

Contemporary Developments in Teaching
and Learning Introductory Programming:

Towards a Research Proposal

Christine Bruce
Camille McMahon

© Christine Bruce & Camille McMahon

Faculty of Information Technology

Teaching and Learning Report 2002 – 2

Series Editor: Dr Peter Bancroft

Faculty of Information Technology
QUT Garden Point Campus
GPO Box 2434
Brisbane QLD 4000
AUSTRALIA

Telephone: + 61-7-3864 2782
Fax: + 61-7-3864 9279
Web Address: www.fit.qut.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10874891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Previous Titles

Web On-Line Feedback (Duncan Nulty, Peter Bancroft, Scott Brewster, Dan Smith)
INFOQUEST Application in Coursework (Michael Middleton, Sylvia Edwards & Juliet Collins)
(Report No 1999-1)
A Virtual Tutor for B-trees (Frederic Marie)
The Utilisation of Video-Streaming Technology for Delivery of Course Content in ITB510
(Communication Networks)/ ITN510 (Data Networks) and an Evaluation of its Impact. (Alan
Tickle)
Jute – A Java Tutor System (Paul Roe, MiMi Truong, Peter Bancroft) (Report No 2002-1)

Planned Titles

First Year Information Technology Curriculum: A Blueprint for the Future (Christine Bruce)
(Report No 2002-3)
Graduate Capability Statements in Bachelor of Information Technology Unit Outlines.
(Melanie Fleming) (Report No 2002-4)

Copyright 2002

ISSN 1447-3429

Publication of the Faculty of Information Technology, Teaching and Learning Committee.

Printed in Brisbane, Australia by QUT Publications and Printing.

Series Editor: Dr Peter Bancroft

Correspondence about Faculty of Information Technology, Teaching and Learning report
should be addressed to:

The Secretary
Teaching and Learning Committee
Faculty of Information Technology
GPO Box 2434
Brisbane QLD 4000
AUSTRALIA

www.fit.qut.edu.au/staff/committees/tandl/

Contemporary Developments in Teaching
and Learning Introductory Programming:

Towards a Research Proposal

Christine Bruce
Camille McMahon

Faculty of Information Technology

Teaching and Learning Report 2002 – 2

Teaching and Learning Programming – Contemporary Developments

i

Table of Contents

EXECUTIVE SUMMARY .. III

1 INTRODUCTION..1

2 WHY RESEARCH TEACHING AND LEARNING INTRODUCTORY

PROGRAMMING? ...3

2.1 FAILURE TO REACH EXPECTED STANDARDS OR OUTCOMES3

2.2 PASS RATES AND PROGRESSION OF STUDENTS ...3

2.3 GENDER ISSUES...4

2.4 FOUNDATION SUBJECTS ..5

3 OUTLINE OF DATA SOURCES ..5

4 CURRENT PARADIGMS INFLUENCING TEACHING AND LEARNING

INTRODUCTORY PROGRAMMING...7

4.1 CONSTRUCTIVISM ...7

4.1.1 Modelling Learning in the Constructivist Paradigm - ‘3’ P8

4.2 CONCEPTUAL CHANGE..10

4.3 CONSTITUTIONALISM ..11

4.3.1 Relational view of teaching and learning...11

4.3.2 Phenomenography and learning...12

4.3.3 Phenomenography in IT...13

5 TEACHING AND LEARNING INTRODUCTORY PROGRAMMING AT

QUT...19

5.1 ITB410 SOFTWARE DEVELOPMENT 1 ...20

5.2 ITB411 SOFTWARE DEVELOPMENT 2 ...21

5.3 ITB107 - PROGRAMMING LABORATORY...21

5.4 OTHER RESEARCH AND ACTIVITY FOCUSSED ON TEACHING INTRODUCTORY

PROGRAMMING WITHIN THE FACULTY ..22

6 EMERGENT APPROACHES AND STRATEGIES TO TEACHING

PROGRAMMING ...23

6.1 SYNTAX-FREE APPROACH: ..23

6.2 LITERACY APPROACH:...24

6.3 PROBLEM-SOLVING APPROACH ...24

6.4 COMPUTATION AS INTERACTION...25

6.5 ACTIVE LEARNING ..27

6.6 EMPHASIS ON CONSTRUCTIVE AND COLLABORATIVE LEARNING27

6.6.1 Collaborative learning strategies..27

6.6.2 Collaborative teaching strategies ...33

6.7 CONCEPTS FIRST ...34

6.8 STUDIO-BASED APPROACH ..35

7 TEACHING AND LEARNING PROGRAMMING – WHAT DO WE

KNOW ALREADY?..37

7.1 - ABOUT STUDENT PERSPECTIVES/EXPERIENCES? ..37

7.1.1 Gender:...37

Teaching and Learning Programming – Contemporary Developments

ii

7.1.2 Variation in experiences: ...37

7.1.3 Expectations and preconceptions:..40

7.1.4 Culture: ..40

7.2 - ABOUT WHAT HELPS STUDENTS LEARN?..42

7.2.1 Nature of assessment tasks: ...42

8 SUMMARY ..45

9 RESEARCH RECOMMENDATIONS ARISING FROM THE

LITERATURE ...46

10 TOWARDS A RESEARCH PROPOSAL ...47

11 REFERENCES...51

Teaching and Learning Programming – Contemporary Developments

iii

Executive Summary

The teaching and learning of introductory programming in tertiary institutions is

problematic. Failure rates are high and the inability of students to complete small

programming tasks at the completion of introductory units is not unusual. The

literature on teaching programming contains many examples of changes in teaching

strategies and curricula that have been implemented in an effort to reduce failure

rates. This paper analyses contemporary research into the area, and summarises

developments in the teaching of introductory programming. It also focuses on areas

for future research which will potentially lead to improvements in both the teaching

and learning of introductory programming. A graphical representation of the issues

from the literature that are covered in the document is provided in the introduction.

The paper introduces the problematic nature of teaching introductory programming

and presents some of the reasons why research in the area should be prioritised.

Failure of students to reach expected outcomes, such as the inability to program after

undertaking an introductory programming subject; low pass rates and correspondingly

low levels of progression of students into further programming subjects; and

controversy about gender and programming, contribute to the problematic nature of

teaching introductory programming. The fact that introductory programming subjects

are often foundation units with associated large numbers of diverse students, and large

administrative and teaching loads, is also a factor.

Constructivism, a learning theory which is currently strongly influencing the direction

of programming education, is introduced. Although this has led to a variety of good

principles of teaching practice, these have propagated independently of research into

how students learn to program. The ‘3P’ model of learning and conceptual change

theory are briefly introduced as examples of constructivist models that could provide

some theoretical basis upon which to further influence the teaching of introductory

programming. Underlying constructivist theory is the idea that knowledge is actively

constructed by the student, not passively absorbed from textbooks and lectures. Since

the construction builds recursively on knowledge that the student already has, each

student therefore constructs an idiosyncratic version of knowledge. Constitutionalism,

and a relational view of learning, is then presented as a complementary theory to

Teaching and Learning Programming – Contemporary Developments

iv

constructivism, and a paradigm that has the potential to provide a positive theoretical

basis for further influencing programming teaching practice. Constitutionalism differs

from constructivism in that learners are seen to experience what they are learning in a

small, identifiable range of different ways. An identifiable range of variation is thus

assumed to be present in any given group (as compared with the idiosyncratic

construction of every individual). This, therefore, allows learning to be ‘managed’. An

example of prior research into programming education within the constitutionalist

paradigm, using phenomenography, is provided. Phenomenography is presented as a

research tool that enables the collection of empirical data that will assist in developing

teaching practice within a consitutionalist theoretical perspective.

The next section of the document outlines a range of examples of teaching approaches

and strategies that are used in the teaching of introductory programming. Each of

these approaches is described in terms of its main focus, and in some cases the results

are revealed of cases where such approaches have been implemented and evaluated.

The aim of this paper is to provide a background to current practice. It does not focus

on specific teaching tools or instructional materials used such as various pieces of

software or specific intelligent tutoring systems. There are many cases of these

reported in the literature. Rather, the document seeks to reveal some of the broader

approaches currently being tried in programming education.

Finally some of the major findings in past research into the teaching and learning of

programming are presented. These focus on what we know about the students’

perspective and experience, and what we know already about what seems to help

students learn. Specifically, the discussion focuses on the issues of gender, variation

in experiences, expectations and preconceptions, and culture as all influencing the

learning experiences of students. We analyse the gaps in the current research findings,

and pose a number of questions that will help form the basis of further research.

The main outcome of this background document has been to reveal that there has been

little, if any, research on how students go about learning to program. There are many

examples of innovative teaching practice that have been implemented, but these

usually appear to have been developed independently of any research into the

students’ experience of learning programming. We suggest that research into how

Teaching and Learning Programming – Contemporary Developments

v

students go about learning to program will reveal a pathway to more positive

outcomes in the teaching and learning of introductory programming at the university

level.

Teaching and Learning Programming – Contemporary Developments

1

1 Introduction

This paper is a working document summarising some of the current issues and

emerging directions in the area of teaching and learning introductory programming in

tertiary institutions. The literature shows that the teaching (and learning) of

programming is a perennial problem. The existence of high failure rates and students’

subsequent inability to write simple programs at the end of a programming unit are

just two of the issues penetrating Information Technology Faculties worldwide. In

response to these problems there has been a trend to implementing changes to

computer science curricula, teaching practice and even the environment in which

students are taught, all in an effort to improve the outcomes of introductory

programming units. Figure 1 represents a summary of the areas covered in this paper

and includes a broader summary of the issues covered within the literature reviewed

but which are outside the scope of this paper.

Amidst the attempts to improve outcomes of programming units, there appears to

have been an overall trend towards constructivist teaching practices. Implicit within a

constructivist paradigm is the notion that students learn in different ways, and that

learning requires the student to actively construct personal meaning and

understanding while thinking about previous experiences and considering alternative

perspectives held by others (Van Gorp and Grissom, 2001, p.248). While many

examples of good practice in teaching and learning programming are appearing, many

are not grounded in understandings of students’ learning experience. This paper

briefly argues that the notions of conceptual change, learning and constitutionalism

provide a theoretical basis from which research into improving the teaching and

learning of programming can be effectively developed.

Following the brief introduction of teaching and learning paradigms, a summary of

the programming unit structures at QUT is provided in order to create the context in

which the teaching and learning of programming is being examined within the

Faculty. Examples of emergent approaches and strategies used to teach programming

are then outlined. Some of the major research findings in relation to what is currently

known about teaching programming are also summarised. Particular attention is paid

to research which examines learning to program from the students’ perspective and to

* Areas in grey text are not

examined in the background

document but were revealed in

the broader literature review

Figure 1

Teaching and Learning Introductory Programming:

Issues covered in the literature* T&L

programming

sequence of
topics

tools/
instructional

materials

assessment/
evaluation

research currently not

necessarily grounded in T&L

theory

� problem-based learning

� active learning

� studio-based teaching

� syntax-free approach

� computation as interaction

� literacy approach

� collaborative approaches; pair programming,

peer learning; shared teaching resources

� other approaches:

� completion strategy/templates

� industrial environment/commercial situation

� project approach

� cooperative learning

� visualisation techniques

� teaching reusability

� iterative approach

� programming by discovery

e.g. concepts first

e.g. tackling

plagiarism;

electronic feedback

and marking; open-

ended assignment

and programming

contests

constructivism

constitutionalism

students’
experiences of

learning to
program

other T& L
paradigms not

addressed

what do we
already know?

How to teach
introductory

programming?

Case Studies –
description of

practices

approaches/
strategies

T & L
paradigms

how do
students
learn?

research

e.g. group systems;

network workbench;

graphic and textual

metaphors; email;

intelligent tutoring

systems; icon-based

programming

languages

Teaching and Learning Programming – Contemporary Developments

3

 the contribution of such teaching and learning research in the IT field. The overall

summary of research findings points to areas for further research. We propose

questions and a research approach to pursue in order to help us address the gaps which

continue to exist in our knowledge about what will actually improve programming

curricula and teaching practice.

2 Why research Teaching and Learning introductory

programming?

