1,459 research outputs found

    The Stores Model of Code Cognition

    Get PDF
    Program comprehension is perhaps one of the oldest topics within the psychology of programming. It addresses a central issue: how programmers work with and manipulate source code to construct effective software systems. Models can play an important role in understanding the challenges developers and engineers contend with. This paper presents a model of program comprehension, or code cognition, which has been derived from literature found within the disciplines of computing and psychology. Drawing on direct experimentation, this paper argues that a model of code cognition should take account of the visual, spatial and linguistic abilities of developers. The strengths and weaknesses of this model are discussed and further research directions presented

    Teaching programming at a distance: the Internet software visualization laboratory

    Get PDF
    This paper describes recent developments in our approach to teaching computer programming in the context of a part-time Masters course taught at a distance. Within our course, students are sent a pack which contains integrated text, software and video course material, using a uniform graphical representation to tell a consistent story of how the programming language works. The students communicate with their tutors over the phone and through surface mail. Through our empirical studies and experience teaching the course we have identified four current problems: (i) students' difficulty mapping between the graphical representations used in the course and the programs to which they relate, (ii) the lack of a conversational context for tutor help provided over the telephone, (iii) helping students who due to their other commitments tend to study at 'unsociable' hours, and (iv) providing software for the constantly changing and expanding range of platforms and operating systems used by students. We hope to alleviate these problems through our Internet Software Visualization Laboratory (ISVL), which supports individual exploration, and both synchronous and asynchronous communication. As a single user, students are aided by the extra mappings provided between the graphical representations used in the course and their computer programs, overcoming the problems of the original notation. ISVL can also be used as a synchronous communication medium whereby one of the users (generally the tutor) can provide an annotated demonstration of a program and its execution, a far richer alternative to technical discussions over the telephone. Finally, ISVL can be used to support asynchronous communication, helping students who work at unsociable hours by allowing the tutor to prepare short educational movies for them to view when convenient. The ISVL environment runs on a conventional web browser and is therefore platform independent, has modest hardware and bandwidth requirements, and is easy to distribute and maintain. Our planned experiments with ISVL will allow us to investigate ways in which new technology can be most appropriately applied in the service of distance education

    Contemporary developments in teaching and learning introductory programming: Towards a research proposal

    Get PDF
    The teaching and learning of introductory programming in tertiary institutions is problematic. Failure rates are high and the inability of students to complete small programming tasks at the completion of introductory units is not unusual. The literature on teaching programming contains many examples of changes in teaching strategies and curricula that have been implemented in an effort to reduce failure rates. This paper analyses contemporary research into the area, and summarises developments in the teaching of introductory programming. It also focuses on areas for future research which will potentially lead to improvements in both the teaching and learning of introductory programming. A graphical representation of the issues from the literature that are covered in the document is provided in the introduction

    The Example Guru: Suggesting Examples to Novice Programmers in an Artifact-Based Context

    Get PDF
    Programmers in artifact-based contexts could likely benefit from skills that they do not realize exist. We define artifact-based contexts as contexts where programmers have a goal project, like an application or game, which they must figure out how to accomplish and can change along the way. Artifact-based contexts do not have quantifiable goal states, like the solution to a puzzle or the resolution of a bug in task-based contexts. Currently, programmers in artifact-based contexts have to seek out information, but may be unaware of useful information or choose not to seek out new skills. This is especially problematic for young novice programmers in blocks programming environments. Blocks programming environments often lack even minimal in-context support, such as auto-complete or in-context documentation. Novices programming independently in these blocks-based programming environments often plateau in the programming skills and API methods they use. This work aims to encourage novices in artifact-based programming contexts to explore new API methods and skills. One way to support novices may be with examples, as examples are effective for learning and highly available. In order to better understand how to use examples for supporting novice programmers, I first ran two studies exploring novices\u27 use and focus on example code. I used those results to design a system called the Example Guru. The Example Guru suggests example snippets to novice programmers that contain previously unused API methods or code concepts. Finally, I present an approach for semi-automatically generating content for this type of suggestion system. This approach reduces the amount of expert effort required to create suggestions. This work contains three contributions: 1) a better understanding of difficulties novices have using example code, 2) a system that encourages exploration and use of new programming skills, and 3) an approach for generating content for a suggestion system with less expert effort

    Exploring student perceptions about the use of visual programming environments, their relation to student learning styles and their impact on student motivation in undergraduate introductory programming modules

    Get PDF
    My research aims to explore how students perceive the usability and enjoyment of visual/block-based programming environments (VPEs), to what extent their learning styles relate to these perceptions and finally to what extent these tools facilitate student understanding of basic programming constructs and impact their motivation to learn programming
    • …
    corecore