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ABSTRACT 

A STUDY OF HIGH SCHOOL STUDENTS' LEARNING LOGO: 
MICROANALYSIS OF USES OF VARIABLES 

FEBRUARY 1988 

RICHARD J. HORLICK, B.A., UNIVERSITY OF MASSACHUSETTS 

M.A., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Howard A. Peelle 

This study explores how high school students develop 

an understanding of certain programming language 

constructs, particularly focussing on concepts and 

misconceptions of variables in Logo. Using a case-study 

approach, three nonexpert subjects were asked to solve 

simple programming problems that require using variables in 

different ways. Selected protocols on one .problem were 

subjected to a "cognitive microanalysis", which involves 

transcribing protocols, adding commentary, model-fitting, 

proposing mental constructs, diagramming probable 

interactions and constructing plausible overall 

hypotheses. Special attention was paid to the interaction 

among subjects' assumptions, action-plans and 

experimentation -- based on their ability to utilize 

available instructional resources during problem solving. 

A protocol diagramming technique was developed for 

expressly depicting subjects' cognitive activities, 

including decomposition of the problem from a general plan 

to domain-specific plans and the interaction of assumptions 

and experiments with these plans. 
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Additional student protocols -- some "near-novice" and 

some "near-expert" -- were obtained and superficially 

examined for related phenomena. Also, for comparison, 

three protocols of adult expert programmers solving the 

same problem were analyzed and contrasted with students' 

work. Many student-programmers exhibited misconceptions 

about variables that interfered with their solving simple 

problems. Many of these misconceptions were related to 

proper use of punctuation associated with variables. Such 

errors were characterized as generally reflecting the 

absence of strong, guiding principles of variable use 

rather than misapprehensions about the nature of variables 

or their notation. Two near-expert subjects demonstrated 

impressive instances of the transfer of variable knowledge 

from other programming languages. 

Overall, students' problem-solving behavior appeared 

inflexible and distractible by superficial features of a 

problem. Expert behavior was determined to be 

qualitatively different. Experts consistently produced 

multiple alternative solution-plans and evaluated these 

plans based on their consideration of program aesthetics, 

solution-optimization and efficiency. Such facility seems 

to indicate presence of expert meta-programming knowledge, 

which could not be adequately explained by either 

programming plans or descriptive knowledge alone. This was 

hypothesized to be an integration of both types of 

knowledge. The implications of these results for teaching. 

v 



learning theory and cognitive science were discussed. 

Complete transcripts of protocols were included in 

appendices. 
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CHAPTER 1 

INTRODUCTION 

Historical Motivation 

This study was inspired by the author's frustration as 

a teacher of an introductory Logo course.* In each of the 

four semesters the course was offered, a large number of 

students were observed to have difficulty understanding and 
i 

using variables correctly and exhibited persistent errors 

in variable use. A smaller number of students seemed 

relatively immune to these errors and were, in general, 

more successful in the course and more likely to take other 

courses in the Computer Science curriculum. 

* The author was one of three instructors of a one-semester 
course, offered in each of four consecutive semesters from 
Fall, 1984 through Spring, 1985 at Lincoln-Sudbury Regional 
High School in Sudbury, Massachusetts. It was intended as 
an entry-level course, challenging enough for students with 
previous programming experience but appropriate for 
students with little or no programming background. The 
course content ranged from an introduction to basic Logo 
commands and concepts to fairly complex Logo programming 
techniques, including units on recursive operations and 
procedures, fractal graphics, and mathematical modeling. 
These topics were taught with an extensive set of 
worksheets, developed by several individuals in the 
Computer Science Department over a number of years. This 
allowed an emphasis on hands-on learning and afforded 
instructors the opportunity for much individual observation 
as students progressed through the worksheets. The author 
had used such an individualized approach with good success 
in other programming classes, including classes in a 
computer camp, for elementary and secondary school 
students, for undergraduates studying instructional 
computing and with elementary and secondary school students 
during individual tutoring sessions. 
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Each semester the class became divided into these two 

groups. While other instructors also observed similar 

errors, none were fully able to help students overcome 

their difficulties or explain the misconceptions that 

underlie them. This was the dilemma that motivated this 

study. 

Over the course of nine years teaching computer 

programming (primarily APL, BASIC and Logo) the author had 

formulated several working theories about how one develops 

an understanding of variables in the context of programming 

(see Technical Overview). These theories were for the most 

part unverified but had been useful in the past and seemed 

to have predictive and explanatory power. They were based 

in part on a task-analysis of the disparate uses of 

variables in programming, in part on observations of 

students and in part on introspection. The author's hope 

was that through a more careful and in-depth analysis of 

natural student dialogs he could either find ways to apply 

these existing theories or to develop new theories that 

could explain the type of behavior described above as well 

as to gain insight into the general development of 

programming skill. 

Focus 

There is little doubt that computers are among the 

most important technological innovations of this century 
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and will continue to be a topic worthy of study. In fact, 

this decade has come to be known as the "Information Age", 

and the computer is seen by many as the only means by which 

mankind may cope with the "information explosion." The 

proposal is often advanced that the study of computer 

technology become a formal requirement for elementary and 

high school students. Most often, this is expressed as a 

need for a new "literacy" (in the sense that reading and 

writing are considered minimal requisite skills), from 

which is derived the term, "computer literacy". 

Even among proponents of computer literacy, however, 

there is little agreement as to precisely what skills or 

activities should be mandated. It is generally 

acknowledged that computer programmers are the most 

sophisticated class of computer users and that programming 

is the most general and empowering of computer skills. 

This leads some educators to conclude that programming 

should play a central role in computer literacy training; 

namely that all students should learn some amount of 

programming (Luehrmann, 1980). Others see programming 

skill as too complex for the average student. Such 

educators support instead the use of application packages 

by students and argue that it is no more necessary for a 

computer user to learn to program than it is for the driver 

of an automobile to learn how to repair it. 
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There may be other reasons to discourage mandatory 

computer programming in the public school curriculum, e.g., 

a challenge to the assumption that there exists any one set 

of general computer skills (see Harvey, 1985). Yet the 

"complexity" argument is somewhat disturbing. The 

development of two programming curricula, a serious 

course-of-study in programming for some students and a 

special, watered down approach for the "general" student 

could lead to institutionalized "tracking". Such a 

scenario would contribute to the schism between the "hard 

knowledge" of the technical and the "soft knowledge" of the 

less technical computer user that already troubles some 

educators (Turkle, 1984). 

Whether or not programming is incorporated into the 

standard curriculum, teachers must find techniques to teach 

complex skills without trivializing them. Furthermore, 

programming may have distinct educational benefits and 

applications, beyond the notion of some sort of requirement 

for informed citizenship. For example, there is some 

evidence that programming helps algebra students avoid 

certain misconceptions (Clement, 1980). If such claims are 

borne out, programming could be used to form new bridges, 

not barriers, to knowledge. This makes it imperative that 

the means be found to teach programming to all who wish to 

learn it. 
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Logo is a programming language developed specifically 

as an environment for learning. It is an extensible and 

fully modular language in which programmers utilize 

recursion and functional composition as the primary control 

structures. The best known feature of Logo is the turtle, 

originally a mobile robot that could be used as a plotter 

but usually now, an internal object on a graphics screen 

that simulates the behavior of the turtle-robot. The 

turtle can be driven from a local point of view with simple 

commands such as FORWARD (abbreviated FD) and RIGHT (RT). 

Seymour Papert, designer of Logo, claims that these 

features make Logo powerful enough to do college-level 

Computer Science but simple enough for very young children 

-- that Logo has a "low threshold" and a "high ceiling". 

Logo is generally regarded as one of the two most popular 

computer languages for instructional use. It is purported 

to provide an excellent environment that may accelerate 

cognitive development and stimulate some social aspects of 

intellectual activity, something which Papert refers to as 

"computer culture" (Papert, 1980). These features made 

Logo both a practical and an interesting choice as the 

language in which this study was conducted. 

In terms of content, the focus of this study is on 

utilization of variables in the context of Logo 

programming. There were several reasons for choosing 

variables as a focus. For one thing, variables are a 

critical concept to be mastered in learning Logo 
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programming. However, the notion of a variable is a very 

general concept, and so variables form a common link, not 

only between Logo and other computer languages, but with 

other knowledge domains as well. For example, there is a 

sizable body of literature on correct and incorrect 

conceptualization of variables in mathematics, where they 

are of pivotal importance (see Chapter 2). In addition to 

mathematics, variable is an important concept in all of the 

sciences, in linguistics and in the social sciences. At 

the same time, the concept of variable is more discernible 

as a conceptual entity, discrete from the syntax and 

semantics of a particular programming language, than 

comparable sub-concepts such as flow-of-control or 

data-structure. In this sense, it was a convenient and 

manageable area of concentration through which to gain 

insight into the larger questions, the acquisition of 

general programming and cognitive skills. 

The students chosen as subjects for this study had all 
*8 

completed the equivalent of at least one semester's study 

of Logo. A number of earlier studies have looked at novice 

preconceptions (Anderson, 1984; Soloway, Ehrlich & Bonar, 

1982; Bonar & Soloway, 1985; see also Chapter 2). Others 

have studied how expert programmers structure their 

thinking (Soloway, Bonar & Ehrlich, 1981; Adelson, 1981; 

see also Chapter 2). But very little is known about the 

transition between the two. The study of this transitional 

period can tell us a great deal about the learning 
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process. In that sense, this is an inquiry into the nature 

of learning. 

The approach chosen was qualitative rather than 

quantitative. Nine high-school students and three Logo 

experts were videotaped during clinical interviews as they 

attempted to solve problems drawn from a set of nine. 

These tapes were later transcribed and analyzed. Six 

problem solutions were subjected to a cognitive 

microanalysis. The intent was to study a complex set of 

skills in a naturalistic setting. 

Finally, this study attempted to collect anecdotal 

data for those interested in Logo-learning, especially for 

teachers of Computer Science at the high school level. 

Effective teaching requires ongoing refinement of one's 

instructional approach. Toward this end, teachers, like 

other practitioners, hold working theories about their 

students' learning (usually in the context of their own 

teaching) and conduct "experiments-in-action" as a means to 

form and reform working theories (Shon, 1984). Teachers 

seldom have the luxury to test their theories in greater 

detail or to compare their experiences and observations 

with others with similar interests. The author hopes that 

the raw data in extensive protocols, as much as the 

author's comments and analysis of subjects', misconceptions, 

will help educators as they work to refine their ideas and 



instructional materials, and to develop more efficient and 

effective instruction. 

8 

Conceptual Hypothesis 

This research addresses the following questions: 1. 

How do expert and nonexpert Logo programmers compare in 

their use of variables in the solution of programming 

problems? 2. What variable misconceptions do nonexperts 

hold, as compared to experts? 3. How do programming 

misconceptions affect the dynamic activity of both expert 

and nonexpert on a micro-level, including their utilization 

of available resources, planning, production of "bugs", 

debugging and experimental activity? 

Certain variable misconceptions in algebra appear to 

be quite resilient to instruction (Rosnick & Clement, 

1980). We want to ask whether misconceptions of 

programming variables are similarly resilient to 

instruction. If so, what factors might allow or prevent 

the efficient utilization of available resources, such as 

reference documents, objective facts or past experience, 

and how do misconceptions eventually give way to the more 

generalizable concepts exhibited by experts? Does mastery 

occur gradually and continuously, in stages, or as a 

one-step process? 

Some recent research suggests that some programming 

misconceptions result when general problem solving 
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techniques derived from natural problem solving experience 

are misapplied (Bonar & Soloway, 1985). In a similar way, 

we ask if developing programmers harbor misconceptions that 

are adaptive in that they explain and make accessible some 

aspects of variable use that the student-programmer is not 

presently able to generalize. Or, can a developing 

programmer hold an accurate sub-concept of variable in one 

context while maintaining a misconception of variables in 

another? 

Another critical question for those who endorse 

programming as a form of discovery learning is this: How do 

developing programmers actually gain insight into areas of 

misconception? If we are able to capture observable 

examples of intuitive learner insight, (sometimes referred 

to as the Aha! phenomenon), we can begin to understand 

what it is and how to promote it. 

Technical Overview 

A task-analysis shows that a Logo programmer must 

understand a number of things in order to use variables 

effectively. First, one must recognize the relative 

permanence of a variable; that a variable, once created, 

remains intact until it is explicitly removed, changed, or 

until its host environment terminates, (e.g., when a 

procedure to which a variable is local stops running). 

This is true of both global and local variables, although 
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the issue is potentially much more complicated and critical 

to a proper understanding of local variables, especially in 

variables local to recursive procedures or to procedures 

that call sub-procedures. One must see a variable as an 

attribute of its environment, i.e. a local variable is 

always associated with a procedure, and a global variable 

is always part of a workspace. 

Second, one must recognize that by definition a 

variable associates a name with a value, where the value 

may be any member of a set of permissible values. The Logo 

programmer must clearly distinguish between a variable's 

name and its stored value. This distinction is often 

overlooked, but in certain cases it becomes critical. This 

is true in the case of a programming technique called 

"multiple indirection." For instance, if a Logo programmer 

is asked to interpret the expression: 

THING :USER 

where "USER is defined as the name of a variable holding 

the word, "RICK, as its value, and "RICK is itself defined 

as a variable name with the number 642 as its value, then 

the programmer must decode a chain of values from variable 

names in order to evaluate the expression as the number, 

642. :USER must first be evaluated as "RICK before the 

number is extracted as the contents of the second 

variable. An experienced Logo programmer might read the 

above expression as, "the value of the value of the 

variable, USER." An equivalent expression to the above is: 



11 

THING THING "USER 

It becomes clear in this example that the expressions, 

THING "USER and :USER are, in effect, identical; both 

output the value of the variable, USER. Indeed the colon 

is sometimes taught as an abbreviation for 'THING "' 

(Harvey, 1985).* This can be a point of confusion, however, 

since the "dots" (:) that often precede a variable name are 

sometimes mistakenly thought of as a mandatory prefix to 

the variable name. 

Thirdly, in the case of variables whose values are 

dynamically assigned with READWORD, READLIST or REQUEST, 

one must distinguish between the role of the programmer, 

who chooses the name of the variable, and the user who 

determines its value. (I like to think of this as a 

"temporal" distinction between "function definition" time 

and "run time"). 

Finally, studies of expert programmers suggest that 

they recognize certain programming idioms which may utilize 

variables (Soloway et al, 1982, and see Chapter 2). The 

* This "replacement" interpretation of the colon can lead 
to errors as well. It would not be surprising to see a 
student attempt to use two colons to create a third 
expression: 

::USER 
This, of course, is not a legitimate shorthand form of 
either of the first two expressions. 
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student programmer must learn to utilize variables in 

high-level plans when such use is suggested by the 

programming problem, and in doing so, simplify the 

programming task and concentrate their efforts on unique 

aspects of the problem. Common Logo variable idioms 

include variable-as-a-counter, flag, representation of a 

machine state, argument to a procedure, and user input. 

Accompanying standard variable concepts is the concept 

of a "function", Logo's only means of representing 

covariation. Technically, a function is a procedure that 

takes one or more inputs and has an explicit result. 

Functional inputs are simply variables local to the 

function, but in order to make a procedure produce an 

explicit result, Logo provides a special command called 

OUTPUT. The expert Logo programmer recognizes that a 

function can have only one output (although a function may 

have any number of alternative paths to produce that one 

output). Functions and variables may be seen as 

conceptually very similar. (In fact, a global variable may 

be closely modeled by a procedure with an explicit 

result). Functions, like global variables, reside within a 

workspace. 

A function relates to other procedures in a Logo 

command sequence in a fundamentally different way from 

procedures that do not produce results. A function can be 

seen as replacing itself with a value while a 
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non-outputting procedure is normally viewed as performing 

some task. In that sense, a function is more like a 

variable than a non-outputting procedure. 

A variable is distinct from a function, however, in 

that a variable may contain only one value at any time 

(although that value may be a composite in the form of a 

list) while a function represents a covariate relationship, 

i.e., it defines the mapping of one or more inputs to the 

functional result. Also, functions may be defined 

recursively while a variable may not. Both of these 

features require one to view a function dynamically (see 

also, Kuchemann, 1978, in Chapter 2). 

Parameter passing in functions is also somewhat more 

abstract than explicit variable assignment, in that the 

programmer provides the variable name while defining a 

function and the value is given at a later time, when the 

function is invoked. This makes it convenient to talk 

about the "inside" and the "outside" of a function when 

referring respectively to a parameter variable's name and 

its value. In terms of parameters this is analogous to the 

name-value distinction in a variable. 

Functions, like variables, can become associated with 

certain common programming idioms, and here too the expert 

must learn and be able to apply idioms appropriately. 

Common functional idioms include simple functions, 

recursive functions and "predicates" (functions that return 



the value "TRUE or "FALSE ). Of course, local variables 

play a critical role within such functional idioms. 
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Some New Variable Distinctions 

The above task-analysis is represented in terms of 

three conceptual sub-categories, drawn from developmental 

psychology. First, the concept of a variable retaining its 

value within certain well-defined limits is referred to as 

variable permanence, and is viewed as the most basic 

variable sub-concept. Second, the clear distinction 

between variable name and value -- when assignment of the 

name occurs during procedural definition and the value 

during "run-time", is referred to as a temporal 

distinction. Third, is the clear sense of "where one is" 

in the Logo environment, including the distinction between 

procedure definition mode (sometimes referred to as "being 

in the editor") and "toplevel" (sometimes called "being in 

Logo), or between "being in..." one workspace vs. another. 

The common use of prepositions in such examples leads the 

author to refer to them as a positional distinction. 

An ordering of mathematical variables resulting from a 

developmental study (Kuchemann, 1978) and the above 

technical overview suggested the following classification 

of variable use for this study: 

1. MAKE-ing a global variable is the simplest 

it is "time-constant" and variable usage, i.e. 



"dimensionally constant". 

2. Both the use of local variables and asking the 

user for a value with RQ (in the context of a 

MAKE "F00 RQ construct) are less straight 

forward. They seem to be akin to Kuchemann's 

category "Letter as Specific Unknown", (see also 

Chapter 2), because they involve a gap in time 

between the selection of a variable name and its 

value; i.e. they are "temporally variable". 

3. Understanding variables in the context of a 

recursive operation or in a problem involving 

"multiple indirection" (i.e., one in which one or 

more variable names are stored as data within 

another, to be decoded by the programmer) were 

the most difficult, because they involved both a 

"temporal offset" (especially in the case of 

recursive operations) and a "dimensional offset" 

(i.e., added complexity in terms of the "level" 

of recursive calls). 

4. A function is a procedure with both inputs and 

an output, and may be viewed as representing a 

covariate relationship. The concept of 

covariation was seen by Murray & Clement (1986) 

as more difficult than simple variation,.and one 

may assume that this makes a function more 

difficult than simple variation in the context of 

programming as well, though it is not clear how 



this distinction might interact with the abstract 

concepts of temporal and positional factors. 
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While the design of this study, involving microanalysis of 

a limited number of subjects, precluded an exhaustive 

examination of the question of stage-ordering, several 

aspects of the above classification are informally explored 

in Chapters 3, 4 and 5. 

Rationale/Importance of Study 

Computer programming is an activity that has aroused 

much interest in the educational community. Many respected 

educators have voiced their beliefs that computers will 

revolutionize education (Luehrmann, 1980). Some see 

computers as a more effective means to familiar and more or 

less traditional educational ends (Elliott, 1978). Others 

have viewed the new technology as a radicalizing force 

(Dwyer, 1980). For example, some educators have proposed 

teaching students how to think via computer programming 

(Papert, 1972). 

Recently this latter movement has come under attack 

(Pea, 1984). Specifically being challenged is the notion 

that programming teaches thinking. At the core of this 

criticism is the implication that a large scale educational 

commitment is premature or even dangerous due to the lack 

of solid evidence both of the nature of programming 

knowledge and of its relationship to other thinking. While 
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this objection seems to lay an excessive burden of proof 

upon the proponents of computer programming (few if any 

traditional subjects could be justified in this manner), it 

would be very helpful to know more about the cognitive 

nature of programming so that educators could make 

intelligent decisions about the appropriate educational 

role for this relatively new and, for many students and 

teachers, alien activity. 

Computer programming is a new area of study in 

cognitive psychology. Only in the past ten years or so, 

with the development of microcomputer technology and the 

resulting growth of the personal computing industry, has 

programming become generally accessible to the average 

student. As a new area of learning, it provides us with a 

rare opportunity to address some fundamental questions 

about how people learn. A number of subjects of this 

study, for example, exhibited misconceptions that were 

surprising and unique (see Chapter 4). Some programming 

texts rely on the use of metaphors to teach programming 

(e.g., Harvey, 1985), and some researchers suggest that 

difficulty in finding ready metaphors underlies many of the 

learning problems of novice programmers (Mayer, 1979). 

Instead, a rash of new terms to describe the workings of 

computer software and hardware have had to be coined, and 

computer glossaries to explain these new terms in common 

language have proliferated. This scarcity of ready 
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metaphors suggests that computer programming is, in many 

ways, quite unlike any other common activity. 

The specifics of development of programming knowledge 

also have important implications in the field of artificial 

intelligence for the development of expert programming 

instruction systems (Sleeman & Brown, 1982). Such systems 

require a thorough knowledge-base of both concepts utilized 

by expert programmers and common misconceptions encountered 

by computer programming students. This same knowledge 

could aid the thoughtful teacher of programming in 

formulating instructional material and in understanding 

difficulties experienced by students. 

While there is an growing body of practical research 

on the teaching and learning of mathematical variables, the 

study of variables in the context of programming has lagged 

behind, and is largely theoretical. Many basic questions, 

such as the relationship between the understanding of 

variables in programming and in mathematics, are yet to be 

addressed. This exploratory study is a first attempt to 

address both deficiencies. As an early attempt at a 

general understanding of a complex and important sub-skill 

of programming, it seeks to identify the important issues 

for more specific follow-up study. For example, one issue 

which arose and was addressed during microanalysis was the 

important way in which concepts derived from subjects' 

experience with variables in other computer languages 
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(BASIC and Pascal, in particular) both enhanced and 

interfered with the learning of Logo. Several specific 

questions for further research are identified in Chapter 

5. 

Finally, the clinical approach of this study was 

chosen, in part, to help close the gap between the 

cognitive researcher and the teacher, an extension of the 

more general and long recognized problem of integrating 

theory with practice. There is a scarcity of practical 

information to help the teacher who, confronted by the 

variable misconceptions of his students, must try to 

analyze and correct these problems "on the fly". In the 

past, cognitive science has often addressed the problems of 

teachers, including many practical studies of memory, 

cognitive development and learning theory. More recently, 

fueled by an interest in expert systems, many cognitive 

studies have focused upon isolating the specific 

world-knowledge associated with expert behavior (Sleeman & 

Brown, 1982). Recent work on intelligent tutoring systems 

includes the development of an expert system to teach 

computer programming (M. Miller, 1982; Anderson, 1984). 

These new systems place a strong emphasis on analyzing 

student errors, and such studies hold the eventual promise 

to the teacher of well refined prescriptions for particular 

programming errors. At present, however, intelligent 

tutoring systems tend to be too deterministic and 

domain-specific to be of much practical value to the 
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teacher (Sleeman & Brown, 1985). By choosing a descriptive 

approach, but one informed by these recent detailed studies 

and deterministic models, this study describes learning in 

a more natural setting, making these observations more 

accessible to the teacher. 

From a learning theory point of view, this approach 

allows a more integrated and general view of programming 

variables in the context of other human experience. 

Chapter 4 includes a discussion, informed by protocols, of 

how and when specific learning of isolated cognitive skills 

become integrated with a general, natural knowledge, 

especially in terms of specific and general concepts of 

variables. Such general studies as this one can serve as 

an invaluable means to critique, verify and expand upon the 

theory that underlies necessarily deterministic intelligent 

tutoring systems (Lin, 1979). 
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CHAPTER 2 

REVIEW OF LITERATURE 

The review of literature begins with an examination of 

literature on the general cognitive effects and potential 

educational benefits of teaching computer programming. 

Following that is a discussion of several interesting 

models of programming knowledge and learning. The chapter 

ends by looking at some studies of specific features of 

computer languages — first at aspects of the flow of 

control (which is of peripheral interest to this study) and 

then at variables, both in mathematics and in programming. 

Cognitive Effects of Programming 

Several authors suggest that computer programming can 

enhance a student's skill in other knowledge domains while 

others remain skeptical about the possibility of such a 

transfer. Conflicting studies can be cited to support 

either point of view. 

Among the first group of authors, some emphasize those 

specific skills or concepts utilized both in programming 

and in the recipient domain, suggesting that one may expect 

to see a transfer through the reinforcement of these 

sub-concepts. Some believe that, through the expressive 

power of particular computer languages, one may expect 

students to gain insight into concepts being modeled in the 

language in question. Others see affective aspects of 
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programming as providing the greatest instructional 

potential. 

Elliott (1978) has proposed that short, concise 

computer programs written in APL ("glass boxes") be used as 

advanced organizers in mathematics instruction "...to bring 

clarity and structural integration to mathematical, 

instructional and cognitive structures important to the 

mastery of mathematical concepts". In her example of a 

function that outputs the greatest common divisor of its 

inputs, she believes that the glass box shows the 

relationship of "subordinate concepts" from set theory and 

number theory to the "...subsuming concept of GCD" 

(Elliott, 1978). Peelle (1980) proposes that mathematics 

teachers explore alternative algorithms for common skills 

such as addition, as a means to appreciate the possible 

alternatives to conventional algorithms, to improve their 

own comprehension of mathematics and as a pedagogical model 

for their own teaching. He also proposes that by using 

recursion in APL programs, students can develop "...a habit 

of mathematicians and some computer scientists" (Peelle, 

1977). Lewis (1980) reports favorably on the teaching of 

recursive Logo programs in a high school pre-calculus 

course and mentions, in addition to familiarity with 

recursion, two other benefits of including a programming 

component in mathematics instruction at this level: (1) a 

greater emphasis on the "axiomatic structure of 

and (2) the notational power of Logo's list mathematics" 
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structure. In all of the above cases, the authors noted 

the expressive power of the particular language chosen as 

an important factor of its pedagogical impact. 

Some researchers see programming as a means of 

teaching logical thinking. Mathematician George Polya 

(1958) has suggested that "heuristics", high-level 

problem-solving techniques gleaned from interviews with 

expert mathematicians, be explicitly taught in schools. 

Papert (1980) argues that programming computer graphics in 

the Logo language with a graphic object known as a "turtle" 

is the ideal forum in which to do this. "I believe that 

Turtle geometry lends itself so well to Polya's principles 

that the best way to explain Polya to students is to let 

them learn Turtle geometry". This is less a formal 

suggestion by Papert for a computer-based course on Polya's 

problem-solving techniques than a casual afterthought, yet 

it reflects Papert's belief that by introducing the right 

sort of programming experiences, teachers can shift their 

emphasis from rote learning of mathematical algorithms to 

the process of mathematical problem-solving (Papert, 

1980). Unfortunately, this becomes translated into a 

popular belief that any computer programming experience 

will automatically make students more logical. Indeed, the 

assumption of transfer of programming knowledge to other 

domains, specifically the belief that "programming teaches 

thinking", has recently begun to come under attack. 
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Pea and Kurland (1984) have argued that there is no 

objective evidence that adopting what they call Papert's 

"radical child-centered" approach will increase 

problem-solving ability. In three studies, they have 

sought to disprove what they see as a popular 

misconception. In all three, they worked with students who 

had just completed a year of learning Logo in what they 

describe as an environment based on Papert's ideas. 

Students averaged 45 minutes per week of programming time. 

In the first study, they tested students for LOGO command 

understanding, program writing ability and error correction 

ability. They found some interesting things: children found 

semantic errors more difficult to locate and correct than 

syntactic errors; older children understood far more 

commands even though they received the same amount of 

instruction as younger ones. However their overall 

conclusion was that subject performance in all three areas 

was poor (Pea & Kurland, 1984). In a second study. Pea 

(1983) found no increase in planning skills in 

task-scheduling among young programmers as compared to a 

control group. Finally, Kurland (1984) found that these 

children understood tail-recursion, but not 

embedded-recursion. He further found that his subjects 

believed that recursion was a looping rather than a 

procedure-calling construct. In a study of the same 

children, Mawbry et al (1983) found children's ideas of 

what computers are and how they perform to be naive. 