2.1 Failure to reach expected standards or outcomes

• ‘The teaching (or perhaps we might more accurately say the learning) of

programming is a problem. Few teachers of programming in higher

education would claim that all their students reach a reasonable standard of

competence by graduation. Indeed, most would confess that an alarmingly

large proportion of graduates are unable to program in any meaningful

sense’ (Carter and Jenkins, 1999, p.1)

• ‘The learning (and teaching) of programming in Higher Education is a

perennial problem. Staff are all too familiar with students who approach

their final year project work determined to avoid programming at all costs,

presumably because they either cannot program or believe that they

cannot’ (Carter and Jenkins, 1999, p.1)

• ‘Learning to program is a key objective in most introductory computing

courses, yet many computing educators have voiced concern over whether

their students are learning the necessary programming skills in those

courses’ (McCracken et al., 2001)

2.2 Pass rates and progression of students

General problems in programming subjects relate to pass rates and progression of

students. Within the Faculty of Information technology at QUT, for example, failure

rates are often in excess of 40% (Taylor et al., 2002). A study that commenced in

Teaching and Learning Programming – Contemporary Developments

4

1995 at Monash University, aimed at tackling perceived problems in the teaching and

learning of first year programming found that the main concerns were high failure

rates, a low flow of students into higher degrees and a perception of a wide variation

of teaching skills (Carbone et al., 2000).

• The research team, known as Edproj, focussed on the nature of learning

and teaching in two Departments of the faculty of IT. Edproj comprised

staff from Information Technology and the Faculty of Education. The

initial Edproj investigation indicated the value to academics of studying

student learning in a programming discipline (Carbone et al., 2000).

2.3 Gender issues

The issue of gender in programming is somewhat controversial, with some

researchers arguing over whether or not women and men simply program in different

ways (eg. Turkle, 1984). Others (e.g. McKenna, 2000; 2001) argue that this

distinction is superficial and a ‘damaging fallacy’ (McKenna, 2000, p. 49) which has

unwittingly led ‘…to a deepening of perceptions of programming and computing as a

masculine culture’ and to the implicit assumption of women as innately unsuited to

the skills required for large programming projects in real organisations (McKenna,

2000, p. 37).

Whether or not women and men program differently, research into learning styles

does tend to show differences in the way in which men and women approach learning

and that this is a complicating factor in teaching programming at an introductory

level. For example, in research reported by Carter and Jenkins (1999) the authors

point to previous studies which have shown that female students lack confidence in

this domain and that one significant corollary of this is often an underestimation of

their own ability (Carter and Jenkins, 1999, p. 3).

• ‘…research shows that gender is a significant factor in determining the

way in which students approach learning to program. A better

understanding of the issues raised would lead to more effective teaching

and thus better learning’ (Carter and Jenkins, 1999).

Teaching and Learning Programming – Contemporary Developments

5

2.4 Foundation subjects

Although not specifically related to programming, the following statement from Kay

et al. (2000) relates to the challenges faced in any foundation course in computer

science, and therefore, also programming.

• ‘Foundation courses in computer science pose particular challenges for the

teacher: the courses develop basic skills and attitudes which are important

for effective learning in later courses; they are often large courses with

correspondingly large management and administrative loads; teaching staff

often find them demanding and, for some staff, they are seen as onerous.

Now consider the critical role of foundation courses from the learner’s

perspective. They give a large cohort of students their first real taste of the

discipline. Negative experiences may discourage students from further

study. This is a very serious problem if those negative experiences are not

indicative of the discipline as a whole’ (Kay et al., 2000).

3 Outline of data sources

An extensive search across a range of data sources was undertaken over the period of

November 2001 to January 2002 in order to develop a broad understanding of the

current issues and trends in the teaching and learning of computer programming.

Table 1 summarises the major databases and search terms used.

Table 1 Data sources

Database search terms

browsed journals

computer programming and teaching

Science direct

computer programming and teaching and

(university or undergraduate)

all sciences

(teaching or learning) and programming Proquest (all databases)

refined: peer-reviewed only…

Proquest computing “learning programming” or “learning to

program” or “teaching Programming”

Ebsco Journal: computer science education

Electric library computer programming and (teaching or

learning)

Springer link teaching and programming (ABS)

Swetsnet Navigator (ABS) teaching computer programming OR

learning to program*

Synergy (Blackwells) browsed journals

Teaching and Learning Programming – Contemporary Developments

6

(teaching adj programming) or (learning adj

programming)

teaching adj computer adj programming

Webspirs

(AEI; engine, alisa)

learning adj computer adj programming

Emerald browsed journals

First search (in Education >> select

dissertations; Education index/

Eco)

computer programming

teaching w computer w programming

IEEExplore

learning <and> computer <and> programming

<in> ti

A range of journals, conference proceedings and home pages of institutions and

academics were also accessed. Those resources which were used in the overall

literature review are summarised below.

Journals

Association for Computing Machinery. Communications of the ACM

Computer Science Education

Computers & Education

Computers in Human Behavior,

Educational Psychology

Higher Education Research & Development

IEEE Computational Science & Engineering

IEEE Transactions on Education

IEEE Transactions on Software Engineering

International Journal of Human - Computer Studies

Journal of Computer Assisted Learning

Journal of Educational Computing Research

Journal of Educational Technology Systems

Journal of Object - Oriented Programming

SIGCSE Bulletin (Association for Computing Machinery, Special Interest

Group on Computer Science Education)

T.H.E. Journal

Conference Proceedings

ASCILITE – Australian Society for Computers in Learning in Tertiary

Education

ASEE Annual Conference

Asia Pacific Software Engineering Conference (APSEC)

Computer Science Education Research Groups International Workshop

Conference on Integrating Technology into Computer Science Education

(ITiCSE)

Conference on Software Engineering Education and Training

European Conference for Research on Learning and Instruction (EARLI)

Frontiers in Education Conference

Teaching and Learning Programming – Contemporary Developments

7

The Higher Education Research and Development Society of Australasia

(HERDSA)

International Literacy & Education Research Network Conference on

Learning

Software Engineering Education Conference

Institutions

The Centre for Informatics Educational Research, Open University, UK

Chalmers University of Technology – Centre for Educational Development

Monash Computing Education Research Group, Monash

Latrobe University, Division of Information Technology

School of Information Management Systems, Monash University

Computers and Education Research Group, University of Kent, UK

4 Current Paradigms influencing teaching and learning

introductory programming

4.1 Constructivism

Learning is a complex process and, as described by the constructivist

paradigm, knowledge is internally constructed by the learner. This paradigm

encompasses a collection of different perspectives but acknowledges that

learning involves making meaning of experiences and therefore that

knowledge constructed by the learner is unique

(Fowler et al., 2001, p.270)

Constructivism is a theory of learning which claims that students construct knowledge

rather than merely receive and store knowledge transmitted by the teacher.

Constructivism has been extremely influential in science and mathematics education,

but, until recently, has been much less influential in computer science education (Ben-

Ari, 1998, p.1).

Within the constructivist paradigm, learning requires the student to actively construct

personal meaning and understanding while thinking about previous experiences and

considering alternative perspectives held by others (Van Gorp and Grissom, 2001,

p.248). Knowledge is actively constructed by the student, not passively absorbed from

textbooks and lectures. Since the construction builds recursively on knowledge that

the student already has, each student will construct an idiosyncratic version of

knowledge (Ben-Ari, 1998, p.1).

Teaching and Learning Programming – Contemporary Developments

8

There is a range of views within the constructivist paradigm. For instance there is the

debate between cognitive and social constructivists, based on the relative importance

placed on individual construction or socio-cultural effects on learning. Generally,

however, it might be summarised that knowledge construction depends on the

following:

- What is already known

- Previous experience

- Organisation of these experiences

- Beliefs that the individual uses to interpret the reality of objects and

events encountered (Fowler et al., 2001, p.264 citing Bruner 1962,

Vygotsky 1978, Piaget, 1980).

Constructivism explicitly acknowledges ‘…that students do not learn well in a passive

transmissive environment, but that they learn through a variety of knowledge building

processes, and that teaching should encourage students to work actively towards

understanding within a framework of personal responsibility and institutional

freedom’ (Booth, 2001a, p.170). ‘Constructivist classrooms are often viewed as

problem-solving environments manifested through three C's: context, construction

and collaboration’ (Van Gorp and Grissom, 2001).

In their editorial of the special issue of Computer Science Education focusing on

Constructivism, Tony Greening and Judy Kay (2001) suggest that constructivist

principles are now exerting strong influences on professional practice in computer

science education. This is despite the low visibility that constructivism – as a body of

theory – has within the discipline. In other words, constructivism has ‘spawned a host

of principles for good practice that have propagated independently of theoretical

roots’ (p. 168).

4.1.1 Modelling Learning in the Constructivist Paradigm - ‘3’ P

The ‘3P model’ demonstrates the relationships between teachers' thoughts and

actions, students' thoughts and actions and the quality of learning outcomes
1
. In the

90's, John Biggs developed a systems approach to student learning, known as the 3P

1
 Source: http://education.curtin.edu.au/iier/iier8/bookrev.html

Teaching and Learning Programming – Contemporary Developments

9

model (presage – process – product). Biggs’ (1999) 3P model of teaching and learning

describes three points which are critical to the learning experience and its outcomes:

- Presage, before learning takes place;

- Process, during learning; and

- Product, the outcome of learning.

The model essentially describes the relationships between students' prior experience, the

learning context, students' perceptions of their context, their approaches to learning and

their learning outcome
2
.

Figure 1

The 3P model
3

Presage relates to what both the student and the teacher bring to the learning situation.

For instance, student-based presage factors include how much they know about the

topic already, their level of interest, their ability and their commitment to university.

Teaching-based presage factors include the expertise of the teacher, what is intended

to be taught, how the subject will be assessed and the ethos of the institution.

Student and teaching presage factors combine to influence the learning activities or

the students’ approaches to learning. For instance, Biggs (1999) and Trigwell and

2
 Source: http://www.learning.ox.ac.uk/iaul/IAUL+3+4+3+main.asp

3
 Source: http://www.learning.ox.ac.uk/iaul/IAUL+1+2+5+main.asp

Teaching and Learning Programming – Contemporary Developments

10

Prosser (1997), refer to their influence on ‘surface’ and ‘deep’ approaches to learning.

‘The surface approach arises from an intention to get the task out of the way with

minimum trouble, while appearing to meet requirements’ (Biggs, 1999, p. 15).

Current teaching and assessment methods often encourage a surface approach. For

example, short answer and multiple-choice tests, if designed poorly, allow rote-

learning without necessarily understanding the content. ‘The Deep approach arises

from a felt need to engage the task appropriately and meaningfully so the student tries

to use the most appropriate cognitive activities for handling it’ (Biggs, 1999, p. 16).

In other words, the student aims to focus on the underlying meaning of the content.

Outcomes of research by Shirley Booth (1997) suggest that deep and surface

approaches are visible in students’ experiences of learning to program (see section

7.1.2).

4.2 Conceptual Change

Schema theory suggests that all human beings possess categorical rules or scripts that

they use to interpret the world. New information is processed according to how it fits

into these rules, called schema
4
. Conceptual change theory focuses on the conditions

whereby one’s existing schema are modified by new knowledge and is constructivist

in nature. Research indicates that changes in instruction must occur in order to

promote conceptual changes in students and improve student learning. Elements

present in teaching strategies which promote conceptual change include (a)

maintaining student interest through hands-on instruction and relevant content and (b)

an approach which integrates context, process and reflection with respect to the

content. In order to promote learning through conceptual change, both the roles of the

teachers and the learners should change
5
.

A basic assumption in teaching for conceptual change is ‘the key constructivist idea

that construction of new conceptions (learning) is possible only on the basis of already

existing conceptions’ (Duit, 1999, p. 275). Because we use our existing conceptions to

make our way about the world, we may not necessarily be conscious of them. Thus,

the first and most significant step in teaching for conceptual change is to make

4 Schema Theory: An Introduction, Sharon Alayne Widmayer, George Mason University.
5
 http://ww2.riverdeep.net/for_teachers/pro_development/iowa3/session2/2_simul_read.htm

Teaching and Learning Programming – Contemporary Developments

11

students aware of their own preconceptions about the topic. Teaching for conceptual

change primarily involves (a) uncovering students' preconceptions about a particular

topic or phenomenon, and (b) using various techniques to help students change their

conceptual framework. Teaching for conceptual change requires a constructivist

approach in which the learner takes an active role in building and reorganising their

knowledge (Davis, 2001).

4.3 Constitutionalism

4.3.1 Relational view of teaching and learning

There is a dualistic assumption underlying constructivism: thinking takes

place in an inner subjective world, divorced from the outer objective reality

and knowledge is constructed there by the individual through material and

mental acts. In a phenomenological framework the fundamental unity between

human beings and the world in which they live is assumed. Knowledge

represents ways of seeing, experiencing, thinking about the world and it is

constituted through the internal relation between the knower (subject) and the

known (object). (Marton and Neuman, 1989)

The most fundamental principle underlying a relational view of learning is that:

‘learning should be seen as a qualitative change in a person’s way of seeing,

experiencing understanding, conceptualising something in the real world…’ (Marton

and Ramsden 1988, p. 271)

Some features of a relational approach are as follows:

- Learning is about coming to see the world differently

- Learning has a content as well as a process

- Improving learning is about relations between the learner and the subject

matter, not teaching methods and student characteristics

- Improving learning is about understanding the students’ perspective – once the

students’ conceptions of the phenomenon are explored and revealed, it

becomes possible for alternative conceptions to be recognised as different,

understood and perhaps adopted (Ramsden, 1988).

