yzt + xt2 − x − 2z = 0;
−xz3 + 4yz2t + 4xzt2 + 2yt3 + 4xz + 4z2 − 10yt − 10t2 + 2 = 0;

where x, y, z, t in R.

C.3.2 Problem DID9

A Didrit problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 + y2

1 + z2
1 = 31;

x2
2 + y2

2 + z2
2 = 39;

x2
3 + y2

3 + z2
3 = 29;

x1x2 + y1 y2 + z1z2 + 6x1 − 6x2 = 51;
x1x3 + y1 y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50;
x2x3 + y2 y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34;
−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32;
−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8;
2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20;

where xi, yi, zi in [−10, 10] for i = 1, 2, 3.

C.3.3 Problem GS5.0

A Gough Steward problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 + y2

1 + z2
1 = 31,

x2
2 + y2

2 + z2
2 = 39,

x2
3 + y2

3 + z2
3 = 29,

x1x2 + y1 y2 + z1z2 + 6x1 − 6x2 = 51,

x1x3 + y1 y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50,

x2x3 + y2 y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34,

−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32,

−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8,

2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20,

where x1 ∈ [−2.00; 5.57], y1 ∈ [−5.57, 2.70], z1 ∈ [0.00, 5.57], x2 ∈ [−6.25, 1.30],
y2 ∈ [−6.25, 2.70], z2 ∈ [−2.00, 6.25], x3 ∈ [−5.39, 0.70], y3 ∈ [−5.39, 3.11], z3 ∈
[−3.61, 5.39].

350 X.-H. Vu et al.

C.3.4 Problem KAT8

A Katsura problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x1 + 2x2
8 + 2x2

7 + 2x2
6 + 2x2

5 + 2x2
4 + 2x2

3 + 2x2
2 + x2

1 = 0;
−x2 + 2x8x7 + 2x7x6 + 2x6x5 + 2x5x4 + 2x4x3 + 2x3x2 + 2x2x1 = 0;
−x3 + 2x8x6 + 2x7x5 + 2x6x4 + 2x5x3 + 2x4x2 + 2x3x1 + x2

2 = 0;
−x4 + 2x8x5 + 2x7x4 + 2x6x3 + 2x5x2 + 2x4x1 + 2x3x2 = 0;
−x5 + 2x8x4 + 2x7x3 + 2x6x2 + 2x5x1 + 2x4x2 + x2

3 = 0;
−x6 + 2x8x3 + 2x7x2 + 2x6x1 + 2x5x2 + 2x4x3 = 0;
−x7 + 2x8x2 + 2x7x1 + 2x6x2 + 2x5x3 + x2

4 = 0;
−1 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + x1 = 0;

where x1, . . . , x8 in [−10, 10].
C.3.5 Problem KIN9

A kinematics problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z2
1 + z2

2 + z2
3 − 12z1 − 68 = 0;

z2
4 + z2

5 + z2
6 − 12z5 − 68 = 0;

z2
7 + z2

8 + z2
9 − 24z8 − 12z9 + 100 = 0;

z1z4 + z2z5 + z3z6 − 6z1 − 6z5 − 52 = 0;
z1z7 + z2z8 + z3z9 − 6z1 − 12z8 − 6z9 + 64 = 0;
z4z7 + z5z8 + z6z9 − 6z5 − 12z8 − 6z9 + 32 = 0;
2z2 + 2z3 − z4 − z5 − 2z6 − z7 − z9 + 18 = 0;
z1 + z2 + 2z3 + 2z4 + 2z6 − 2z7 + z8 − z9 − 38 = 0;
z1 + z3 − 2z4 + z5 − z6 + 2z7 − 2z8 + 8 = 0;

where z1, . . . , z9 in [−1000, 1000].
C.3.6 Problem REI4

A Reinmer system:
⎧
⎪⎪⎨

⎪⎪⎩

x2 − y2 + z2 − t2 = 0.5;
x3 − y3 + z3 − t3 = 0.5;
x4 − y4 + z4 − t4 = 0.5;
x5 − y5 + z5 − t5 = 0.5;

where x, y, z, t in [−10, 10].