I see several problems with Pea and Kurland's 

criticisms. For one thing, it seems to me that the 
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subjects in these studies simply had not learned enough 

programming to evidence much transfer. The group 

reportedly had difficulty understanding conditional 

statements and inputs to procedures (Pea, 1983). Rather, 

this result may emphasize one of the conclusions of the 

current study: that it may take a significant amount of 

time before mastery of some fundamental but critical Logo 

concepts are reflected in low-level and high-level 

planning. Furthermore, it seems that the program in which 

Pea & Kurland's subjects were trained was not 

time-intensive enough. fourty-five minutes a week, whether 

distributed as nine minutes a day for five days or as one 

session per week seems, by my experience, to be too little 

time to allow for reasonable progress in acquiring new 

programming skills, insufficient time to practice skills 

already internalized, and (even if we assume a single 

weekly time-block) too brief a period for the intensive 

activity of true problem solving. More importantly, I 

think that Pea & Kurland miss the point of Papert's writing 

when they focus on specific claims of cognitive transfer. 

It seems to me that the main claim of Papert when he 

advocates the use of computers to teach "powerful ideas" is 

that programming and the development in the classroom of a 

"computer culture" can help the student to understand the 
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nature of inquiry and the attitudes that foster it (Papert, 

1980) . 

There is a good deal of similarity in the observed 

general attitudes and work habits of those who have 

demonstrated problem-solving skill. Good problem-solvers 

show a greater ability to frame a problem in terms of rival 

theories and to design experiments to test them against one 

another (Schon, 1983; Driver, 1983; Smith & Inhelder, 

1975) . They are more likely to pose their own questions 

without prompting (Kamii, 1973; Duckworth, 1973). They 

will actively and confidently attack a problem (Polya, 

1957; Schoenfeld, 1979; Kamii, 1973); and they will 

routinely use heuristics to approach a difficult problem 

(Polya, 1957; Schoenfeld, 1979). The development of such 

attitudes toward problems seems to be of critical 

importance to the development of problem solving 

expertise. 

Papert and others make this point in a number of 

anecdotal reports. Papert (1980) describes the experience 

of a fifth grader who had a "bug'’ in the way he added 

numbers. (He would add 35 to 35 and get a sum of 610, for 

instance). Papert analyzes Ken's problem to be, in large 

part, a failure to recognize the adding procedure (or any 

procedure) as an entity, which may be altered. He says 

that he has seen many children get over such misconceptions 

after writing and manipulating their own procedures in LOGO 
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(Papert, 1980). He relates the experiences of another 

fifth grader who could remember most things but had a block 

against remembering and doing mathematics, and whose 

problems were dramatically reduced once he began 

programming (Papert, 1980). Turkle talks about a black 

fifth grade student, alienated from her white instructors 

and classmates, whose experiences writing programs to 

generate poems (as well as her experience with word 

processing) helped her to overcome cultural isolation and 

become a productive young poet (Turkle, 1984). Clearly, 

these programming experiences cannot be seen as singular 

attempts to teach logic or specific problem-solving skills, 

but must be seen as fostering the ongoing development of 

attitudes and self-concept as well as cognitive 

structures. 

Other stories told by researchers suggest that 

programming may help to to break down the institutionalized 

isolation of most mathematics classrooms from true 

mathematics reported by Confrey (1984). Papert (1972) 

speaks of "syntonic thinking" (feeling an emotional 

connection with the thing being studied), and "learning to 

be a mathematician vs. learning to do mathematics". He 

describes Deborah, who was immobilized by her frustration 

with programming until she developed a means of 

constraining the LOGO turtle to 30 degree turns. Turkle 

(1984) talks about Ronnie, who forms a link with 

mathematics by writing a computer program that makes 
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figures "dance in exactly the way he had envisioned", and 

about Anne , who invents original programming techniques so 

that she can think of the colors in her computer graphics 

as colors on a painter's palette rather than as 

"variables". Turkle sees learning breakthroughs such as 

these as idiosyncratic. She sees a potential for 

fostering, with computer programming, an active 

intellectual community, a "computer culture" that shares 

ideas, problems and their solutions, and she favors such an 

approach over a focus on teaching specific concepts or 

facts (Turkle, 1984). 

One justification for Turkle's approach can be seen in 

Steven Louie's work (1985.) He has reported a modest shift 

in locus of control (LOG) toward more internal LOG from 

pretest to post test in his study of children who learned 

both word processing and Logo programming in a computer 

camp. An internal shift in LOC, thought to be a measure of 

greater self-confidence and self-reliance, has been 

associated with improved learner attributes in the 

affective domain and with success in schools. Louie found 

no correlation between internal LOC and subjects' regard 

for planning as a useful problem-solving skill. He notes 

that this agrees with Pea's findings, and suggests that a 

sense of "empowerment" is engendered by certain* computer 

activities, as suggested by Papert, while planning skills 

are not. Louie sees no contradiction between his findings 
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and Papert's claims of the potential of Logo programming to 

"teach thinking" (Louie, 1985; Papert, 1980). 

On the other hand, Clements and Gullo found that Logo 

instruction can lead to improvement in young children in 

some measures of cognition that are associated with 

planning. They found that after 16 weeks of instruction in 

Logo, first graders showed a significant improvement in 

measures of metacognition, creativity and reflectivity (the 

latter being the tendency to pause before solving a problem 

to consider strategy). A second group that used a 

sequenced set of CAI programs showed no improvement. While 

this seems to be in contradiction with Pea & Kurland's 

findings, Clements & Gullo's instruction in Logo was 

significantly different from Pea & Kurland's. Clements & 

Gullo provided a sequenced set of Logo lessons in which 

instructors suggested to their students certain planning 

strategies, while Pea & Kurland taught only the basics of 

the language. Clements and Gullo's findings can be 

interpreted as showing that cognitive skills can be taught 

in a learning environment centered upon Logo instruction, 

while Pea & Kurland showed that the inclusion of the Logo 

language (as opposed to the constructivist philosophy 

associated with Logo) does not assure the improvement of 

cognitive skills, or, at least, not of planning skills. 

Another interesting finding of Clements & Gullo is that 

they found no significant difference between their two 

groups in general measures of cognitive development. 



including Piagetian task measures and the McCarthy 

Screening Test (Clements & Gullo, 1984). 
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Whatever the case, in terms of transfer of overall 

cognitive skills, the prospects for transfer of programming 

knowledge to one particular area of education, mathematics, 

may be fairly good. Howe, O'Shea & Plane (1979) compared 

learning in a mathematics class that included a computer 

programming component with a class that did not. They 

found significantly better performance in the class that 

programmed (cited in Clement Lochhead & Soloway, 1980). 

Clement et al (1980) have shown a relationship between 

the use of variables in BASIC and the correct solution of 

algebra word problems. They studied both college students 

of low to moderate mathematical ability and experienced 

engineers. Both groups were asked to translate a 

mathematical word problem into an algebraic equation (in 

two unknowns) and also to translate a similar problem into 

a computer program in the BASIC language. Clement, et al, 

found that significantly more subjects performed the 

programming task correctly than the algebraic one. They 

attribute this, in part, to the very explicit syntax and 

semantics of a computer language. They also note that, in 

a programming language, an equation takes the form of a 

function, an active object that accepts inputs and returns 

a result, and that this active form emphasizes the dynamic 

nature of a bivariate relation. These results suggest that 
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programming languages provide a powerful alternate 

notational system for mathematics instruction (Clement et 

al, 1980) . 

The author takes the position that programming can 

have educational benefits in the affective domain, as 

Papert, Turkle Louie all suggest. The power of a computer 

language as a highly formal, dynamic representational 

system also highlights its potential to enhance instruction 

in traditional subjects, including mathematics, as reported 

by Clement, Lochhead & Soloway and by Howe, O'Shea & 

Plane. Furthermore, as Clements & Gullo have shown, 

programming in a language such as Logo is a natural vehicle 

for teaching some general cognitive skills, including 

metacognition, creativity and introspection, although Pea & 

Kurland's studies emphasize that this learning is a 

function of the overall instructional environment, not of 

the decision to teach programming or of language selection 

alone. 

Studies of Programmers' Conceptualization of Programming 

Two types of studies strongly suggest a picture of 

expert programming knowledge as complex in nature, 

characterized by the bundling of information based on 

functional attributes. In both novice and expert studies, 

learning is seen as quite idiosyncratic, suggesting that 

programming skill represents a set of internal concepts. 
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associations and/or sub-skills, constructed by the learner 

over an extended period of time. 

Some researchers have studied the cognition of expert 

and novice programmers through performance on memory-recall 

tasks. This work is generally based on Chase and Simon's 

study of chess expert-knowledge, in which they discovered 

not only that expert chess players can memorize much more 

of a complex board position, but that they remember board 

positions in a different way from novices — essentially, 

by structuring their memory of positions functionally, as 

offensive or defensive configurations (cited in Adelson, 

1981). Beth Adelson, using techniques pioneered by 

Tulving, took expert programmers (her graduate teaching 

assistants) and students from an introductory programming 

class in PPL, (Prototypical Programming Language) and 

studied performance on a recall task. She took three 

complete PPL programs, scrambled the lines of each and 

presented them, one at a time to subjects in a "free 

recall" format. This was done through nine trials, and the 

recall-performance of the subjects after each 

administration was graded, summed and analyzed, using a 

technique expected to uncover subjects' subjective 

organization. She found that both novices and experts 

showed subjective organization based on conceptual 

categories, but that experts organized by semantic 

categories, while novices grouped by command type 

(syntactically) in their recall performance. The semantic 
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organization of the experts apparently explained their 

ability to eventually reconstruct the original programs. 

It would have been helpful if Adelson had provided raw data 

or analysis of each trial separately rather than summed 

performance alone, to see whether or not the expert's 

performance was strongly weighted by later trials, when the 

experts had completed their reconstruction of the scrambled 

programs or were due to a more unconscious organization by 

semantic chunks. In any case, this study strongly suggests 

that an expert's association of programming code is 

significantly different from that of a novice, with experts 

grouping code into functional chunks (Adelson, 1981). 

Another study viewed expert programming as associated 

with the functional "chunking" of programming code, and 

provided some insight into the mechanism by which this 

grouping may take place. Soloway, Ehrlich, Bonar and 

Greenspan (1982) compared the performance of two groups 

(one that had completed a first semester course in Pascal 

and another that had just completed a second semester 

course) on some simple programming problems in Pascal. The 

researchers found that while the more advanced group 

(termed "intermediates") might use an inefficient looping 

construct for a given problem, their choice of an overall 

looping strategy was usually superior to that of novices 

and acted as a good predictor of programming success. The 

authors have constructed a partial frame model of looping 

plans with which to explain this phenomenon. In it. 
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specific blocks of working Pascal code ("tactical plans") 

are seen as descendants of a smaller number of computer 

language specific "implementation plans", which are in turn 

seen as the descendants of an even more abstract and 

presumably language independent "strategic plan", such as 

that which acted as such a good predictor of success 

(Soloway, et al, 1982). For example, when asked to write a 

Pascal program to allow the input of integers until a "flag 

value" (9999) is read, then average the non-flag integers, 

students might choose a "Process-i/Read Next-i" strategy or 

a "Read-i/Process-i" strategy. Choosing the latter 

strategic plan proved to be the only good predictor of 

success with this problem. Expert Pascal programmers 

generally suggested use of the WHILE looping construct as 

the most efficient choice, but there was no significant 

relationship between the choice of that implementation plan 

and success unless the preferred strategic plan was also 

chosen. Intermediate programmers did slightly worse than 

novices on this problem. It is not clear why this is so, 

although in an earlier study these same researchers 

established that the "Process/Read" strategy was preferred 

by novices and seemed to be a more natural construct; 

intermediate performance may have decreased as a result of 

their internalization of the less natural but more 

efficient strategic plan favored by experts. (Soloway et 

al, 1981). 
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Cognitive Models of Programming 

In addition to the functional chunking of programming 

knowledge, expert programmers are also said to have the 

ability to construct "detailed mental models of how the 

computer is functioning" (Pea & Kurland, 1984). These 

models are described as dynamic in nature. Supposedly, 

experts can build these "...runnable mental models, and can 

simulate computer operations in response to specific 

problem inputs" (Collins & Gentner, 1981, cited in Pea & 

Kurland, 1984) . 

Mayer (1979) hypothesized a cognitive architecture for 

programming knowledge that is an isomorph of machine and 

language architecture. He suggested a hierarchical 

structure composed of eight "levels of knowledge" of the 

BASIC language, each level providing the constituent 

"atoms" of knowledge for the level above it. They were as 

follows: 

1. The physical machine. 

2. Transactions (sounding very much like 

assembly language, but really an abstract 

formation). These commands consist of 

operations, objects and memory addresses; 

e.g., "Create (some numeric value) in memory 

space A1". 

3. Pre-statements. When one attempts to 

construct all BASIC commands using only 
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transactions, one finds that BASIC 

statements may represent more than one set 

of transactions. Each set is defined as a 

pre-statement. 

4. Statements; legal BASIC commands. 

5. Mandatory chunks; FOR/NEXT, READ/DATA, 

IF/THEN and other primitively paired 

statements. 

6. Basic non-manditory chunks; statement 

combinations that are often found together 

as idioms, related to Soloway's "tactical 

plans". 

7. Higher chunks, apparently large 

functional blocks of code, or modules. 

8. Program. 

Mayer proposed that students learn at all of these levels, 

except for #1. He suggested, for example, that students 

learn to distinguish 

LET A=1 

LET A=A/2 (Mayer, 1979). 

In a later study, Mayer (1981) claimed some success in 

improving BASIC language learning by exposing students to 

machine-language like constructs in this framework. 

However the learning of some programming concepts seem to 

be retarded by this exposure, a phenomenon that he does not 

sufficiently explain (Mayer, 1981). Mayer seems to be 
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looking unrealistically for an exact correspondence between 

physical, machine architecture and conceptual structure. 

Mayer's notion, at least of the importance of 

machine-level concepts in learning high-level languages, is 

strongly supported, however, in the work of Wyer & Cannara 

at Stanford University, who taught students both Logo and 

SIMPER, a simulation of assembly language. Three groups 

were established, one that learned Logo first, then SIMPER, 

a second that learned SIMPER first, and a third that 

studied both simultaneously. Surprisingly, Wyer & Cannara 

found that the third group performed the best of the 

three. They found "...some confusion between the 

languages, but each illuminated aspects of the other. 

(This) outweighed the effects of the interference between 

them" (cited in duBoulay, O'Shea & Monk, 1981). 

DuBoulay et al (1981) used the concept of the 

"notational machine", which they defined as "an idealized 

conceptual computer whose properties are implied by the 

constructs in the programming language employed". They 

promoted a language design that provides feedback on the 

current state of the notational machine. Such features 

were said to provide "commentary" on the notational device, 

which they believe makes the notational device accessible 

to the user and so the language easier to learn (duBoulay 

et al, 1981). Thus, they believe that error messages 

should be consistent with and relate to features of the 
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notational machine, as should, ultimately, screen displays, 

keyboard design, even sound and graphics. (One can see 

such features implemented on some of the window-and-mouse 

operating systems now commercially available). In terms of 

general language features for a first language, duBoulay et 

al recommended logical simplicity (the use of simple and 

effective logical constructs), syntactic simplicity (a 

simple syntax with few rules and few exceptions) and 

functional simplicity. They defined functional simplicity 

in terms of Mayer's "transactions". To be functionally 

simple, a language must have relatively few primitive 

conceptual "transactions", and instructions in the language 

must be each be composed of relatively few of them 

(duBoulay & O'shea, 1981). While it is helpful to have a 

concrete definition of "language simplicity", there is 

insufficient evidence to accept Mayer's "transactions" as 

the conceptual basis for it. 

A Model of Device-Learning 

Both the ideas of experts' functional bundling of 

knowledge and through building runnable mental models can 

be justified with a developmental model such as Hoc's 

notion of "machine learning" (1977), which will herein be 

utilized as a conceptual framework of concept-learning. 

Hoc proposed a model based on a machine-like construct 

which he called a "device". He defined device as "a means 

of relating the conduct of both processes and behavior of 
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the subject to his environment". (By this definition, 

one's own body can be thought of as a device). Such a 

device must have operations which it performs, and the set 

of rules for these operations constitute what Hoc calls its 

"device language". One never directly interacts with a 

"device", only with a "device language". This is a 

critical aspect of this model; the constructivist notion 

that the reality (of the "device") is only understood 

indirectly through interaction (with the "device language") 

(Hoc, 1977). 

In the context of computer languages, the device 

language might be the low-level operation codes of a 

machine-language or the more symbolic commands in a 

high-level computer language. In the former case, it seems 

that the "device" in question would be the computer 

itself. However the latter case is less obvious. If one 

treats the Logo language, for example, as a "device 

language", then what is the "device" underlying it? The 

physical computer hardware? One could interpret the 

situation in that way, as does Meyer in his analysis of 

BASIC. However Hoc's approach was to talk about the device 

as an idealized representation of the computer language 

(like duBoulay's "notational machine"). The "device" of 

Logo is a characterization of the entire language, above 

and apart from its grammar and syntax. 
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The human subject in Hoc's model acts upon the device 

language, and "catches information" through the responses 

of the language to his actions. Simultaneously, the 

subject is receiving feedback from his personal 

environment, which eventually, through a process Hoc calls 

"interiorisation", comes to codify this dialog as a mental 

representation. "As soon as the subject is able to operate 

a device mentally and predict the outcome", says Hoc, "even 

if incorrect, we say that he's constructed a representation 

with which he can make calculations". Hoc refers to this 

representation as a "Systeme de Representation et de 

Traitment" or SRT, (translated as "Representation and 

Processing System"), which seems to correspond closely to 

the "runnable mental model" of Collins & Gentner. 

Any experimental subject may be thought of has having 

a vocabulary of SRTs in place. Given a new device. Hoc 

believes that a subject will adopt an analogous SRT and 

attempt to use it, making superficial alterations as 

necessary to adapt it to the new application. If this 

strategy leads to unrepairable errors, (i.e., the SRT is 

basically inappropriate), then he must adopt a more generic 

SRT, which will require more editing than a close match 

would have. Hoc sees this as a costly approach, to be 

avoided where possible. These processes, which-can be 

likened to Piaget's processes of assimilation and 

accommodation. Hoc refered to as "representative activity" 

("talk" between SRTs), and are a part of the 
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"interiorisation" of the representation. 

Once an SRT is constructed, it may be used, according 

to Hoc, to solve problems. A situation may be seen as a 

problem, "when the subject represents to himself a pair of 

states ...the initial state and the final state... and a 

procedure which leads from one to the other in one or 

several of the SRTs he has at his disposal, providing such 

a procedure is not translatable, word-for-word, into the 

device language." He sees a problem solution as "the 

organization of the actions that the device is capable of 

performing from an initial state to obtain the objective". 

Notice that the aspect of this model that deals with 

problem-solving "...emphasizes the construction of a 

procedure in the device language and the definition of a 

representation of initial and final states compatible with 

that language" (Hoc, 1977). This is thoroughly compatible 

with the notion of bundling knowledge into functional 

classes, presented earlier. Again, a device and a device 

language are seen as inseparable constructs, and the mental 

representation (SRT) a subjective model of some aspect of 

the device, whether accurate or not. SRTs are functional, 

runnable bundles of device language, which may themselves 

be bundled together in order to solve a given problem. 

Presumably, procedures for individual problem solutions 

themselves then become SRTs. 



44 

This does not mean that expert programmers always 

generalize from their problem solutions, however. Hoc 

makes a distinction between a general and a specific 

solution to a problem. "It is one thing to ask a subject 

what is to be done in each case". Hoc states, "and another 

to ask him to construct a general solution for all cases" 

(Hoc, 1977). Vermersch (1972) defined the latter as 

"algorithmic behavior", and found that subjects often had 

trouble developing a general algorithm, even when they are 

familiar with many specific ones (in Hoc, 1977). Here 

Hoc's model falls short, failing to close his theoretical 

system by describing the means by which one generalizes 

classes of problem solutions. Using a Piagetian framework, 

one may assume that this involves a reorganization of 

knowledge, some sort of internal mental activity resulting 

in greater abstraction and more generalized mental 

representation of an entire class of problems. The 

question remains whether such reorganization takes place in 

the development of programming expertise. 

Hoc's model is flexible and elegant; it makes a clear 

distinction between the formal and psychological aspects of 

a language, and it explains their interaction. It 

distinguishes between a language grammar and the conceptual 

device that the language grammar suggests. It models 

concept learning as a mental representation of the 

conceptual device (rather than of the device language). It 

provides an explanation for the idiomatic bundling of 
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programming knowledge observed independently by others and 

offers a framework for describing the means by which 

"runnable mental models" may be built and then linked 

together to form an expert knowledge-base composed of such 

models. It is also strongly reminiscent of Piaget's 

familiar description of cognitive structures, and this 

increases its utility as tool for analyzing the divergent 

work in this general field. 

Program "Bugs" and Programming Expertise 

The analysis of program errors and debugging behavior 

will be an important technique used in this study. By 

analyzing programming bugs and debugging activity, other 

researchers have gained important insights into how both 

experts and novices think about programming and how they 

solve programming problems 

Debugging falls into the category of the "pragmatics" 

of programming, recommended as a focus in computer 

instruction by Minsky (1970). Papert (1980) believes that 

debugging is an important cognitive skill, which he feels 

can be learned through programming in a language such as 

Logo. This suggests that debugging strategies and 

associated skills may develop independently of other 

programming concepts. Surely, some students of computer 

programming come to develop very domain-specific and clever 

debugging strategies that undoubtedly help account for 
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programming success. But debugging ability must at some 

point become closely linked with other programming 

conceptualizations to produce the unified knowledge typical 

of experts. In Hoc's model, errors simply provide data 

about the programming language; they are an aspect of the 

device language. It is difficult to describe any 

distinction at all between internalization of general 

concepts and debugging skills using that representation. 

While other models of programming knowledge would allow one 

to treat debugging skill as independent, existing studies 

provide little support for that view. 

In order to confirm and expand his model of "device 

learning" described earlier. Hoc (1977) constructed an 

experiment using an analysis of bugs of different sorts to 

establish the deep conceptual functioning of programmers of 

different levels of expertise. He assigned 20 COBOL 

programmers (from a commercial software house), with 

abilities ranging from near novice (but having an knowledge 

of COBOL syntax) to expert programmers. He asked all of 

them to create a flowchart of a computer program to control 

the ticket dispensing and coin-changing functions of a 

theoretical automated ticket dispenser, with only the 

communication protocols between parts of the change machine 

and the controlling machine specified. By Hoc's analysis, 

this task required the development and interiorisation of 

new subjective representations (for the change-making and 

ticket dispensing devices) and the active use of the 
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programmer's mental model of the COBOL computer language. 

He studied programmers' generation of errors, (classified 

with a taxonomy designed to show the relation of an error 

to the subject's SRT) as well as their activities in 

creating the flowchart, and gave a structural analysis of 

their final or "terminal" flowchart. By design, the study 

was focused only on "representative activity", i.e., the 

subject's manipulation of his internal model of the devices 

in question, not interaction with the device language. His 

assumption, one which will be adopted in this study, was 

that a subject's physical activity (creating flow charts, 

diagrams and programming code) can be taken to represent 

internal activity and can indicate a great deal about a 

subject's conceptual processes, because their work is 

sharply focused on those aspects of the problem that they 

find troublesome. 

Hoc analyzed his results using his model of device 

learning, to find three stages of interiorization of COBOL 

SRTs. The first corresponded with the performance of 

novice programmers, who show little of Vermersch's 

"algorithmic thinking"; Hoc believed programmers in this 

first group had constructed only minimal SRTs. They did 

not calculate in an SRT associated with COBOL,’ made little 

association between similar classes of "test-condition" 

tasks, but rather constructed a horizontally wide "tree 

structure" in their flowcharts, indicating an attempt to 

deal with many similar processes as special cases. They 



wrote little COBOL code in early passes at the flowchart, 

and when they did attempt to write code, they tended to 

commit errors as well. 
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The second group were seen to have partially 

internalized cognitive models of COBOL. Their terminal 

flowcharts were more vertical, utilizing conditional 

branching rather than looping, they did write in 

programming code in places that they found familiar 

problems, but abbreviated other, difficult parts of the 

problem. 

The third group, who Hoc believed had thoroughly 

interiorized both an accurate mental representation and a 

large library of usable algorithms, tended to return to 

writing abbreviations rather than COBOL code, but moved 

quickly to define the "best representation of the data, to 

detail only the difficult parts of the problem for which 

there are no obvious algorithms". It is not clear how Hoc 

distinguished between "difficult" parts or "best 

representations" and their opposites, and he apparently 

made no attempt to associate group membership and other 

measures, though his anecdotal descriptions of the meanings 

of different factors was informative. 

Jefferies (1982) provided some support for a model 

such as Hoc's. He found that experts debug programs in a 

fundamentally different way than do novice programmers. He 

believed that experts use the "runnable mental models , 
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mentioned earlier, in their debugging activity. He also 

found that "Experts read for flow of control as expert 

readers do, rather than line-by-line as does the novice" 

(cited in Pea & Kurland, 1984). 

It is not clear to what extent computer language 

learning and expertise differs between computer languages. 

In a examination of bugs in learning the APL language, 

Eisenberg & Peelle (1983) found programming bugs that 

seemed to have no ready analogy in reported bugs in other 

programming languages. 

APL combines an extensible language design (i.e., 

programs, once defined, follow the same syntactic rules as 

primitive functions), with a rich set of functions and 

operators, which may be functionally composed or organized 

into programs. It has an extremely simple rule for 

evaluating expressions with no hierarchy of functions, and 

utilizes its own keyboard and symbol set. Eisenberg & 

Peelle's classification of bugs was an informal one, and 

was designed in part to uncover the specific idiosyncrasies 

of APL programming. They found some bugs to persist well 

into intermediate stages of programming, while others 

passed out of use as novices gained a modest exposure to 

the language. For example, in their "Naive Bugs" and 

"Babel Bugs", found especially in novices with previous 

experience in other programming languages, neophyte APL 

programmers showed a tendency to ignore new, more efficient 



50 

functions in favor of more familiar ones. Their "Logical 

Bugs" indicate failures to understand the semantics of 

APL's primitive logical functions or to construct correct 

Boolean expressions, (not a fault in program logic or 

flow-of-control, as others have used the term) (Mayer, 

1981; Soloway et al, 1982). "Dummy Bugs" come when novices 

try to write APL procedures. One they report as very 

persistent, and seems to result from the combination of a 

misconception about replacement of a function call with its 

result and the way APL handles a result used as input to 

another function. "Inventive Bugs" of various types seem 

to indicate an early tendency of students to develop a 

model of APL's grammatical structure and that novices 

interact with the language experimentally to a degree that 

researchers of other languages have not reported (Eisenberg 

& Peelle, 1983) . 

Debugging may be useful as an instructional device as 

well. Lemos (1979), building on the concept of "team 

debugging" developed by the IBM Chief Programmer Team, 

implemented a program of what he calls "Structured 

Walk-Throughs" in teaching COBOL programming. Using one 

section of a beginning and one of an intermediate COBOL 

programming class, he had his students critique each 

others' un-debugged programs. After critiquing, students 

had an opportunity to correct their own programs and run 

them one time only. This was continued over a 10 week 

period. Control groups, composed of other sections of the 
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same classes, received more detailed instruction about the 

language but did no critiquing of the sort described 

above. 

At the end of this time, Lemos administered a one hour 

test of language grammar, program reading/debugging and 

program writing. He found no significant differences 

between the groups in understanding language grammar or in 

their program reading and debugging skills. But the 

Structured Walk-Through group showed a significant 

improvement in their ability to successfully complete a 

program writing task. They also showed a significant 

decrease in the number of test-runs required to complete 

programming assignments during the remainder of the 

semester (Lemos, 1979). 

With these results, Lemos concluded that the 

Structured Walk-Through more efficiently teaches good 

programming practice. The results are confusing, though. 

After so much more emphasis on critiquing in the groups 

doing Structured Walk-Through, why did they fail to 

demonstrate an improvement in program debugging skills? 