Additionally,

‘We have to know what views of a particular phenomenon we would like a learner

to develop’ (Marton and Ramsden 1988, p. 272).

Teaching and Learning Programming – Contemporary Developments

12

Within this relational view of learning, however, new categories do not necessarily

replace the students' initial conceptions. In other words, students do not necessarily

give up their earlier conceptions when they acquire new knowledge. Instead, the old

and the new models may coexist as hierarchically ordered structures (Pozo, 1997 cited

in Tynjälä, 1998).

The constitutionalist view differs significantly from constructivism in that learners are

seen to experience what they are learning in a small, identifiable range of different

ways (usually between three and seven). An identifiable range of variation is thus

assumed to be present in any given group (as compared with the idiosyncratic

construction of every individual) (Bowden and Marton, 1998; Marton and Booth,

1997). This essentially allows learning to be ‘managed’.

Booth (1992, p. 262) argues that learning is about:

‘gaining access to views of further faces (or conceptions of phenomenon) and

developing an intuitive relationship with the object so that an appropriate face

or set of faces is seen in appropriate circumstances’

She noted that programmers need to have access to a complete range of conceptions

of programming, and need to be able to adopt the conception or set of conceptions

most appropriate to a given circumstance.

4.3.2 Phenomenography and learning

From a phenomenographic perspective, learning is seen as a broadening awareness, or

widening experience of ways of seeing the world. In phenomenographic studies

students' conceptions are usually presented in the form of categories of description.

Learning is seen as a process of making sense of the world and the phenomena that

constitute it, in the sense of coming to see the world and its phenomena in

qualitatively new ways. The object of analysis is ways of experience at a collective

level. The results are neither expressions of individual differences nor case studies of

archetypes of identity; they are expressions of the potential ways of experiencing a

phenomenon that might be found in a collective of people of similar characteristics to

those involved in the data collection (Booth, 2001b).

Teaching and Learning Programming – Contemporary Developments

13

[Learning]..means coming to an understanding of curricular content as a

result of tackling various learning activities. As a result of the task, a new way

of experiencing the content is reached. Thus there are two aspects to any

learning situation which, while being inextricably intertwined and probably

unconsidered for the learner, are important analytical aspects for the

researcher. They are referred to as the 'what' of learning and the 'how' of

learning; the 'what’ concerns the quality of the understanding arrived at, or

the perspective taken on, or the conception held of the content of the learning

task, as a result of the learning activity; and the 'how' concerns more the

nature of the act of tackling the learning task

(Booth, 1997, p. 135)

From a phenomenographic perspective, learning is shifting from not being able to do

something to being able to do it, as a result of some experience (Booth, 1997, p. 136).

4.3.3 Phenomenography in IT

Phenomenography has its roots in educational research (e.g. Marton and Säljö, 1976;

Svensson, 1977,), but has since been adopted in other domains including business

(Sandberg, 1994), health (Barnard, McCosker and Gerber, 1999), information science

(Bruce, 1999), information technology (Bruce and Pham, 2001) and information

systems (Cope, 2000). Emerging phenomenographic research in areas other than

education, has been interdisciplinary, often bringing together technology, education

and a host discipline such as health or business. Extensive annotated bibliographies

(Bruce and Gerber, 1995; Klaus and Bruce, 1997) and The Land of Phenomenography

web-site (Hasselgren et al., 2001) provide a useful documentation of important work

to date.

In Australia, phenomenography has been used in Information Systems (IS) research in

two locations: La Trobe University in Victoria, and the Queensland University of

Technology. These studies have pursued the latter two of three established lines of

phenomenographic research : 1) the study of conceptions of learning, 2) the study of

conceptions in specific disciplines of study, and 3) the study of how people conceive

of various aspects of their everyday world that have not, for them, been the object of

formal studies (Marton 1988, p.189). IS researchers have predominantly pursued the

latter two lines of research.

Teaching and Learning Programming – Contemporary Developments

14

At La Trobe University, the focus has been on IS Education, in pursuit of the second

line of phenomenographic research. Cope’s (2000) study represents a classical use of

phenomenography in response to particular kinds of teaching and learning questions –

what does it mean to learn about information systems? What kinds of learning

outcomes can be found amongst groups of IS students and what kinds of learning

outcomes are desirable? Students’ different ways of seeing information systems have

been the object of investigation, providing insights into how students ways of seeing

differ from the views of experts in the field. The differences identified are

educationally critical, in that each way of seeing information systems involves

different ways of assigning meaning to, and perceptually structuring, such systems.

Phenomenography has also been used to explore how information systems are

conceived by academics, students and practitioners (Cope, Horan and Garner, 1997).

Booth (1992; 1993) has similarly investigated students’ different ways of conceiving

programming and learning to program. Booth’s work is explicated further in section

7.1.2 below.

If we accept that the character of university learning involves achieving a level of

competence which involves seeing the world as experts do (Bowden and Marton,

1998), then educational research like this is critical to the design of effective

professional education.

At the Queensland University of Technology, largely in the Information Systems

Management Research Centre, the focus has been on information and technology

experiences in both educational and workplace settings. Researchers here have been

concerned with the third line of phenomenographic research, largely investigating

people’s experiences that have not been the formal object of learning. They are

interested in investigating the different meanings associated with working with

information and technology, with implications derived for education, training and

systems design. Several recently completed studies each provide significant insights

into important phenomena including geographical information systems, IT leadership,

thesaurus use, ERP knowledge management and effective information use, and raise

questions and implications for research and practice which have been raised by the

authors referred to in the relevant publications. These studies are presented here in

chronological order of their completion.

Teaching and Learning Programming – Contemporary Developments

15

1) The first investigation was conducted by a team of Geographical Information

Systems (GIS) and geography educators and researchers in Brisbane and Perth

(Gerber et al., 1992). Twenty-six GIS vendors, Government and industry

users, as well as educators and researchers were asked to describe their

experience and views of GIS, including how they would use GIS for particular

tasks. Outcomes of the investigation revealed that GIS were experienced in

five qualitatively different ways, each involving different foci. GIS were found

to be experienced as 1) a graphics interface – foci on a user and the graphical

interface, 2) a geographical data organizer – foci on the user and the

underlying database, 3) data collection representation – foci on the user, the

graphical interfaces and the database, 4) the process of interaction between an

expert in geographical information and extensive datasets to solve

geographical problems – foci on an expert user and problem solving, and 5) an

evolving spatial technology – foci on an expert user and research and

development. Clearly the more sophisticated ways of interpreting GIS are

associated with different foci, raising important questions for university and

workplace educators, researchers, systems designers and implementers. What

kinds of educational strategies will elicit and expand the foci of learners? How

can systems be designed to facilitate more sophisticated ways of experiencing

the technology?

2) An investigation of variation in effective information use (information

literacy) (Bruce, 1997; 1999) was conducted in Australian universities. Sixty

academics, librarians, IT professionals, academic developers and student

learning advisors described their experience of using information effectively at

work, and made observations about colleagues and friends. Outcomes revealed

that professional employees, in technologically sophisticated workplaces,

experience information literacy as 1) using IT for information awareness and

communication – focus on IT, 2) finding information from appropriate sources

– focus on information sources, 3) executing a process – focus on information

process, 4) controlling information – focus on information control, 5) building

up a personal knowledge bade in a new area of interest – focus on critical

analysis, 6) working with knowledge and personal perspectives in such a way

Teaching and Learning Programming – Contemporary Developments

16

that novel insights are gained – focus on intuition, and 7) using information

wisely for the benefit of others – focus on personal values. Critical insights

include the need for technology to be increasingly unobtrusive as information

use becomes more sophisticated, the significance of collaboration or

interdependence between colleagues and the need for partnership of

information intermediaries. Questions arise for managers interested in

fostering learning organisations, staff development and change management;

information systems managers interested in training and education of systems

users; and educators preparing learners for their chosen profession. How can

university students and professionals be helped to use information more

effectively; both through systems design and professional development or

educational programs? How can the different foci be effectively harnessed in

fostering workplace cultures suited to knowledge management and learning

organisations?

3) Klaus (2000) investigated the varying conceptions of thesaurus use amongst

neophyte researchers searching social science databases. Approximately ten

participants discussed their experience of searching indexing and abstracting

databases, and were encouraged to attend to how they worked with thesauri in

that context. Three different kinds of experience were discovered. In the first,

category ‘zero’, the thesaurus is essentially indistinguishable from the

database, it is neither seen nor understood by the user who simply enters

keywords and scans extensive sets retrieved for relevant data. In the second,

category one, the thesaurus is experienced as an intrinsic part of the database,

essentially inseparable from it. Searchers with this perspective use the

thesaurus to improve their searching, essentially to broaden and refine queries.

In the third and final category the thesaurus is understood as an entity

separable from the database, the internal structure of the thesaurus is

recognised and its evolving nature – and thus its deficiencies – is understood.

Implications of this research may be drawn for both education of database

users and for database design, in order to maximise the value of thesaurus

features for users.

Teaching and Learning Programming – Contemporary Developments

17

4) Interest in knowledge management and enterprise resource systems have been

combined to investigate senior managers’ understandings of knowledge

management in the context of enterprise systems (Klaus and Gable, 2000). Six

interviewees from major ERP vendors, consulting companies and government

agencies participated in extensive interviews (up to seventy-five minutes)

focusing on their experience of knowledge management. The depth of data

proved sufficient for a phenomenographic analysis, revealing three differing

categories of experience: Knowledge management is seen as 1) change

management for implementing and maintaining an ERP system, 2) corporate

information management based on and beyond an ERP system, and 3)

integrating corporate information management and change management by

means of an ERP system. Each of these different ways of experiencing

knowledge management is associated with a set of foci that is configured

differently in each specific experience, namely temporal – the phase of the

system life cycle concerned; social – the categories of people involved; topical

– the object of knowledge management, i.e. the system, business processes or

data, or the business environment; dynamic – the state of information

preferred; and instrumental – formal aspects of knowledge management such

as the use of databases, templates and decision rules. Surprisingly this group

made no distinction between information management and knowledge

management. The research outcomes provide an important aid to

communication, surfacing major differences in ways of thinking about

knowledge management between vendors, consultants and client groups.

5) The business-IT relationship has also been subject to phenomenographic

investigation (Stewart and Klaus, 2000). Twenty two senior business

executives, IT executives and IT managers were interviewed to elicit their

experience of leading business and IT executives and to probe the relationship

between Business and IT professionals. Four distinctive ways of experiencing

that relationship were identified: 1) an impersonal relationship in which one

party undertakes a simple transaction of service with others, 2) An ambiguous

relationship in which both parties are enmeshed in conflict prone contexts, 3)

A supportive relationship characterized by both parties referring to each other

in a positive manner, and 4) A lateral-creative relationship in which either the

Teaching and Learning Programming – Contemporary Developments

18

business executives or the IT function assume the leading role in providing for

the organisation’s strategic framework. These outcomes provide a model for

characterising Business-IT relationships in a range of organisations and may

be applied to determine the ‘health’ of the relationship between these groups.

Thus issues arise for chief executive officers, senior executives personally

involved in such relationships and consultants with a focus on the business-IT

function. How can we discern what kind of relationship exists? How do

particular kinds of relationships come to be established? How can existing

relationships be reconstructed to form more synergistic practices?

6) Stewart (2002) reports on a study to determine the variation in perception of

competent leadership and leadership success between business executive and

IT management communities. The objective of this project was to improve

leadership practices within an industry partner agency in order to make more

effective and strategic use of IT resources. In particular, the project sought to

determine if there were any variations in leadership expectations of managers

between the executives and managers of the IT unit and those of the

executives of business units within the organisation. Any sources of difference

could point to problems in the relationships, and significant differences in

expectations could explain the lack of exploitation of IT by the business

community. Phenomenography was used to determine an operant model of

leadership as held by the senior business executives and the senior IT

managers. Results revealed variations in the beliefs of ‘good leadership’. The

results also demonstrate the applicability of phenomenographic techniques to

determining implicit leadership beliefs. Stewart reports that the

phenomenographic approach was also well received by the senior management

team, who found the questions useful in opening up dialogue between the

different groups or communities. This was an important outcome for the

research project. It led to reported improvements in the relationships between

the business and IT management communities, and gained continued support

for the project to move into the full benchmarking of actual leadership

practices.