C.3.7 Problem REI5

A Reinmer system:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1 + 2x2
1 − 2x2

2 + 2x2
3 − 2x2

4 + 2x2
5 = 0;

−1 + 2x3
1 − 2x3

2 + 2x3
3 − 2x3

4 + 2x3
5 = 0;

−1 + 2x4
1 − 2x4

2 + 2x4
3 − 2x4

4 + 2x4
5 = 0;

−1 + 2x5
1 − 2x5

2 + 2x5
3 − 2x5

4 + 2x5
5 = 0;

−1 + 2x6
1 − 2x6

2 + 2x6
3 − 2x6

4 + 2x6
5 = 0;

where x1, . . . , x5 in [−1, 1].

Enhancing numerical constraint propagation using multiple inclusions 351

C.3.8 Problem REI6

A Reinmer system:
〈

−0.5 +
n∑

i=1

(−1)i+1xk
i = 0 (k = 1, . . . , n); n = 6, xi ∈ [−1, 1] (for i = 1, . . . , n)

〉

C.4 Test case T4: Problems with continuums of solutions

C.4.1 Problem F2.2

Tricuspoid and Circle:
{(

x2 + y2 + 12x + 9
)2 ≤ 4(2x + 3)3;

x2 + y2 ≥ 2;
where x, y in [−2, 2].

C.4.2 Problem F2.3

Foliumd, Circle, and Trifolium:
⎧
⎨

⎩

x3 + y3 ≥ 3xy;
x2 + y2 ≥ 0.1;(
x2 + y2

) (
y2 + x(x + 1)

) ≤ 4xy2;
where x, y in [−3, 3].

C.4.3 Problem S04

Circle:
〈
x2 + y2 ≤ 1; x, y ∈ [−2, 2]〉

C.4.4 Problem S05

〈
x

√
(y − 5)2 + 1

≤ 1; x, y ∈ [1, 10]
〉

C.4.5 Problem S06

〈
12y

√
(x − 12)2 + y2

≤ 10; x ∈ [−50, 50], y ∈ [0, 50]
〉

C.4.6 Problem S07

〈
x2 + y2 ≥ 20; x2 + y2 ≤ 50; x ∈ [−50, 50], y ∈ [0, 50]〉

352 X.-H. Vu et al.

C.4.7 Problem WP

A Kinematic Pair (of a wheel and a pawl):
〈

20 ≤
√

x2 + y2 ≤ 50,
12y

√
(x − 12)2 + y2

≤ 10; x ∈ [−50, 50], y ∈ [0, 50]
〉

C.5 Test case T5: Problems with continuums of solutions

C.5.1 Problem G1.1

{
x2

1 + 0.5x2 + 2(x3 − 6) ≥ 0;
x2

1 + x2
2 + x2

3 ≤ 25;
where x1, x2, x3 in [−8, 8].

C.5.2 Problem G1.1

{
x2

1 + 0.5x2 + 2(x3 − 3) ≥ 0;
x2

1 + x2
2 + x2

3 ≤ 25;
where x1, x2, x3 in [−8, 8].

C.5.3 Problem H1.1

⎧
⎨

⎩

x2
1 + x2

2 + x2
3 ≤ 9;

(x1 − 0.5)2 + (x2 − 1)2 + x2
3 ≥ 4;

x2
1 + (x2 − 0.2)2 ≥ x3;

where x1, x2, x3 in [−4, 4].

C.5.4 Problem P1.4

{
x2 + y2 + z2 <= 4;
(x − 2)2 + y2 + z2 >= 4;

where x, y, z in [−4, 4].

C.5.5 Problem P2

⎧
⎨

⎩

x2 ≤ y,

ln y + 1 ≥ z,

xz ≤ 1,

where x ∈ [0, 15], y ∈ [1, 200], z ∈ [−10, 10].

Enhancing numerical constraint propagation using multiple inclusions 353

C.5.6 Problem P3

⎧
⎪⎪⎨

⎪⎪⎩

x2 ≤ y,

ln y + 1 ≥ z,

xz ≤ 1,

x3/2 + ln(1.5z + 1) ≤ y + 1,

where x ∈ [0, 15], y ∈ [1, 200], z ∈ [0, 10].