One would expect to see such improvement, simply as a 

learned behavior, especially if one views debugging as an 

independent skill. If the Structured Walk-Through students 

did not show improvement in understanding language grammar 

or in programming reading, then what accounts for the 

decrease in program writing time? One explanation is that 
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Lemos's approach helped habituate students to proofreading 

before a test-run. Turkle (1984) has identified several 

personal styles, and has seen them reflected in programming 

habits; careful proofreading is one of the traits 

identified with what she calls an "obsessive-compulsive" 

style personality. Lemos may really be teaching some 

aspect of behavior related to a personal style. Turkle is 

critical of the tendency of many teachers to favor the 

obsessive-compulsive style, and notes that teachers often 

confuse programming style with demonstrated programming 

ability, something that Turkle believes will discourage 

students with the more creative and less organized 

("hysterical") learning style more typical of young girls 

(Turkle, 1984). In any case, Lemos's study diminishes the 

view that debugging is primarily an independent cognitive 

skill. 

Programming Plans and Procedural Knowledge 

In an attempt to explain bugs in the addition 

algorithms of young children. Brown & VanLehn proposed a 

procedural model for knowledge and misconceptualization 

(1979). They likened a correct addition algorithm to a 

procedure in a computer programming language which includes 

all the steps necessary to carry out the process of 

addition—in effect, a plan for doing addition. They 

postulated that errant algorithms are generated when a line 

or part of a line is somehow lost from a correct plan, and 
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the missing parts are then "patched" by a set of repair 

rules and evaluation heuristics called "critics", the 

metaphorical equivalent of a "bug" in a computer 

procedure. This results in a procedure which will "run" 

but produce faulty results. Brown & VanLehn's "critics" 

seem to function as a mechanism to resolve ambiguity and 

provide a kind of closure. They have developed a computer 

program called BUGGY to simulate "bug-patching" in the 

algorithm for addition. They have also generated all known 

student math bugs for this type of problem, and only a few 

bugs generated by their model have never been seen to arise 

in student work (Brown & VanLehn, 1979). The predictive 

power of this model argues for its validity. 

Brown & VanLehn's research suggests that children are 

constantly altering personal computational algorithms in 

unconscious, somewhat automatic and sometimes maladaptive 

ways. If the structure of BUGGY has some real 

correspondence in human information processing, then the 

mandate for teachers is to learn better how to understand 

the logic behind their students' incorrect answers and 

provide them with the insight to correct their own "buggy" 

plans. This implies not only listening to one's students 

but also learning to recognize when a student's wrong 

assumptions, though not apparent, have led to the 

maladaptive plans evidenced in student errors. 
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While the author is suspicious of any notion of 

problem-solving that de-emphasizes human choice, protocols 

utilized in the present study include long episodes of 

plan-dominated activity. Some programming errors seem as 

persistent as the difficulties with addition algorithms 

studied by Brown & VanLehn, and both of these things 

suggest that some of the of high-level notions of 

programming may be internalized as procedural structures, 

similar to Brown & VanLehn's addition algorithms. 

Anderson (1982) generalized the notion of procedural 

knowledge to all cognitive structures and proposed a 

mechanism for the learning of any cognitive skill. He 

theorized that any skill is learned in two stages. In the 

first stage, the "declarative" stage, the skill is encoded 

as a set of facts which can be utilized by general, 

interpretive procedures (previously internalized). In the 

second, "procedural" stage, knowledge has been formulated 

into a domain-specific "production", composed of a 

condition specifying when to use this production and a 

sequence of actions given in terms of existing productions 

(Anderson, 1982). It should be noted that the productions 

function as goal-setting mechanisms. Anderson's assumption 

is that only one goal may be actively pursued at a time, 

and so productions can be thought of as plans for 

organizing which aspects of a problem the solver will 

attend to. 
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In a prolonged study of the first 30 hours of learning 

to program in Lisp, the parent-language of Logo, Anderson, 

Farrel and Sauers (1984) observed a large increase in speed 

when students solved a novel problem and then a second, 

analogous problem. They interpreted this increase in speed 

as indicative of the proceduralization of the problem as a 

complex cognitive skill, a process that they call 

"knowledge compilation". In mapping the productions 

associated with a nontrivial problem, they produced a 

hierarchical tree structure, composed of frames with a 

variable to represent all potential objects of each 

action. They observed a common, and what they believe to 

be a natural, progression through the frames that make up 

the tree as top-to bottom and left-to-right. Besides the 

limitation to one active goal, they perceived a limit of 

what they call "working memory" to be a major constraint on 

this production system, and they interpreted several 

observed difficulties during the declarative stage as a 

function of this limit (Anderson, et al, 1984). 

M. L. Miller's (1980) extensive analysis of high 

school students' thinking aloud while doing 

graphic-oriented Logo programming proposed a different 

hierarchical tree structure for programmer planning. 

Miller felt that the three stages of planning activity 

were, in order, identification (identify the problem as a 

previously solved problem), decomposition (decompose into 

sub-problems) and reformulation (reform into an alternative 
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problem). He implemented this idea into a structured 

planning and debugging environment called SPADE-0. 

Initially SPADE-0 was programmed to guide students through 

the identification, decomposition and reformulation 

processes, in that order, carrying each to completion in a 

top-to-bottom, left-to-right pattern. Complaints and 

suggestions from users led to a set of "preference rules" 

that override that order in the present implementation. 

New considerations for ordering, integrated into the 

preference rules included: (1) solve main steps before 

interfaces (e.g. build both a "square" and a "triangle" 

before creating a super-procedure to combine them into a 

"house" (2) prefer direct neighbors (in the tree) and (3) 

prefer simpler to more complex goals. Miller observed that 

all of these "preference rules" served to minimize future 

modification. He called this the "least-scope principle", 

and he saw it as the motivation in the "top-down" approach 

sometimes taught as a preferred planning structure in 

programming courses (M.L. Miller, 1982) 

Bonar & Soloway (1983) have found that "novice 

programmers have deep and interesting misunderstandings" 

derived from general experience and knowledge. They 

suggest that student-programmers utilize those aspects of 

general knowledge that most closely (but not exactly) match 

the programming problems that they encounter. But such an 

association often matches the problem only in superficial 

ways and may eventually lead to programming errors. Bonar 
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& Soloway use the term "natural language strategies" for 

these potentially distracting strategies. They uncovered, 

through close examination of the "loud thinking" of novices 

(a technique in which problem solvers are asked to 

verbalize their reasoning as they work on a problem) and 

through a very careful look at novice bugs, some of the 

natural language strategies developed by novices as they 

attempt to understand looping structures as they learn to 

program in Pascal. In specifying a procedure for 

repetitively processing a string of information in a 

non-programming context (the problem was to determine 

average salary for factory workers as they leave work 

through the gate, trailed by their supervisor), the natural 

strategy, produced by all subjects, was to read the salary 

from each worker, then add it to the sum of the salary of 

all previous workers (keeping track of the number of worker 

so far encountered) and finally, upon meeting the 

supervisor, to compute the average. They refered to this 

as a "Read-Process" strategy. In a similar Pascal problem, 

however, that strategy tended to lead to errors (Soloway et 

al, 1982). 

In a later study that drew heavily on Brown & 

VanLehn's theory of addition errors (mentioned previously), 

Bonar & Soloway (1985) reported other sources for 

programming errors and proposed a general mechanism for the 

generation of programming bugs. They believe that most 

bugs begin with gaps in programming knowledge (PK), which 
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they see as distinct from natural knowledge. In groping 

for a means to fill this gap, novices usually draw upon 

natural knowledge, thus generating a bug. Repetitious 

techniques found in common problem solving experience, such 

as seen in the factory gate problem, above, are referred to 

as "step-by-step knowledge (SSK)", and a bug can occur when 

"SSK confounds PK". However, other bugs seemed to be 

related to natural language interpretations of programming 

concepts. Bonar & Soloway classified these as a type of 

SSK, but I like to think of them in a separate category, 

and refer to them as "natural language confounds". Still 

other bugs can result from confusion of programming 

constructs with one another (Intra-PK confounds), or with 

knowledge from other domains, such as mathematics (Other 

Domain confounds) or with aspects of the current operating 

system (OS confounds). Both Brown & VanLehn and Bonar & 

Soloway refer to these "confounds" in general, as "bug 

generators". In a broader view, it is possible that "bug 

patching", in programming, mathematics or other domains, 

may serve as a mechanism to integrate new knowledge into 

existing mental constructs. Only when it becomes 

"compiled" into an algorithm and used in an unconscious and 

maladaptive way should it be thought of in negative terms. 

To summarize the research cited on planning, Anderson 

et al (1984) believe that raw novices begin with' 

descriptive knowledge utilized by general problem solving 

plans and progress to domain-specific, procedural knowledge 
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through the encoding of problem solving plans called 

compilation. Soloway et al (1981), Bonar & Soloway (1985) 

and Hoc (1977) all studied plans, which are close analogs 

to procedural knowledge, and all saw procedural knowledge 

as developing first as low-level implementation plans and 

progressing to high-level strategic plans. One sees a 

picture emerge of the learning of a complex cognitive skill 

as a movement from general knowledge to domain specific 

knowledge which slowly accumulates (in a building-block 

fashion) back to general knowledge. The studies cited 

above provide some detail as to the first two stages, but 

what of the third? The author proposes that the final 

stage of learning programming, or of any similar cognitive 

skill, must entail the integration of domain-specific 

knowledge into general knowledge structures. Only at this 

point can one fully reflect on one's own knowledge. I 

propose the term "meta-programming knowledge" for this 

stage of true mastery, to emphasize the important role of 

metacognition. 

Metacognition and Programming Knowledge 

Silver, Branca & Adams (1984) summarized general 

research on metacognition in terms of two themes: "(1) with 

development, individuals adopt an active, self-directive 

role in certain areas, and (2) individuals develop the 

ability to monitor and evaluate their own cognitive 

processes." While there is some disagreement on this point. it 
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development in both of these areas seems to progress both 

with age and with experience in a particular domain. They 

saw this development as corresponding to an awareness of 

and attention to structure, i.e., the sort of "functional 

chunking" previously discussed, though they note that 

metacognition may decrease when cognitive skills become 

completely automatic. 

Smith & Inhelder (1975) used a block-balancing task 

(which was already known to progress through several 

stages, linked to general cognitive development) to study 

the "micro-formation of physical knowledge." Several blocks 

of varying shape and construction, including some built 

with hidden weights, were presented to children ranging in 

age from 4.5 to 9.5 years. The researchers distinguished 

between actions related to theory-testing and goal oriented 

activity. As expected, subjects' behavior fell into 

age-linked stages. In a pre-study, children eithteen to 

thirty-nine months old were observed placing blocks on the 

fulcrum in a single location and pressing down hard above 

the fulcrum. If the block fell, they would replace a block 

in the same position and press down once more. The 

youngest children in the formal study seemed to know that 

movement could lead to success, but had little ability to 

predict the results of their action. They began by 

balancing blocks at a random location , sometimes pressing 

down from above the fulcrum like the toddlers. However 

they would progress to making small adjustments based on 
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proprioceptive information, until a block was balanced. 

These children were able to balance the more complicated 

blocks (i.e., ones with asymmetrical structure, some 

requiring counterweights or especially ones with hidden 

weights), in much the same way as they balanced the 

simplest ones, i.e. using proprioceptive information. Some 

began to shift their attention to an exploration of the 

properties of blocks, a shift that Smith & Inhelder saw as 

indicating the development and testing of predictive 

theories. 

More advanced subjects began near the geometric center 

of the base of a block, then made small shifts to quickly 

balance the simple blocks (i.e., the unweighted, 

symmetrical ones), and eventually to balance all blocks but 

the ones requiring counterweights. Some children at this 

stage became distracted by the weighted and asymmetrical 

blocks, and began to explore these, apparently trying to 

develop new and more predictively powerful theories. Often, 

these subjects would begin to experience difficulty 

balancing the asymmetrical and hidden-weight blocks that 

they had previously balanced successfully, although they 

could achieve success if they closed their eyes. Smith and 

Inhelder believed that these children were also shifting 

their attention toward the theory that has been shown to 

develop at around seven years of age, that of balance based 

on weight. Older children were seen to pause BEFORE 

attempting to balance a block and placing it close to its 
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balance point on the first try. This pause before the 

problem was seen as indicative of an internal process of 

theoretical prediction. The notion of experimentation as 

being either theory-responsive or goal-responsive, the idea 

of retrograde learning as indicative of a new 

theory-in-development and the attention to pauses as an 

indication of internal processing are several features of 

Smith & Inhelder's study which will be important mechanisms 

for analyzing experimental activity in the present study. 

Papert (1980) observed that children often are unable 

to recognize mathematical algorithms as correctable 

entities, which supports the notion of a procedure-like 

bundle of algorithmic knowledge. His claim was that 

programming experience helped some of these children to 

identify and correct math bugs by making them more 

conscious of bugs and debugging behavior (Papert, 1980). 

This suggests that procedural knowledge can be "edited" 

through self-conscious activity (metacognition), that the 

right kind of activity can result in a shift to 

metacognition, and that computer programming can provide 

such activity. If metacognition is an important component 

to mathematical problem solving, as Silver et al (1980) 

believe, then it is likely to be important in computer 

problem solving as well. Experimentation, according to 

Smith & Inhelder, can at some stages induce metacognition 

and shift focus from goal achievement to theoretical 

reformulation. All of this leads the author to see 
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metacognition as the final stage in learning programming, 

following first the use of natural problem solving concepts 

and strategies that lead to many programming bugs and then 

the development of domain specific programming plans. 

This concludes the review of literature on general 

conceptualization as it relates to programming skill. The 

next section goes on to examine some particular features of 

programming languages as they effect learning, most notably 

program control and the use of variables 

Studies of the Learning of Specific Language Features 

All of the studies mentioned up to this point have 

been top-down, attempting to describe the nature of expert 

programming knowledge. The following studies, however, are 

bottom-up. They examine in detail the conceptualization of 

particular constructs, specifically the concepts of program 

control, expression parsing and variables. 

Program Control and Expression Parsing 

Sime, Green & Guest (1977) saw two sorts of important 

information implicit in a computer program, which were 

commonly used by experienced programmers. ' The first, 

sequential information, was generally recognized as the 

sequence of commands that are developed when an experienced 

programmer translates a problem into a program. The 
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second, which they call "taxon information", was not so 

commonly recognized but was equally important to the expert 

programmer. Taxon information refers to the taxonomy of 

the underlying problem, and can be thought of as the 

residual information left after code is written that can 

aid the programmer, for example during debugging, in 

recreating the original problem. 

To test this hypothesis, they created three 

pseudo-languages. One allowed only for a JUMP command as a 

control structure. Dijkistra (1980) has criticized this 

control structure as destructive to the smooth and simple 

translation by the programmer from the dynamic process that 

the programmer has in mind as a goal to the text of the 

actual program (i.e., it is weak in sequential information) 

and back again (i.e. weak in taxon information). This has 

been the underlying argument in favor of the nesting 

constructs favored by the proponents of structured 

programming. 

A second pseudo-language had logical structures 

allowing nesting in a fashion similar to ALGOL, i.e. of the 

form 

IF (condition) THEN 

BEGIN 

STMT 1 

STMT 2 

END 
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ELSE 

BEGIN 

STMT 3 

STMT 4 

END 

The third language allowed structuring but also 

required a redundant statement of the condition controlling 

the nesting structure. In constructing it, Sime, et al 

(1975) decided to forego the use of BEGIN and END to mark 

the scope of the control structures, but chose instead a 

scheme such as; 

IF (condition) STMT1 STMT2 

NOT (condition) STMT3 STMT4 

END (condition) 

They felt that this hybrid structure was richer in taxon 

information. 

In testing the ease with which these languages were 

used by beginners and then by expert programmers, they 

found that the simple nest structure was most susceptible 

to syntax errors, mostly caused by forgetting the last of a 

BEGIN/END pair. It also performed the worst in terms of 

perfect execution of the first programming pass. The JUMP 

language was most susceptible to logical errors, (i.e. 

errors in regard to the program logic). Their hybrid 

language, which required the statement of the condition 

before the THEN clause and also before the ELSE clause, was 
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10 times faster to decode! By Sime et al's analysis, this 

performance was due to the clearer taxon information in 

that language. They were critical of the performance of the 

structured style, and saw much of the justification for it 

by researchers such as Dijkstra to be lacking in 

experimental evidence (Sime, et al, 1977). This criticism 

may account for the lack of reasonable performance observed 

by some researchers in solving fairly simple programs in 

PASCAL, even by intermediate-level programmers (Soloway et 

al, 1982). 

L. A. Miller found that the conditional construct was 

itself at odds with natural problem specification. He 

found that non-programmers preferred a "qualificational" 

("put all the red things in box 1") over a conditional ("if 

thing is red, then put it in box 1") IF statement in their 

natural statement of a problem or in a first computer 

language (cited in duBoulay & O'Shea, 1981). This seems to 

support Sime et al's emphasis in taxon information, in that 

a qualificaional construction seems to point more strongly 

to the taxa being acted upon than does the conditional 

form. 

In another study of Miller's (1974), he found that 

novice programmers were far more successful using the AND 

construct than using OR. He administered tests of program 

generation with a pseudo-language of his own design, 

featuring only a conditional branching command for altering 
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sequential flow of control. The tests were administered 

under computer control, and Miller was able to report not 

only on the successful completion of the sorting problems 

given to subjects but also on the amount of time spent 

making selections by command type in AND problems as 

opposed to OR problems. He found that OR problems required 

almost half-again as much overall time to complete, but 

more than twice as much time making modifications and 

viewing displays and 10 times as much total editing time. 

Miller found that thirty-three of sixty-seven 

programming errors generated were in conditional 

statements, indicating the importance of an efficient 

conditional structure in a computer language. OR problems 

also resulted in more errors than AND problems overall by 

two to four times. Problems that required the negation of 

a conditional also gave the novice programmers trouble. 

The worst performance of all was for OR problems requiring 

one but not both conditionals to be inverted. Most 

surprising of all. Miller found that as many as 50% of his 

subjects would reconstruct an OR problem to force it into 

an AND program structure. This strategy led to more errors 

in conditional statements, but fewer implementation errors, 

indicating that once the conversion was made, programmers 

understood their programs better and had less trouble 

manipulating them (Miller, 1974). 

* 
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All three of these studies of program control 

structures support Bonar & Soloway's notion that novices 

possess strong, natural inclinations toward some structures 

over others (Bonar & Soloway, 1983). 

Program control in Logo is not the same as in Pascal, 

or in the proto-languages used by Sime et al, or in 

Miller's two studies. Sheil (1981) has offered, in a 

data-analysis language for Social Scientists called IDL, 

what he believes to be a more natural language structure 

than iteration, and one which is also closer to the control 

structure of Logo. IDL offers a small set of highly 

specialized operators and uses only functional composition, 

which he believes is easier for novices to use, as a 

control structure. (Functional composition is the main 

control structure in Logo, as well.) Sheil found that users 

did find IDL to be simple and natural to use in most 

applications, but that more complicated uses required too 

deep a nesting of functions and of parentheses for the 

novice user. He also found IDL inappropriate for many 

computer applications which were essentially procedural, 

(e.g., automating office procedures) (Sheil, 1981). 

In a functional language such as Logo, the main rule 

of precedence is that, barring parenthesization, functions 

are ordered in precedence from left to right (this is 

identical to functional composition in mathematics). The 

exception in Logo are the infix operators, (+,-,*//)/ which 
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bind most tightly and are themselves ordered as per 

algebraic convention. This is a variation from the simple 

grammatical structure suggested by duBoulay et al, and may 

be a source of confusion for novice programmers. The 

author's assumption is that in order to attain expertise as 

a Logo programmer one must learn to compose functions, even 

deeply nested functions, and to master the rules of 

precedence for exceptions such as the infix operators 

mentioned above. 

Allen & Davis (1984) support the use of functional 

composition as an underlying language structure. In their 

discourse on the state of computer programming languages 

today, they offer three categories: procedural, functional 

and relational. In the first category they lump BASIC, 

PASCAL, FORTRAN and most versions of LOGO. In the second, 

they places APL, LISP and TLC-LOGO. "In a purely 

functional language the notation only describes 

relationships between components and makes no demands on 

how these relationships are computed". Allen & Davis argue 

that functional languages are more mathematical, that they 

"...can be looked upon as abstract descriptions of 

phenomena independently of how (or even if) they are 

executed on a machine. This abstraction means they have 

notational/expressive power that may be reasoned with and 

about." Their third category is the relational family, 

including "logic programming languages" such as PROLOG. 

Such a language "expresses problems as a collection of 

mt AlfcfeL; 
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logical assertions — typically assertions about individual 

objects and relationships between objects. Though these 

assertions appear to be purely descriptive, such notations 

are executable." Relational languages also may be 

abstractly manipulated, but are "descriptive" rather than 

"prescriptive", i.e., they describe a problem rather than a 

solution. (Allen & Davis, 1984) 

While program control and expression parsing are 

beyond the scope of this study, both functional composition 

and the primitive control-structures of Logo must be 

considered in the light of the above discussion. In 

particular, this study will bear in mind the effects of 

control structure in a programmers' use of the REPEAT 

statement, of sub-procedures, operations, recursion and of 

workspace organization, (workspaces being collections of 

the "abstract descriptions of phenomena" that Allen & Davis 

describe). 

Variables 

An understanding of variables is sometimes seen as an 

important measure of programming ability. DuBoulay et al 

recommended a programming environment that included a 

visual display of currently defined variables as well as 

other features (duBoulay et al, 1981). Soloway et al found 

that some novice-programmers see loops with internal 

counters and loops that affect external variables as 
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distinct cases, to which they ascribe unique 

knowledge-frames. Kurland & Pea (1983) suggested that 

understanding the role of the local variables is landmark 

in understanding recursion. 

We can learn something about how variables are 

perceived by examining the metaphors that are commonly used 

to understand them. Harvey (1985) claimed that there are 

several metaphors for variables commonly used by Logo 

experts. Some experts think of a variable as a mailbox. 

The name of the variable corresponds to a person's name on 

the mailbox, and its value can be likened to a letter 

inside. Others think of a variable as a frame with a slot, 

like the frame in a taxi cab that announces the name of the 

driver, with the driver's nameplate corresponding to the 

value of the variable. Still others think of variable 

names as labels for something and their values as the 

things being labeled. What all of these metaphors have in 

common is: (1) a distinction between variable name value, 

(2) a functional distinction between the outside of a 

variable (its name) and the inside (its value) and (3) the 

idea a one-way reference of a variable's name to its value 

but not back again (e.g., one looks in a mailbox to find 

what's inside, but never examines a letter to determine 

what mailbox it was placed in) (Harvey, 1985). 

A simple developmental model for variables is 

suggested by Rodgers (1980). She makes an attempt to 
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correlate the stages of cognitive development of students 

with the cognitive demand of various concepts of 

variables. She notes, first, the assertion of 

developmental psychologists that children move from a focus 

on concrete objects, to begin to classify objects into 

groups and finally to classify processes, ideas and even 

problems into groups. Concomitant with this is the 

movement from physical to more abstract representations, 

and of a simultaneous change of logical analysis from a 

less formal to a more formal style (Inhelder & Piaget, 

1958) . 

Rodgers suggests four "hierarchical levels of data 

structures" in BASIC: (1) simple data, (2) simple 

variables, (3) "structures through which the data are 

addressed less directly", such as arrays or records and, 

finally, (4) programmer-defined data structures. While 

Rodgers' approach of linking computer concepts with 

developmental theory is appealing, the author finds some 

problems in her her categorization of data structures. As 

an example of "simple variables", she offers both 

10 INPUT A 

20 PRINT A 

and 

10 LET A=1 

20 LET B=A+1 

30 PRINT B However, the author has found 
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through experience that the INPUT statement of the first 

program is far more difficult for novice BASIC programmers 

to understand than are the PRINT or LET statements. 

Perhaps this can be explained in terms of a dynamic 

interaction between the programming environment and the 

data structure. 

The variables in the second program are "temporally 

constant", in that their values were introduced at the time 

that the program was written; all values can be easily 

decoded by simply looking at the program listing. This is 

not to say that they were necessarily written at the same 

time; line 10 might have been defined 2 hours before line 

20, but even were this the case a novice programmer would 

have only slightly more trouble understanding the program 

than if both lines were written at one 2 minute sitting. 

The point is that A and B are both members of "the 

program", a single conceptual unit that can be viewed by 

the LIST or executed with the RUN command. Contrast this 

with the first example. A novice might experience 

difficulty in recognizing the value and understanding the 

meaning of "A", because the variable here is created at 

what can be called "programming time", while its value is 

assigned at a distinct conceptual time-frame, known to 

programmers as "run time". Most BASIC instructors and most 

BASIC textbooks fail to recognize the importance of this 

feature of the programming environment, and Rodgers seems 

to make the same mistake. (She also fails to make a 
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distinction between lines of a program and statements 

executed outside of a program in "immediate execution" 

mode, another "temporal" distinction). 

Based on experience, the author tends to agree with 

some aspects of Rodgers’ hierarchy; for example it seems 

that students do have more trouble understanding variables 

than simple data, and that user defined records are more 

confusing to students than primitive data structures. This 

may be explained in terms of levels of indirection. A 

variable is a name for data but a data-type definition is a 

name for a type of name. To understand the latter, it 

would seem that one must rely on knowledge of simple naming 

conventions of the former. It is not clear, however, that 

there is anything inherently more difficult about arrays 

than simple variables. 

The problems chosen by Clement et al (1980) in the 

previously cited study that showed that college students 

and engineers had better success translating a word problem 

into a program then into a mathematical equation, required 

an understanding of co-variation to be solved correctly. 

Students were asked, in part of the study, to talk about 

the problem and to explain their solution as they were 

solving it, a technique known as "Loud Thinking". For 

example, when explaining his answer ,(6S = 1P) to the task of 

writing an equation to expresses the relationship of six 

students for every professor, one student commented; 
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"There's six times as many students, which means it's 

six students to one professor and this (points to 6S) 

is six times as many students as there are professors 

(points to IP)." 
^ * 

The authors comment, "The correct equation, S=6P does not 

describe sizes of the groups in a literal or direct 

manner. Rather, it describes an equivalence relation that 

would occur if one were to make the group of professors 6 

times larger". Their results show that during programming, 

subjects are better able to see the relational role of 

variables. They did not study the question of whether 

programming experience has a long term effect on students' 

ability to solve such problems (Clement, Lochhead & 

Soloway, 1980 ) . 

The body of literature on variables in programming is 

very sparse, but variables have been studied extensively in 

mathematics. While one cannot assume that identical skills 

are involved in using variables in computer programming and 

variables in mathematics, a general concept of variable 

should integrate the idea from both domains. For this 

reason, several studies of concept development and 

misconceptions of variables in mathematics form the basis 

of a generalized concept of variable. 

In a Piagetian study, Kuchemann (1978) presented a set 

of fifty-one questions to 3000 high school students in 

Great Britain. Based on the results, Kuchemann has 
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identified six distinct categories of variables which he 

believes are mastered at different stages of development. 

His statistics both differentiate some problems as more 

difficult than others and show direct relationship between 

age and success rate in each category. 

Kuchemann’s categories range from more concrete uses 

of variables to more abstract. They include the following 

(in the order of Kuchemann hierarchy): "Letter Evaluated" 

(e.g., a+5=8 ; a=?), "Letter Ignored" (e.g., a+b=43 ; 

a+b+2=?) and "Letter as Object" (e.g., write an equation 

for the perimeter of a geometric shape illustrated with 

four sides labeled "h" and one labeled "t"), "Letter as 

Specific Unknown" (e.g., write an equation for an 

incompletely drawn figure with n sides of 2 units each), 

"Letter as Generalized Number" (e.g., c+d=10, c<d, c=?) and 

"Letter as Variable" (e.g., "Which is larger, 2n or 

n+2?" ) . 