Teaching and Learning Programming – Contemporary Developments

19

7) The collective consciousness of IT research (Bruce and Pham, 2001), has been

the subject of investigation through two studies:

a) an analysis of IT researchers’ and industry professionals’ views of

the significance and value of IT research projects (Bruce and Pham,

2001; Bruce, Pham and Stoodley, 2002a; Bruce, Pham and Stoodley,

2002b; Pham, Bruce and Stoodley, 2002); and

b) an analysis of how the IT research domain is constituted by IT

researchers.

Both studies draw heavily on phenomenography (Marton and Booth 1997,

Bowden and Walsh, 2000) in the research design. Outcomes of these projects

reveal clear differences in ways of seeing, both within and between

stakeholder groups. For example, aspects of IT research may be interpreted

very differently by researchers in the same collegial environment. If we

assume that commitment, or willingness to pursue a research project is

predicated, at least in part, on a valuing of that project, then we already have

some evidence that such valuings may not be interpreted in the same way by

prospective research partners. Ways of seeing the IT research territory also

vary widely. Some emphasise the artefacts of information technology, others

emphasise software engineering or information processing, communication or

the dynamic character of the territory. The phenomenographic research

approach has proven effective for these investigations, the different ways of

seeing being clearly discernible in terms of different meanings and different

awareness structures.

5 Teaching and Learning Introductory Programming at QUT

In order to develop the context for teaching and learning introductory programming at

QUT, the following are direct extracts from course unit abstracts taken from the unit

outlines available on the QUT Online Teaching system (OLT)
6
. ITB410 is the

prerequisite unit for ITB411 and ITB107. We have thus provided more details from

the ITB410 unit outline.

6
 https://olt.qut.edu.au accessed June 2002

Teaching and Learning Programming – Contemporary Developments

20

5.1 ITB410 Software Development 1

This unit develops problem-solving and programming skills essential in professional

programming and used in all the Information Technology majors. The skills are

transferable to other programming languages and applications. The unit is part of the

Common First Year, and is a pre-requisite to the units ITB411 Software Development

2 and ITB107 Programming Laboratory.

The objectives of the subject include the following:

Theory: Students will be able to demonstrate knowledge of:

1. The principles and techniques of structured, object-oriented programming

2. The syntax and semantics of a modern object-oriented language

3. A range of problem solving methods

4. The software development lifecycle

Practice: Students will be able to:

5. Design simple algorithms using a disciplined and structured approach

6. Implement simple algorithms using an object-oriented language

7. Desk check algorithms for logical errors

8. Compile, execute and test programs

The subject is delivered via a 2-hour lecture and a 1-hour tutorial per week. Lectures

and tutorials emphasise both the underlying theory and the practical aspects of

programming. It is expected that students will familiarise themselves with the lecture

content from both notes and textbook before the lecture. Weekly problems are first

examined by small groups in tutorials, then worked on individually during the week

and some are peer reviewed under tutor guidance at the next tutorial. Partial code for

tutorial exercises and other sample code is available via the World Wide Web.

Assessment is via two assignments (worth 10% and 15% respectively) and one final

exam (worth 75%).

Teaching and Learning Programming – Contemporary Developments

21

5.2 ITB411 Software Development 2

Software Development 2 is part of the IT21 common first year, and follows on from

ITB410. Students entering this unit are assumed to have a rudimentary grasp of

programming, up to the point of exposure to iterative processes on arrays, the

decomposition of small scale problems to appropriate methods, and the concept of

parameter passing by value and by reference. Software Development 2 reinforces this

base and builds upon it by introducing the concept of an abstract data type (ADT) and

considering several examples. The unit prepares the student for future programming

units, in any of the Faculty's schools, involving sophisticated data structures, industry

standard 3GL languages, or large-scale software engineering.

The two hour weekly lectures are in the traditional style for large classes. The large

amount of software presented is structured as a series of variations on a small number

of fundamental conceptual themes. The one hour weekly tutorial introduces a small

amount of novel material, but for the most part tutorials are an opportunity for the

students to ask questions and clarify their understanding of the lecture material. The

focus of the unit is both theory and practice, but with an emphasis on theory. The unit

emphasises conceptual aspects of object-oriented programming, leaving heavy ‘hands

on’ practise of these skills to concurrent and subsequent units.

Assessment is via 2 assignments worth 2% each, two assignments worth 3% each, two

assignments worth 10% each and a final exam worth 70%.

5.3 ITB107 - Programming Laboratory

This unit follows ITB410 - Software Development 1 and provides a practical focus to

cement the concepts introduced there by concentrating on the practice of

programming so that the benefits of techniques learnt can be appreciated. In

particular, emphasis is placed on well documented programs, making use of data and

procedural abstraction and using a defensive approach to programming. Also, to be

able to write a program to specification, on time and on budget requires that an

appropriate process be followed. Students will be required to apply a process, which

includes developing time management skills, quality and process awareness as well as

defect tracking and correction skills.

Teaching and Learning Programming – Contemporary Developments

22

This unit uses the Java programming language as a vehicle to provide students with

practical experience in designing, implementing and testing software. The approach to

teaching will be to support and encourage the students' own exploration and

development of a solution to an overarching problem. The assignments and the

practical work will develop a solution to the problem. This unit will provide lectures;

facilitated tutorial sessions; and supervised practical sessions. Students will learn

generic problem solving skills to enable them to become effective software engineers

and team members.

Students will research a problem and the required techniques to solve it within a

group context. Evidence of the proper application of a personal process by each

student will form part of the assessment. Assessment includes three assignments

(worth 12%, 13%, 25% respectively), tutorial participation (10%) and a final exam

(40%).

5.4 Other research and activity focussed on teaching
introductory programming within the Faculty

Figure 2 summarises the research and activity that has taken place, or is currently in

progress, within the faculty where the focus is on teaching introductory programming.

Figure 2

Activity focussed on introductory programming in FITQUT

‘ELP (Environment
for Learning to

Program)

JUTE
project

(prototype
for ‘ELP)

Lab-based
exams

410 team
student surveys

Workshops

Understanding
students’ approaches to

learning to program

Experimentation with
alternative teaching

approaches in
offshore delivery

410 review

ACTIVITY FOCUSSED

ON INTRODUCTORY

PROGRAMMING IN

FIT QUT

Teaching and Learning Programming – Contemporary Developments

23

6 Emergent approaches and strategies to teaching

programming

The following section outlines a range of approaches and strategies to teaching

programming which have been revealed in the literature. Fincher (1999) places the

first four of the approaches to the teaching of programming in a preliminary

taxonomic framework of approaches based on how closely they model activity in the

‘real world’. Each approach addresses the central concern of relationship between the

teaching of programming to the learning of Computer Science.

Figure 3
 A preliminary taxonomic framework of approaches to teaching programming

(source: Fincher 1999, p. 12a4-4)

Additionally, the literacy and problem-solving approaches require minimal change to

curriculum, whereas, the syntax-free and computation-as-interaction approaches

require more adaptation of existing materials (across the whole computer science

course too).

6.1 Syntax-free approach:

An approach espoused by Richard Bornat (1987), in which he recommends teaching

programming as a skill separate from coding (i.e. without language). Indeed he asserts

that (p. xvi);

…the “damage” caused by early exposure to a particular code … is real enough

but is not caused by the evil properties of any particular notation; it is the

delusion that to learn a code is to learn to program which is truly harmful.

In his book Bornat (1987) presents five sections which encapsulate his approach to

teaching and learning programming: Basic Concepts, Structured Instructions, Some

Computation as

interaction
Literacy

Closely Modelled to

‘real world’

Abstract

Syntax-free Problem-solving

Teaching and Learning Programming – Contemporary Developments

24

Extended Examples, Structures of Values and Transcribing other Codes (reflecting

issues of importance when using the imperative languages popular at the time). All

the exercises he presents in the book can be done with pencil and paper. To use them

in an electronic environment requires translation into a programming language.

6.2 Literacy approach:

The central feature of this approach is that:

…learning to program is a new (and difficult) skill. Students need their

learning to be supported in such environments, and the supports this approach

provides are those which mimic the acquisition of the skills of reading and

writing prose

(Fincher, 1999, p. 12a4-3)

This approach also separates the skill of programming away from the skill of

expressing the program in code, but in contrast to 6.1 it has a focus on real world

application.

Because of the older age group than most often learns to read/write (Fincher, 1999),

the approach focuses on features of the learning process such as;

- aspects of achievability, (e.g. ensuring students can achieve a small

working application within a 2 hour lab session)

- motivation, (e.g. setting problems/projects that result in software which

resembles applications they will encounter in real world)

- relevance (in contrast to syntax-free approach – using a current, real

language). A variation of this is the ‘apprenticeship approach’ (e.g.

Astrachan et al., 1995) where students are assumed to be able to

understand more complex code than they can write, so are given real-

world examples to study and extend.

6.3 Problem-solving approach

This approach is also referred to as Problem-based Learning (PBL) and is often taught

under the terms ‘analysis and design’.

Barg et al., (2000) suggests PBL is characterised by:

- open-ended, authentic, substantial problems which drive the learning

- explicit teaching and assessment of generic and metacognitive skills

Teaching and Learning Programming – Contemporary Developments

25

- collaborative learning in groups

But Fincher (1999) argues that PBL is often not a very useful pedagogical approach

because it is assumed that;

a) the student wants to learn problem-solving

b) they usually do it via one single syntax

c) the student does not know how to problem solve

Fincher suggests that a more pedagogical based approach based on problem solving is

that described by Barnes et al. (1997) where they describe how programming tasks

were reconceptualised for the students away from a coding exercise towards an

activity requiring a separate and distinct skill set. They derived a simple cycle of

activity:

Understand – Design – Write – Review

This is then applied not only to programming tasks in a specific syntax, but across

several courses and syntaxes. This allows the student to apprehend that problem

solving is a distinct set of behaviours that can be applied across many areas. In other

words, the student comes to understand that problem solving is a transferable skill.

6.4 Computation as Interaction

Stein’s (1999) approach has been influenced by what she sees as a change in the

paradigm underlying programming and programming languages and to the

conditions/experiences of computing which students have before they come to be

computer science (CS) students.

We live in a time of transition. Computer science is undergoing a Kuhnian

revolution. The traditional foundations of our field are shifting, making way for an

alternate conceptualization that better explains the phenomena we see. The

previous metaphor—computation as calculation, sequencing steps to produce a

result—was crucially empowering in computation’s early history. Today, that

metaphor creates more puzzles than it solves. We cannot even explain our field’s

best-known artifact—the world-wide web—in traditional terms.

(Stein, 1999)

Teaching and Learning Programming – Contemporary Developments

26

Stein (1999) refers to the ‘computational metaphor’ and suggests that changing the

computational metaphor – moving from ‘computation as [sequential] calculation’ to

‘computation as interaction’– has far-reaching and fundamental effects on the way

that we think and has particular implications for how and what we teach.

The approach is based on her argument that all contemporary CS students experience

computers as ‘multi-threaded, GUI-driven devices’ (i.e. experiencing computation as

interaction) and thus to present these students with a model of single-threaded

problem-solving based on ‘the sequence of calculations required to get from a

particular instance of the question to the corresponding instance of the answer is

cognitively inappropriate’ i.e. it doesn’t really correspond to the way that computation

exists in the world at large.

Stein (1999) describes ‘a new curriculum for the introductory programming course,

i.e. for students with no prior programming experience. This course differs from the

traditional one both in the questions that are asked and in the territory that is covered

as a consequence. Every program that students encounter in this class is inherently

concurrent and embedded in a context. Functionality to be implemented is always

specified in terms of interactions and ongoing behavior’ (Stein, 1999, p.13)

In this single semester course, students progress from simple expressions and

statements to client/server chat programs and networked video games.

Although this sounds like extremely advanced material, these topics proceed

naturally and straightforwardly from the interactive computational metaphor.

Because the programmer’s questions concern the relationships between

components, topics like push vs. pull, event-driven vs. message passing, and

local vs. networked communication are integral aspects of this course. The

curriculum exploits this shift in the fundamental story of programming to

restructure what is basic and what is advanced curricular material. In other

words, this course does not go deeper into the curriculum than a traditional

introductory course; rather, it stands the traditional curriculum on its end.

(Stein, 1999, p.13)
7

Beyond Fincher’s (1999) framework of approaches, the following strategies are also

being applied to the teaching of programming.