References

1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic, New York (1983)
2. Apt, R.K.: The essence of constraint propagation. Theor. Comp. Sci. 221(1–2), 179–210 (1999)
3. Benhamou, F.: Heterogeneous constraint solving. In: Proceedings of 5th International Confer-

ence on Algebraic and Logic Programming (ALP’96). LNCS, vol. 1139, pp. 62–76, Aachen, 25–27
September 1996

4. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising hull and box consistency. In:
Proceedings of the International Conference on Logic Programming (ICLP’99), pp. 230–244, Las
Cruces, 29 November–4 December 1999

5. Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP(Intervals) revisited. In: Proceedings of
the International Logic Programming Symposium, pp. 109–123. MIT, Cambridge (1994)

6. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer and Boolean constraints.
Technical Report BNR Technical Report, Bell Northern Research, Ontario, Canada (1992)

7. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer and Boolean constraints.
J. Log. Program. 32, 1–24 (1997) (Extension of a technical report of Bell Northern Research,
Canada, 1992)

8. Borradaile, G., Van Hentenryck, P.: Safe and tight linear estimators for global optimization.
Math. Program. 42, 2076–2097 (2004)

9. Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In:
Proceedings of SIBGRAPI’93, Recife, October 1993

10. Garloff, J., Jansson, C., Smith, A.P.: Lower bound functions for polynomials. J. Comput. Appl.
Math. 157(1), 207–225 (2003)

11. Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: an interval solver using constraint
satisfaction techniques. ACM Trans. Math. Softw. (TOMS) 32(1), 138–156 (2006)

12. Hansen, E.R.: A generalized interval arithmetic. In: Interval Mathematics. LNCS vol. 29,
pp. 7–18. Springer, New York (1975)

13. Hansen, E.R., Walster, G.W.: Global Optimization Using Interval Analysis, 2nd edn. Marcel
Dekker, New York (2004)

14. Hongthong, S., Kearfott, R.B.: Rigorous linear overestimators and underestimators. Math.
Program. B (2009, in press)

15. Jansson, C.: Convex-concave extensions. BIT Numer. Math. 40(2), 291–313 (2000)
16. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, 1st edn. Springer,

New York (2001)
17. Kolev, L.V.: A new method for global solution of systems of non-linear equations. Reliab.

Comput. 4, 125–146 (1998)
18. Kolev, L.V.: Automatic computation of a linear interval enclosure. Reliab. Comput. 7, 17–18

(2001)
19. Kolev, L.V.: An improved interval linearization for solving non-linear problems. In: 10th GAMM

– IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Vali-
dated Numerics (SCAN2002), France, September 2002

20. Lebbah, Y.: ICOS (Interval Constraints Solver). WWW document (2003)
21. Lebbah, Y., Michel, C., Rueher, M.: Global filtering algorithms based on linear relaxations. In:

Notes of the 2nd International Workshop on Global Constrained Optimization and Constraint
Satisfaction (COCOS 2003), Switzerland, November 2003

22. Lebbah, Y., Rueher, M., Michel, C.: A global filtering algorithm for handling systems of quadratic
equations and inequations. In: Proceedings of the 9th International Conference on Principles

354 X.-H. Vu et al.

and Practice of Constraint Programming (CP 2003). LNCS, vol. 2470, pp. 109–123. Springer,
New York (2003)

23. Lhomme, O.: Consistency techniques for numeric CSPs. In: Proceedings of the 13th International
Joint Conference on Artificial Intelligence (IJCAI-93), pp. 232–238 (1993)

24. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8, 99–118 (1977)
25. Martin, R., Shou, H., Voiculescu, I., Bowyer, A., Wang, G.: Comparison of interval methods for

plotting algebraic curves. Comput. Aided Geom. Des. 19(7), 553–587 (2002)
26. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I—

convex underestimating problems. Math. Program. 10, 147–175 (1976)
27. McCormick, G.P.: Nonlinear Programming: Theory, Algorithms and Applications. Wiley, New

York (1983)
28. Messine, F.: New affine forms in interval branch and bound algorithms. Technical Report R2I

99-02, Université de Pau et des Pays de l’Adour (UPPA), France, October 1999
29. Messine, F.: Extensions of affine arithmetic in interval global optimization algorithms. In: SCAN

2000 and INTERVAL 2000—IMACS/GAMM International Symposium on Scientific Comput-
ing, Computer Arithmetic and Validated Numerics, Germany, 2000

30. Messine, F.: Extensions of affine arithmetic: Application to unconstrained global optimization.
J. Univers. Comput. Sci. 8(11), 992–1015 (2002)

31. Miyajima, S., Miyata, T., Kashiwagi, M.: A new dividing method in affine arithmetic. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. E86-A(9), 2192–2196 (2003)

32. Miyajima, S.: On the improvement of the division of the affine arithmetic. Bachelor thesis,
Kashiwagi Laboratory, Waseda University, Japan (2000) (It is in Japanese, but easy to guess)

33. Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)
34. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathe-

matics. SIAM, Philadelphia (1979)
35. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction.