Kuchemann interprets these results as showing that the 

understanding of the concept of variability is linked to a 

kind of "closure"; the more indefinite the value 

represented by a letter, the more difficult it is to 

understand. In other words, the concept of variable is seen 

to correspond to a Piagetian ordering from concrete to 

abstract. A true understanding of mathematical variability 

lies at the end of this scale, with a recognition that a 
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series of acceptable values. 
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Applying this to programming, one would expect a 

command in Logo like 

MAKE ML 7 

to correspond with the category, "Letter as Object", 

because the meaning of the letter can be immediately 

associated with a specific thing. The command, 

MAKE "X RQ 

corresponds nicely to the category, "Letter as Specific 

Unknown"; the letter stands for that specific value which 

the user will enter at a later time. An input to a 

procedure could also be thought of as similar to the 

category of a "Specific Unknown"; (whatever number the user 

supplies when he uses this procedure"), but the integral 

relationship between a procedure name and its parameter 

inputs suggests a closer association with the category of 

"Letter as Generalized Number" (i.e., the letter stands for 

any permissible number). The output of a function 

corresponds to the "Letter as Variable" classification, 

since the programmer must specify the relationship of the 

functional result to its input in the form of an algorithm 

(Kuchemann, 1978). If Kuchemann results are correct, and 

if the association we suggest is accurate, then one would 

expect that the each class of variable use mentioned here 

in sequence would be more difficult to master. While this 

question is beyond the scope of this study, Kuchemann's 
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extension of the ideas of a concrete/abstract continuum and 

a need for closure to the examination of variability have 

influenced both the design and the conclusions of the 

present study. 

In a study of subconcepts and misconceptions of 

covariation in algebra word problems, Murray & Clement 

(1986) found three independent subconcepts — single 

variables, functions and equations; and three skill levels 

— basic, static/discrete and dynamic/continuous. As with 

Kuchemann's model, an unadorned MAKE statement would appear 

to parallel the simplest sort of variable while functional 

output would seem to parallel the most complicated, while 

variables with their values interactively assigned by the 

user and procedural inputs would seem to lie somewhere in 

between (Murray & Clement, 1986). 

Finally a particular algebra misconception, the 

reversal error in the Student and Professor Problem, 

discussed earlier (Clement et al, 1980) was found to be 

very resilient to explicit instruction (Rosnick & Clement, 

1980). While several instructional approaches were 

utilized, including identifying errors, suggesting 

conceptual models, graphing, plugging numbers into the 

reversed equation and demonstrating the correct solution, 

none were found to be very effective. The authors reported 

that other misconceptions showed signs of similar 

resistance to instruction. This seems to enhance the 
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importance of the positive effect of programming found in 

the previous study (Clement et al, 1980). Apparently 

programming was not used as an instructional technique by 

Rosnick & Clement (1980), and that study shed no further 

light on the question of whether programming exerience 

somehow taught against the reversal error in the earlier 

study (Clement et al, 1980) or whether the effect was due 

to a greater linguistic simplicity of the functional form 

of the equation. 

While much of the research cited here is intriguing 

and emphasizes the complex nature of variability, it does 

not address many of the basic questions about variables in 

programming. One question is the role that mastery of the 

concept of variability plays in programming skill 

development. What is needed is a careful charting of the 

subconcepts and misconceptions of variables as they occur 

over the course of learning to program. Another useful 

observation would be of the images and metaphors utilized 

by programmers at different stages of development to 

determine, for example, if nonexpert metaphors have the 

same consistency that Harvey finds in those of experts 

(Harvey, 1985). The relationship between variables in 

mathematics and programming variables needs to be further 

explored as well. In what ways are programming variables 

truly a subclass of mathematical variables and in what ways 

ere they a unique and independent class of their own? More 

extensive pedagogical models of variable learning in the 
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context of programming must be developed to integrate some 

of the features discussed here and to produce specific 

suggestions for instruction. 
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CHAPTER 3 

DESCRIPTION OF THE STUDY 

Methodology 

This study focused on the learning of and impediments 

to understanding variables in computer programming in the 

Logo computer language. Subjects included high school 

students who had a modest amount of training and experience 

with Logo and adult expert Logo programmers. After 

subjects were administered a concentrated instructional 

presentation on relevant Logo commands, each was asked to 

solve between four and seven programming problems in a 

microcomputer environment. The researcher was present 

during all problem-solving and encouraged subjects to 

discuss their thinking and the reasons for their actions. 

These interviews were videotaped and later analyzed using a 

cognitive microanalysis technique to uncover subjects’ 

understanding of Logo variables within the context of their 

planning, factual knowledge and experimental activities. 

The cognitive microanalysis approach basically 

involved a detailed analysis of subject-protocols in an 

attempt to plausibly reconstruct subjects' cognitive 

processes. While one cannot directly study cognition, one 

can make assertions about cognitive processes that explain 

observable behavior. Actual transcripts of protocols are 

included as appendices, to allow readers to evaluate this 

analysis independently or to utilize the raw data to 
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analysis independently or to utilize the raw data to 

formulate their own hypotheses. Analysis is provided in 

the form of a commentary on the protocols plus a collection 

of first order models concerning the cognitive processes 

operating in the subject. Diagrams are included as a means 

of representing this commentary. 

The fundamental assumption in this study is the 

constructivist notion that the individual builds his own 

internal model of the world which influences his 

perceptions, actions and learning. Such a viewpoint places 

a greater burden upon the teacher to meet the student on 

his own terms, since learning is seen as a necessarily 

personal construction. Several studies have guided this 

approach. Smith & Inhelder's (1975) study of how 

experimental activity influences and is influenced by both 

theories and goals suggested the fundamental classification 

of protocols into three categories (i.e. theories, goals 

and experimental activity). The assumption that a 

programmer maintains only one active goal at a time was 

borrowed from Anderson et al (1984), along with his 

convenient classification of knowledge as either 

"procedural" or "descriptive" (although the term "plan" is 

preferred here for the former and "theory", "concept" or 

"assumption" for the later). Also loosely adapted from 

Anderson was the notion of a hierarchical tree structure 

for procedural knowledge, which forms the skeleton of the 

researcher's model of experimental 
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programming/problem-solving and the basis of the 

diagramming method employed here. Clement's (1977) study 

of mathematical reasoning provided insight into the complex 

interaction of plans with active, semi-active and latent 

theories and misconceptions. Soloway, Bonar and Ehrlich 

(1981) provided a frame model for plans and the notion of 

misconceptions arising from natural problem-solving 

strategies. The follow-up work of Bonar & Soloway (1985) 

(informed by a much earlier theory by Brown & VanLehn 

(1980)) brings with it the notion that "buggy" conceptions 

may be generated by gaps in knowledge and includes specific 

observations of programming misconceptions such as the 

notion of a "language confound" (a misconception resulting 

from the misapplication of linguistic knowledge). We 

borrow from Hoc's (1977) study of device learning the 

assumption that physical activity during problem-solving 

(drawing flow charts or code on scratch paper, speech or 

keyboarding) generally indicates concepts that are under 

active development rather than those already internalized, 

and also an alternative conceptual framework for 

understanding how programming experience leads eventually 

to the building of "runnable mental models." 

Constraints on hypotheses generated in a cognitive 

microanalysis lie in their internal simplicity, consistency 

and ability to believably explain the protocol (Easley, 

1979). Assertions made in any descriptive study must 

explain the data in question, though they need not be 
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approach (Lin, 1979). This approach is clearly inferential 

and cannot provide absolute proof of any aspect of our 

hypothesized model of cognitive activity. Rather, the 

reader must bring to this study a willingness to 

hypothesize with the writer on possible explanations for 

subjects' behavior. The reader ultimately decides whether 

the analysis is worthwhile, based on its overall 

plausibility in explaining the data. This seems a 

reasonable first approach to the study of internal 

processes which have not been well documented in the past, 

and which are in any case far from transparent, even to the 

problem solver herself. The approach is "naturalistic" in 

that it attempts to minimize the effects of observing on 

the behavior of subjects. 

Limitations 

One general limitation of this study has already been 

mentioned: that the nature of the analysis forbids any 

claim of objective proof of cognitive structures inferred 

from protocols. This is in part a result of the nature of 

the activity: one cannot study thought processes directly, 

but only through observable behavior. However, it must be 

noted that the researcher's choice of a descriptive rather 

than a quantitative approach necessarily complicates this 

issue. A controlled study, while more limited in scope. 
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assures a level of objective proof impossible with a more 

subjective design. 

Another limitation is the lack of generalizability to 

other subjects. The presence of conceptions or 

misconceptions in one subject cannot be construed to 

indicate their presence elsewhere. The goal of this study 

is akin to the goals of field studies in anthropology and 

ethology: to construct plausible hypotheses concerning 

cognitive structures — hypotheses which are informed by 

careful observations from case studies. What the 

researcher hopes to establish here is an initial set of 

observations and hypotheses that may be used as a basis for 

more quantitative follow-up research. Chapter 5, a 

discussion of the results of this study, suggests a number 

of areas that merit further study. 

As mentioned earlier, a premium was placed on 

maintaining a natural and non-obtrusive environment during 

interviews. Although it is the assumption of this study 

that the observed behavior is closely akin to behavior that 

would have occurred had the experimenter not been present, 

it is important to acknowledge that this assumption is open 

to question. Any observation has the potential to 

introduce a bias. The generalizations and conclusions 

drawn from these data may be subject to the same bias; 

i.e., the behavior observed in these protocols may differ 

significantly from unobserved behavior. 
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Subject selection must also be acknowledged as a 

limiting factor. Subjects, outside of the three adult 

experts, were all of High School age, were generally of a 

modest programming background and were drawn from three 

different educational programs. Results may not generalize 

to other age groups, other computer languages, or to other 

stages of Logo learning. The instructional approaches of 

these three educational programs were not coordinated in 

any way, although they did share some similarities. In any 

case, instructional approach must be thought of as an 

uncontrolled variable in this study. 

Two different computers, the Acorn and the Apple (both 

Apple lie and Apple 11+ models) were used in interviews. 

Two versions of Logo (Terrapin and Apple Logo) were used on 

the Apples, and the Acorn had its own version of Logo (but 

which was very similar to Apple Logo). Two versions of 

each problem were prepared to partially compensate for 

these differences, but in some cases the differences could 

not be avoided. These cases are noted in discussions of 

the interviews in Chapter 5. 

Finally, certain environmental limitations must be 

noted. Video taping was momentarily interrupted on some 

occasions by technical problems or by the other people 

entering the room where interviews were held. Also, most 

interviews were conducted in two sessions, separated by 

between four hours and three days. 
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Subj ects 

Subjects for this study were drawn from two distinct 

groups: adult experts and high school students of varying 

abilities. 

The first group consisted primarily of seven high 

school age students having over 50 but less than 120 

classroom hours in an introductory Logo programming course, 

accrued within six months of the study. The majority of 

this group was composed of five female high school students 

selected at random from among the twenty volunteers, all 

first year participants in a six week Summer mathematics 

and computer programming experience called " Summermath", 

held at Mt. Holyoke College in South Hadley, Massachusetts 

during June and July, 1986. Two additional students had 

completed a one semester Logo programming class conducted 

at Lincoln-Sudbury Regional High School, an upper-middle 

class high school located in a suburb of Boston, 

Massachusetts, during September and October, 1986. These 

two were randomly selected from among six students who 

volunteered for this study. None of these students had any 

previous experience with Logo. This combined group of seven 

students will be identified throughout this study as 

near-novice programmers. 

Two high school students who were junior instructors 

of Logo at New England Computer Camp, a computer camp 
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composed of about 125 mostly upper-middle class children 

ranging in age from eight to eighteen, were identified as 

having advanced Logo programming ability. Both of these 

individuals had approximately thirty hours of formal Logo 

instruction, but also had over 100 hours of experience in 

other programming courses, and claimed over 200 hours of 

independent programming experience, mostly in BASIC and 

Pascal. They clearly constituted a special category, since 

much of their demonstrated Logo skill seemed to derive from 

their experience with other languages. This second group 

will be designated as near-expert programmers, and these 

interviews were analyzed with special attention to the role 

that their knowledge of other languages played in their 

conception of variables in Logo. 

Three adult experts were chosen from the Logo 

programming and teaching community based on a recognized 

mastery of the Logo language and of Logo programming 
$ 

techniques. All three have authored published articles 

about Logo learning or programming practice. The adult 

experts were studied to provide a model of expert Logo 

• problem-solving and variable conceptualization. 

Background information was collected for all nonexpert 

subjects. This included chronological age, school grade, 

prior computer experience and instruction, (including 

instruction in Logo prior to their current class). This 

data is summarized in Table 1. 



Table 1 
Summary of Subjects' Backgrounds 

Age Previous 
Yrs/Mos Logo 

Experience 
Near-novIces: 

Summermath: 
E 15/2 None 

Other 
Programming 
Experlence 

None 

N 15/6 None 

M 17/0 None 

BASIC: 
41 hrs. instruction, 
41 hrs. programming 

None 

A 

L 

17/4 Approx. 15 
hrs.; used 
occasionaIly 
in Geometry 
c I ass; 

16/11 None 

BASIC: 
52 hrs. instruct ion 
52 hrs. programming 

PascaI: 75 hrs. instr. 
50 hrs. programming 

BASIC: 20 hrs. instr. 
10 hrs. programming 

ncoIn-Sudbury: 
15/4 5 hrs. in 

8th grade; 
30 hrs. in 
6th grade 

BASIC: 
120 hrs. instruct ion, 
60 hrs. programming 

No Data AvaiIable 

Near-experts: 
L 16/9 9 hrs. in- Assembly: 54 hrs. 

struction, BASIC: 36 hrs. instr. 
6 hrs. 100 hrs. programming 
programming C: 18 hrs. 

FORTRAN: 40 hrs. 
Forth: 5 hrs. 
Lisp: 5 hrs. 
Pascal: 198 hrs. instr. 

18 hrs. programming 

R 17/2 9 hrs. in- Assembly: 18 hrs. 
struction, BASIC: 109 hrs. instr. 
6 hrs. 300 hrs. programming 
programming Pascal: 228 hrs. instr 

520 hrs. programming 
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Other 
Computer 
Exper i ence 

SpeI Iing & Educa¬ 
tional games: 
3 hrs. 

AppIeworks 
41 hrs. instruction 
, 41 hrs. keyboard 

Drawing pictures with 
MacPaint. 

Accounting software 
SAT preparation 
Games 
Print Shop 
Word Processing 

"A lot of computer 
games" (No specific 

data given) 

Varied and extensive- 
no specific data 
coIlected 

Varied and extensive- 
no specific data 
coI Iected 
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For the near-novices, information was informally 

gathered about the instructional approach used in their 

current Logo programming classes. 

Subjects from the SummerMath had completed their fifth 

week of a Logo program that emphasized mathematical 

discovery with graphics. Each subject spent ten hours per 

week in combined Logo instruction and programming for a 

total of about fifty hours. Instruction was done with 

printed worksheets supplemented by class presentations and 

individual help. Variables were introduced as local 

variables in procedures to draw geometric shapes. Text 

commands, including PRINT, FIRST and LAST, were briefly 

introduced in the worksheets. REPEAT was introduced in the 

context of the repetition of graphic commands. Global 

variables were presented briefly in an exercise in the 

worksheets but not emphasized. Cartesian commands (SETPOS, 

XCOR, YCOR) were introduced in a worksheet exercise as 

well. 

The course at Lincoln-Sudbury had lasted twelve weeks, 

meeting fifty minutes per day, five days a week for a total 

of fifty hours. This course emphasized text commands and 

list processing, including PRINT, FIRST, LAST, BUTFIRST, 

BUTLAST, LIST, SENTENCE, FPUT and LPUT. The OUTPUT command 

was introduced in the first two weeks of instruction and 

emphasized throughout the class, leading to the idea of a 

function that recursively traverses a word or list. 



Graphic commands were taught briefly, as were commands 

relating to Cartesian coordinates, the latter in a 

worksheet on graphing. 
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Method 

The focus of this study was on how conceptions and 

misconceptions of variables influence the action-plans and 

experiments of high school students at an intermediate 

stage of learning the Logo computer language. The two 

operational goals were: (1) generalize from observations of 

the interaction between concepts and misconceptions and 

subjects' action-plans and experimental activities; (2) 

identify Logo programming errors involving variables and 

uncover those misconceptions that can plausibly be seen as 

causing them. 

Programming problems were chosen that required each of 

four common classes of variable use: 

- global variables: these are simple 

variables, accessible inside or outside 
¥ 

of a procedure. Global variables are 

associated with the workspace as a 

whole and can be reported with a Logo 

system command such as PO NAMES. 

- local variables: These are variables 

used as labels for function 

parameters. 



- variables whose values are explicitly 

requested at run-time: These are global 

variables initiated in the midst of a 

procedure with a command line such as: 

MAKE "NAME READLIST, 

where READLIST pauses to accept input 

from the program user. (In other 

versions of Logo, substitute REQUEST 

for READLIST). 

- functions: A function is the only way 

to represent a covariate relation in a 

non-relational language such as Logo. 

For example, a relation like Y=2X might 

be converted into a function, F, taking 

as input an instantaneous value for X 

and outputting the Y-value for that 

input. Creating such a function in 

Logo requires not only the use of a 

local variable but also an OUTPUT 

command to provide an explicit result 

to the function. 

Nine problems were chosen to represent each of these 

classes at varying levels of complexity (See Figure 2; 

problems are listed in their entirety in Appendix B). 

Initially, subjects were shown an 18 minute 

instructional videotape, which explicitly presented all 

the commands and concepts needed to solve these problems 
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At its conclusion, nonexpert subjects were invited to ask 

the interviewer any questions about the instructional 

videotape (experts were asked for critical comments), and 

an instructional script containing the text of that 

presentation was made available to each problem-solver to 

use at will for the remainder of the session (see Appendix 

A). * Subjects were then videotaped while attempting to 

solve the problems, which were presented to them in a 

random order to control for any effects arising from the 

order of presentation. 

In preliminary sessions, subjects were given all nine 

problems, but five of the complex problems were found to be 
« 

inappropriate for intermediate programmers and were given 

only to experts in the later stages of data-collection. 

This left a core of four simple problems. Problems E-2, D, 

A-2 and B-2, one for each class of variable-use (see Table 

2). 

* With this design, a subject who fully utilized the 
initial instruction had the essential building blocks with 
which to construct a problem solution. In this sense, this 
was a study of the efficient utilization of available 
information. Our prediction was that the subjects' need to 
mentally refer to the instructional presentation or consult 
the script at appropriate times reflected in large part a 
lack of "readiness" to integrate the concept in question; 
i.e., that the concept was for some reason inaccessible to 
the subject. 



Table 2 
Classification of Problems 

Simple: 
The problem requires only 
the concept explicitly named. 

Comp lex: 
The problem requires more 
planning and/or the 
additional concepts. 

Globa I 
varIabIe: 

Loca I 
variable: 

Exp licit 
Input: 

Function: 

Problem E-2 ("Create a varia¬ 
ble called NUMBER, such that 
"PRINT :NUMBER" prints out 
the number, 7..."). 

Problem D ("Write a procedure 
called MOVE, that takes...as 
input...an X and a Y coordin¬ 
ate" ). 

Problem A-2 ("Write a pro¬ 
cedure that first prints the 
message, 'GIVE ME A NUMBER' 
...). 

Problem B-2 ("Write a proce¬ 
dure called R100 that outputs 
a random number from 1 to 100 

") • • • j • 

Problem E ("Write a proce¬ 
dure called COUNTER that 
prints out how many times 
i t has been used..."). 
ClocaI/globaI distinction} 

ProbIem F ("...Write a 
procedure called WAGE, 
that takes one input... 
(and) print(s) out that 
person's saI ary..."). 
(misdIrectIon} 

Problem A ("Write a proce¬ 
dure that...reads in inte¬ 
gers untiI it reads... 
99999"). (iteration or 

recursion} 

Problem B ("Write a proce¬ 
dure that computes the 
factorial of a number..."), 
(recurs ion} 

Problem C ("Write a proce¬ 
dure that...points the 
turtle to a new heading, 
one half of (its) 
start Ing head Ing"). 
(system "reporters" and 
the idea of heading} 

98 
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During problem-solving, the interviewer acted as a 

listener in the context of clinical interviewing (see 

Whimby & Lochhead, 1981), asking the subjects to vocalize 

their reasoning and helping them check their work for 

superficial oversights and mistakes in the execution of a 

stated plan. For example, the interviewer would offer 

suggestions for the correction of typing errors, as long as 

these suggestions did not unduly influence subjects' 

overall problem-solving strategy. At times 

counter-examples would be posed, in order to probe into the 

programmer's conceptualization of the problem. 

When, in the judgement of the interviewer, a subject 

reached an impasse, that subject was offered explicit 

instruction on one of the more superficial aspects of a 

complex problem. This will be referred to as a "teaching 

probe". * 

*For example, in an early interview, a subject's confusion 
over the use of the colon led her to attempt to type 

RANDOM :100 
In Logo, when a colon prefixes a name, the expression 
refers to the value named, a concept sometimes referred to 
as misdirection. While misdirection is an important aspect 
of the notion of a variable, it was not the focus of this 
particular problem. After asking the subject to explain 
what she had typed in order to document the error and to 
gain some insight into what caused it, a teaching probe was 
used to refocus the subject's attention to the problem at 
hand. The subject was simply told that the colon was not 
appropriate in this situation, a statement which she 
accepted at face value. This allowed her to continue work 
on more critical aspects of the problem at hand. In this 
case, the subject's difficulty seemed to be more one of 
correct notation and the meaning of the colon than a 
conceptual difficulty, such as difficulty distinguishing a 
variable from its value. 
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If such a probe was helpful, it would tend to suggest that 

the subject's initial difficulty was due only to a lack of 

factual information, while a misconception which shows 

resilience to explicit instruction suggests a deeper 

problem, either deficiency in prerequisite skills or 

concepts or a general deep-seated misconception of the 

problem. It should be noted that these teaching probes 

were not hints designed to suggest the "right answer", but 

rather means to discover possible underlying causes of an 

impasse, after it had been sufficiently documented. 

Analysis 

The analysis stage included two general tasks: 

(1) Identify and classify conceptions and misconceptions of 

variables. This required first the location of Logo 

programming errors or examples of correct variable use and 

then the examination of such cases in the overall context 

of each subject's problem solving in order to identify 

those conceptions and misconceptions which can plausibly be 

said to dominate problem-solving. (2) Propose an overall 

model of the interaction of plans, concepts and 

experimental activity. 

As a preliminary step in this analysis-, the researcher 

made transcriptions of selected protocols and noted- the 

following kinds of subject behavior: 
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Nonverbal Behavior Verbalizations 

-keyboard activity 

-reading from the script 

-pointing/hand gestures -questions 

-statements of belief 

-answers to questions 

-eye gaze -exclamations 

-facial expression -"stalling" sounds 

-experiments (use of the computer -talking to oneself 

to obtain an observable result) 

-silence/pauses in activity -irrelevant chatter 

The task then was to propose first order models of the 

high level cognitive structures that most plausibly explain 

subjects' physical behavior and verbalizations. For the 

next stage of analysis, one particular problem (A-2) was 

selected for detailed examination based on the 

interestingness of protocols associated with it. All three 

expert solutions of this problem, along with three 

particularly interesting student protocols, were selected 

and subjected to a cognitive microanalysis. 

Several procedural recommendations by Hoc (1977) 

facilitated this process. Hoc's assumption that the 

majority of internal activity and observable behavior are 

dedicated to aspects of a task that are not completely 

assimilated was incorporated into this study. Keyboard 

activity, pointing, eye gaze and questions for the 
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interviewer were thus viewed as indicating subjects' focus 

and areas which they had not yet internalized. Also, 

pauses in activity and gaps in verbalization were viewed, 

after the observations of Hoc (1977) and Smith & Inhelder 

(1975), as indications of more intense mental activity. 

Verbal exclamations and facial expressions were 

carefully noted, in an attempt to isolate potentially 

significant aspects of the affective domain. One of the 

purposes of this was to identify intuitive leaps or 

insights. (Such insights, dubbed the Aha! phenomenon by 

Martin Gardner, are seen by him as the most critical aspect 

of the problem solving process (Gardner, 1978) ). Another 

important feature of affect is a subject's confidence and 

conviction or conversely her frustration or level of 

fatigue. 

Early attempts at analysis verified the usefulness of 

the following two-way classification of high-level 

cognitive structure, derived from both Anderson (1984) and 

Smith & Inhelder (1975): 

-Plans correspond to Anderson's "procedural 

knowledge" and to Smith & Inhelder's "goals". 

These are the high-level procedures which guide 

subjects' goal-setting and so drive both physical 

and mental activity. Plans are action-oriented. 

At their simplest level, they detail behavior to 

be carried out in steps by an individual; each of 
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these steps can be thought of as an action-goal. 

On a more complex level, plans can invoke other 

plans, a process analogous to one procedure 

calling a subprocedure. During early attempts at 

analysis it was determined that most actions can 

be linked to a single goal derived from a higher 

level plan, which is in keeping with the findings 

of Smith & Inhelder (1975) and Anderson (1984). 

The term current goal will be used to designate a 

plan-element that seems to be the primary focus 

of subject behavior at a particular point in 

time. 

-Concepts (or misconceptions) are reflected in 

action as predictive theories or assumptions 

about a given domain. While plans are procedural 

in nature and can be recursively decomposed into 

sub-goals, concepts and theories are descriptive, 

better thought of as statements of fact or belief 

than as action-goals or procedures, and seem to 

be simple and indivisible (Anderson, 1984). They 

can be likened to the mental models described by 

Collins & Gentner (1981) and the conceptual 

devices of Hoc (1977). 

Each of these cognitive structures can be reduced to a 

single instantiation. Some plans or concepts are 

verbalized directly by subjects, but others can only be 
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induced from subjects' actions. For example, much 

problem-solving activity on the computer is based upon 

experimental action, as in the classic study of children's 

block balancing (Smith & Inhelder, 1975) Early attempts at 

analysis indicated that experiments are usually directed 

either toward the current goal or toward a particular 

theory. Any keyboard activity will be viewed as such an 

experiment in this study. While programming errors are 

sometimes viewed as "failed" experiments, this is not 

always the case. Some failed experiments are 

misinterpreted as successful by inexperienced programmers 

concentrating on the current goal. At other times, 

unexpected experimental results may cause subjects to 

dramatically shift their attention from achieving the 

current goal to exploring a theoretical prediction that had 

previously been taken for granted (Smith & Inhelder, 

1975). Utilizing the Smith & Inhelder methodology, this 

study classifies all experiments as either goal-oriented or 

theory-oriented, and makes note of any shift from goal to 

theory. 

Theories that are clearly false, i.e., inconsistent 

with what they intend to model, can be termed 

"misconceptions". In some cases, subjects verbalized a 

mistaken theory that directly resulted in a. programming 

error. Such misconceptions were, of course, easy to 

identify. Other errors seemed to be the result of subjects 

choosing an inappropriate plan, either because they 
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misclassified the problem or because the solution required 

a mastery of concepts that the subject did not possess. In 

the latter case, the researcher identified that 

misconception inferred to be most responsible for the 

error. During the attempt to simplify and successively 

refine the analysis of the selected protocols, 

misconceptions that were not initially obvious often 

emerged as likely causes for observed programming errors 

(Clement, 19 77 ) . 

The plans, theories and activities of these six target 

protocols were first diagrammed, and simultaneously a 

"schematic" was created as a summary of key parts of each 

interview (after Anderson, 1984). 

Schematic Diagrams 

All symbols used in schematic diagrams, as discussed 

below, are shown in Figure 1. 

The basic skeleton of these diagrams was a 

hierarchical tree structure of plans, diagrammed in 

rectangular boxes, placed along a horizontal time-scale 

that identified the point at which each plan seemed to 

become active. Plans are procedural in nature, and the 

normal progression was from a general plan to a more 

specific one. This refinement is referred to as a mapping 

of the general plan to the more specific one. Such a 

mapping was normally diagrammed with a plain line 
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Plans (Anderson's “productions”) 
-compiled procedural knowledge 
-one current “active" goal 
-plans may be active or dormant 

Concepts (predictive assumptions) 
-influence planning 
-influence and are influenced by 
activity (including experiment) 

Experimental Activity 
-Goal or Theory oriented 
(From K. Smith and Inhelder) 
-Results: (+) or (-) 
-May cause shifts to theory oriented 
activity (Smith and Inhelder) 

Successful competion of a plan (Anderson) 

Unsuccessful competion of a plan (Anderson) 

Influence 

Mapping of Active Plan 

Mapping of Inactive Plan 

Figure 1 
Symbols Used in Diagramming 
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connecting two plans. While these mappings should be 

thought of as one-way, the lines that represent them had no 

indication of direction; the reader may determine direction 

from the orientation of the chart, with mapping proceeding 

from earlier, more general plans to later, more specific 

plans; from left to right on the page. Thus plans and the 

connections between them form a hierarchical 

tree-structure. When a specific plan is successfully 

executed by a subject, a branch of this tree ends, and 

attention normally shifts to the next step in a more 

general plan (beginning the mapping of a new branch. The 

successful mapping of a plan to action is shown with a 

check mark. When the mapping fails, planning will shift 

unpredictably. An unsuccessful termination of a plan is 

shown with an "X". Everything described to this point is 

derived largely from Anderson's technique for diagramming 

what he calls "procedural knowledge". 