7
 See example class schedule in Fincher (1999).

Teaching and Learning Programming – Contemporary Developments

27

6.5 Active learning

Gottfried (1997) describes how to provide effective instruction in computer

programming within an active-learning environment. The use of active-learning does

not in itself ensure success in this area, however, Gottfried (1997) found that they can

provide effective instruction by:

� utilising a series of ‘mini-lectures’ based upon carefully prepared

examples that illustrate key features;

� by providing students with copies of the examples and encouraging

them to write their own notes on the examples;

� by assigning simple in-class programming exercises that reinforce the

material presented in the ‘mini-lectures’ and

� by supplementing the in-class activities with weekly programming

assignments of a more comprehensive nature.

Gottfried's (1997) paper describes each of these course characteristics in some detail.

It also includes a list of features that work well, and another list of features, including

some traditional teaching techniques, that we feel should be avoided.

6.6 Emphasis on constructive and collaborative learning

6.6.1 Collaborative learning strategies

The constructivist elements of collaboration and cooperation are highlighted in much

computer science literature (Van Gorp and Grissom, 2001). It is suggested that

collaborative learning provides the advantages of interchanging ideas among students

and an increase motivation to learn (Vizcaino, 2000). Particular reference has been

made to the evidence that girls tend to do better in computing environments where

learning is collaborative (e.g. Gorriz and Medina, 2000). Vizcaino et al. (2000) argue

that collaborative learning is especially good for learning programming because

students naturally look for the experience and collaboration of other people through

such means as email message lists, news and work groups, and advice from other

programmers.

Lidtke and Zhou (1999) look at the Collaborative Laboratory as a key element in

introductory computer science courses. Their approach supports groupwork from the

Teaching and Learning Programming – Contemporary Developments

28

very first course rather than later in the CS course. Specific collaborative strategies

include the following.

6.6.1.1 Peer Learning

The term peer learning is used by Wills et al. (1999) to broadly include collaborative

and cooperative learning. It involves students working together as part of their

learning experience (p. 71). In their study, the majority of teaching staff who had

attended workshops on peer learning indicated that their students were more satisfied

with the courses when peer learning techniques were used (Wills et al., 1999).

Collaborative learning has been shown to increase both the academic performance and

persistence of new college students, improve accessibility for minority students, and

encourages students to become part of a social network (Wills et al., 1999, p.73).

Some other anticipated benefits of peer learning outlined in Wills et al. (1999)

include:

− better retention of students because students have more opportunities to

make contacts with peers and thus less social isolation.

− student performance in the course improves due to creating an environment

with more active learning

− students will be better prepared for the work environment and thus be more

successful in their jobs.

These anticipated benefits, however, were not formally evaluated in the Wills et al.

(1999) study.

Peer learning tasks discussed in Wills et al. (1999) were broadly categorised into:

− Get Acquainted Tasks

− Group Tasks in Class or Laboratory e.g. a group quiz

− Out-of-Class Projects e.g. assign a large programming project in which

each student group collectively designs and individually codes different

aspects.

Teaching and Learning Programming – Contemporary Developments

29

In addition to a range of different types of activities, Wills et al. (1999) outlines many

other organizational details associated with using peer learning. These are briefly

introduced below.

Group Composition

In developing specific tasks, participants generally suggested group sizes of 3–5 with

pairs of students when appropriate and larger groups for less formal activities. Groups

that are too large do not function well on larger projects. Long-term group

assignments allow students to get comfortable within their group, but do not allow as

many interactions between different sets of students.

Group Dynamics

One of the issues with large-scale, group exercises is the dynamics of how students

work together. Participants at the workshops described in Wills et al. (1999) note that

a teacher cannot simply tell students to ‘work in groups’. Students must be taught to

work cooperatively in teams and should understand how team members and team

projects will be evaluated.

Grading

When a group project grade is a significant part of a student’s course grade, then

students need to believe that they are being fairly graded for their individual

contributions or they may not be open to the use of cooperative learning.

Appropriate Tasks

Participants in the workshops discovered that there is not a standard use of peer

learning. Rather, there are different types of activities that serve different purposes

and are appropriate for different situations. It is important that an instructor use a peer

learning activity that is a good fit for the learning objective and one in which it is both

natural and beneficial for the students to work together. If students cannot see a

benefit to working as a team, they may prefer to work individually rather than as part

of a team. A good cooperative task needs to have positive interdependence between

group members (Johnson et al., 1991).

Teaching and Learning Programming – Contemporary Developments

30

A number of lessons learned in relation to implementing peer learning are also

suggested in Wills et al. (1999):

− Peer learning is important but should not be used as the only technique

− Start small with ‘low-risk’ activities in class, then larger out-of-class

projects

− Instructors must be willing to relinquish control

− Group project grading can cause anxiety for students

− Group projects require careful planning by the instructor (must consider

the role of each group member)

− Students need to see the benefit for group activities to work

6.6.1.2 Pair Programming

Team programming usually means coordinating efforts of individual

programmers who divide up the programming tasks for a large, complex

system. Collaborative programming is used here to mean two programmers

working jointly on the same algorithm and code
8

Pair programming differs from normal two-person team projects in its level of

collaboration. Team projects are usually divided into ‘my’ part and ‘your’ part.

However, with collaborative programming, the entire project is ‘ours’ (Williams and

Kessler, 2000b).

 Williams and Kessler (2000a) cite studies that show the general benefits of pair-

programming:

− producing ‘finished and tested code faster than ever…. nearly 100% bug

free… Two programmers in tandem is not redundancy; it’s a direct route

to greater efficiency and better quality’.

− Leads to more confidence in programmers’ own programming.

− Working in pairs, collaborative programmers perform a continuous code

review which leads to efficient defect removal

8
 Source: http://c2.com/cgi/wiki?AcmOnCollaborativeProgramming

Teaching and Learning Programming – Contemporary Developments

31

In Williams and Kessler (2000a) pair programming is studied in an educational setting

(University of Utah). Students were asked, through a variety of means, to describe

their experiences of pair programming.

The sample group:

Students were all familiar with programming, but not the languages used in the

class.

The methodology:

Feedback from students was through web-based journals where they answered

specific questions. Students also completed anonymous surveys on their

collaborative experience. Also, in a final exam, students wrote a letter giving

advice to future collaborative programmers.

Results:

Examined in relation to:

− Quality,

− Productivity and learning,

− Student morale and

− Teaching Staff workload

Quality. Collaborative programming and the effects of pair-pressure seemed to have a

positive effect on the product (the final program/software), the capacity to meet

assignment deadlines, and the number of defects in the programs (Williams and

Kessler, 2000b). Additionally, the students performed much more consistently and

with higher quality in pairs than they did individually – even the less motivated

students performed well on the programming projects.

Overall, 95% of the class agreed with the statement ‘I was more confident in our

assignments because we pair programmed’ (Williams and Kessler, 2000b, p.6)

Productivity and learning. Students felt they were more productive when working

collaboratively.

Teaching and Learning Programming – Contemporary Developments

32

Student morale. The students were extremely positive about their collaborative

experience. Students were happier and less frustrated with the class (Williams and

Kessler, 2000b). Ninety-two percent of the students said they were more confident in

their projects when working with a partner; 96% of the students said they enjoyed the

class work more when working with a partner (Williams and Kessler, 2000b). Most

enjoyed the experience, felt that they learned faster and better with a partner because

it helped them learn when they had to explain something. Defect removal was also

less frustrating (Williams and Kessler, 2000a).

Teaching Staff workload. The instructors felt more positive about the class.

Assignments are handed in on-time and are of higher quality. Less questions came

from students. There were less partner problems than with ‘team-based’ classes. The

number of cheating cases teachers need to deal with is also reduced (Williams and

Kessler, 2000b).

Despite the apparent benefits of the pair programming strategy to learning

programming, it is not possible to conclude from Williams' and Kessler's studies

(2000a; 2000b) whether the strategy has any effects on pass rates. It would be useful

to consider these impacts as part of a similar study.

6.6.1.3 Other collaborative activities

Van Gorp and Grissom (2001) outline a series of constructivist and collaborative

strategies to utilise in teaching and learning programming:

− Code Walkthroughs: where students step through existing code and

predict the output which helps students practice and better understand flow

of control.

− Writing Code: where groups write code to solve a small problem.

Instructors provide guidance when appropriate but aim to let group

members answer their own questions.

− Scaffolding: which recognises that novices need additional support to

solve a problem, so they aim to build on partly solved problems. Examples

of this are where groups of students are given code to solve a particular

Teaching and Learning Programming – Contemporary Developments

33

problem and are asked to insert comments to describe the semantics of the

code. Alternatively, they may be given comments that describe an

algorithm, and then students are asked to write code that corresponds to the

comments.

− Code Debugging: where students are given syntactically and logically

buggy code and students contribute to finding errors. Constructive thinking

is promoted further in this activity when students disagree on what is or is

not an error in the code.

− Lecture Note Reconstruction: where students are asked not to take notes

in a lecture and at the end of the lecture time is given for them to

reconstruct an outline of the lecture from memory. They then meet in

groups to refine their notes further. (This activity also assists students

develop their listening skills!) (Van Gorp and Grissom, 2001, p. 249-50).

6.6.2 Collaborative teaching strategies

The following strategies focus on collaboration from the perspective of the teaching

staff in the development of resources across the faculty. Collaborative learning

strategies may be used within such a framework.

6.6.2.1 Interfaculty Team approach

An example of this occurred between education experts and programming

lecturers at Monash (Hagan et al., 1997) to foster ‘ownership’.

− Previous to changes structure was (weekly): two hour lecture, two hour lab

session, email questions to lecturer and tutor.

− Changes: (weekly) 2 x one hour lecture, two hour lab session, one hour

discussion class with focus on educational techniques such as Predict-

Observe-Explain, mimics, role playing and grids. Collaboration strongly

encouraged and this facilitated understanding (while lab sessions

facilitated hands on programming)

− Iterative approach to lectures i.e. topic covered a little at a time

Results:

− first semester similar results as those prior to changes

Teaching and Learning Programming – Contemporary Developments

34

− in second semester, numbers failing or discontinuing were about the same,

but the percentage of students doing very well (i.e., achieving distinctions

and high distinctions) rose from 31% to 40%.

6.6.2.2 Shared teaching resources across faculty

In the current economic climate of diminishing resources, financial

constraints and the ever-changing nature of the computing field, there is an

increasing need to collaborate to provide shared materials for teaching.

However, the “not invented here syndrome” that causes a continual

reinvention of the wheel … and the egocentric nature of some academics can

hinder the sharing of resources.

(Ellis et al., 1999)

Ellis et al. (1999) report on a strategy involving collaboration between staff in

different/competing schools to implement a strategy to develop faculty-wide Java

teaching resources to support first year programming. The group includes

representation from the three main computing foci of the Faculty (computer science,

commercial computing, network computing) as well as three different educational

approaches (lectures and tutorials; problem-based learning; distance education). They

developed a group process based on working together in the following stages:

- selecting the topic areas considered integral to all subjects for which the

resources will be used;

- defining the details and identifying areas/concepts of a topic;

- determining basic, intermediate and advanced levels of information;

- determining appropriate educational techniques that support the desired

learning objectives for the concept;

- investigating existing resources, and;

- building new resources

6.7 Concepts first

In addition to a collaborative approach, Lidtke and Zhou (1999) assert that a broad

‘concepts first’ approach is necessary.

Concepts of computing are emphasized, students work on systems problems, not

textbook problems, express the solutions to problems as algorithms in a pseudo-

language, and test these algorithms without conversion to a programming

language. Students develop confidence in their understanding of the fundamental

Teaching and Learning Programming – Contemporary Developments

35

principles of computing, learn to work in groups, practice communication skills,

and are prepared to learn a programming language to implement the concepts

they have learned. Students with this background are well prepared for majoring

in any area of computing

(Lidtke and Zhou, 1999 p. 12a4-23)

6.8 Studio-based approach

The teaching of the Bachelor of Information Management and Systems (BIMS) at

Monash University has instituted a teaching model based on a studio approach

(Carbone and Sheard, 2002). The traditional lecture theatre, tutorial room, and

laboratory environment is replaced by a model based around the development of

collaborative learning, integrated curriculum, and problem-based learning. The

approach used within the BIMS enables the development and expression of a model in

which the teaching spaces, support infrastructure, subject content, teaching methods,

and student learning environments are integrated. The studio-based approach to

teaching IT in the BIMS program at Monash University was commenced in semester

1, 2000. However, it was not until semester 2 that the purpose built studio space was

ready for occupation.

In discussing the Studio-based teaching model adopted by Monash University

Carbone and Sheard (2002) suggest that when constructing new learning

environments four aspects of future learning environments need to be considered:

- the physical space,

- the teaching approach,

- the assessment method and

- the IT facilities provided

Curriculum. One of the features of the studio-based approach in the BIMS course is

the integration of the core subjects at each level in the degree. Planning and

development workshops specifically designed for the BIMS staff have enabled the

development of, and constant focus on, an integrated curriculum between the core

subjects (Carbone and Sheard, 2002). Complementing the integrated curriculum is the

use of a problem-based learning approach to the content in the studio subject. In the

studio subject, students have the opportunity to develop strategies, cooperate,

Teaching and Learning Programming – Contemporary Developments

36

collaborate, be individual, and acquire or develop the required skills to develop a

system (Carbone and Sheard, 2002).

