744 research outputs found

    A Multitarget Land Use Change Simulation Model Based on Cellular Automata and Its Application

    Get PDF
    Based on the analysis of the existing land use change simulation model, combined with macroland use change driving factors and microlocal land use competition, and through the application of Python language integrated technical approaches such as CA, GIS, AHP, and Markov, a multitarget land use change simulation model based on cellular automata(CA) is established. This model was applied to conduct scenario simulation of land use/cover change of the Jinzhou New District, based on 1:10000 map scale land use, planning, topography, statistics, and other data collected in the year of 1988, 2003, and 2012. The simulation results indicate the following: (1) this model can simulate the mutual transformation of multiple land use types in a relatively satisfactory way; it takes land use system as a whole and simultaneously takes the land use demand in the macrolevel and the land use suitability in the local scale into account; and (2) the simulation accuracy of the model reaches 72%, presenting higher creditability. The model is capable of providing auxiliary decision-making support for coastal regions with the analysis of the land use change driving mechanism, prediction of land use change tendencies, and establishment of land resource sustainable utilization policies

    Modelling urban spatial change: a review of international and South African modelling initiatives

    Get PDF
    August 2013Urban growth and land use change models have the potential to become important tools for urban spatial planning and management. Before embarking on any modelling, however, GCRO felt it was important to take note of, and critically assess lessons to be learnt from international experience and scholarship on spatial modelling, as well as a number of South African experiments that model future urban development. In 2012, GCRO initiated preliminary research into current international and South African modelling trends through a desktop study and telephone, email and personal interviews. This Occasional paper sets out to investigate what urban spatial change modelling research is currently being undertaken internationally and within South Africa. At the international level, urban modelling research since 2000 is reviewed according to five main categories: land use transportation (LUT), cellular automata, urban system dynamics, agent-based models (ABMs) and spatial economics/econometric models (SE/EMs). Within South Africa, urban modelling initiatives are categorised differently and include a broader range of urban modelling techniques. Typologies used include: provincial government modelling initiatives in Gauteng; municipal government modelling initiatives; other government-funded modelling research; and academic modelling research. The various modelling initiatives described are by no means a comprehensive review of all urban spatial change modelling projects in South Africa, but provide a broad indication of the types of urban spatial change modelling underway. Importantly, the models may form the basis for more accurate and sophisticated urban modelling projects in the future. The paper concludes by identifying key urban modelling opportunities and challenges for short- to long-term planning in the GCR and South Africa.Written by Chris Wray, Josephine Musango and Kavesha Damon (GCRO) Koech Cheruiyot (NRF:SARChI chair in Development Planning and Modelling at Wits

    A travel time-based variable grid approach for an activity-based cellular automata model

    Get PDF
    Urban growth and population growth are used in numerous models to determine their potential impacts on both the natural and the socio-economic systems. Cellular automata (CA) land-use models became popular for urban growth modelling since they predict spatial interactions between different land uses in an explicit and straightforward manner. A common deficiency of land-use models is that they only deal with abstract categories, while in reality, several activities are often hosted at one location (e.g. population, employment, agricultural yield, nature…). Recently, a multiple activity-based variable grid CA model was proposed to represent several urban activities (population and economic activities) within single model cells. The distance-decay influence rules of the model included both short- and long-distance interactions, but all distances between cells were simply Euclidean distances. The geometry of the real transportation system, as well as its interrelations with the evolving activities, were therefore not taken into account. To improve this particular model, we make the influence rules functions of time travelled on the transportation system. Specifically, the new algorithm computes and stores all travel times needed for the variable grid CA. This approach provides fast run times, and it has a higher resolution and more easily modified parameters than the alternative approach of coupling the activity-based CA model to an external transportation model. This paper presents results from one Euclidean scenario and four different transport network scenarios to show the effects on land-use and activity change in an application to Belgium. The approach can add value to urban scenario analysis and the development of transport- and activity-related spatial indicators, and constitutes a general improvement of the activity-based CA model

    Modeling Of Socio-economic Factors And Adverse Events In An Active War Theater By Using A Cellular Automata Simulation Approach

    Get PDF
    Department of Defense (DoD) implemented Human Social Cultural and Behavior (HSCB) program to meet the need to develop capability to understand, predict and shape human behavior among different cultures by developing a knowledge base, building models, and creating training capacity. This capability will allow decision makers to subordinate kinetic operations and promote non-kinetic operations to govern economic programs better in order to initiate efforts and development to address the grievances among the displeased by adverse events. These non-kinetic operations include rebuilding indigenous institutions’ bottom-up economic activity and constructing necessary infrastructure since the success in non-kinetic operations depends on understanding and using social and cultural landscape. This study aims to support decision makers by building a computational model to understand economic factors and their effect on adverse events. In this dissertation, the analysis demonstrates that the use of cellular automata has several significant contributions to support decision makers allocating development funds to stabilize regions with higher adverse event risks, and to better understand the complex socio-economic interactions with adverse events. Thus, this analysis was performed on a set of spatial data representing factors from social and economic data. In studying behavior using cellular automata, cells in the same neighborhood synchronously interact with each other to determine their next states, and small changes in iteration may yield to complex formations of adverse event risk after several iterations of time. The modeling methodology of cellular automata for social and economic analysis in this research was designed in two major implementation levels as follows: macro and micro-level. In the macro-level, the modeling framework integrates iv population, social, and economic sub-systems. The macro-level allows the model to use regionalized representations, while the micro-level analyses help to understand why the events have occurred. Macro-level subsystems support cellular automata rules to generate accurate predictions. Prediction capability of cellular automata is used to model the micro-level interactions between individual actors, which are represented by adverse events. The results of this dissertation demonstrate that cellular automata model is capable of evaluating socio-economic influences that result in changes in adverse events and identify location, time and impact of these events. Secondly, this research indicates that the socioeconomic influences have different levels of impact on adverse events, defined by the number of people killed, wounded or hijacked. Thirdly, this research shows that the socio-economic, influences and adverse events that occurred in a given district have impacts on adverse events that occur in neighboring districts. The cellular automata modeling approach can be used to enhance the capability to understand and use human, social and behavioral factors by generating what-if scenarios to determine the impact of different infrastructure development projects to predict adverse events. Lastly, adverse events that could occur in upcoming years can be predicted to allow decision makers to deter these events or plan accordingly if these events do occur