Sometimes, a plan ceased to exert active influence 

over a subject's behavior. This would them be described as 

an inactive plan, and the lines showing mapping from that 

plan shifted to dotted lines to graphically portray this 

(sometimes temporary) desertion of plan. 

Occasionally a plan may exert influence upon an 

independent branch of the plan-tree. Influence exerted 

upon any construct from another is shown as an arrow (i.e.. 

0 
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a line terminating in an arrowhead), the arrow showing the 

direction of influence. 

An important addition to Anderson's technique is the 

"thought balloon" which represents a concept, a predictive 

assumption about some aspect of the problem domain. A 

concept may be discussed directly by the subject, or 

strongly implied by her action, or implied by other aspects 

of subject behavior. Concepts can influence plans (or 

other structures) and plans can influence concepts. As 

before, such influence is shown with arrows that show the 

direction of influence. However, conceptual knowledge is 

seen as different in nature from the procedural knowledge 

represented as plans and is normally shown outside of the 

actual plan tree; i.e., lines of mapping will normally not 

lead to or from concept balloons. 

Three other symbols are commonly used. A diamond 

represents an experiment. Experiments following the normal 

course of planning, i.e. from left-to-right and 

top-to-bottom, were diagrammed as part of the plan tree. 

Following Smith & Inhelder, experiments were classified as 

either goal-response or theory-response. In the first 

case, an antecedent plan normally served as the goal being 

tested. In the second, the concept showing the strongest 

influence over the experiment was usually named as the 

relevant theory. 
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Smith & Inhelder have observed in their subjects an 

occasional shift in experimental activity from 

goal-oriented to theory-oriented behavior. Such a shift, 

when detected, was represented as "Home-plate" symbol. 

This symbol, used in flow-charting to denote the start of a 

process, sits at the head of the new planning-tree, 

generated by the shift. Such shifts were sometimes 

associated with "ahas", suggesting a connection between 

these two ideas. 

At times it was convenient to include bits of dialog 

on the diagram. Such dialog was shown with a 

dialog-bubble. Dialog can influence and be influenced by 

any other construct, though it is not normally a part of 

the planning tree-structure itself. 

Further Analysis 

After a concentrated analysis of these six solutions 

to Problem A-2, the remaining student-solutions to the same 

problem were examined. The plan-structures of these 

protocols were informally analyzed, with special attention 

paid to variable usage and related misconceptions. 

Finally, protocols for all other problems were 

surveyed for examples of variable misconceptions. All 

variable misconceptions were catalogued into types. In 

classifying variable misconceptions, one must necessarily 

speculate on the probable causes of observed errors. For 

► 
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example, a given error may be related to some previous 

instruction or to other previous experience such as other 

programming experience or natural language 

problem-solving. On the other hand, misconceptions may 

reflect inconsistencies or confusing aspects of the 

computer language or an incomplete understanding of some of 

its complexities, or may reflect a subject's general 

conceptual difficulties. Additionally, several causes may 

interact with one another in complex ways. Only rarely 

could subjects' direct reference to the causes of their 

errors be found, making classification a nontrivial 

judgement. Accordingly, a loose classification was 

developed for what the researcher judged to be the dominant 

cause of errors, leading to further speculation on what 

caused misconceptions and how they might have been 

avoided. 

Other interesting comments or behaviors by subjects 

that yielded important insights into the learning process 

were reported and discussed in an attempt to discover what 

may be fruitful areas for further study. Included were 

observations that tend to verify, repudiate or elucidate 

theories or suggested approaches from the literature cited 

in Chapter 2, with the aim of developing guidelines to help 

teachers and researchers identify theories and 

representations of programming and variable 

conceptualization that show the greatest promise for 

practical application. The hope is that this these 
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comments may help to illuminate thinking on the more 

difficult problems of understanding why misconceptions 

occur and of finding ways to help students overcome them. 
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CHAPTER 4 

RESULTS AND ANALYSIS 

This chapter reports on results obtained in the 

following areas: 

1. The microanalysis of the work of three adult experts and 

three selected High-school age subjects on Problem A-2, the 

problem chosen for detailed analysis. This included a full 

transcript for each protocol as appendices. Analysis for 

each protocol is composed of a summary of the more 

important plan-elements and concepts, called a "schematic" 

(after Anderson et al, 1984), and a related diagram for 

each protocol. 

2. A collection of the concepts and misconceptions from the 

above microanalysis, in list form. 

3. A summary of the remaining solutions to Problem A-2. 

4. Highlights of other interesting protocols, including 

examples of both interesting variable misconceptions and 

moments of insight. 

Microanalysis 

Expert Protocols on Problem A-2^ 

Protocol 1: H; Problem A-2: (Note: In order to protect 

their anonymity, abbreviations are used to identify 

subjects. As a matter of style, such abbreviations will 

not be punctuated by a period). 
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This protocol is summarized in Table 3. Figure 2 

gives the microanalysis of H's solution, in diagramatic 

form. (The full transcript of this protocol is included as 

Appendix C.) Several aspects of the protocol merit further 

comment. 

Based on the work of Anderson et al (1984), expert 

programmers were expected to begin by mapping a problem to 

a general plan and then mapping, in order, each step of the 

general plan to more specific plans, eventually coding each 

plan into Logo code. However, beginning at 00:05 and 

continuing throughout the protocol, H's overall approach 

showed a different pattern. He did not begin with an 

overarching, general plan. Rather, his approach was to 

carefully read through the problem from start to finish, 

stopping to code each problem element in order, and 

carefully proofreading each block of code before moving on 

to the next step of the problem. While the use of such 

superficial features as the wording of a problem have been 

observed as a strong factor in the work of novice 

programmers, it has not been previously reported in expert 

programmers (Adelson, 1981; Soloway et al, 1982). The 

assumption was that H was using a general-knowledge plan to 

Map the problem to a sequence of steps. The proposed plan 

contains three parts, applied to each element of the 

written problem in turn: I. Read a problem element, II. 

Code the problem element III. Proofread that code. A 

fourth part, IV. Test the entire procedure, is applied once 



Table 3 
Schematic; H, Problem A-2 

00:05 - Map the written problem onto a plan, MAP THE PROBLEM AS A SEQUENCE 
OF STEPS, a two-step Plan: I. READ, CODE & PROOFREAD EACH PROBLEM- 
ELEMENT, II. TEST ENTIRE PROCEDURE 

00:27 - Maps "Write a procedure that first prints the message, GIVE ME A 
NUMBER..." from the written problem onto a WRITE A PROCEDURE THAT 
PRINTS A LIST plan and codes that plan directly as: 

TO GLUB 
PRINT [GIVE ME A NUMBER] 

Upon proofreading, Ph proceeds to next problem-element 
00:47 - Maps "...and prints, THE NUMBER SQUARED IS..., followed by the 

square of the number supplied by the person using the program", from 
the written problem, onto a two step plan: 1. READ USER INPUT INTO A 
VARIABLE, (0:54: "...I want to pick It off the keyboard"), and 
2. REPORT THE SQUARE OF THE VARIABLE. 

- Immediately maps #1 onto the template, "MAKE (NAME) RL" and codes 
that plan dIrectIy. 

01:04 - Refines 2. REPORT THE SQUARE OF THE VARIABLE Into a plan, PRINT A 
LIST AND THE SQUARE OF THE VARIABLE BY MERGING THEM INTO A SINGLE 
LIST. 

01:12 - Maps ...A LIST AND THE SQUARE OF THE VARIABLE... (above) to ...A LIST 
AND AN OPERATION... 

01:36 - Maps ...AN OPERATION... to a plan to WRITE-AN-OPERATI ON, and 
dlrectly codes as: 

SQ : N 
OP :N * :N 
END 

01:56 - Proofreadlng-1lnes-2-and-3 shifts attention to a previous 
problem-element, (MAKE (name) RL). 

02:06 - Refines "READ USER INPUT INTO A VARIABLE to READ USER INPUT INTO A 
VARIABLE, AS A WORD, and immediately codes as: 

MAKE "NUM FIRST RL 
02:15 - Begins to PROOFREAD WHOLE PROCEDURE. 
02:25 - Experiment #1. (Goal:CHECK WHOLE PROCEDURE), with positive 

result (GOAL +). 
02:31 - Experiment (GOAL:CHECK WHOLE PROCEDURE), with positive result 

(GOAL +). 
02:38 - Task completed, with success. 
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the last problem element is coded. The author assumes 

that, in his rapid, initial reading, H has determined that 

this plan is appropriate for this problem, i.e., that 

problem steps are sufficiently independent to be coded 

individually. Such a plan and the ability to use it 

appropriately represents a more pragmatic aspect of 

programming knowledge. An approach such as this may have 

functional advantages for the expert. It may serve as a 

means to minimize errors (mapping problem-elements onto 

lines of code in an organized way, so as to avoid 

overlooking any problem-element) and/or minimizing the time 

required to code a solution by combining a proofreading 

pass with a coding pass. (Notice that H appears to place a 

strong emphasis on assuring the accuracy of each step 

before going on to the next). 

Once H settled on this strategy, he proceeded to 

efficiently map each part of the problem to an appropriate 

plan and to quickly code each plan into a procedure called 

"GLUB". He made only one error in coding (at 0:51). 

Otherwise H seemed to have no difficulty recovering 

appropriate plans or accessing facts needed to correctly 

code these plans into Logo commands. In fact, plans and 

the resulting code seemed to come without much conscious 

effort, exactly as one using Anderson's model of compiled 

procedural knowledge would predict. 
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The most complex part of the procedure is line 3. 

Notice that H preceded [THE NUMBER SQUARED IS] with SE, 

showing that he had already determined at that point (1:04) 

that the PRINT procedure on this line should utilize a list 

composed of two elements, and that H has mapped this to a 

plan to use an operation as the second element (at 1:12). 

H wrote this operation, SQ, and managed to interface the 

two procedures, GLUB and SQ without difficulty. Notice 

also that rules of syntax are well internalized for H. He 

appropriately used quotation marks, spaces and colons 

without confusion or difficulty. This was one of the most 

striking distinctions between expert and near-novice 

protocols. 

H's ability to catch a minor error through 

proofreading alone, as he inserted the previously omitted 

FIRST before RL in line 2 (t 1:47), provokes speculation as 

to the nature of expert proofreading. H's careful reading 

of the problem at this point can be seen as an attempt 

stimulate his memory of dormant facts or plans, but the 

efficiency of H's behavior, i.e., his ability to predict 

the mis-performance of this segment of code through reading 

alone, encourages a different reading; that H was, 

literally, "running" these lines of code through his own, 

internalized model of Logo. That is, H was stepping 

through each line of code, predicting the computer's 

parsing and execution for each step along the way. Such 

evidence of an expert "playing computer" in this way lends 
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support to Hoc's idea of "machine learning" as a 

highly-predictive, functional organization of expert 

programming knowledge. 

H's comments on the name he had chosen for his 

procedure, GLUB, is a short meta-discussion of 

procedure-naming. His selection of this particular name 

was related both to his thinking about procedures and his 

aesthetic judgement about the problem as well. Besides 

demonstrating H's understanding that the programmer has the 

flexibility of choosing a descriptive name, his comments 

suggest that H makes it a practice to choose titles for 

procedures that reflect something about their function. 

The fact that he commented on his choice of name at all 

suggests that he attends to this aspect of programming in a 

way that is somewhat surprising. Such examples of 

metacognition were quite common in expert protocols in 

comparison to those of either near-novices or 

near-experts. 

Protocol 2: P; Problem A-2: Table 4 is the schematic P's 

solution to Problem A-2; Figure 3 is a diagram of the 

microanalysis of that solution. (See Appendix D for a full 

transcript). P began by keying in on the phrase, "Write a 

procedure..." (at 0:20) and quickly coded this as the 

header-line of a procedure, SQUARE. Here, P appeared to 

focus on one part of the written problem-statement, much as 

did H. Unlike H, however, he did not maintain a 



Table 4 
Schematic; P, Problem A-2 

00:20 - Maps "Write a procedure..." to a general plan to Wr I te-a-procedure. 
This plan Is composed of steps to I. Code-header-1 Ine II. Code- 
remaInder-of-procedure and III. Check-the-procedure. 
(This approach seems related to the Map-the-problem-as-a-sequence- 
of-steps plan of P.) 

00:34 - Maps I. (from general plan to WrIte-a-procedure) onto the template: 
TO (proc. name) {Input(s)} 

and codes, as: 
TO SQUARE (ret.). 

00:42 - Maps II. Code-the-remaInder and the fact that "Its going to ask for 
a number" 
(00:38) to a 3 step Pol I-user-for-1nput plan, Including: 1. Prompt- 
user 2. Accept-user-input, 3. Use-inputed-vaIue 

00:53 - Maps #1 to a plan to Print-a-Iist, and codes as PRINT [GIVE ME A 
NUMBER] 

01:11 - Maps #2 and #3 to two alternative plans, A Four-Line-Program and 
a Three-Line-Program. The original version of the Three-line- 
program is never coded, but is later described as operating without 
creating a name for user input. One possibility is as follows: 

TO SQUARE 
PRINT [GIVE ME A NUMBER] 
PRINT SE [THE NUMBER SQUARED IS] PRINTNUMBER 
END 

TO PRINTNUMBER 
OP RQ (* itself)- (perhaps OP SQ RQ, where SQ outputs the 

square of its input). 
END 

The above would be in keeping w. P's comments at 05:08, 05:27 
and 05:58. 

01:32 - He selects the Four line program for this solution. 
01:38 - Notes RQ as a needed tool in the mapping the four line program 
01:52 - Maps middle two lines of this four line program (line 1 is already 

coded as PRINT [GIVE ME A NUMBER], to a line-by-line plan to a. 
Receive-user-lnput, b. PrInt-a-message c. Use-inputted-value 
(Note that the fourth line (c. Use-inputted-value) corresponds 
exactly to the previous plan for II. Coding-the-remainder, 3. Use- 
inputted-value (0:42) ). 

02:01 - Maps a. to two alternative plans: al. Store-RQ-wIth-MAKE and 
a2. Use-a-sub-procedure-on-RQ. 

02:23 - After extensive consideration beginning 02:01, including some sort 
of Internal debate (2:23), P settles on a2., Use-a-sub-procedure... 
In retrospect, one consideration is reported as a desire for the 
greater "robustness" afforded by this choice (07:23, 07:42). (We 
treat this as a piece of meta-knowledge, growing out of 1. the pre¬ 
vious internalization of both plans and 2. Pragmatic concepts of 
"robustness", "optimization" & "efficiency"). 

02:32 - Maps a2. as I. CaIl-procedure-wIth-RQ-as-Input and II. Define- 
procedure-to-use-requested-vaIue, and codes I. as PRINTANSWER RQ. 

02:49 - Maps II. as a Procedure-taking-number-in-l1st, a 3-step plan consis- 
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ting of 1. Code-header 2. Print-something 3. Report-result-using- 
requested value, and codes 1. Code-header, as: 

TO PRINTANSWER :NUMBER INLI ST 
03:10 - Codes 2. Print-line as PRINT [THE NUMBER SQUARED IS...] 
03:17 - Begins to code 3. Report-resuIt-using-requested-vaIue as 

PRINT..., but pauses in the midst of his coding. 
03:39 - After some thought, beginning 3:29, P decides an a revision of 

steps i. and ii. of a2. Use-a-sub-procedure-to-get-RQ, specifically 
to alter i. to i.2 CaI I-procedure-to-get-FIRST-of-RQ and to alter 
ii. to ii.2 Define-procedure-to-use-FiRST-of-RQ. P later reports 
this as balancing greater efficiency (in not unnecessarily repeating 
an operation (08:12, 08:25) against the greater "robustness" of the 
earlier plan for a2. (07:06-07:59) 

03:47 - Codes 1.2 by inserting FIRST before RQ In line 2 of SQUARE. 
04:00 - Codes ii.2 by changing :NUMBER INL1ST to :NUMBER. 
04:12 - Returns to the coding of 3. Report-result-using-requested- 

value (from Interruption at 03:17), producing the line: 
PRINT :NUMBER * :NUMBER 

04:28 - Executes II. Check-the-procedure by calling SQUARE and entering 
2 as input. 

04:39 - Task completed, with success. 
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step-by-step approach but proceeded to refine his general 

plan to a more problem-specific one, shifting his attention 

(at 0:42) to functional aspects of the problem. 

Another notable feature in P's approach was his 

attention to alternative solutions. First, in refining a 

loose plan for an interactive input from the user, P 

developed plans for both a three-line and a four-line 

version of the solution. After choosing one of these 

alternatives, P proposed two alternative approaches to 

storing user-input data. His ability to conceive of and 

determine the respective advantages of more than one 

potential solution to a programming problem illustrates 

that P has deeply internalized each alternative. He seemed 

able to visualize each solution in some detail, as if the 

code were already written, behavior markedly different than 

that of any of the student-programmers. In this analysis, 

such ability to reflect on virtually any aspect of the 

problem is viewed as more than descriptive or procedural 

knowledge, but a higher level of understanding encompassed 

by the term "meta-programming knowledge". 

Much of time expended by P in solving this problem was 

devoted to several "internal debates", which he described 

in some detail in retrospect. Hoc (1977) might describe 

him as running some sort of mental model at this point. 

However, I see P's interest in the optimization of his 

solution as key factor. The recognition and manipulation 
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of alternative plans and discussion of optimization 

typifies the meta-programming knowledge exhibited by all 

adult experts of this study. Other features of the dialog 

that can best be described as a sort of meta-knowledge are 

p's initial attempt to avoid the "extra baggage" of naming 

the REQUEST with a MAKE statement (at 5:08), his ongoing 

consideration of a second, "three-line version" of the 

procedure and his descriptive naming of the of the 

sub-procedure PRINTANSWER and of its input, first as 

:NUMBERINLIST and later as :NUMBER. 

Protocol 3: B; Problem A-2: Table 5 is the schematic for 

this protocol, and Figure 4 is a diagram of the solution. 

(For a full transcript, see Appendix E). 

Notice that B started with a general Write a procedure 

plan, as did all of the experts who attempted this 

problem. However, unlike the others she shifted to a more 

specific plan to Write an interactive procedure before 

creating the header line of her procedure. While this more 

closely matches the behavior predicted by Anderson for a 

programmer with already compiled procedural knowledge, her 

ordering was less regular, digressing from the consistent 

top-to-bottom, left-to-right order of plan-execution that 

Anderson predicts on two occasions (at 1:11 and at 6:25). 

These "detours" from Anderson's order are interpreted as a 

means by which B checks critical aspects- of her code. This 

phenomenon appears to be closely related to the "preference 



Table 5 
Schematic; B, Problem A-2 

00:50 - Initially maps the problem onto a general plan to WrIte-a-procedure: 
I. WrIte-the-procedure, II. Check-the-procedure 

00:57 - Influenced by the example, B maps I. WrIte-the-procedure 
onto a plan to WrIte-an-interact Ive-procedure ("...square, or 
something..."), which will "...basically request them (the users) to 
give me an Input, which will be the number two". Based on the visual 
structure of the example (4 lines: computer prompt, user enters number 
, computer embellishment, square of user input), we assume this to be 
a 3 step plan: A. Ask-user-for-input, B. Accept-user-input, 
{C. Use the input). (Brackets here denote a part of the plan which 
is unsupported by direct evidence). 

01:05 - Maps the problem to one or more (unspecified) alternate plans (see 
the extensive discussion starting at 08:49), but continues with the 
the original plan. 

NOTE: B's quick mapping of the problem to alternative plan(s) is diagrammed 
as an extra branch from the starting node of the diagram. This representation 
is somewhat inelegant and arbitrary, but allows a reference to the interesting 
discussion of alternative plans at the end of the protocol and emphasizes the 
formulation of alternative plans as an important aspect of this protocol. 

01:11 - Maps {C. Use-the-Input) onto a two-step plan to Use-a-tool-on-the- 
input: 1. WrIte-the-tooI, 2. WrIte-the-1 Ine-that-uses-the-tooI. 

NOTE: This differs from Anderson's "natural" top-down, left-to-right order 
for utilizing procedural knowledge, with which we would expect her to begin 
work on A. Ask-user-for-Input, followed by B. Accept-user-input. 

01:22 - Maps 1. WrIte-the-tooI to a frame-type plan to wrIte-an-operation: 
a. WrIte-an-operation, (frame) 

TO (name) (variable) 
OUTPUT (expression-wlth-varlable) 
END 

and b. Check-the-operation, 
...Immediately CODES a. WrIte-an-operation, as: 

TO SQUARE :NUM 
OUTPUT :NUM * :NUM 
END 

01:44 - b. Check-the-operation maps to Experiment #1. 
Goal: Check-the-procedure 

SQUARE 4 (ret.) 
-> RESULT: 16 

Result: Goal (+) 

NOTE: B. interprets RESULT: 16 as a positive result; she seems in no way 
distracted by "RESULT:" as an error message, which it technically is, 
suggesting that she either expected this response to her experiment or 
treats the "RESULT:" error message as a special case. 
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Table 5, cont. 

01:51 - With the positive result of Experiment 1, B turns to the Inactive 
plan A. Ask-user-for-Input, maps It to a plan to Print-a-list and 
Immediately codes as: 

TO SQ.NUM 
PRINT [GIVE ME A NUMBER]... 

02:32 - Maps B. Accept-user-Input and the example to a plan to Echo-user- 
input. Presumably the "two" In here question ("...you want me to print the 
number two there?") serves only as a reference to the "2" in the example, not 
as a constant). 

02:56 - Following a dialog with I, B drops plan to Echo-user-input. 

03:11 - Maps B. Accept-user-Input and 2. Write-the-Iine-that-uses-the-tooI 
and the example as plan to Print-the-sentence-of-a-phrase-and-the- 
square-of-the- Input. 

03:55 - Codes the plan to PrInt-the-sentence-of-a-phrase-and-the-square-of- 
the-input as: 

PRINT SENTENCE [THE NUMBER SQUARED IS:] SQ FIRST RQ 

04:08 - (Discussion of an alternative plan for an Interactive-procedure- 
using-MAKE, informed by the concept of a Distinetion-between-user- 
and-programmer) 

06:09 - Experiment #2: 
Goal: II. Check-the-procedure 

SQ.NUM 
->"THERE IS NO PROCEDURE NAMED SQ IN SQ.NUM...", 

Result: Goal (-). 

06:12 - Previous experiment quickly stimulates a general diagnostic plan to 
Find-the-error and Patch-errant-code 

06:14 - Find-the-error plan, the error message ("THERE IS NO PROCEDURE SQ...") 
, and a presumed Set-of-lnterpretive-DiagnostIc-Principles (including 
the concept of a varlable-as-an-element-of-a-workspace) leads B 
to Interpret the error as a CaIl-of-a-non-existant-procedure. 

(8:00 - "I'm trying to call a procedure by that name and 
there Is no name..."). 

The interpretation is almost instantaneous and relatively automatic 
for B,... 

(7:50 - "...Its sort of rote at this point...") 
...suggesting some sort of compilation process. 
This Interpretation (as the CaIl-of-a-non-existant-procedure and the 
plan to Patch-errant-code, maps (Immediately) to a matched plan to 
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Table 5, cont. 

Patch-a-caI I-of-a-non-exIstIng-procedure: 
1. FInd-errant-procedural-caI I, 
2. FInd-Intended-procedure-name 

(8:00 - "...so by saying POTS...), 
3. Correct-spelling. 
(1. FInd-errant-procedural-caI I Is achieved InstanteousIy by an 

Immediate examination of the error message). 
(2. FInd-Intended-procedure-name is nearly instantaneous, the 
correct name (SQUARE) being recalled from memory). 

06:18 - 3. Correct-spelling maps to a change in procedure SQ.NUM ("SQ" is 
changed to "SQUARE") 

06:25 - Experiment #3 
Goal: Verify previous mapping of 2. Find-intended-procedure-name to 
SQUARE 

POTS 
-> a list of titles, including SQUARE, appears on the screen 

Result: Goal (+) 

06:30 - Experiment #4 
Goal: I I.Check-the-procedure 

SQ.NUM 
->GIVE ME A NUMBER 
12 
->THE NUMBER SQUARED IS 144 

Result: Goal (+) 

06:39 - Problem completed w. success 
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rules" that M. Miller (1982) said were demanded by subjects 

working in the strict top-to-bottom and left-to-right order 

initially designed into his Logo planning and debugging 

environment. Miller believed that preference rules were an 

attempt by the programmer to optimize her efforts by 

preventing mistakes in the first programming pass, thus 

reducing the likelihood of needing a later debugging pass. 

This is exactly how B's ordering of her work on Problem A-2 

is interpreted in this study, as an attempt to save time 

and effort by selectively expanding upon those aspects of 

her plan deemed critical. This is classified as another 

example of expert meta-programming knowledge, in which an 

expert programmer evaluates her own problem solving. 

B's metaphor of the "branches" formed by alternative 

plans (at 03:19) provide a wonderful and powerful insight 

into her conceptualization of the problem. For one thing, 

they demonstrate B's complex value judgements based on 

subtle aspects of the problem (see comment at 9:00) rather 

than a static and deterministic mapping of the problem onto 

internalized procedural knowledge. For another, they 

indicate that the mapping of a problem to an initial plan, 

and of goals to sub-goals can be not only one-to-one but 

may also be a one-to-many mapping. This ability to 

acknowledge and manipulate multiple alternative solutions 

to a problem, exhibited both by B and by P, seems to be 

another aspect of the meta-programming knowledge of 

experienced and sophisticated programmers, and related to 
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evaluative concepts that they exhibit, such as 

optimization, efficiency and elegance in programming. 

The instantaneous debugging in response to an 

experiment (at 6:09) and B's comments about it shed light 

on the development of the pragmatics of programming, 

specifically of debugging skill. Two aspects of B’s 

debugging activity seem notable. First, error messages have 

an explicit meaning for her, evidenced by her clear 

interpretation of the error message at 8:09 and by her 

ability to interpret another error message, the outcome of 

a successful experiment (at 1:44). Second, B's debugging 

seems both like and unlike simple procedural knowledge. 

Debugging knowledge does seems to be subject to a 

compilation-like process (note B's near-instantaneous 

interpretation at 7:50). However, the process of 

understanding an error message involves a highly 

interpretive reading of the error followed by the selection 

of a plan to patch the error, from the myriad of all 

possible error patches. Complicating the issue is the fact 

that error-fixing is by nature an operation, acting upon 

existing code rather than creative/productive process like 

the generation of computer code from scratch. In the 

diagramming of this protocol, this complex debugging 

process is represented simply, as an arrow, showing the 

influence of a failed experiment on an inactive plan. This 

is, necessarily, an oversimplification of the process. 
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Nonexpert Protocols on Problem A-2 

% 

Protocol 4: R; Problem A-2: The schematic and diagram for 

this protocol can be seen as Table 6 and Figure 5, 

respectively. (The full transcript is included in Appendix 

F). 

R's discussion of the "...crucial few lines" of the 

problem (at 1:24), by which he referred to that part of the 

problem that is eventually coded into line 4 (see 3:43) is 

a very interesting one in that it shows an aspect of R's 

problem solving that more closely resembles that of experts 

than of most high-school aged subjects. Such a comment 

indicated a sort of evaluatory thinking that seemed to 

guide the development of his plan to Write an interactive 

procedure and influence the way R carried out the remainder 

of the solution. 

One striking aspect of this comment about the crucial 

part of the problem is that it came so early on in the 

protocol. R seemed to have temporarily deferred 

consideration of the earlier aspects of the problem until 

after he identified this critical part, indicating some 

sort of a pre-processing of the problem to locate clues for 

efficient solution or "heuristics". The assumption made 

about this first pass is that R progressed through the 

problem in a step-wise fashion, considering functional 

aspects of each problem-element until he found one that 



Table 6 
Schematic; R, Problem A-2 

00:50 - Maps the problem onto a 2-part plan to WrIte-a-procedure: 
I WrIte-the-procedure, I Check-the-procedure. 