Assessment. Within the BIMS course, assessment involves presentation of a portfolio.

The students undertake core studio work in collaborative groups, where the students

gain skills in collaboration, communication, and context specific skills (Carbone and

Sheard, 2002). Selections of these items are designated as mandatory and are required

in a student’s portfolio. Other items for the portfolio are ones that the students select

themselves. During the semester students collect and correlate items that reflect what

they have been learning, portray their chosen area of expertise and their development

as a group member. The portfolio is assessed on at least two occasions throughout the

year by tutors, BIMS academic staff and where possible, members of the profession or

colleagues from other academic environments. A group oral presentation to a panel of

examiners is also part of the studio subject’s assessment. In addition to the examiner’s

marks, each student in the group allocates marks to each of the group’s members for

collaboration, co-operation, being a team player and being responsible within the

group (Carbone and Sheard, 2002).

A survey of students at the end of first semester revealed some useful information for

the teaching team to use in planning and implementation for semester two. However,

because the purpose built studio space was not built until semester 2, the data was of

little value in assessing the impacts of the studio-based model. A second survey was

conducted towards the end of semester two, 2000. This survey focused on the

students’ perception of the teaching and learning approach, and the physical

environment (spaces and facilities), as compared to the traditional university teaching

and learning approach. A preliminary examination of the data indicated that the

students prefer the studio-based approach to learning IT than the more traditional

methods, and that they see the physical environment as one that is preparing them for

the professional environment they will find themselves at the end of the course. In

addition, the emphasis placed on collaboration during the year seems to be beneficial

to the students as reflected in both the comments contained in the survey and their

portfolios (Carbone and Sheard, 2002).

Teaching and Learning Programming – Contemporary Developments

37

7 Teaching and learning programming – what do we know

already?

7.1 - about student perspectives/experiences?

7.1.1 Gender:

Carter and Jenkins (1999) found that when extra tutorial classes were offered for

students who approached the staff and asked for additional support, significantly more

females attended even though they made up a smaller proportion of the total student

group. Their study investigated students’ attitudes and approaches to the learning of

programming so that they might understand why mainly women attended the classes.

They found differences in the way students choose (or are conditioned) to study.

Previous studies had highlighted that females tend to lack confidence in the domain of

computer science (e.g. Scragg and Smith, 1998; Spender, 1995), and also

underestimate their abilities (e.g. Bernstein, 1991; Beyer and Bowden, 1990; Haller

and Fossum, 1998). They also noted previous research that suggested differences in

motivation between genders or how genders approach learning/learning styles. For

example,

- females tend to stamp out difficulties before they are a problem

- females perform better in participative approaches

- females are more likely to approach staff for help (males prefer bulletin

boards/email)

7.1.2 Variation in experiences:

The central question addressed in Booth’s 1992 research was:

‘What does it mean and what does it take to learn computer programming?’

A group of computer science and computer engineering undergraduates were

followed for a half-year while they took an introductory course in programming

(Booth, 1993). The research is in the phenomenographic tradition – i.e. the central

phenomena of programming were analysed in terms of qualitatively distinct

conceptions identified among the students. Programming is seen as a complex

learning activity involving the development of interphenomenal and intraphenomenal

relationships (Booth, 1993).

Teaching and Learning Programming – Contemporary Developments

38

Booth (1993; 2001b) talks of ‘framework constituents’ which were seen as being

essential for the outcome of programming studies, but are not thematised in

instruction. These included the computer, the nature of programming, the nature of

programming languages and what it takes to learn to program. These three

‘framework constituents’ can be seen within a phenomenographic perspective as three

distinct aspects of the experience of learning to program, and capabilities to

experience them in one way or another, or in a number of ways, can be seen as

supporting or hindering the quality of learning (Booth, 2001b).

The fundamental phenomenon that was studied in the original research is how

students experience programming. Three qualitatively distinct orientations were

seen:

1. towards the computer;

2. towards the problem that the programming activity is intended to solve;

and

3. towards the product that would thereby be devised.

The second phenomenon which leads on from the nature of programming is the nature

of programming languages. Four qualitatively distinct ways of experiencing

programming languages were found:

1. as a utility program inherent in the computer system with certain properties

such as speed;

2. as a code of which programs are built;

3. as a medium of expression which enables the programmer to express an

idea or a solution in a way that can be effected by the computer; and

4. as a means of communication between the parts of a programming system

such as programmer, computer, operating system and user.

The third framework constituent that was considered is what it means to learn to

program. Four ways of understanding what it means to learn to program were seen:

1. The least complex is that learning to program is learning a programming

language, in which focus is on learning the features and the details of one

or more programming languages;

Teaching and Learning Programming – Contemporary Developments

39

2. Learning to write programs in a programming language in which making

use of techniques and special features is in focus and

3. Learning to solve problems in the form of programs, where focus is rather

on analysing a problem so that a program can be written;

4. Learning to program was seen as becoming part of the programming

community, focusing on producing programs that solve problems in

collaboration with other programmers, or for someone else.

Booth’s (1997) focus on programming students revealed variation in:

1. How students were experiencing the concept of recursion.

The research revealed three different understandings: recursion as

programming construct in SML; as a means of bringing about repetition in

SML, and; as self-reference.

Often those with the less developed understanding, did better in exams because of rote

memorisation, whereas those students with better understanding produced seriously

flawed programs.

2. The research revealed a variation in approaches to writing programs (see p. 153-4)

Interpretive approaches:

- structural approach (principle focus is on the structure of the problem in its

own domain)

- operations approach (focus on what the program is going to have to do)

Opportunistic approaches:

- constructual approach (focus on constructs and elements identified from

current repertoire that might be used to make up the program)

- expedient approach (where an existing program is taken up because of

some clue in the problem, followed by an attempt to adapt it to the

constraints of the problem at hand.)

Teaching and Learning Programming – Contemporary Developments

40

What the individual teacher has to do is design the teaching situation in such a

way that the variation in approaches to tackling tasks in just that area is

revealed, both to the teacher who thereby gains further insight into the

experience of the learner, and to the learners who thereby gain insight not

only into the range of possibilities but also that a range is actually possible.

(Booth, 1997, p. 146)

The main tool for revealing variation is through focussed student discussion. It is not

enough just to work in pairs (as tasks get divided and there is usually minimal

discourse). Students need tasks which demand discusson in larger groups at all stages

of work.

7.1.3 Expectations and preconceptions:

At the start of the academic year, when the new undergraduates arrive, teachers have

certain expectations about them, about their understanding of certain concepts and the

ways in which they will approach their studies. We don’t always know, particularly in

the current climate of the constantly changing school curriculum, what they initially

expect from us, and what past experiences they are drawing upon to form these

expectations. The students undoubtedly hold a variety of preconceptions about the

courses they have chosen. Students choose computing modules based upon these

preconceptions (Carter, 2001).

Booth (2001b) also places emphasis on the different expectations students bring to

their learning context and how it influences their ‘learning trajectory’. Students enter

the university not only with a history but also with an expectation of the immediate

and long-term future, with a starting point (‘where they have been’) and an intended

and potential learning trajectory (‘where they are going’).

7.1.4 Culture:

(Booth, 2001b) extends her earlier research by relating it to a socio-cultural

perspective.

In a wider socio-cultural framework, Booth’s (1992; 1993) question is transformed

from ‘What does it mean and what does it take to learn computer programming?’ to

something like:

Teaching and Learning Programming – Contemporary Developments

41

What does it mean and what does it take to enter the culture of

computer programming?

 For example;

When the new student of computer science and engineering arrives at the

University, all is new. Non-technical aspects of the nature of programming,

the nature of programming languages, what it means to learn to program,

even of the computer itself, are features of a cultural context which are largely

taken for granted by teachers - old-timers within the culture. The new-comer,

the student, however, has to make what sense she or he can of these features.

(Booth, 2001b, p. 1)

Booth's (2001b) study describes the variation in ways new computer science students

experience the culture they are meeting when they enter the world of computer

science studies, and considers instructional implications.

 ‘Datalogy’ and ‘Datalogical’ are terms used by Booth to cover the field that might

refer to and include computer programming, computing science, and computing

technology, in all its forms (Booth, 2001b). She describes three ‘datalogical’ cultures:

an academic datalogical culture;

a professional datalogical culture and

an informal datalogical culture - outside academia and industry

These three identified cultures are ‘… qualitatively distinct ways of relating to the

computer and all that is associated with making it work…’ (Booth, 2001b, p. 9). i.e.

‘datalogical identities’. How students experience programming, and what they think it

is, can be seen as underlying the identity as programmer they are on their way to

becoming.

Within a socio-cultural framework of communities of practice (based on Etienne

Wenger, 1998) and culture, the different ways of experiencing the framework

constituents equate to three qualitatively distinct forms of datalogical identity with

which the newcomer to computing science enters the university. The relationship

between the students’ datalogical identity (the way the student relates to computers)

and the academic datalogical culture (the way the people around them within the

academic institution relate to computers) will influence their learning trajectories.

Teaching and Learning Programming – Contemporary Developments

42

Learning is seen as ‘a trajectory of identity in a community of practice’ (Booth,

2001b, p. 12).

Booth (2001b) asserts that phenomenography is helpful in understanding ‘…the

learning trajectories that students might be on, and why certain trajectories, with

associated cultural webs of significance, might lead to more successful studies, and

hence learning outcomes, than others.’ (Booth, 2001b p. 18).

7.2 - about what helps students learn?

7.2.1 Nature of assessment tasks:

Ultimately lecturers teaching programming would expect their students to be able

to design, implement and test a relatively complex piece of software. It is a

common belief that the larger and more complex the code students write, the

better programmers they will be.....However, if students are asked to write

complex pieces of code at too early a stage they can be pushed into adopting a

poor learning tendency (Carbone et al., 2000)

Carbone et al., (2000) look at three poor learning tendencies which arise from the

nature of programming courses’ tasks:

- superficial attention; This involves skimming over a communication,

with no attempt to actively process the task in order to generate

personal meaning

- impulsive attention; Some parts of a communication are attended to but

others are overlooked. For example, the learner may focus on an

interesting example and ignore a major point

- staying stuck; Lack of any strategy to cope with getting stuck except

to call for help. No attempt to return to the instructions, reflect on the

strategy selected, analyse what has been done so far or consider

alternative approaches (Carbone et al., 2000).

They (Carbone et al., 2000) suggest the following areas should be considered when

designing tasks. Improvements that can be made to tasks to minimise superficial

attention include:

- Not always coding: Often students are required to write lines of code, and

very rarely are students required to do alternative activities. Getting

Teaching and Learning Programming – Contemporary Developments

43

students to diagrammatically present material often highlights

misconceptions that can be addressed immediately. Including tasks that

require tracing code, or answering a series of questions, can be used as

alternatives to purely writing code.

- Rewards for understanding not completing: If students were aware that

understanding was rewarded, and not copious amount of code, they might

be less likely to take a crude approach to completing the task.

- Outline a method of attack: Without a design students can wander from the

intended pathway and ultimately reach a point where the only source of

help is seen to be copying extracts of code provided.

- Smaller coding questions: Introduce questions that don't consume too

much of the students' time, so they don’t feel pressured into copying

straight from the notes.

Improvements that can be made to tasks to minimise impulsive attention include:

- Emphasise the key point: Usually there are many ways to code a solution

to a problem. If the important points are emphasised in the tasks, through

the task’s aim and the type of question, impulsive attention might be

minimised

- Provide adequate resources for the introduction of unfamiliar material:

Sometimes subjects are so tightly structured that it's not possible to cover

everything in lectures. As a consequence, many lecturers introduce new

material in the laboratory and tutorial exercises. Often it is not possible to

remove material from the subject, leaving some of the material introduced

for the first time outside of that environment. While the idea of introducing

new material is fine, the resources needed to help students’ understanding

are usually inadequate, rather than carefully planned.

Improvements that can be made to tasks to minimise staying stuck include:

Teaching and Learning Programming – Contemporary Developments

44

- Tactics on how to start with graded helps: Challenge a student first, don’t

explain everything

- Provide useful references and resources: Often the only resources students

are aware of are their text book, their lecture notes and tutor.

- Provide guidelines to writing and testing code in manageable chunks:

Include debugging strategies. Guides to writing code should be provided

rather than providing the code. Build a program in stages, for example, if

part of the problem requires file input and output, students could write a

small program to ensure they understand how to do that part.