Acta Numer. 2004, 271–369 (2004)
36. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer programming. Math.

Program. 99, 283–296 (2004)
37. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press,

Cambridge (1990)
38. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization.

J. Glob. Optim. 33(4), 541–562 (2005)
39. Schichl, H.: Mathematical modeling and global optimization. Habilitation thesis, Faculty of

Mathematics, University of Vienna, Autralia, November 2003
40. Stolfi, J., de Figueiredo, L.H.: Self-validated numerical methods and applications. In: Monograph

for 21st Brazilian Mathematics Colloquium (IMPA), Brazil, July 1997
41. Tawarmalani, M., Sahinidis, N.V.: Convexification and global optimization in continuous and

mixed-integer nonlinear programming. Nonconvex Optimization and Its Applications. Kluwer,
Deventer (2002)

42. Van Hentenryck, P.: Numerica: a modeling language for global optimization. In: Proceedings of
the 15th International Joint Conference on Artificial Intelligence (IJCAI-97) (1997)

43. Vu, X.-H., Sam-Haroud, D., Faltings, B.: Combining multiple inclusion representations in nu-
merical constraint propagation. In: Proceedings of the 16th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2004), pp. 458–467. IEEE Computer Society Press,
Florida (2004)

44. Vu, X.-H., Sam-Haroud, D., Silaghi, M.-C.: Numerical constraint satisfaction problems with non-
isolated solutions. LNCS, vol. 2861, pp. 194–210. Valbonne-Sophia Antipolis, France, Springer,
New York (2003)

45. Vu, X.-H., Schichl, H., Sam-Haroud, D.: Interval propagation and search on directed acyclic
graphs for numerical constraint solving. J. Glob. Optim. (2009, in press)

	Enhancing numerical constraint propagation using multiple inclusion representations
	Abstract
	Introduction
	Background and definition
	Factorable numerical constraint satisfaction problems
	Numerical constraint propagation
	DAG representations for numerical CSPs
	Revised affine arithmetic

	Generalization of inclusion concepts
	Inclusion representation
	Inclusion function

	Combining multiple inclusion representations
	Node range evaluations
	Induced constraint systems for domain reduction
	CIRD -- A combination scheme for propagation

	Specific combination strategies
	Step 1a: Initial node evaluation
	Step 1b: Initialization of waiting lists
	Step 2a: Getting the next node
	Step 2b: Node evaluation
	Step 2c: Node pruning
	Backward propagation
	Affine pruning

	Experiments
	Comparisons with interval constraint propagation techniques
	Comparisons with linear relaxation based techniques

	Conclusion
	Appendix
	Appendix A: Affine arithmetic
	A.1 Affine form
	A.2 Affine operations
	A.3 Non-affine operations
	A.4 Variants of affine arithmetic

	Appendix B: Revised affine arithmetic
	B.1 Revised affine form
	B.2 Multiplication
	B.3 Division
	B.4 Non-affine unary operations

	Appendix C: Test cases
	C.1 Test case T1: Problems with isolated solutions
	C.1.1 Problem BIF3
	C.1.2 Problem ECO5
	C.1.3 Problem ECO6
	C.1.4 Problem ECO7
	C.1.5 Problem ECO8
	C.1.6 Problem NEU6
	C.1.7 Problem REI3
	C.1.8 Problem WIN3

	C.2 Test case T2: Problems with isolated solutions
	C.2.1 Problem CYC5
	C.2.2 Problem GS5.1
	C.2.3 Problem KOL2
	C.2.4 Problem YAM60

	C.3 Test case T3: Problems with isolated solutions
	C.3.1 Problem CAP4
	C.3.2 Problem DID9
	C.3.3 Problem GS5.0
	C.3.4 Problem KAT8
	C.3.5 Problem KIN9
	C.3.6 Problem REI4
	C.3.7 Problem REI5
	C.3.8 Problem REI6

	C.4 Test case T4: Problems with continuums of solutions
	C.4.1 Problem F2.2
	C.4.2 Problem F2.3
	C.4.3 Problem S04
	C.4.4 Problem S05
	C.4.5 Problem S06
	C.4.6 Problem S07
	C.4.7 Problem WP

	C.5 Test case T5: Problems with continuums of solutions
	C.5.1 Problem G1.1
	C.5.2 Problem G1.1
	C.5.3 Problem H1.1
	C.5.4 Problem P1.4
	C.5.5 Problem P2
	C.5.6 Problem P3

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