00:52 - Immediately maps I Write-a-procedure to a 4-step plan to Write-an- 
InteractIve-procedure: 

A. Prlnt-somethlng, 
B. Input-something, 
C. Prlnt-somethlng, 
D. PrInt-the-square-of-the-stored-Input. 

Immediately codes I. WrIte-a-procedure as: 
TO SQUARE... 

Notice that D. PrInt-the-square-of-the-stored-Input Is more detailed 
and better refined than A, B or C. 

In the section that immediately follows (1:01 - 2:45), R refers to 
each of these steps, leading to the conclusion that, rapid as it is, 
R's coding reflects this entire plan (presumably in the form of "com¬ 
piled" procedural knowledge (Anderson's term, 1982). 

He also (at 1:24) describes his thinking in some detail. Of particu¬ 
lar Interest is his focus on the "...crucial several lines..." that 
required more careful attention. In discussion, R described a kind 
of evaluatory thinking which guided the development of his plan to 
Write-an-interactive-procedure. The author hypothesizes that R is 
progressing through the problem from start to finish, breaking it 
Into functional steps as a sort of first pass at the problem. 
Such a process appears quite similar to the diagnostic knowledge of 
some experts. The main reason for selecting this explanation over a 
number of alternatives (see below) was R's reference to specific Logo 
commands that can be associated with the proper coding of the 
problem, made in the order of the problem itself. This suggested that 
R was somehow "walking through" the problem. 

The author assumes that R is matching each part of the problem with 
a previously internalized plan (i.e., compiled procedural knowledge), 
and that a failure to find a match indicates a "harder" or 
more "crucial" aspect of the problem. Such a first pass at the prob¬ 
lem would serve at least two functions: 1. it would allow R to 
determine which parts of the problem most acutely need his attention 
and 2. it could serve as a "critic" for alternative approaches to the 
problem, and help to determine which choice was most efficient, in 
the diagram, this is shown as a Stepwise-heuristic-evaluation-of-the- 
problem. 

It would be possible to interpret this activity in a number of 
alternative ways. For example, one could interpret the subject's 
differentiation between certain parts of the problem as information 
compiled along with the procedural knowledge of the Write-an-inter- 
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active-procedure plan. Although It seems unlikely that he 
has encountered exactly this problem In the past. It might 
closely enough resemble a previously solved problem to allow such a 
transfer of knowledge. The author regards this as slightly less 
plausible than the first explanation, however. 

Another alternative would be to treat evaluatory information as a 
collection of learned facts (l.e. descriptive knowledge). A computa¬ 
tional analogy would be an numeric evaluation factor associated 
with each command, that designates that command as more or less impor¬ 
tant or difficult or crucial. However, this seems too static a 
representation for this process describe here. 

02:45 - R resumes his keyboard activity by quickly coding A. Print-something 
(with this skeletal plan "fleshed out" with information taken directly 
from the written problem, (see 2:43 & 2:48)), as: 

PRINT [GIVE ME A NUMBER](return) 
02:51 - R codes B. Input-something (and the written problem, see 2-51) as- 

MAKE "NUM RW 
03:26 - Codes C. Print-something as: 

PRINT [THE NUMBER SQUARED IS...] 
03:43 - Codes D. PrInt-the-square-of-the-stored-Input (which has been refined 

at an earlier point in the protocol) as: 
PRINT :A*:A 

04:07 - Maps II. Check-a-procedure to a plan lib. Check-aI I-possibI e-cases 
and immediately codes into Experiment #1- 

"SQUARE" 
->GIVE ME A NUMBER 

«4 ii 

->THE NUMBER SQUARED IS... 
->1521 

(Goal: Mb. Check-a I I-poss I b I e-cases) 
Result: Goal (-) 

R seems to use this result to quickly diagnose his error, (the 
use of an incorrect variable name in line 4). 

04:34 - With the understanding of his error derived from Experiment #1 R 
recodes line 4, PRINT :A*:A to: 

PRINT :NUM * :NUM(return) 
04:42 - Maps Mb. Check-aII-possIbI e-cases to Experiment #2- 

"SQUARE" 
->GIVE ME A NUMBER 

ii y n 

->THE NUMBER SQUARED IS... 
->49 

(Goal: Mb. Check-a II -poss I b I e-cases) 
Result: Goal (0) (l.e. neutral) 

04:55 - Maps Mb. Check-aIl-possible-cases to Experiment #3- 
"SQUARE" 

->GIVE ME A NUMBER 
"25" 

->THE NUMBER SQUARED IS... 
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seemed more important. One indication of this is the fact 

that R failed to refer back to the written problem until 

2:43, when he needed more detailed information in order to 

code line 1 during a second, coding pass through the 

problem. 

It would seem that R's first pass entailed an attempt 

to match each part of the problem with a previously 

internalized plan (i.e., compiled procedural knowledge). 

(Compare this with H's step-wise method in his expert 

solution). Failure to find a match during such a process 

would indicate a "harder" or more "crucial" aspect of the 

problem. Such a first pass at the problem would serve at 

least two functions: (1) it would allow MA to determine 

which parts of the problem most acutely needed his 

attention and (2) it could serve as a "critic" for 

alternative approaches to the problem, helping to determine 

which choice was most efficient. In the diagram, this is 

shown as a Stepwise heuristic evaluation of the problem. 

It would be possible to interpret this activity in a 

number of alternative ways. For example, one could 

interpret the subject's differentiation between certain 

parts of the problem as information incorporated in the 

previously compiled procedural knowledge represented by the 

Write an interactive procedure plan. Although it seems 

unlikely that he has encountered exactly this problem in 

the past, it might closely enough resemble a previously 



136 

solved problem to allow such a transfer of knowledge. The 

main reason for selecting the given explanation over this 

alternative is that R referred to the coding of noncrucial 

parts of the problem (at 2:03), in the order of the problem 

itself, suggesting an active rather than a passive 

process. 

Another alternative would be to treat evaluatory 

information as a collection of learned facts (i.e., 

descriptive knowledge). A computational analogy to this 

would be a numerical evaluation factor associated with each 

command, designating the relative importance of that 

command. However, this seems too static a representation 

to explain the above protocol. 

Another interesting feature of this protocol is R's 

attitude on procedure testing, reflected in his comments at 

5:10 and 5:19. These comments suggest that he has 

internalized certain aspects of program-testing behavior, 

making it a natural and semi-automatic process. This 

reminds one strongly of Anderson's notion of knowledge 

compilation, and would seem to lend support to that 

researcher's assertion that a cognitive skill (here 

procedure-verification in the successful problem-solving of 

a near-expert) can be explained by the compilation of 

procedural knowledge. 

R readily utilizes the error message (at 4:26), 

resulting from the failure of Experiment 1, to isolate a 
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programming error and immediately repair it. This 

suggests, as it did with expert programmers, that R has 

internalized more than descriptive facts and rote 

procedures but an understanding of the underlying process 

of programming, i.e., meta-knowledge of the programming 

process. Again, other explanations are possible. For 

example R may have internalized a body of procedural 

knowledge that directed his search for the cause of the 

failed experiment. If R had previously committed a similar 

error, using an incorrect reference to a particular 

variable, this might predispose him to check variable names 

for consistency on encountering odd results from a line 

that uses the variable. However the absence of ready 

examples of such behavior in near-novice protocols, even 

when those protocols showed evidence of knowledge 

compilation, suggests that such knowledge comes later, 

after much procedural knowledge has already been 

internalized. This also suggests that debugging may be 

linked to other meta-programming knowledge. 

It should be noted, however, that neither R nor the 

other near-ex-pert, K, have spent protracted amounts of time 

either studying or programming in Logo (see Table 1). This 

suggests to the author that meta-programming-knowledge 

developed by these two subjects during their extensive 

programming experience with other languages may in part 

have been transferred to their work in Logo. In any case. 

► 



the assumption is that this is the case with this 

particular protocol. 
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Protocol 5: M; Problem A-2 Table 7 is the schematic for M's 

work on this problem. Figure 6 is a diagram of the 

microanalysis. (For full transcript, see Appendix G). 

One of the most striking features of this protocol is 

the presence of so much discussion of outputting and the 

OUTPUT command. This may be a carry over from Problem B-2, 

M's first problem and the one immediately preceding this 

one. There, as here, M exhibited contradictory conceptions 

of OUTPUT that seemed to be competing for dominance. 

On the one hand, M held a misconception that allowed 

her to associate the OUTPUT command with the idea of 

"screen output". This seems to be a good example of what 

Bonar calls a "language confound", i.e., a "bug" (a buggy 

concept or misconception) generated by the 

over-generalization of one's natural language knowledge 

(Bonar, 1985). Alternatively, this association may be 

thought of as reflecting a natural or "correct" approach to 

the idea of procedural output. In at least one other 

computer language, APL, the default action for the explicit 

result of a function is to print it on the current output 

device. In APL, therefore, there is no equivalent to 

Logo's PRINT command, only commands to direct functional 

output and "formatting" commands to reorganize output as a 



Table 7 
Schematic; M, Problem A-2 

01:07 - Maps problem onto a two-step plan to WrIte-a-procedure: I. Write-the- 
procedure, II. Check-the-procedure, and Immediately codes I. Write-the 
-procedure as: TO NUM(ret.) 

02:02 - Maps I. WrIte-the-procedure and the problem statement to a three-step 
plan to WrIte-an-InteractIve-procedure: A. PrInt-a-prompt, B. Accept- 
&-report-user-input, C. Report-square-of-user-Input, and Immediately 
codes A. PrInt-a-prompt 

02:46 - Maps B. Accept-&-report-user-Input and two misconceptions (a "language 
confound": OUTPUT-means-"screen-output" (see also, 3:23 and 3:47) and 
a misreading of the problem as requiring the procedure to Echo-the- 
input) to a plan to Simultaneously-accept-&-report-user-input. Her 
initial attempt is to code this plan with a single command line 
utilizing the OUTPUT command; she will eventually give up on this 
approach (see 4:03 & 4:13). 

It should be noted that in her work on a previous problem (Problem 
B-2) M. sometimes exhibited the same language confound as she does 
here (OUTPUT-means-"screen-ourput"), while at other times she showed 
a deep, detailed and correct understanding of the concept of output, 
sometimes explaining and using the OUTPUT command in a manner that 
seems contradictory to the way she uses it here. Our belief is that 
the concept of procedural output is actively under development in this 
subject, and that part of this concept-refinement process involves 
resolving ambiguities and contradictory assumptions, leading M. to 
fluctuate between two rival concepts of OUTPUT. 

03:23 - Deserts the plan to SimuItaneousIy-accept-&-report-user-input and 
maps it to a Two-step-pIan-to-accept-&-report-user-input: 
1. Accept-user-input-into-a-variable and 2. Echo-user-input-using- 
OUTPUT. M. begins to consider using MAKE to code 1. Accept-user- 
input-into-a-var i ab I e, but does not yet begin actual coding. 

In describing her present goals, M. says, "I'm going to be given a 
number here; I want to put that number in a variable..." 
This line gives evidence of two important concepts. First, M. 
makes a DistI netion-between-user-and-programmer. "I" is really a 
reference to the M. as the programmer, distinct from the person 
who is "...going to (give) a number" (see also, 4:42, 4:47, 4:57). 
Second, she has internalized the metaphor of a VariabIe-as-a- 
contalner; both her use of the word, "variable", in this context and 
the use of the preposition, "in", indicates that M. understands this 
Important concept. 

04:00 - After M. considers coding 2. Echo-user-Input-usIng-OUTPUT command 
(3:47), she suddenly decides that It Is unnecessary for her 
procedure to echo the inputted value, and abandons 2. Echo-user-input 
-usIng-OUTPUT. Note, though, that M. has not necessarily abandoned 
the belief that OUTPUT-means-"screen-output", and that she later 
utilizes OP in a fashion almost identical to that which she proposes 
here (14:32), an error attributable to both the OUTPUT-means-"screen- 
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output" misconception and to a degree of "cross-talk" from the Echo- 
user- I nput-w I th-OUTPUT plan developed here. 

04:13 - M. returns to the plan 1. Accept-user-lnput-into-a-varlable, mapping 
this plan to an Imp IImentatIon plan based (apparently) on the example 
given In the Instructional demonstration (MAKE "PLAYER1 REQUEST), 
Frame-pIan-for-an-InteractIve-varlable (see also, 5:44, 6:25, 6:49) 
and begins coding with: MAKE "X... 

04:42 - Another concept Is revealed In M.'s question, "...how do I make MAKE 
dots x that number that they just typed In?". The concept Is of 
VarIable-as-an-aI las (the variable names rather than contains the 
value In question), and through the rest of this protocol It replaces 
the VarIabIe-as-contaIner concept. Both are generally recognized as 
valid and useful ways to represent a variable. 

04:57 - M. expresses another concept In comparing the still missing section of 
this Idiom to the Idea of a parameter Input; that the unknown command 
or commands Transfer-data-from-outslde-to-lnslde-the-procedure (see 
also 5:09, 5:50). 

07:35 - After I. supplies a command, REQUEST, that will meet M.'s specifica¬ 
tions, M. uses RQ to complete her coding of the Frame-mode I-for-an- 
Interactive-variable (see also 09:52). 

10:08 - Following a suggestion by I., M. begins to impliment the plan II. 
Check-the-procedure by exiting edit mode. 

10:29 - Experiment #1 - "NUM" 
->GIVE NUMBER 

"2(ret.)" 
->? 

(Goal: II. Check-the-procedure) 
Result: Goal (0; l.e., neutral) (10:37: ...I can't tell from what 
I've done so far, so I'd better just go on with the program"). 

11:12 - In what the researcher interprets as a shift to the theoretical 
question and apparently Influenced by a notion that Dots-belong- 
with-a-varlable, M. considers re-coding the Frame-pIan-for-an- 
interactive-variable as: 

MAKE :X REQUEST 
11:32 - M. abandons this re-coding, apparently based on a frame-related 

notion that Quotes-belong-in-this-frame. M. seems so to have become 
so attached to the Frame-pIan-for-an-interactive-varlable that we 
treat it here as a predictive assumption. This may be related 
to her concepts of Varlab Ie-as-contaIner and Variable-as-alias, though 
there is no direct evidence of this. 

12:12 — Influenced by the concepts of Varlable—as—container and Variable—as— 
alias, M. maps C. Report-square-of-user-Input to a plan to Report- 
square—of—user— Input—using—a—var i able, and codes this as: 

:X * :X 
12:48 — In a new attempt to resolve the theoretical confIict between the 

ideas that a) Quotes-belong-in-this-frame and b) Dots-belong-with-a- 
var lable, M. re-codes the Frame-plan-for-an-lnteractive-varlable as: 

MAKE ":X REQUEST 
(discussion only) 
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13:01 - l.'s comments lead M. to abandon this coding. 
13:46 - As part of coding of Report-square-of-Input-usIng-a-variable, M. 

Inserts the line: 
PR [NUMBER] 

as an abbreviation of the commentary line, "The number squared is". 
14:32 - Influenced by her misconception that OUTPUT-means-"screen-output", 

M. re-codes Report-square-of-user-input as: 
OP :X * :X 

This is not a correct use of OUTPUT (see commentary within the 
transcript). 

14:43 - In what we interpret as another shift to a punctuation, M. asks 
whether :X * :X will be Interpreted literally or symbolically by the 
OUTPUT command. 

15:13 - Experiment #2: NUM 
GIVE NUMBER 

2 
* DOESN'T LIKE [2] AS INPUT IN LINE 
OP :X * :X 
AT LEVEL 1 OF NUM 

Theory: :X * :X will be interpreted symbolically rather than literally 
Response: Theory (+) 
(I. offers a "fix" for this error using FIRST Just before REQUEST on 
line 2; see commentary in transcript for a discussion of this 
procedural compromise). 

17:33 - Experiment #3: NUM 
GIVE NUMBER 

2 
RESULT: 4 

Goal: Check-the-procedure 
Response: Goal (+) 
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character matrix. With this view, M's misconception could 

be attributed to a weakness of Logo's design. While this 

might carry import when considering the design of future 

versions of Logo, our view of programming-learning requires 

the learner to sometimes adjust to and find ways to 

internalize arbitrary constructs, and leads us to an 

explanation for this misconception that focus on the users' 

rather than the designers' failings. 

On the other hand, in her earlier work M expressed 

some very strong, descriptive ideas about functional 

output. In that solution, M functionally decomposed a long 

Logo command-line; i.e., she accurately described how the 

outputs of some procedures were simultaneously the inputs 

to others. There, as here, M's difficulty seemed not to be 

with the general concept of explicit result but isolated to 

the mechanics of constructing a user-defined procedure with 

an explicit result. 

One can see a similar dichotomy between two well known 

variable metaphors that M has assimilated. Variable as 

container and Variable as alias (Harvey, 1985) and her 

difficulty deciding on the punctuation needed to implement 

this knowledge in the context of creating an interactive 

variable using MAKE and REQUEST (at 11:12). while REQUEST 

was new to her, M seemed quite comfortable with variables 

cis parameters in the header line of user defined functions, 

and had previously used MAKE to store preliminary 
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calculations in a variable (see 8:42). One could simply 

claim that M had become disoriented by this new context, 

but the author sees M's lack of a strong concept of the 

meaning of quotation marks and colons as the primary cause 

for her trouble. M neither recognized that the quotation 

marks in the MAKE statement prevented the proposed variable 

name from being executed as a procedure (i.e., identified 

it as raw data) nor that a colon preceding variable name 

refered to the contents of that variable. (Davidson (1985) 

suggests that both of these ideas are important enough to 

be explicitly taught to students as part of a unit on Logo 

syntax). M did seem to recognize a distinction between 

variable name and value but rather than using the colon in 

a principled way, M appeared to have developed an arbitrary 

rule that associates the colon and a variable without a 

clear rationale. In both her use of variables and of 

procedural output, M appeared to hold a high level concept 

while struggling with the problems of implementation. If 

one treats M's high-level concepts as descriptive 

knowledge, this could be interpreted as supporting 

Anderson's ordering of descriptive before procedural 

knowledge (Anderson et al, 1984). The author, however, 

views M's high-level concepts as an early development of 

meta-programming knowledge, not as the collection of simple 

facts that Anderson describes. 

Another interesting part of this protocol is M's 

development and coding of a Frame plan for an interactive 
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variable. Even though she has never coded such a frame, M 

has gleaned from the instructional videotape a very strong 

understanding of both its function (see 4:47) and its form, 

except that she had forgotten the last command in the 

frame, REQUEST (see 6:49). In contrast to her recall 

performance on other aspects of the instructional 

presentation (for example, note her difficulties with 

OUTPUT command) this seems remarkably good. In fact the 

frame plan seemed to immediately become much more than a 

simple plan, something more akin to an accepted fact that 

was strong enough to dissuade her from the rule that Dots 

belong with variables (see 11:32 and 13:01), which she 

probably internalized well before this interview. What 

leads to such ready assimilation of this particular frame 

into the conceptual framework of this learner while others 

seem to go by the wayside? There seems to be a sort of 

"readiness factor" operating in one case and absent in the 

others. The Distinction between "user" and "programmer", 

which M has apparently brought with her to this interview, 

seems a good candidate for such a critical factor. The 

recognition of this distinction seems an inescapable 

prerequisite to understanding the notion of an interactive 

variable and it appears to be strongly in-place at the 

onset of the protocol. 

Protocol 6: A; Problem A-2: Table 8 is the schematic for 

this protocol and Figure 7 is the related diagram. 



Table 8 
Schematic; A, Problem A-2 

00:39 - Maps problem onto a plan to WrIte-a-procedure (see 4:03). We assume 
that this Includes Includes the steps I. Code-a-procedure, II. Check- 
the_procedure. A. Immediately maps I. Code-a-procedure to a plan to 
Wr|te-an-Interactive procedure, with steps A. Ask-user-for-input, 
B. Accept-lnput (see 03:00), C. Use-the-Input. 

00:45 - Codes A. Ask-user-for-Input as a print statement. 
01:35 - Maps B. Accept-lnput and a knowledge of the INPUT command In BASIC 

to a plan to 1. Code-wlth-an-INPUT-prImItIve. A. poses this plan as 
a question to the I., as an Immediate attempt to 2. Test-coding-with- 
an-INPUT-pr Iml t I ve. We treat this as Experiment #1 - "Is there an 
INPUT?" (Goal: 2. Test-cod Ing-w11h-an-1NPUT-prim111ve). Response: 

Goal (-) 
02:07 (The plan to Code-wIth-an-INPUT-prImItIve Is expanded upon in 

discussion at this time. A. explains that such a command-line would 
1. include the word, "INPUT" (1:35, 2:11), 2. use a variable to hold 
the Inputted value (3:00, 3:17) (though note A.'s incorrect statement, 
"It (the computer) gets a variable (sic) from the person typing it 
ln")(see COMMENTS in transcript) ). 
Two concepts that one would expect to be associated with the BASIC 
INPUT statement seem to be in evidence here. First, the concept of 
a distinction between programmer and user (see 3:00) and second the 
what I call a "temporal" concept of programming, specifically the 
notion that the designation of a variable name and the assignment of 
its value will come at different times (see 3:17). 

04:10 - Through a definitive statement, (I: "There is no INPUT statement...") 
I. establishes a result (Goal (-) ) to 2. Test-coding-wIth-an-INPUT- 

pr imltIve. 
04:19 - With the failure of the above experiment, A. returns to the plan 

B. Accept-lnput, adopting a two step plan 1. Accept-lnput 2. Report- 

input . 
04:30 - A. begins reading the Script, in a search for the means to code B. 

Accept-user-input. We see this as a Search-for-keyword plan, really 
a general technique to exhaustively search some domain for an instance 
with certain attributes. It is composed of two steps, a. Find-a- 
keyword, b. Test-the-keyword (to see whether it is appropriate). In 
the event of a failed test, these steps can be repeated until an 
appropriate keyword is found. Note that such a plan can be randomly 
applied to every element within the domain, as A. begins doing 
here (see 4:50), or the search can be optimized through the use of 
some sort of heuristic. 

04:50 - in carrying out a. FInd-a-keyword, A. finds the keyword, PRINT, in the 
Script, leading to a plan to Use-PRINT. She immediately codes this 
plan as PRINT :S. While we treat the selection of PRINT as the 
candidate keyword, A.'s choice may have been in part based on her 
recognition that PRINT may be a useful tool for this particular 

problem (see 11:40). 
05:10 - Codes C. Use-the-Input as PRINT [THE NUMBER SQUARED IS] and 

PRINT :S*2 
06:08 - Executes Experiment #2 - "A" 

->THERE IS NO NAME S 
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IN LINE PRINT :S 
(Goal: b. Test-the-keyword and simultaneously II. Test-the- 
procedure). 
Result: The error message Is Interpreted as a failure of PRINT 
as the desired keyword (Goal (-) for b. Test-the-keyword). However 
the Influence of II. Test-the-procedure seems so strong that one 
tends to predict that A. would have Interpreted a positive result to 
the experiment as verifying this theory, and Immediately ended her 
work here. This dual goal seems a bit of a hedge; A. does not 
seem confident In the present approach of using PRINT to accept 
Input (4:50 :"...Thls probably won't work, but I can't think of any 
other way to do It"), but If It does, she Is prepared to declare the 
problem solved. Upon failure, we would now expect A. to renew her 
Search-for-keyword plan and return to step a. FInd-a-keyword (with 
some new candidate for the desired keyword, selected randomly from 
the script). 

06:21 - (Rather than Immediately trying a new keyword, In response to the 
failure of the above experiment, A. begins a lengthy (2 min. 20 sec.) 
discussion of the problem. We view this as a temporary abandonment of 
the exhaustive FInd-a-keyword plan to review descriptive knowledge 
about the problem. As we see it, descriptive knowledge here 
function as HEURISTICS to direct the search, though this may not be 
the subject's conscious goal. Specifically, A. describes the needed 
keyword as similar to a parameter In the header line In that it will 
store user Input in a variable (6:41, 7:27) but dissimilar in that 
the Input needs to occur at a later point in time, (i.e., during prog¬ 
ram execution rather than at the time of the procedural call) (7:50)). 

08:41 - A. returns to searching the Script for an appropriate keyword (1. Find 
-a-keyword). 

09:16 - I. refers A. to a section of the Instructional Script that demon¬ 
strates the use of MAKE and REQUEST to store user input in a variable. 
This terminates her search for an appropriate keyword. 

10:06 - After reading this section of the Script, A. maps B. Accept-input to 
a frame-type plan to Use-MAKE-to-accept-Input. Her notion of the 
frame seems to be composed of 4 parts, as follows: 

(l)MAKE (2)"(3)(variable name) (4)REQUEST 
A. immediately codes (1) & (2). 

10:45 - After deleting what had been line 1 (PRINT :S), and coding: 
MAKE "... , 

A. seems to invent a misconception. Based on what we believe to be a 
deeper misconception, or more correctly, a non-conception (the Absence 
-of-a-theoretleal-model-for-punctuation-with-variables), A. asserts 
that Colon-punctuatI on-1s-as-a-integral-part-of-the-assocIated- 
variable-name (it really Is Just a shorthand means to designate 
"value-of") leads to a coding error: 

MAKE ":S REQUEST 
Strictly speaking, this Is a legal and acceptable coding In this par¬ 
ticular version of Logo, (create a variable, :S, to hold the user's 
Input), but in terms of A.'s obvious Intent (to create a variable, S) 
It must be considered an error. 

11:40 - a. Codes 2. Report-input as line 2: PRINT :S . This is identical to 
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the previous coding of line 1, but we Interpret Is as schematically 
(l.e., functionally) different. 

11:53 - Experiment #3 - "A" (Goal: II. Test-the-procedure) 
-> THERE IS NO NAME S IN LINE 

PRINT :S 
Result: Goal (-) 
The experiment falls with same error message, but for a different 
reason. Earlier, as A. realized, this message Indicated her failure 
to find the appropriate keyword to allow the procedure to take user 
Input. This time, her error amounts to a misspelling of the variable, 
the result of her misconceptions about variable punctuation. Inter¬ 
estingly, in is very likely that A. has already made this distinction. 
She must have great confidence In MAKE as a tool to illicit user input 
(for the very good reason that it was offered to her as a given), 
and she never again alters the line in question, the second line of 
this procedure. 

12:20 - A., observing the state of the computer screen after the previous 
error message, determines that b. Report-Input Is superfluous, 
a mls-goal (see 12:31), and develops and executes a plan to 
Correct-the-error-by-removing-the-offend Ing-1ine. The line is super¬ 
fluous, but this has nothing to do with A.'s current difficulties 
with variable 'S'. A. is still, prematurely, focused on the 
goal II. Check-the-procedure, and by blaming a suspicious looking 
line she seems to be trying with some desperation to carry out that 
goal. Her failure to develop a quick theoretical understanding of 
error messages is a sharp contrast to the expert's ready ability to 
recognize and act upon error messages. 

12:40 - Experiment #4 - "A" 
-> THERE IS NO NAME S IN LINE 

PRINT :S*2 
(Goal: II. Test-the-procedure) 
Result: Goal (-) 
A. seems surprised by the new error, and dIssappointed that her 
Correct-error-by-removing-the-offending-line plan did not successfully 
end her work on the problem. Note that this error message might have 
been interpreted as a partial success in terms of her present goal, 
to complete testing the procedure, since more of the procedure ran 
successfully before an error message was encountered. 

13:28 - A. says, "I just want to give this quotes, and see if it makes any 
difference". This comes after a long pause, it seems that A. has 
begun to SHIFT attention from her original goal, (Check-the-procedure) 
to a theory-testing plan meant to aid A. in understanding Logo 
punctuation. 

It is our view that A. has developed a plan to Experiment-with- 
punctuation, a two part plan, composed of of: 1. Try-punctuation and 
2. genera Iize-about-punctuation. This plan is probably influenced 
by A.'s previous goal (Check-the-procedure), and by the Absence-of-a- 
theoretical-model-for-Logo-punctuation. 
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With line 2 gone, the object of A.'s attention Is the fourth line of 
the procedure, and so, in our analysis, the experimental plan must 
also be influenced by the earlier plan, C. Use-the-Input, but 
we see the new Experiment-with-punctuatIon plan as primary, and 1. Try 
-punctuation maps to a more specialized plan to Use-quotes-to-supress- 
the-error-message. This Is coded immediately as: PRINT ":S*2 . 
The protocol from this point on reveals a good deal of impatience on 
A.'s part to be done with the procedure; we would have expected her to 
choose a more careful and controlled plan for exploring punctuation. 
We believe this is an artifact of the semi-active goal-oriented plan 
II. Check-the-procedure, a sort of "crosstalk" between a "goal 
response" and a "theory response" activity (as observed by K.S. & 
Inhelder). This seems to be true for the remainder of the protocol, 
and you may note it reflected in our diagram from here on. 