Carbone et al. (2000) also look at features of tasks that lead to the poor learning

behaviours of non-retrieval, lack of internal reflective thinking and lack of external

reflective thinking. Suggested improvements to tasks in order to improve the

following processing habits of students explored in the study:

1. non-retrieval when no attempt is made to retrieve one's own existing

views/understandings relevant to the knowledge being presented.

To improve the tasks:

- familiarity (with new material, referral to earlier work should be made)

- reinforcement by repetition

- retrieve existing understanding

2. lack of internal reflective thinking (about subject content)

To improve the tasks:

- tie the work into the "big ideas" of the lesson

- build on previous work

- extract the links

3. lack of external reflective thinking (about linking subject with outside world or

other subjects)

To improve the tasks:

Teaching and Learning Programming – Contemporary Developments

45

- when introducing new concepts, work out why there is a need for the new

concept and how it relates to external matters

8 Summary

Changing an approach to teaching requires first the knowledge that other approaches

are possible; secondly it requires reflective practitioners. However it also requires

evaluation and evidences of the success of any given approach and there is little of this

work in the literature, and much less which is comparable across institutions and diverse

student populations (Fincher, 1999, p. 12a4-5).

When reviewing the literature on teaching and learning introductory computer

programming, it is easy to find examples of teaching approaches adopted for specific

computer classes at specific institutions. It is perhaps surprising, however, that there is

a dearth of empirical evidence as to the effects of implemented changes to curriculum

and teaching approaches, particularly in relation to impacts on failure rates – the very

thing which seems to be driving the need for change. It is also often difficult to

unearth the rationale which informs the choice of WHY the subject is taught in a

particular fashion (Fincher, 1999). As Greening and Kay suggest in their introduction

to the special issue of CSE focusing on constructivism, practice has not necessarily

followed theoretical underpinnings (Greening and Kay, 2001). Rather than an ad hoc

approach to designing and implementing change, a rigorous research agenda is likely

necessary in order to develop changes based on significant theoretical understanding.

In the quest to improve approaches to teaching programming it is also significant that

there has not been much work on how students learn to program. Booth (Booth, 1993)

conducted early research into this question by utilising a phenomenographic approach

to obtain empirical evidence of variation in experiences. Subsequent research by

Booth (e.g. Booth, 1993; Booth, 1997; Booth, 2001b) and Carter (e.g. Carter, 2001;

Carter and Jenkins, 1999) has further illuminated the variation in experiences that

potentially affect students’ learning of programming. It appears that a focus on the

‘teaching’ rather than the ‘learning’ of programming has limitations. Taylor et al.

(2001, p. 19) draw an analogy between a focus on a teaching perspective as akin to

designing software from a designer’s perspective rather than the client’s perspective.

Teaching and Learning Programming – Contemporary Developments

46

Essentially, students of first year programming subjects experience programming in a

variety of ways. Whether this is due to gender effects, their past experiences, their

expectations and preconceptions, or a range of socio-cultural effects, surely

improvements in teaching programming would more easily be implemented with an

improved understanding of where students are ‘coming from’ in their approach to

learning how to program. It is not the demographics (e.g. sex, socio-economic status,

ethnic origin etc), of the very diverse population constituting first year programming

students that will determine the appropriate changes in curriculum and teaching

practices. Rather, it is the exploration and revelation of the range of students’

conceptions of the phenomenon of programming and learning to program that is

necessary. Once the variation is revealed, it becomes possible for both the student and

the teacher to not only recognise that different conceptions exist, but also that

different conceptions and thus approaches might be adopted.

The following section outlines some research recommendations that have come out of

the review of the literature on teaching and learning programming.

9 Research Recommendations arising from the literature

• ‘The key must surely be in the questions that we ask’ (Fincher, 1999).

• ‘Very little attention has been paid to the rationale which informs the choice of

why we teach the subject in a particular fashion’ (Fincher, 1999, p. 12a4-1).

• Carter and Jenkins (1999) suggest that investigating/understanding the ways in

which students learn to program will lead to improvements.

• ‘Issues of how the course is taught and who the students are influence the

outcome, rather than being simply a matter of programming language X vs

programming language Y’ (McCracken, 2001).

Research into the teaching and learning introductory programming needs to

investigate what these broader issues are.

Teaching and Learning Programming – Contemporary Developments

47

• ‘To efficiently teach computer programming skills is difficult. The kinds of

assessment that instructors use throughout their courses must provide appropriate

information for understanding students' processes of developing programming

skill’ (McCracken, 2001, p. 134).

• ‘…requires that research looks deeper than merely evaluating implementations,

deep enough to examine what changes in teaching practice reveal about

underlying issues such as concept acquisition, development of skills and expertise,

sources of misconception and superstition, learning processes, the roles of

different types of interaction between teachers, students, and materials, and so on.’

(Daniels et al., 1998).

10 Towards a research proposal

This paper has provided a preliminary background into some of the current

developments in the research and literature on teaching and learning introductory

programming. Gaps in the research have been identified and some suggestions for

further research are briefly introduced in section 9. As we have uncovered the current

issues and gaps, a series of questions has begun to form that will influence the

direction of our future research in the area. The focus of these questions is on the

experiences of the students learning to program, that is, they focus on the learners’

perspective. We will reflect on these preliminary questions, develop and re-work them

to form the basis of a research proposal aimed at improving the teaching (and

learning) of introductory programming at university.

At this stage a series of preliminary, general questions have been divided into a

number of levels of priority, and are included in Table 2 below.

Teaching and Learning Programming – Contemporary Developments

48

Table 2

Preliminary research questions

PRIORITY LEVEL RESEARCH QUESTION

Level 1 How do students learn to program?

How do students go about writing a program? Level 2 (a)

How do students experience learning to write a program?

What do students think a program is?

What are the different ways students see programming

languages?

Level 2 (b)

How do students experience learning programming

languages?

Level 3 What do students see as effective means of help in learning to

program?

Are there differences in how males/females learn to program?

What is the relationship between learning a programming

language and learning to program?

Level 4

How are institutions/people tackling failure rates?

In order to answer at least some of these questions we will seek to investigate the

experiences of a range of students who have undertaken, or are undertaking,

introductory programming units – specifically itb410, itb411, and itb107 – at

Queensland University of Technology. Students with a range of programming

capabilities will be involved, in order to capture the differences in ways of tackling

the task of learning to program between good programmers and those who have failed

or are failing the subject. The research team will consult with faculty teaching staff

who have been involved in the programming units and the faculty teaching support

officer, in the selection of participants.

Semi-structured interviews will be used to uncover the variation in ways students

approach learning to program. Interview questions will be piloted with 3 participants

of varying capability. The pilot process will help clarify the research questions. For

instance, it is anticipated that the pilot process will illuminate subtle, yet important,

distinctions between questions such as ‘How do students learn to program’ and ‘How

do students experience learning to write a program?’ This will influence the direction

of the final research project. It will also serve to assist with finalising the wording of

the questions and highlight any further areas which will provide data to answer the

research questions.

Teaching and Learning Programming – Contemporary Developments

49

It is anticipated that there may be implications associated with the type of person who

conducts the interviews. For example, potentially different results may arise from a

non-programmer interviewer compared to those obtained by an interviewer who is a

programmer. These potential differences will need to be considered and analysed.

It is a specific design feature of the questions in phenomenographic research that they

should be broad enough to obtain meaningful responses in relation to the aim without

forcing a particular structure, or way or responding upon the participant. The

questions, therefore, will be worded in such a way that they are open enough to

‘…allow the subjects to express their own way of structuring the aspects of reality

they are relating to’ (Johansson et al., 1985, p. 252). Each question serves as an

‘opening’, from which the interviewer will develop a trail of further questions in order

to achieve a mutual understanding of the theme in focus. The interviewer can assist in

the process of developing a shared understanding by: confirming meaning by

returning to particular statements, following up unexpected threads in the discussion,

attempting to unblock unexpected obstacles and closing interviews by enabling the

student to put their own questions and other points of view (Booth, 2001a).

Table 3 shows the range of potential interview questions to be considered and

possibly piloted in the first instance. The Table is not complete, but is designed to

show how each interview question relates to each particular research question.

The primary research outcome for our study will be a mapping of the variation in

experience of learning to program. The particular descriptive focus inherent in

phenomenography has produced two distinct presentational outcomes of any

phenomenographic study: categories of description, and an outcome space. Categories

of description represent each ‘conception’ or way of experiencing or being aware of

learning to program. Each category highlights the critical difference in meaning and

structure between conceptions. The outcome space is a diagrammatic representation

of the logical relationships between conceptions as described in the categories of

description. In other words, the outcome space captures the essential experience at the

collective level (Booth, 2001a). The focus on uncovering the structural framework is

fundamental to phenomenographic research, and is the factor which will provide the

unique insights into the experiences of learning to program.

Teaching and Learning Programming – Contemporary Developments

50

Table 3

Preliminary research questions and potential interview questions

LEVEL RESEARCH QUESTION INTERVIEW SCHEDULE - POTENTIAL QUESTION

Level 1 How do students learn to program? How do you go about learning to program?

 What do you see as the major ‘things involved’ in

learning to program? (McCracken et al., 2001)

 Is there a particular order in which to learn these

‘things’ that you feel would help you in your learning

progress?

How do students go about writing

a program?

Potentially set a Task:

e.g. present basic programming problem and have

student describe step by step how they approach the

problem.

Level 2 (a)

How do students experience

learning to write a program?

Can you describe how you went about learning to write

programs?

What do students think a program

is?

How would you describe a computer program?

What are the different ways

students see programming

languages?

Develop from Booth’s (1992) interview

questions/results.

Level 2 (b)

How do students experience

learning programming languages?

How do you go about learning to program?

Level 3 What do students see as effective

means of help in learning to

program?

What types of assessment do you feel would help you

to better learn programming?

 Did the methods of assessment in the programming

unit(s) you have done help you in [understanding] /

[learning] programming?

 What was it about the way the programming unit(s) you

have done was/were taught that most helped you learn

to program?

 What was it about the way the programming unit(s) you

have done was/were taught that least helped you?

 Can you suggest any improvements in the way the

programming unit(s) you have done was/were taught

that would improve your understanding of how to

program?

Are there differences in how

males/females learn to program?

What is the relationship between

learning a programming language

and learning to program?

Level 4

How are institutions/people

tackling failure rates?

Teaching and Learning Programming – Contemporary Developments

51

11 References

Astrachan, Owen and Reed, David (1995) AAA and CS1: The Applied Apprenticeship

Approach to CS 1. In Proceedings of the ACM SIGCSE Symposium, 1995.

Barg, M., Fekete, A., Greening, T., Hollands, O., Kay, J., Kingston, J. H. and

Crawford, K. (2000) Problem-based learning for Foundation Computer Science

Courses. Computer Science Education, v.10, no.2, pp. 109-128.

Barnard, A, McCosker, H and Gerber, R. (1999) Phenomenography: a qualitative

research approach for exploring understanding in health care, Qualitative Health

Research, vol. 9, no, 2, pp. 212-226.

Barnes, David J., Fincher, Sally and Thompson, Simon (1997) Introductory Problem

Solving in Computer Science. In Daughton, Goretti and Magee, Patricia, (Eds), 5th

Annual Conference on the Teaching of Computing, Centre for Teaching Computing,

Dublin City University, Dublin 9, Ireland, August 1997, pp 36-39.

Ben-Ari, M. (1998) Constructivism in Computer Science Education. In The

Proceedings of the Twenty-ninth SIGCSE Technical Symposium on Computer Science

Education, pp. 257 -261.

Bernstein, D. (1991) Comfort and experience with computing: are they the same for

women and men? SIGCSE Bulletin 23 (1991) pp. 57 –60.

Beyer, S., and Bowden, E. (1990) Gender differences in the accuracy of self-

evaluations of performance. Journal of personality and social psychology v. 5, no. 3

pp 960-970.

Biggs, J. (1999) Teaching for quality outcomes at university: What the student does.

Society for Research into Higher Education and Open University Press, Buckingham,

UK.

Booth, S. (1992) Learning to program: a phenomenographic perspective, Acta

Universitatis Gothoburgensis, Goteborg.

Booth, S. (1993) A Study of Learning to Program From an Experiential Perspective.

Computers in Human Behavior, v.9, pp. 185-202.

Booth, S. (1997) On Phenomenography, Learning and Teaching. Higher Education

Research and Development, v.16, no.2, pp. 135-158.

Booth, S. (2001a) Learning Computer Science and Engineering in Context. Computer

Science Education, v.11, no.3, pp. 169-188.