    Spatiotemporal Simulation of Tourist Town Growth Based on the Cellular Automata Model: The Case of Sanpo Town in Hebei Province

    Get PDF
    Spatiotemporal simulation of tourist town growth is important for research on land use/cover change under the influence of urbanization. Many scholars have shown great interest in the unique pattern of driving urban development with tourism development. Based on the cellular automata (CA) model, we simulated and predicted the spatiotemporal growth of Sanpo town in Hebei Province, using the tourism urbanization growth model. Results showed that (1) average annual growth rate of the entire region was 1.5 Ha2 per year from 2005 to 2010, 4 Ha2 per year from 2010 to 2015, and 2.5 Ha2 per year from 2015 to 2020; (2) urban growth rate increased yearly, with regional differences, and had a high degree of correlation with the Euclidean distance of town center, traffic route, attractions, and other factors; (3) Gougezhuang, an important village center in the west of the town, demonstrated traffic advantages and increased growth rate since 2010; (4) Magezhuang village has the largest population in the region, so economic advantages have driven the development of rural urbanization. It showed that CA had high reliability in simulating the spatiotemporal evolution of tourist town, which assists the study of spatiotemporal growth under urbanization and rational protection of tourism resources

    Land Change Science and the STEPLand Framework : An Assessment of Its Progress

    Get PDF
    This contribution assesses a new term that is proposed to be established within Land Change Science: Spatio-TEmporal Patterns of Land ('STEPLand'). It refers to a specific workflow for analyzing land-use/land cover (LUC) patterns, identifying and modeling driving forces of LUC changes, assessing socio-environmental consequences, and contributing to defining future scenarios of land transformations. In this article, we define this framework based on a comprehensive meta-analysis of 250 selected articles published in international scientific journals from 2000 to 2019. The empirical results demonstrate that STEPLand is a consolidated protocol applied globally, and the large diversity of journals, disciplines, and countries involved shows that it is becoming ubiquitous. In this paper, the main characteristics of STEPLand are provided and discussed, demonstrating that the operational procedure can facilitate the interaction among researchers from different fields, and communication between researchers and policy makers

    On Cells and Agents : Geosimulation of Urban Sprawl in Western Germany by Integrating Spatial and Non-Spatial Dynamics

    Get PDF
    Urban sprawl is one of the most challenging land-use and land-cover changes in Germany implicating numerous consequences for the anthropogenic and geobiophysical spheres. While the population and job growth rates of most urban areas stagnate or even decrease, the morphological growth of cities is ubiquitous. Against this backdrop, the quantitative and qualitative modeling of urban dynamics proves to be of central importance. Geosimulation models like cellular automata (CA) and multi-agent systems (MAS) treat cities as complex urban systems. While CA focus on their spatial dynamics, MAS are well-suited for capturing autonomous individual decision making. Yet both models are complementary in terms of their focus, status change, mobility, and representations. Hence, the coupling of CA and MAS is a useful way of integrating spatial pattern and non-spatial processes into one modeling infrastructure. The thesis at hand aims at a holistic geosimulation of the future urban sprawl in the Ruhr. This region is particularly challenging as it is characterized by two seemingly antagonistic processes: urban growth and urban shrinkage. Accordingly, a hybrid modeling approach is to be developed as a means of integrating the simulation power of CA and MAS. A modified version of SLEUTH (short for Slope, Land-use, Exclusion, Urban, Transport, and Hillshade) will function as the CA component. SLEUTH makes use of historic urban land-use data sets and growth coefficients for the purpose of modeling physical urban expansion. In order to enhance the simulation performance of the CA and to incorporate important driving forces of urban sprawl, SLEUTH is for the first time combined with support vector machines (SVM). The supported CA will be coupled with ReHoSh (Residential Mobility and the Housing Market of Shrinking City Systems). This MAS models population patterns, housing prices, and housing demand in shrinking regions. All dynamics are based on multiple interactions between different household groups as well as stakeholders of the housing market. Moreover, this thesis will elaborate on the most important driving factors, rates, and most probable locations of urban sprawl in the Ruhr as well as on the future migration tendencies of different household types and the price development in the housing market of a polycentric shrinking region. The results of SLEUTH and ReHoSh are loosely coupled for a spatial analysis in which the municipal differences that have emerged during the simulations are disaggregated. Subsequently, a concept is developed in order to integrate the CA and the MAS into one geosimulation approach. The thesis introduces semi-explicit urban weights as a possibility of assessing settlement-pattern dynamics and the regional housing market dynamics at the same time. The model combination of SLEUTH-SVM and ReHoSh is finally calibrated, validated, and implemented for simulating three different scenarios of individual housing preferences and their effects on the future urban pattern in the Ruhr. Applied to a digital petri dish, the generic urban growth elements of the Ruhr are being detected
    • …
    corecore