13:58 - Experiment #5 - "A" 
-> GIVE ME A NUMBER PLEASE 

"5" 
-> THE NUMBER SQUARED IS 
-> :S*2 
(Goal: II. Check-the-procedure) 
Result: Goal (-) (14:00 "No, no, no, no!") 

14:36 - Following the failure of Experiment #5, A. immediately states that 
"...when you have some'm with quotes around it, it'll have what's 
Inside". This appears to be a transfer of the concept of quotes from 
BASIC, a reasonable but not exact isomorph to quotes in Logo. A. 
goes on to theorize that the cause of the failure of the last experi¬ 
ment was due to the quotes before the colon, and develops a plan to 
FIx-error-by-removing-quote, and codes this plan at 15:06. 

15:14 - A. develops a second plan, "...for no particular reason" 
to Fix-error-by-addlng-spaces (on either side of the '*'), 
and codes the plan. Note that this is a legal configuration for the 
PRINT command, and would work if line 2 read MAKE "S RQ instead of 

MAKE ":S RQ. 
16:00 - After a long examination of the script, A. develops a plan to Fix- 

error—by—swi tch I ng—MAKE—for—PR I NT and codes the plan, though she has 
little confidence In any of these plans ("...I don't know if this is 
gonna work, either..."). 

16:18 - Experiment #6 - Goal: FIx-error-by-switchIng-MAKE-for-PRI NT 

"A" __ 
-> GIVE ME A NUMBER PLEASE 

"3" 
-> THE NUMBER SQUARE IS 
-> THERE IS NO NAME S IN LINE 

MAKE :S * 2 
Result: Goal (-) 
Although the predominant high-level plan at this point is the loosly 
experimental plan to experiment with punctuation, the immediate goal 
to FIx-the-procedure... (reinforced by II. Check-the-procedure) 
strongly Influences A.'s experiment, as indicated by the fact that she 
follows Its failure with new plans to fix the procedure, but not by 
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rejecting the overall strategy of using MAKE to replace PRINT. Our 
assumption Is that A. Is capable of careful experimental activity, but 
Is not purely operating In that mode. 

16:57 - A. develops an original theory: that Variables-are-distinct-from- 
"names". A. associates "name" with the MAKE statement and "variable" 
with parameter inputs, but she Is not simply making a distinction 
between global and local. A. claims that a "name" can be 
composed of any number of characters, while a "variable" must be made 
up of only one letter (17:26). A.'s idea seems re Iated to at least 
two preconceptions. First, she has undoubtedly been exposed to 
variables In Algebra, where they are usually limited to one character 
(One-Ietter-varIabIes-from-AIgebra). Second, while she has written 
procedures with inputs before, A. apparently has only seen and used 
one letter names, and has apparently generalized from this a limiting 
rule for legal "names" (Logo-inputs-may-have-only-one-character) 

18:45 - Based on her reading of the script, and questions associated with her 
theory that VarIables-are-distinct-from-names, A. develops a plan to 
FIx-error-by-removIng-coIon and corrects line 2 to read: 

MAKE "S RQ 
This corrects the error which been causing her trouble since 

10:45. 
18:56 - Continuing her plan to FIx-error-by-removIng-coIons, A. changes line 

4 to read: 
MAKE S * 2 

While this strategy did fix line 2, it does not make sense out of 
line 4. 

19:04 - Experiment #7- 
Goal: Fix-the-error-by-removing-the-colon. 

"A" 
-> GIVE ME A NUMBER PLEASE 

ii 211 

-> THE NUMBER SQUARE IS 
-> THERE IS NO PROCEDURE NAMED S IN LINE 

MAKE S * 2 
Result: Goal (-) 

20:07 - After examining the script and the screen for over 10 seconds (A. 
seems very confused after the last experiment repudiated her last 
Fix-the-error plan), A. formulates a plan to FIx-the-error-by- 
usIng-the-exampIe-as-a-frame, and codes line 4 as: 

MAKE "S * 2 RQ 
20:50 - Experiment #8- Goal: Fix-the-error-usIng-the-exampIe-as-a-frame 

"A" 
-> GIVE ME A NUMBER PLEASE 

”6" 

-> THE NUMBER SQUARED IS 
-> * DOESN'T LIKE S AS INPUT IN LINE 
-> MAKE "S * 2 RQ 
Result: Goal (-) 

21:19 - a. quickly develops a new plan to FIx-the-error-by-removIng-spaces- 
around-the-asterisk. We assume that this is Influenced by the concept 
that Spaces-may-affect-arIthmetIc-operators, derived from previous 
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experience or a piece of learned descriptive knowledge. A. codes 
the plan by changing line 4 to: 

MAKE "S*2 RQ 
21:30 - Experiment #9- Goal: FIx-the-error-by-removIng-spaces-around-the- 

asterIsk. 
"A" 

-> GIVE ME A NUMBER PLEASE 
"3" 

-> THE NUMBER SQUARED IS 
-> (at this point, the procedure pauses, waiting for keyboard input). 
Result: Goal (-) 
While the goal is not reached, this experiment helps A. to gain 
insight into her problems. After observing the behavior of line 4 
(see 21:34 and 21:44), she aborts the rest of the experiment, laughs 
and expresses a new gained insight into why line 4 should not 
use a MAKE statement. (For example at 22:37: "This line is supposed 
to take the input...of the first MAKE statement, and...mu11ipIy it by 
2 and print out the answer". This seems markedly different from the 
rambling style of A.'s recent activity. We regard it as an "aha!", 
related to some realizations about MAKE and RQ, and it marks the end 
of her experimentation with punctuation 

22:57 - A. interprets the result of the last experiment as an indication that 
Line-4-shouId-not-use-REQUEST, and she removes that primitive, but 
she is confused as to what command should take its place, despite her 
clear analysis at 22:37. The reason for her inability to translate 
"...take the input of the first MAKE...multiply it by 2 and print 
out the answer" into a line that PRINTS 2 times a variable is 
not clear. It may be due to fatugue, or the interference of her 
recently Invented misconception that names and variables are distinct 
entitles, or a need for closure related to the goal II. Check-the- 
procedure, or a combination thereof. 

23:57 - A. returns to her Search-for-keyword plan. After examining the script 
, A. maps a. Find-a-keyword to a plan to Use-OUTPUT which she immed¬ 
iately codes on Iine 4 as OP S*2 

24:20 - b. Experiment #10- 
Goal: b. Test-the-keyword 

"A" 
-> GIVE ME A NUMBER PLEASE 

"3" 
-> THE NUMBER SQUARED IS 
-> THERE IS NO PROCEDURE S IN LINE 
-> OP S*2 
-> AT LEVEL 1 OF A 
Result: Goal (-) 

24:44 - Maps a. FInd-a-keyword to a plan to Use-RQ and codes line 4 as 
RQ*2 

24:56 - Experiment #11- 
Goal: b. Test-the-keyword 

"A" 
-> GIVE ME A NUMBER 

"5" 
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Several features of this protocol are worth 

mentioning. At 1:35, A asked the interviewer whether there 

is an INPUT statement in Logo. This direct question was 

treated as an experiment to test a plan to code the problem 

using the proposed INPUT command. It was assumed that this 

represented, in part, a transfer from A's previously 

internalized knowledge of the BASIC language (which has an 

INPUT command that can be used in exactly this type of 

situation) to a plan to use the same command in Logo. (A 

may also have been influenced by the presence of the word 

"input" in the problem statement, (see Appendix B) ). 

There is little research on the transfer of knowledge 

between computer languages but this observation (along with 

others, including R's work on Problem A-2, mentioned above) 

suggests that this question merits more careful attention. 

A couches the question in terms of a command that might 

form a complement to the OUTPUT command (which does exist 

in Logo but not in BASIC). This suggests an alternative 

explanation for her proposing INPUT. However, since the 

command A proposed (to allow the user to supply information 

to a running procedure) and Logo's OUTPUT procedure (which 

designates the explicit output of a function) are not exact 

parallels, this explanation is regarded as less likely than 

the transfer of knowledge from BASIC. 

At 4:30, A began an exhaustive search of the 

instructional script for a keyword that will accept user 

input. Then, beginning at 6:21 and lasting until 7:50 A 
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shifted to a review of known facts about variables, perhaps 

as heuristics to help her with the search. This suggests 

that descriptive knowledge may play a complementary role 

with procedural knowledge, and that the problem solver 

requires both factual knowledge and experience to 

eventually derive true meaning from both. 

A produced an error (MAKE H:S REQUEST) at 11:40 which 

was identical to one considered (but then abandoned) by M 

(see above) and by others as well. This is seen to occur 

due to the lack of a clear conception of syntax and 

punctuation in a MAKE statement, and of the meaning of 

quotes and colons in Logo. The presence of this error in 

more than one protocol supports Davidson's assertion that 

Logo syntax and punctuation should be carefully included in 

instruction (Davidson, 1985). 

Starting at 13:28, A shifted her attention from the 

current goal to the meaning of quotation marks, ("I just 

want to give this quotes, and see if it makes any 

difference at all"). The result of this. Experiment #5, 

leads her to an insight on the function of the quotes, as 

expressed at 14:00. Many of A's attempts to check her 

procedures lead to theoretical questions, many of them 

about punctuation. The shift mentioned, above, and the 

"cross talk" between goal-oriented procedure checking and 

theory-oriented experimentation on punctuation indicate the 
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sort of shift from goal to theory observed by Smith & 

Inhelder (1975). 

At 16:57, A generated a new and original 

misconception; that parameter inputs are distinct objects 

from variables created with MAKE. She called the former a 

"variable", but refered to the latter as a "name". 

(Normally in Logo, these two terms are considered 

synonymous). While the term, "name", was probably inspired 

by the previous error message, ("THERE IS NO NAME S...M), 

A's unique, dual classification is assumed to be the result 

of an earlier misconception that Logo variables have only 

one character, which prevented her from integrating the two 

concepts of variables into one more general conception. 

At 21:57, as A viewed failed Experiment #9, she gained 

some insight into a long standing errant plan that led her 

to use MAKE in line 4 where she should have PRINTed 

something. As procedure A was executing, she observed a 

pause in that line, and after 2 seconds she laughed and 

aborted the experiment and corrected the error. While 

other errors in the procedure were never completely 

corrected, A seemed to have temporarily risen out of the 

confusion exemplified by a long series of poorly controlled 

experiments. Even though she never corrected the remaining 

errors or completed writing the procedure, A's spontaneous 

insight, coupled with an exclamatory verbalization (in this 
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case a laugh), meets our qualifications for an insight, or 

"Aha!". 

This concludes the summary of the microanalysis of the 

six selected protocols. A list of concepts and 

misconceptions implied in these six interviews are 

collected as Table 9. 

Summary of Other Solutions 

Summary of Remaining Solutions to Problem A-_2 

E; Problem A-2: 

In general, E probably had the greatest difficulty of 

any subject in this study. In the work on Problem A-2, the 

second problem she worked on, E was able to enter the text 

editor and to write two lines that correctly printed the 

messages called for in the problem ("GIVE ME A NUMBER" and 

"THE NUMBER SQUARED IS :"). At this point she stoped 

editing and tested the procedure. E gave no clear 

indication whether or not she recognized that important 

aspects of the problem remained to be solved. The 

assumption was that she did, and that the next section of 

her work began as a test of the code she had already 

written. 



Table 9 
List of Concepts and Misconceptions from Six Seclected Protocols 

Concepts: 
1. An operation can be used to replace a variable. 
2. A variable can be used as input for arithmetic operators. 
3. Meta-knowledge about the relative advantages of alternative approaches 
to a problem. 
4. Concept of robustness in programming. 
5. Concept of efficiency in programming. 
6. Concept of optimization in programming. 
7. General diagnostic principles for interpreting error messages. 
8. Concept of variable and procedure as elements of the workspace. 
9. Concept of variable as container. 
10 Concept of variable as an alias. 
11. Distinction between user and programmer. 
12. REQUEST transfers data from outside to inside a procedure. 
13. The template: MAKE "(variable name) (value) 
to assign a value to a variable name. 
14. Notion of timing during program execution. 
15. Knowledge of INPUT command from the BASIC language. 
16. A theoretical model for punctuation with variables. 
17. Concept of a string, from BASIC. 
18. Variables from mathematics. 

Misconceptions: 
1. Punctuation misconception: Dots must always prefix a variable. 
2. Misapplication of knowledge of INPUT command from the BASIC language. 
3. Lack of a theoretical model for punctuation with variables. 
4. Logo inputs may have only one character. 
5. "Variables") are distinct from "names" (Parameter inputs vs. global 
variables). 
6. Spaces may affect arithmetic operations. 
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The remainder of her problem solving was driven by the 

immediate results of E's recent activity, first by the 

results of this test and then by results of each successive 

bit of activity. E's behavior accentuates the importance 

of some very basic assumptions about programming, and the 

degree to which programmers take them for granted. Without 

the overarching theories that guide activity and attention 

and give meaning to the responses of the environment, the 

problem solver is left to drift, responding to every 

meaningless stimulus with the same attention as that 

granted critical junctures in problem solving. In this 

sense, E's behavior can be viewed as the antithesis of R's 

approach to this problem. 

In E's case, the overarching theory that is 

conspicuous in its absence is a strong concept of procedure 

and a clear distinction between the Logo environment and a 

defined procedure. E started off quite properly, testing 

the code she had already defined under the title, NUMBER, 

but as that incomplete procedure finished executing (the 

procedure simple printed two lines of text on the screen), 

E failed to recognize that it had stopped. She behaved as 

if she had already imbued the program with the ability to 

take input from the user (the part of the problem that she 

had not yet addressed), and typed in the number that she 

wanted squared, 12. With RESULT: 12, (really an error 

message from the top level of Logo), E began to experiment 

with the computational ability of Logo in "calculator" 
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mode. The author assumes that E noted that 12 was not the 

square of itself, but became completely absorbed with the 

error message that had appeared on the screen. She next 

typed in two sixes, followed by carriage returns, and 

seemed surprised to see two identical lines, "RESULT: 6", 

on the screen. Apparently E intended to enter two numbers 

and see their product as the only result, as if she was 

still working under the control of a procedure that already 

had the ability to take input and compute with it. Next, E 

began to experiment with the phenomenon of "calculator 

mode". She typed, "6+6(return)", and saw RESULT: 12 (she 

was probably still trying to square the number 6, but was 

confused about the process of squaring and did not realize 

that it entails double multiplication, not addition). E 

remarks, at this point, that "Its just like a 

calculator...". Considering the her overall performance, 

this seems like quite an insight for E. "But its weird 

because you have to write the answer, kind of", 

acknowledged that E was having trougle explaining what had 

occurred with her present state of knowledge. However, she 

seemed very curious and excited (and surprised) by 

calculator mode, and tried two more simple addition 

problems, 3+3 and 2+2. 

At this point, E claimed that her procedure, NUMBER, 

was responsible for these results, which were really the 

response of Logo's operating system. When asked to explain 

how her procedure worked, E entered the editor and 
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attempted to explain this calculator-like activity in terms 

of the simple and incomplete procedure that she had really 

written, and of course she could not. She seemed to lose 

confidence this explanation, after first suggesting that 

the colon, the last item in the second list that she has 

printed, allowed the procedure to accept user input. 

("Dots...,I guess, are where its leaving room for the 

person to write an answer in. And the computer figures the 

answer, 'cause that's the procedure that I typed in"). E 

then claimed that the procedure was done, but she seemed 

unsure of herself, and in the remaining problems given 

during another 45 minutes of her interview she demonstrated 

few episodes of more or less free experimentation such as 

she did on the above problem. 

Upon review, this seems a wonderful teaching 

opportunity missed. E's seemed to truly have been enjoying 

her discoveries and insights as she used the computer as a 

calculator. It is true that she was operating under the 

mistaken assumption that she was using her own procedure 

during this period. However, the content of her conceptual 

insight seems less important than several affective aspects 

of E's behavior in this section. While during other parts 

of her work on this problem E seemed slightly frustrated 

and confused, in this section she seemed to feel in control 

and to be gleaning information from the results of each 

experiment; i.e., each time she hit the carriage return she 

appeared to be engaged in an active learning process. 
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While the goal of this study was understanding subjects' 

programming and not actively instructing them, this 

interview does point out the lengths to which a teacher of 

programming may have to go at times to understand the 

assumptions of their students. 

N; Problem A-2: 

N's work on this problem was in several ways similar 

to that of A, reported earlier. N, like A, had studied 

BASIC programming and her work toward solution of this 

problem, like A's, was in some ways helped and in some ways 

hindered by this knowledge. Helped in that N, like A, 

showed sophistication in some of the high-level variable 

concepts related to this problem. Hindered in that N, like 

A, sometimes became confused in the implementation of these 

plans by elements of the BASIC language. In N's case, this 

sort of other-language distraction was more pronounced. 

Both N and A generated long protocols somewhat rambling in 

nature and which ended without success. 

Quite early in the protocol, before attempting to 

actually type in any code, N verbally reviewed the problem 

and discussed her developing plan to solve the problem. In 

addition to demonstrating an understanding of procedure 

definition and naming (with TO NUMBER) and the syntax of a 

Logo PRINT statement, N considered how to make her 

procedure square a number, and decided on the use of a 
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variable. She stated, "You have to have a variable in 

there", (although, through much of the rest of the 

protocol, she mistook a semicolon for a colon as correct 

punctuation for a variable). N made a clear distinction 

between a variable name and the number-value that might be 

bound to it. "It represents a number you might type in and 

it doesn't have a certain value, it can be any value." This 

showed that N had a strong general concept of a variable. 

N went on describing the use of an interactive variable: 

"When you've pushed (;B), when you're putting in the 

number, which is 2, it would be the same thing...the number 

is B." 

N further demonstrated a basic understanding of 

variables when she decided to change a variable referred to 

several times in her procedure. She quickly and easily 

changed the variable everywhere it occurred. Furthermore, 

her reason for changing the variable was reminiscent of the 

work of experts, with their attention to aesthetics and 

optimization. N changed a variable name when she felt that 

the new name would better represent its function in the 

procedure.. She changed variable names twice, first 

changing B to P ("P is for 'Product'"), than changing P to 

F (for "factor"). 

With such an informed discussion of the high-level 

aspects of variable use, it is surprising that N was unable 

to complete the problem. N's lack of progress was largely 
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attributable to difficulties not in planning but in 

implemention. As with other nonexperts, this was in 

general characterized by a lack of flexibility and an 

inability to interpret and utilize information in the form 

of error messages, references sources and previously 

learned facts. In particular, N had problems finding ways 

to elicit interactive input and with punctuation. 

Early in the protocol, N formulated the following 

line: 

PR "GIVE ME A NUMBER" ;P 

(at a later point in the session, this became: 

PR [TYPE IN A NUMBER] :P 

and finally: 

PR [TYPE IN A NUMBER :P ] . 

The original quotation marks were a carry over from BASIC 

(this will be discussed shortly), but the line may also be 

related to an INPUT statement in BASIC. Compare it with 

this line in BASIC: 

INPUT "GIVE ME A NUMBER"; P 

The input statement shown here prompts the user, pauses for 

user input and stores the inputted value in the variable, 

P. Obviously, the only difference between this and the 

line that N wrote was in the first word. This speculation 

was supported by the observation that N seemed surprised 

that her procedure did not take input from the user, even 

though she understood the concept of an interactive 

variable. Interestingly, when N attempted the problem in 
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BASIC, toward the end of the interview, she used the 

original Logo configuration exactly and attributed to it 

the ability to elicit user input ("If you type in '6' (the 

variable is 6)"), At a later point, N introduced a 

variable in the header line and from that point on she 

supplied a parameter when using this procedure. 

N, like all near-novices, had considerable difficulty 

with punctuation. As mentioned previously, one of the 

first lines of code that she wrote, 

PR "GIVE ME A NUMBER" ;P 

contained quotation marks as used in a BASIC "string". 

(When she initially coded this line, N referred to the 

punctuation as "parentheses"). N consistently used 

quotation marks in this way until the interviewer 

instructed her in the correct punctuation of a list with 

square-brackets. 

N prefixed all variables with a semicolon (rather than 

the correct punctuation mark, a colon) for much of the 

interview. About half way through the protocol she 

remembered that the correct punctuation was a colon. This 

correction was not prompted by any experimental results or 

comments by the interviewer but by N's recollection alone, 

and so it is treated as the activation of a dormant 

memory. This seems similar but not identical to an 

insight, which we normally think of as a working-out of 

some theoretical question. It is more difficult to 
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understand why an individual remembers some facts easily 

but not others, and how and why relevant facts are suddenly 

recalled. In N's case, there are indications that she was 

initially distracted by the juxtaposition of a semicolon 

and a variable name in BASIC's INPUT statement, as 

mentioned earlier. The visual proximity of the semicolon 

to a variable and the close relationship between the 

semicolon and the full colon punctuation probably led N to 

suppress any memory of correct punctuation (probably rote 

memory as opposed to functional encoding) and her adoption 

of the former in place of the later. Once N did recall 

that a colon was the correct punctuation to use in 

association with a variable, she used it consistently from 

then on. 

L; Problem A-2: 

L began in much the same way as N. She quickly made 

her first attempt at coding the problem: 

TO NO. :N 

PRINT [GIVE ME A NUMBER] 

PRINT :N * :N 

PRINT [THE NUMBER SQUARED IS] 

PRINT " 

This was similar to N's work in two ways: (1) The only 

provision for user input was as a parameter variable on the 

header line, and (2) the line to print the squared value 

(PRINT :N * :N) preceded a line meant to introduce it; 
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(PRINT "THE NUMBER SQUARED IS"). However, upon visually 

reviewing the procedure L recognized that the order of 

execution of lines 2 and 3 was incorrect. Her first 

modification was to line 2, which she changed to: 

MAKE "N N * N 

This was her description of the procedure: 

"This says, 'Give me a number', you put in the 
number and then, whatever the number is, it will 
make that number to double itself, so instead of 
printing it, it will make it that." 

Notice that L described the inputting of a user-supplied 

value in the midst of program execution, as specified by 

the problem, not as a parameter during the procedural 

call. When asked to specify the point at which the 

procedure takes in the number, L recognized this 

contradiction ("(otherwise) it'll say, 'NO needs more 

input' "). Sensibly enough, she began to search for an 

alternative way to accept user input, first by asking a 

direct question (which the interviewer refused to answer) 

and then by inspecting the instructional script. Within a 

minute she recoded line 2 to: 

MAKE "NUMBER RQ 

and deleted the parameter variable in the header line. She 

vacillated for a few minutes on the use of MAKE in line 2, 

but upon a careful reading of the instructional script she 

returned to this configuration, with the following 

comments: 

"Now I understand, I need to REQUEST it, because 
its asking a question; I want it to ask 
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them...for a number, and then they'll type the 
number, and then it'll say, "THE NUMBER SQUARED 
IS", and then I'll have to write a procedure to 
square the number". 

A few seconds later, L changed the 4th line to: 

PR :NUMBER1 * :NUMBER1 

but almost immediately changed PR to RESULT ("Because 

that's what the result of the square would be"). Again, L 

had come up with (essentially) a correct coding and then 

abandoned it. L then tested this version of the procedure, 

and Logo complained that "THERE IS NO PROCEDURE NAMED 

RESULT", so she tried MAKE as an alternative to PR, and 

made several other alterations. Within 6 minutes, however, 

L returned to her original (and correct) coding of line 4, 

resulting in an almost perfect coding of the procedure: 

TO NO. 

PR [GIVE ME A NUMBER] 

MAKE "NUMBER1 RQ 

PR [THE NUMBER SQUARED IS] 

PR :NUMBER1 * :NUMBER1 

END 

The only error in this procedure is that RQ always outputs 

a list, and the multiplication operator accepts only simple 

numbers as input. When L tested this procedure, line 4 

failed for this reason, and the interviewer quickly 

explained the problem to L and suggested the insertion of 

FIRST before RQ in line 2 as a way to fix it. (In Chapter 

3, this problem was recognized as an irritating 
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distraction, resulting from differences in versions of Logo 

used by various subjects). Immediately following this 

explanation, 22 minutes into the interview, L inserted 

FIRST before RQ in line 2, but through an oversight, she 

deleted the colon in the second NUMBER1 in line 4. Once 

again, her procedure was very close to done, but before 

attempting to test it L began 10 minutes of alterations 

that lead her further and further from completion. First 

she changed line 4 to a MAKE statement. (This is the 

second time the lead command of this line had been changed 

from PRINT to MAKE). Rather than adding the missing colon 

to the second NUMBER1 variable, L then deleted the colon 

form the first NUMBER1, only to reinsert it a minute later, 

ending up with: 

MAKE "NUMBERl :NUMBER1 * NUMBER1 

The error message (THERE IS NO PROCEDURE NAMED NUMBERl), 

produced when L then tested this procedure, led her only to 

replace the quotation marks with a colon and the colon with 

an equals sign. Further corrections were no more 

consistent with error messages received. L went on to 

introduce the FIRST command after the first occurrence of 

the variable, NUMBERl. Finally, in a postfix 

configuration, L introduced FIRST after each occurrence of 

the variable: 

MAKE "NUMBERl FIRST=NUMBER1 FIRST * NUMBERl FIRST 

And introduced a new line 5: 

PR :NUMBERl 
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The equal sign that she used may have been a throwback to a 

LET statement from L's light background in BASIC. The 

apparent postfix configuration may have grown out of an 

attempt to imitate line 2: 

MAKE "NUMBER1 FIRST REQUEST 

In other words, L could have seen this structure as: 

MAKE (variable name) FIRST (remainder of line) 

Soon after this, L and the interviewer agreed to abandon 

the program. The protocol indicated that error messages 

and the instructional script influenced L's work less than 

her confusion about punctuation. Many of her changes to 

punctuation seemed arbitrary; some may have been 

experimental, but none (following the 22 minute mark) 

showed indication of a strong, high-level theory about 

punctuation and its relationship to variables. 

0; Problem A-2: 

0 read the problem and immediately coded it, as 

follows: 

TO SQ 

PRINT [GIVE ME A NUMBER] 

MAKE "N RL 

PRINT [THE NUMBER SQUARED IS] 

PRINT :N * :N 

END 

This coding was flawless except for a two minor errors: 

(1) 0 used RL, a command to accept a user-supplied list in 
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the version of Logo with which 0 was familiar, rather than 

rq, its equivalent in this dialect; (2) The multiplication 

operator (*) requires its inputs to be words, not lists, 

and so the user-supplied value must be converted into a 

word. This can be easily corrected by inserting the FIRST 

procedure before RQ on line 2. In this case, FIRST would 

extract the first word from the list output of RQ, 

essentially converting the user-input into a word. 

On first typing line 4, 0 had used a quotation mark 

and quickly gone back and changed this to a colon. Before 

0 tested this procedure, he was asked to explain these two 

types of Logo punctuation. At first 0 said he didn't know, 

but when pressed he explained, "Quotes means...making the 

variable; (the colons) mean using the variable...as far as 

I know." 0's programming performance seemed strong; this 

first pass at coding revealed no conceptual problems other 

than the same lack of care regarding the data-type of the 

inputted value that many others, including experts, had 

shown. Aside from his tentativeness, his definition of the 

colon seemed acceptable. His description of the quotation 

mark, though not a general definition, properly identified 

it as used in the MAKE statement. 