Booth, S. (2001b) Learning to program as entering the datalogical culture: a

phenomenographic exploration. In 9th European Conference for Research on

Learning and Instruction (EARLI), Fribourg, Switzerland.

Bornat, R. Programming from First Principles. Prentice Hall International, 1987.

Teaching and Learning Programming – Contemporary Developments

52

Bowden J. & Marton, F. (1998). The University of learning: Beyond quality and

competence in higher education. London: Kogan Page.

Bowden, J. & Walsh, E. (Eds) (2000). Phenomenography. Melbourne: RMIT Press.

Bruce, C. (1997) The Seven Faces of Information Literacy, Auslib Press, Adelaide.

Bruce, C. (1999) Workplace experiences of information literacy, International

Journal of Information Management, vol. 19, no 1, pp. 33-48.

Bruce, C. and Gerber, R. (1995) Phenomenographic Research: An Annotated

Bibliography. Centre for Applied Environmental and Social Education Research.

Occasional Paper 95.2 Available online at

http://sky.fit.qut.edu.au/~bruce/anabib/title.html

Bruce, C and Pham, B. (2001) Investigating ways of seeing IT research: a tool for

facilitating effective research partnerships. Paper to be presented at the Higher

Education Research and Development Society of Australasia Conference, July 2001,

Newcastle, New South Wales.

Bruce, C., Pham, B. and Stoodley, I. (2002a). FINAL REPORT. The Collective

Consciousness of Information Technology Research: The Significance and Value of

Research Projects A. The Views of IT Researchers. QUT, FIT Technical Report

Series.

Bruce, C., Pham, B. and Stoodley, I. (2002b). FINAL REPORT. The Collective

Consciousness of Information Technology Research: The Significance and Value of

Research Projects B. The Views of Industry Professionals, QUT, FIT Technical

Report Series.

Carbone, A., Hurst, J., Mitchell, I. and Gunstone, D. (2000) Principles for Designing

Programming Exercises to Minimise Poor Learning Behaviours in Students. In

Proceedings of the conference on Australasian computing education conference

ACM, Melbourne Australia, pp. 26-33.

Carbone, A. and Sheard, J. (2002) A Studio-based Teaching and Learning Model in

IT: What do First Year Students think? Seventh Annual Conference on Innovation and

Technology in Computer Science Education, University of Aarhus, Denmark, June

24-26, 2002.

Carter, J. (2001) What they think - students' preconceptions of computing. In

International Conference on Engineering Education, Oslo, Norway.

Carter, J. and Jenkins, T. (1999) Gender and programming: What's going on? In

Proceedings of the 1999 4th Annual SIGCSE/SIGCUE Conference on Innovation and

Technology in Computer Science Education, ITiCSE'99ACM SIGCSE/SIGCUE, pp.

1-4.

Cope, C (2000) Educationally critical aspects of the experience of learning about the

concept of information systems. PhD Thesis, La Trobe University, Australia.

Teaching and Learning Programming – Contemporary Developments

53

Cope, C, Horan, P, and Garner, M (1997) Conceptions of an information system and

their use in teaching about IS, Informing Science, vol. 1, no. 1, pp. 9-22.

Daniels, M., Petrie, M. and Bergland, A. (1998) Building a Rigorous Research

Agenda into Changes to Teaching. 3rd ACM Australasian Computer Science

Education Conference, Brisbane, Australia, July 98.

Duit, R. (1999). Conceptual change approaches in science education. In W. Schnotz,

S. Vosniadou, & M. Carretero (Eds.), New Perspectives on Conceptual Change (pp.

263-282). Oxford: Pergamon.

Ellis, A., Lowder, J., Robinson, J., Hagan, D., Doube, W., Tucker, S., Sheard, J. and

Carbone, A. (1999) Collaborative strategy for developing shared Java teaching

resources to support first year programming. In Proceedings of the 1999 4th Annual

SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science

Education, ITiCSE'99ACM SIGCSE/SIGCUE, Cracow, Poland.

Fincher, S. (1999) What are we doing when we teach programming? In 29th Annual

Frontiers in Education Conference: 'Designing the Future of Science and

Engineering Education'IEEE Education Society; IEEE Computer Society; ASEE

Educational Research and Methods Division, San Juan, Puerto Rico.

Fowler, L., Armarego, J. and Allen, M. (2001) CASE Tools: Constructivism and its

Application to Learning and Usability of Software Engineering Tools. Computer

Science Education, v.11, no.3, pp. 261-272.

Gerber, R., Buzer, S., Worth, C. and Bruce, C. (1992) Is GIS a GIS? Or coming to an

experiential understanding of GIS. In Gerber, R. (Ed) AURISA 92 Power to the

People: the Community, Information and Management, Proceedings of the Twentieth

Annual International Conference of the Australasian Urban and Regional

Information Systems Incorporated, AURISA, pp. 18-25.

Gorriz, C.M. and Medina, C. (2000). Engaging girls with computers through software

games. Communications of the ACM, 43, pp. 42 - 49.

Gottfried, B. S. (1997) Teaching computer programming effectively using active

learning. In Proceedings of the 1997 ASEE Annual Conference Milwaukee, WI, USA.

Greening, T. and Kay, J. (2001) Editorial. Computer Science Education, v.11, no.3,

pp. 167-168.

Hagan, D., Sheard, J. and Macdonald, I. (1997) Monitoring and evaluating a

redesigned first year programming course. In Proceedings of the 1997 Conference on

Integrating Technology into Computer Science Education, ITiCSE SIGCUE, Uppsala,

Sweden.

Haller, S., and Fossum, T., (1998) Retaining women in CS with accessible role

models. Proceedings of SIGCSE’98 conference, Atlanta, 1998.

Teaching and Learning Programming – Contemporary Developments

54

Hasselgren, B, Nordieng, T and Osterlund, A. (webmasters) (2001) The Land of

Phenomenography. Website [online]. Available:

http://www.ped.gu.se/biorn/phen.home.html

Johnson, D.W., Johnson, R.T., & Smith, K.A. (1991). Active learning: Cooperation in

the college classroom. Interaction Book Company.

Kay, J., Barg, M., Fekete, A., Greening, T., Hollands, O., Kingston, J. H. and

Crawford, K. (2000) Problem-Based Learning for Foundation Computer Science

Courses. Computer Science Education, v.10, no.2, pp. 109 (20p).

Klaus, H. (2000) Understanding scholarly and professional communication: thesauri

and database searching. In C Bruce and P Candy (eds) Information Literacy Around

the World: advances in programs and research, Charles Sturt University Press,

Riverina.

Klaus, H. and Bruce, C. (1997) Phenomenographic Research, An Annotated

Bibliography. 1997 Supplement. Available online at

http://www.fit.qut.edu.au/InfoSys/ism/Bibliography/index.html

Klaus, H. and Gable, G. (2000). Senior managers' understandings of knowledge

management in the context of enterprise systems. 6
th

 Americas Conference on

Information Systems, Long Beach, California, August 10th - 13th, 2000: 981-987

Lidtke, D. K. and Zhou, H. H. (1999) New approach to an introduction to computer

science. In 29th Annual Frontiers in Education Conference: 'Designing the Future of

Science and Engineering Education 'IEEE Education Society; IEEE Computer

Society; ASEE Educational Research and Methods Division, San Juan, Puerto Rico.

Marton, F. (1998) Phenomenography; exploring different conception of reality, in

Qualitative Approaches to Evaluation in Education: the Silent Revolution, ed. David

Fetterman, Praeger, New York, pp. 176-205.

Marton, F. and Booth, S. (1997). Learning and Awareness, Lawrence Erlbaum, New

Jersey.

Marton, F. and Neuman, D. (1989) Constructivism and constitutionalism. Some

implications for elementary mathematics education. Scandinavian Journal of

Psychological Research, v.33, no.1, pp. 34-46.

Marton, F. and Säljö, R. (1976) On qualitative differences in learning. I. Outcome and

process. British Journal of Educational Psychology, v. 46, pp. 4-11.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,

Laxer, C., Thomas, L., Utting, I. and Wilusz, T. (2001) A multi-national, multi-

institutional study of assessment of programming skills of first-year CS students:

Report by the ITiCSE 2001 Working Group on Assessment of Programming Skills of

First-year CS Students. In ITiCSE2001Canterbury, UK.

Teaching and Learning Programming – Contemporary Developments

55

McKenna, P. (2000) Transparent and opaque boxes: do women and men have

different computer programming psychologies and styles? Computer Science

Education, v.35, pp. 37 - 49.

McKenna, P. (2001) Programmers: concrete women and abstract men? Journal of

Computer Assisted Learning, v.17, no.4, pp. 386-95.

Davis, J. (2001) Conceptual Change. In Emerging Perspectives on Learning,

Teaching and Technology (Ed.) M. Orey (2001-2002). URL

http://itstudio.coe.uga.edu/ebook/htm accessed 6 December 2001.

Pozo, J.I. (1997). Conceptual change as a process of restructuring, explication and

hierarchical integration. Paper presented at the Seventh European Conference for

Research on Learning and Instruction, August 26-30, 1997, Athens, Greece.

Ramsden, Paul (1988) Studying learning: Improving teaching. In P. Ramsden (Ed.)

Improving Learning: new perspectives. Kogan Page. London, pp. 13-31.

Sandberg, J. (1994) Human Competence at Work: an interpretative approach.

Goteborg, Bas.

Scragg, G., and Smith, J., A study of barriers to women in undergraduate computer

science. Proceedings of SIGCSE’98 conference, Atlanta, 1998.

Spender, D. (1995) Nattering on the net: women, power and cyberspace. Spinifex

North Melbourne.

Stein, L. A. (1999) Challenging the Computational Metaphor: Implications for How

We Think. Cybernetics and Systems, v.30, no.6, pp.1 - 35.

Stewart, G. and Klaus, H. (2000) Characterising the Business-IT Executive

relationship. Proceedings of the 6
th

 Americas Conference on Information Systems,

Long Beach, California, August 10th - 13th, 2000:1913-1918.

Swensson, L. (1977) On qualitative differences in learning. III – Study skill and

learning. British Journal of Educational Psychology, v. 47, 233-243.

Taylor, P., McWilliam, E., Burnett, B. and Thyer, N. (2001) Teaching and Learning

Improvement Partnership Project Final Report. Faculty of Information Technology,

Queensland University of Technology, Brisbane.

Trigwell, K. and Prosser, M. (1997) Towards an Understanding of Individual Acts of

Teaching and Learning. Higher Education Research and Development, v.16, no.2, pp.

241-252.

Turkle, S. (1984). Women and computer programming: a different approach.

Technology Review, pp. 49-50.

Tynjälä, P. (1998) Writing And Conceptual Change In University Studies. In 1998

European Writing Conference, Poitiers, France.

Teaching and Learning Programming – Contemporary Developments

56

Van Gorp, M. J. and Grissom, S. (2001) An empirical evaluation of using constructive

classroom activities to teach introductory programming. Computer Science Education,

v.11, no.3, pp. 247-60.

Vizcaino, A., Contreras, J., Favela, J. and Prieto, M. (2000) An Adaptive,

Collaborative Environment to Develop Good Habits in Programming. In Fifth

International Conference on Intelligent Tutoring Systems (ITS 2000) University of

Québec, Montréal.

Williams, L. A. and Kessler, R. R. (2000a) Effects of 'pair-pressure' and 'pair-learning'

on software engineering education. In The 13th Conference on Software Engineering

Education and Conference (CSEE and T 2000) IEEE Computer Society, Austin, TX,

USA, pp. 59 - 65.

Williams, L. A. and Kessler, R. R. (2000b) Experimenting with Industry’s “Pair-

Programming" Model in the Computer Science Classroom. Journal on Software

Engineering Education, December 2000.

Wills, C. E., Deremer, D., McCauley, R. A. and Null, L. (1999) Studying the Use of

Peer Learning in the Introductory Computer Science Curriculum. Computer Science

Education, v.9, no.2, pp. 71- 79.

Teaching and Learning Programming – Contemporary Developments

57

Authors

Christine Bruce

Christine Bruce, BA, Grad Dip Lib Sc, MEd(Res), PhD, is Associate Professor and

Director of Teaching and Learning in the Faculty of Information Technology.

Christine's research focuses on higher education teaching and learning. She has

published extensively in the area of information literacy and postgraduate study and

supervision. She uses phenomenographic and action research approaches for the

development of learning models. Christine is presently working on the Collective

Consciousness of IT Research and students’ introductory experiences of learning to

program.

Camille McMahon

Camille Mc Mahon, BA, DipEd, MEnvtSt is researching teaching and learning

programming in the Faculty of Information Technology. She has methodological

interests in action research and phenomenography. She is also interested in the use of

information and communication technologies in developing countries.