As 0 went on to test his procedure, he encountered a 

M* doesn't like [2] as input" error message. One would 

have expected him to correct the error without much 

difficulty, but 0's inability to glean information from 
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this and later error messages led him to a long and 

rambling attempt to correct his procedure. The first thing 

0 did was to change the spacing of the line in question, 

but the same error message occurred. When 0 could suggest 

no other means to repair this error, the interviewer drew 

0•s attention to FIRST in the instruction script. 0 

responded by inserting FIRST before the left-hand argument 

of "*", though not before its right-hand argument, and the 

error message recurred. In an attempt to suppress this 

particular error, 0 changed the fourth line to read as 

follows: 

PR FIRST [ :N * :N 

This produced a new error, "FIRST DOESN'T LIKE []". 0 

moved the close-bracket (]), to enclose the first ":N", 

which printed ":N" before the original error message (* 

doesn't like [2]...) recurred. At this point 0 asked the 

interviewer for help and he was advised to use FIRST before 

both occurrences of :N, changing line 4 to the following: 

PR FIRST :N * FIRST :N 

This repair left one problem for 0 to solve. The left-hand 

input to "*" (FIRST :N) needed to be parenthesized in order 

to prevent "from parsing :N before FIRST "converts it 

to a word. However, 0 was frustrated by this problem as 

well. Even with the suggestion that parentheses might be 

useful in this situation, 0 had difficulty. At one point 

he used square-brackets in place of parentheses. At 

another point he generated a partially postfix expression. 
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reminiscent of one of L's productions: 

PR :N FIRST * FIRST :N 

In general, these examples demonstrate 0's poor sense 

of how Logo expressions are parsed. 0's lack of a strong 

conception of parsing was probably his most significant 

problem, underlying his generally poor performance. This 

nearly complete inability to bring meaning to his 

interpretation of each of Logo's responses to his 

experiments led 0 to express his sense of the futility of 

any attempt to understand and correct his errors. His 

response to each error message was haphazard, and aimed 

toward superficial aspects of each error. Rather than 

analyzing each error, 0 tended to exhaustively alter each 

element of the errant line, in hopes of stumbling upon the 

solution. As close as he was at the beginning of session, 

0 was unable to independently complete his coding of the 

problem, and his final attempt was far from the mark. The 

difference between his initial proposal for coding and his 

performance when he encountered errors was striking. 

K; Problem A-2: 

K, like R, had extensive experience with several 

programming languages, including a great deal of 

independent programming in Pascal and especially BASIC. 

His performance was similar to R's in that he was able to 
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messages and correct any coding mistakes. 
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Before K began any coding, he thought about the 

problem for about 10 seconds and then immediately began 

typing. In coding the top line, he started to introduce a 

parameter-variable but changed his mind after a few seconds 

thought and went on to the rest of the procedure. He coded 

the rest of the procedure rapidly and with little 

difficulty. His only error was the use of RQ, a command 

from the Terrapin Logo dialect with which he was familiar, 

as a means to elicit interactive user-input rather than RL 

or RW from the Apple Logo dialect being used for this 

interview. Once the interviewer explained the two options 

available to him, K chose to use RW, recognizing that he 

wanted the users input in the form of a word, and he easily 

made this correction, leaving his procedure in the 

following form: 

TO SQ 

PRINT [GIVE ME A NUMBER] 

MAKE "NUM RW 

PRINT :NUM * :NUM 

END 

In discussion, K suggested that, as an alternative, he 

could have created a procedure in this dialect called 

"RQ". He was not specific in the formulation of this 

procedure, other than that it would include the RW command 
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and that the original procedure would need to call this new 

procedure, which he calls "S", in some way. The 

consideration of alternative problem solutions has been 

seen only in the protocols of expert subjects and of the 

other near-expert, and the assumption made by the author is 

that K's attention to such alternatives grows largely out 

of his extensive experience in other programming languages 

rather than his modest training in Logo. At one other 

point, when coding the fourth line, K began to code the 

line with a MAKE statement. He, apparently, considered 

storing the square of the user-supplied value in a second 

variable, but decided on the above coding, with PRINT. 

This is a second example of K's recognition of alternative 

codings of the problem. 

K had no trouble with punctuation. He used quotes and 

brackets correctly and without the need for any aid. The 

assumption made here is that in K's experience with other 

computer languages, specifically with BASIC and Pascal, he 

had developed both concepts and practical knowledge that 

informed his behavior. One similarity between these two 

languages and Logo is a distinction between commands and 

data, an important issue in the use of Logo punctuation 

such as the quotation mark and the bracket. Unlike BASIC 

or Pascal, Logo utilizes a special punctuation mark, (the 

colon) for a reference to the contents (as opposed to the 

name) of a variable. K showed no difficulty in use of 

colons, even though neither of the two languages with which 
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he was so familiar use special punctuation for a reference 

to a value, relying on syntax alone to distinguish a 

procedure call from variable-use. 

Summary of Solutions to Remaining Problems 

Much interesting data was collected on the eight 

problems other than Problem A-2. The method used during 

analysis was to successively refine the focus of this 

study, first by transcribing and examining the general 

performance of all subjects on the four "simple problems" 

(see Figure 2) which were attempted by all subjects and 

later by focusing on a particularly promising problem. 

Problem A-2. A brief summary of subjects' performance on 

the remaining problems is in order here (this data is 

available upon request from the author). To begin with, 

solutions of the three simple problems besides A-2, in 

alphabetical-order, are discussed in some detail. The 

remaining five problems, those classified as "complex" (see 

Figure 2) were administered only where time permitted, and 

generally only to subjects who had demonstrated mastery of 

the prerequisite, simple problem. Each complex problem is 

mentioned, also in alphabetical order, with highlights of 

those solutions that seemed most intriguing. Finally, a 

classification of observed misconceptions is presented in 

outline form. 
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Problem B-2: Write a procedure called R100 that outputs^a 
random number from 0 to 99, such that if you then type FD 
R100 the turtle will draw a line segment, but PRINT R100 
prints a random number from 0 to 99. 

This problem required a simple understanding of a 

function and the skills that enable a programmer to define 

a function in Logo. Fundamentally, this meant an 

understanding of the meaning, syntax and practical 

applications of the OUTPUT command. Secondarily, solution 

of this problem required the correct use of RANDOM. Both 

of these ideas were covered in the Instructional 

Presentation. 

All three experts solved this problem quickly and with 

efficiency, coding R100 as an operation. One of these, H, 

felt that the wording of the problem was deceptive, 

although he was delayed only briefly. In later discussion, 

H explained that, in his initial interpretation, the latter 

part of the problem statement ("...such that if you then 

type FD R100 the turtle will draw a line segment, but PRINT 

R100 prints a random number from 0 to 99") suggested the 

inclusion of an if clause as a sort of filter, to determine 

whether the user's input required that the procedure draw 

lines or print on the screen. 

Two non-expert subjects (E and L) showed virtually no 

assimilation of either the concept of an explicit 

procedure-result or the mechanics of the OUTPUT command 

from the Instructional presentation. One of these two, E, 

used a PRINT command in place of OUTPUT. It was not clear 

► 
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if this error was related to the "language confound" that 

led several subjects to use OUTPUT rather than PRINT on 

Problem A-2 to mean "Output to the screen". L had a great 

deal of difficulty with the problem, and especially the 

syntax of RANDOM. Neither of the two were able to solve 

the problem, or to show much progress on the problem before 

they gave up on it. 

Six subjects (J, K, R, 0, M and A) seemed to have at 

least a vague sense of functional output as they began to 

work on the problem. One of the six (J) seemed familar 

with the word, OUTPUT, in the context of Logo programming 

but worked in a disorganized and ineffective manner until 

finally giving up on the problem. Three of these six (0, M 

and A) misinterpreted the examples, which demonstrated how 

the output of R100 could be used by two primitive 

procedures, FD and PRINT, as the goal of the problem. Two 

of them (L and A) initially tried to code R100 as a 

procedure that drew a dashed line; the other (0) as a 

procedure that printed a random number rather than 

outputting one. 0 and A struggled with the problem, 

showing little clear direction until they had produced 

identical miscoding of R100, with PRINT in place of the 

correct, OUTPUT: 

TO R100 

PRINT RANDOM 100 

END 

For both of these subjects, the error message (R100 DIDN'T 
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OUTPUT) led them to the correct coding as they appeared to 

express some insight into the meaning of the OUTPUT 

command. They both continued working on the problem but 

made little progress toward a solution before quitting. 

The two near-experts (K and R) searched the Instructional 

Script for a procedure that, in the words of one, declared 

an "explicit result". Both of them found and selected 

"OUTPUT" quickly and immediately and correctly implemented 

it. 

M's work on this problem was very interesting. She 

was one of those who initially coded it as a procedure to 

draw a dashed lines. M claimed she had never seen the 

OUTPUT command before the administration of this problem, 

and no knowledge of the command was revealed in her code. 

However, as she worked on a procedure that imitated one of 

the examples, M began to discuss the passing of explicit 

results from a primitive operator (RANDOM 100) to a 

"destination" procedure (FD) in the line: 

REPEAT 7 [PD FD RANDOM 100 PU FD 10] 

She referred to her work as "Experimenting with 

outputting", and though she eventually became frustrated, M 

seemed to recognize the nature of her predicament, 

eventually summarizing her work as a difficulty "making 

some kind of connection between procedures". This seemed 

to indicate not only the concept of an output but a concept 

of the functional composition of operators, although M 

could not forge these concepts into a proper implementation 
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of the actual problem. The author interpreted the 

"crossover" conversation about functional composition as an 

example of a shift from goal to theory-oriented activity, 

as described by Smith & Inhelder (1975). This suggested 

that she had a partially developed concept of OUTPUT in 

place at the beginning of the protocol. 

Before stumbling upon the OUTPUT command, A produced 

at least three interesting configurations: 

1. A raised questions about whether or not to use 

':* with the numeric input to RANDOM, considering 

"RANDOM :100 ." 

2. She had difficulties with the mechanism for 

variable assignment, especially with its syntax. 

At one point she proposed using "RANDOM 100 = :S" 

as the coding of a plan to assign a random number 

to variable S. 

3. A used MAKE in place of OUTPUT in one coding 

of R100, producing the following: 

TO RND100 MAKE "S RANDOM 100 PU FD 10 

PD END 

Problem D: Write a procedure called MOVE, that takes two 
numbers as inputs, an X and a Y coordinate. The procedure 
should move the turtle to that point on the screen. For 
example: 

MOVE 100 -5 
should move the turtle to that point on the screen with an 
x-coordinate of 100 and a y-coordinate of negative 5. 

Problem D tested subjects' ability to use accept 

parameter input to a procedure and input and to use that 
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input (as a variable) in the body of the procedure. SETXY 

was discussed in the instructional presentation in the 

context of a brief explanation of cartesian coordinates. 

All three experts coded this problem quickly, as a 

procedure using SETXY. One (P) paused upon first reading 

the problem, then remarked that MOVE was really "just an 

ALIAS for SETXY", and immediately coded the problem. 

Several non-expert subjects tried to write MOVE using 

only FD, LT and RT commands. E approached the problem in 

this way, but had difficulty using parameters, and was 

unable to conceive of a way that the procedure could be 

generalized to work regardless of the turtle's starting 

heading. 0 and L both succeeded using this approach. L 

had to overcome many implementation problems. 0's solution 

was much less error-ladden. 

In his initial coding, K attempted to code the problem 

as a procedure, MOVE, which had two inputs, :X and :Y. In 

the body of the procedure, K used SETPOS, a primitive in 

the Logo dialect that he was familiar with. SETPOS takes a 

list-input composed of an x and a y coordinate. In order 

to convert :X and :Y into a single list he tried to simply 

enclose them within brackets: 

SETPOS [:X :Y] 

in the body of MOVE. 

When he was unable to merge the two inputs in this way, he 

shifted to using two other Logo primitives, SETX and SETY, 
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each of which takes a single number as input. K quickly 

completed the coding using this strategy, and in a 

follow-up discussion had the interviewer explain the fault 

with his first approach. M solved the problem using this 

second strategy (SETX and SETY), and claimed it was "just 

like" other procedures she had already written. A also 

solved the problem quickly, using SETX and SETY. She 

initially coded the header line without variables, but 

added :X and :Y immediately after deciding on this 

approach. When asked about their function, she explained 

that, "...those are just variables. They just happen to be 

the x and y coordinate". Both these remarks and the speed 

with which she solved the problem suggested that A had a 

good grasp of both how to define local variables and how to 

pass parameters. 

R initially misread the problem as having to REQUEST 

input from the user, but soon completed the problem once he 

caught this minor error. 

Problem E-2: Create a variable called NUMBER, such that 
PRINT :NUMBER 

prints out the number 7. 

This problem, which involved a straightforward use of 

MAKE to assign a value (7) to a global variable (:NUMBER) 

was solved quickly by all experts, who found the solution 

obvious. 
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The two near-experts, K and R, also solved the problem 

quickly, as did 0. One interesting fact was that K, even 

though he used MAKE correctly and in general used 

punctuation with great understanding, could not explain the 

reason for quoting the first input of MAKE. His rote use 

of this punctuation this subject, whose work work in 

general showed something approaching meta-programming 

knowledge of the experts, suggests that this idiom, 

unsupported by conceptual understanding, may persist for 

some time without necessarily being reflected as an error 

in coding performance. 

R, on the other hand, could explain the purpose of the 

colon in the line: 

PRINT :NUMBER 

"The colon tells Logo that what follows is not a constant; 

look to what it points to.” In this passage, R described 

the role of the colon both as a data-type designator and in 

reference to its implementation at a machine language 

level, where the variable can be thought of as a "pointer", 

(i.e., referring only to the address of the memory cell 

where the value in question is stored, not to the value 

itself). 

Most of the remaining non-experts were able to code 

this problem correctly. 0 had no difficulty describing the 

function of the colon as he coded the problem after a quick 

reading of it. He explained that, "The variable has '7' 
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inside of it, so when I do 'PRINT :NUMBER', it111...print 

out the number." A could not remember which command to use, 

but returned to the Instructional Script, quickly found the 

MAKE command and used it correctly to solve the problem. 

M started by creating a procedure, D, with a parameter 

variable, :N. In the body of the procedure, however, she 

coded the MAKE statement on the first line, and a PRINT 

statement on the second. M quoted the first input to MAKE 

("N) and considered quoting the second input as well (the 

number 7), showing that she had no clear conceptual 

understanding of the quotation mark. Furthermore, M's 

initial performance indicated that she did not distinguish 

the parameter, :N, from the global variable. M called the 

procedure without supplying an input, and in response to 

the error message, D NEEDS MORE INPUT, M spontaneously 

decided to change the global variable name from :N to 

:NUMBER, then used procedure D (this time supplying a 

numeric input), observed its execution and declared the 

problem solved. What was interesting was that M's behavior 

suggested that she did not conceive of global assignment 

with MAKE, the goal suggested by a careful reading of the 

problem, as distinct from procedural definition. 

L tried a similar approach. She refered to the task 

in the correct context; "I'm trying to create a 

variable...", but an early attempt at the problem produced 

the following code: 
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TO RICK :NUMBER 

MAKE "NUMBER :7 

PRINT :NUMBER 

END 

This coding and L's behavior throughout the interview 

indicated that she, like M, did not carefully distinguish 

between local parameter and global assignment in this 

context. However the bulk of L's behavior for the 

remainder of the protocol was in reaction to the error 

message produced by ' : 7• , as she struggled over correct 

punctuation for a number. 

Problem A: Write a procedure or procedures that repeatedly 
reads in integers until it reads the integer 99999. After 
seeing 99999, it should print out the correct average. 
That is, it should not count the final 99999. 
(Note: This problem was taken from a novice/expert study of 
Pascal (Soloway et al, 1981). 

One of the experts solved this problem with a single 

recursive procedure using an IF-THEN-ELSE clause to either 

accumulate the sum of inputs into a a global variable and 

increment another counter-variable or, when the flag value 

(99999) was detected, print the average. The other two 

experts used a recursive operation as a sub-procedure. 

This sub-procedure monitored each input to determine 

whether the flag value had been entered, at which point it 

outputed the sum of inputted values. This sum was used by 

the super-procedure to print the average. 
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K, one of the near-experts, wrote two procedures, a 

main procedure, AVG, and SUMMER, a sub-procedure to collect 

numbers. Initially, K made an attempt to code SUMMER as an 

operation, but he encountered many difficulties with this 

approach, primarily related to the pragmatics of outputting 

the correct value in all situations. Finally, he abandoned 

this idea and coded SUMMER as a recursive procedure, using 

a global variable to accumulate sums and passing that value 

by refering to that global variable in AVG. In summarizing 

his solution, K attributed the failure of his initial plan 

to Logo's limitations, specifically an (imagined) inability 

to deal with explicit results, (this even though K had used 

OUTPUT successfully in Problem B-2). 

R, the other near-expert, had an initial plan that was 

sound: write a recursive procedure, using an if clause to 

accumulate totals or print the average value, depending on 

whether or not the user inputs the flag value. But, a 

succession of minor errors resulted in error messages that 

distracted him from this plan, leading him in an outward 

spiralling of increasing insecurity as he questioned his 

more and more basic assumptions about Logo. R ended up 

with a slightly different plan that used two procedures, a 

super-procedure that initialized two variables to 0 (R had 

been confused by earlier results caused by left-over values 

in a global variable from previous problems) and then calls 

a recursive sub-procedure with four IF clauses (two to 

accumulate the total and recurse if the flag value was not 
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encountered and two to decrement the counter variable 

(which was incremented upon entering the procedure) and 

print the average when it did encounter the flag value. 

He, too, accused Logo of depriving the programmer of the 

ability to declare explicit results. 

M encountered what I call "temporal difficulties" 

(difficulties related to the timing aspects of program 

execution) in her failed attempt at this problem. After 

her initial plan to write a recursive procedure that stops 

upon encountering the flag value, M shifted to the idea of 

collecting all values at one time, in a list, and began 

asking questions about the use of ITEM extract elements 

from a list. This second plan would require an organized 

plan to traverse the list, computing the total of it's 

elements. However, she was unable to implement either of 

these plans, and ended up with the following 

configuration: 

TO D 

PR NUMBER 

MAKE "X FIRST RQ 

MAKE "Y ITEM 2 RQ 

MAKE "Z ITEM 3 RQ 

OP :X*:Y*:Z/2 

END 

Ignoring what appear to be more straightforward mistakes, 

the failure to quote NUMBER and the incorrect divisor in 

her averaging algorithm, notice that M used REQUEST in each 



188 

of lines 2, 3 and 4, as if it were a variable that held the 

desired input-list rather than a procedure to allow dynamic 

interaction with the user. However it would be an 

oversimplification to summarize M's misconception as simply 

mistaking RQ for a variable. The author's analysis is that 

a variety of conceptual weaknesses in both plans, 

especially a number of weak temporal concepts, led M to 

spliced together parts of both plans into the odd 

configuration seen above. 

When she ran this procedure M was surprised and unable 

to explain its behavior and soon gave up on the problem. 

In a subsequent discussion of the code, M explained that 

line 1 "...should take the first number, second line, 

second number, third line, third number, because it says, 

'ITEM 3 of the list'", but when asked, "What is the name of 

the list that ITEM 3 is taking the 'Z' from?", M answered, 

"Number", referring to the argument to the PRINT statement 

on the first line of the procedure, not RQ, as one would 

expect. During her later work on Problem E, M discussed 

her conception of REQUEST: "When you have it ask a 

question and you get an answer then you can use that answer 

by doing the command RQ." Here M describes RQ as an active 

agent in both eliciting a value and refering to it. Rather 

than saying that M believes that RQ is a variable, the 

author believes that M associates RQ with the variable in 

the frame: 

MAKE "(varname) RQ 
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This frame, which was cited in the instruction 

presentation, has the function of saving user input for 

later reference. REQUEST plays the role of forging a 

communication passageway from the programmer (M) to the 

user (some as yet undesignated individual who will interact 

with this program at some point in the future). It is the 

variable that serves a storage function, not RQ. M has 

trouble making this distinction, probably because she is 

unclear about the temporal aspects of RQ in the above 

frame. 

Conceptual aspects of ITEM in M's second, 

list-traversal plan are weak and ill-defined as well. 

Problem A calls for a procedure that generalizes to any 

number of user-input values. For those that solved the 

problem, this was done with some type of recursion and 

either a global variable (in a recursive procedure) or a 

local variable (in a recursive operation). The latter 

would appear to be more useful here, since M's intent was 

to collect all values at one time as a list, but she was 

unable to develop such a plan. The above configuration 

represents M's attempt to approximate the behavior of a 

general plan for the purpose of the interview, but instead 

of using FIRST, ITEM and the addition and division 

operators to compute the average, in effect mimicking the 

effect of a (non-general) operation, M chose to extract 

each value from the pseudo-list and store each into a 

variable before arithmetically manipulating them. M seems 
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to have seen this as a simpler approach although it clearly 

takes more steps than operating on the values directly. M 

probably felt that variables are more permanent than 

operational results. (An alternative explanation is that 

punctuation difficulties in expressions using any of the 

tightly-binding arithmetic operators may lead some 

programmers to favor more easily puntuated variables over 

function calls. 

Problem B: Write a procedure or procedures that compute(s) 
the factorial of a number. Try to put it in as brief a form 
as possible. 

The mention of brevity in the wording of this problem 

was designed to encourage its coding as a recursive 

operation. All three experts solved it rather quickly in 

this way. K's solution was also a recursive operation, and 

he described an alternative recursive procedure using 

global variables. R initially attempted to solve the 

problem with a recursive operation but was unable to 

complete it and shifted to a recursive procedure plan. 

This led to a quick solution. Two near-novices (L and A) 

tried this problem and failed. Both of their attempts 

showed some evidence of a high-level, recursive plan but 

both of these subjects encountered implementation 

problems. One (A) made initial attempts to solve it as a 

recursive operation, then shifted to recursive procedure 

plan using global variables but was unable to implement 

either plan. 
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Problem C: Write a procedure that, when run, finds the 
turtle's present compass-heading and points the turtle to a 
new heading, one-half of the the starting heading. The 
procedure should operate correctly, no matter what was the 
starting position or heading of the turtle. 

This question was meant to examine subjects' 

understanding of a primitive operation (SETH). Results for 

this problem, however, were not very interesting, because 

most of the subjects who attempted it solved it without 

much difficulty. All three experts, both near-experts and 

two near-novices (L and A) wrote procedures that utilized 

both HEADING and SETH commands. All but one of these 

non-experts found this information after an efficient 

search of the script. One of the near-novices (A) 

correctly utilized the SETH command in a procedure that 

always set the turtle to a constant heading. This solution 

did not meet the constraints of the problem, even though A 

considered her solution to be complete. 

Problem E: Write a procedure called COUNTER that takes no 
inputs, and that prints out how many times it has been 
used. For example, the first time you type COUNTER, it 
will print "1", the second time "2", etc. 

The expectaton was that any subject who understood the 

permanent nature of a global variable would have been 

likely to use a global variable with the program, COUNTER, 

to solve this problem. All three expert subjects solved 

this problem quickly using this strategy, although one of 

them (H) briefly considered using DEFINE to dynamically 
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redefine COUNTER before he shifted to a global variable 

strategy and immediately solved the problem. 

Both near-experts immediately recognized the same 

strategy to quickly solve the problem. Neither mentioned 

the idea of pointers in their solution, but considering R's 

discussion of Problem E-2 it seems likely that one or both 

of them had used pointers to create linked-lists in Pascal, 

a technique closely rated to indirection in Logo. 

Only two near-novices, M and A, attempted Problem E. 

Upon reading the problem, M immediately focused on the key 

question, "How do you make (a procedure) aware it's been 

used?" She recalled a technique to draw a figure known as a 

pursuit curve "...by remembering coordinates", an apparent 

reference to the MAKE command. However, M then considered 

using REQUEST, based on the following logic: 

"Each time you typed COUNTER, you have to use the 
knowledge that you typed COUNTER before, again. 
So you have to use what has been typed in again. 
So that's what REQUEST does. The person types in 
something and REQUEST uses that again, for 
something else." 

M's misconception of RQ (a confusion about timing aspects 

of the familiar frame, 

MAKE "(varname) RQ 

mentioned earlier) seemed to have resurfaced in her work on 

this problem. Again, this was reflected as a failure to 

distinguish between the function of RQ, a command to bridge 
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the partition between program time and run time, and the 

storage function of a variable. She went on to suggest an 

association between this problem and the technique of 

recursion used in association with a counter variable. 

"You need recursion, anyway", she said, "if it were used 

right...upping itself". Neither the association of the 

problem with RQ nor with recursion led M to fertile 

intellectual ground, and failing to make much progress she 

soon gave up on the problem. 

A found MAKE in the Instructional Script and developed 

the following procedure: 

TO COUNTER 

MAKE "C C+l 

MAKE FRED RQ 

IF :FRED=[COUNTER] THEN MAKE "FRED :FRED+1 

This procedure contains several punctuation errors, and 

when A began to test it they produced error messages that 

led A to give up on the problem very quickly. (It was the 

last of eight problems that she had attempted, and A may 

have been too fatigued to work seriously on debugging this 

procedure). Clearly the procedure was incomplete. A 

mentioned the possibility of adding a print statement. The 

first line (MAKE "C C+l) which she later deleted but 

considered reinserting just before she stopped work on the 

problem, was an attempt to implement a counter-variable, 

like one she had found in the script. (Notice, however, 

that she left out the colon punctuation in the second C). 
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In the second line, although she omitted a quotation mark, 

A seemed to have made an attempt to implement a frame-model 

for an interactive variable. Her plan might have involved 

making COUNTER recursive, and one could consider the 

attempt to increment FRED in the IF statement of the third 

line as a simple oversight in a plan to endlessly accept 

input from the user, incrementing the counter variable (C) 

whenever [COUNTER] was input. There is not sufficient data 

to verify this, however, since A mentioned neither the role 

she intended for FRED nor any plan to make the procedure 

recursive. A's inconsistent use of variables and variable 

punctuation, however, and the observation that the 

resulting error messages distracted her from making any 

further progress on the problem, support the authors 

contention that difficulty in using variables is a serious 

problem for some Logo programmers at this level. 

Problem F: Type in the following commands: 
MAKE "BILL "TEACHER 
MAKE "GEORGE "PROGRAMMER 
MAKE "SALLY "PROGRAMMER 
MAKE "PROGRAMMER [$20 PER HOUR] 
MAKE "TEACHER [$15 PER HOUR] 

Now write a procedure called WAGE, that takes one input. 
If the input is a person's name (e.g., SALLY), the 
procedure should print out that person's salary. For 
example: 

WAGE "SALLY 
should print 

$20 PER HOUR 
(Sally being a programmer). 

All three of the experts and one of the near-experts 

(R) recognized that this problem could be easily solved by 

using THING to interpret the contents of one variable as 
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the name of a second variable, a process called 

"indirection". All four of these subjects quickly 

developed a procedure that contained a key line of either 

the form: 

PRINT THING :(varname) 

or: 

PRINT THING THING "(varname) 

and completed coding with little difficulty. The second 

near-expert (K) started with a similar plan to solve the 

problem using THING, but began to have trouble with once he 

tried to code the key line. His early coding attempts used 

SALLY, the variable name used in the example, punctuated at 

different times with a colon, a quotation mark and with no 

punctuation at all. Since K had previously demonstrated an 

understanding of variable punctuation, this was interpreted 

as being primarily due to difficulties with the complexity 

of the dual-indirection of this line. K eventually 

developed a rule to algabraicly manipulate variable names 

and punctuation. Essentially, K determined that a colon 

could be replaced by the word, THING, followed by a space 

and a quotation mark. Following this rule carefully 

allowed him to successfully finish the problem quickly 

thereafter. 

All three of the near-novices who attempted this 

problem came up with interesting approaches. M, who would 

later use a MAKE statement to successfully solve Problem 

E-2 stated her conviction that a MAKE statement would only 

ft. 
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be permanent if included within a procedure. She appeared 

to understand some high-level aspects of indirection and 

discussed the similarity of this problem of this to a 

nested-repeat statement. She appeared to understand the 

what a global variable was and the use of a colon to 

punctuate it, likening the problem to procedural output. M 

was able to recall THING as a useful tool. However, her 

critical problem was an apparent inablity to utilize THING 

to formulate the key line. In her later work on this 

problem, M created a chain of values with MAKE statements, 

typing: 

MAKE "A "B 

MAKE "B "C 

MAKE MC "D 

but became distracted by this activity, as she stated, 

"O.K., Now I've got MAKE A B, MAKE B C, now I need MAKE C 

A." In her example, M created an isomorph of the problem 

showing that she recognized its chain-like nature, but the 

solution required that she repeatedly apply THING to 

unravel this chain, arriving at the desired value, not use 

the MAKE statement to assign a new value to "A. 

A had various difficulties in this problem with 

punctuation and variable use. She inserted all of the MAKE 

statements called for in the problem statement within the 

procedure, WAGE. Like M, she seemed believe that the MAKE 

statement had to be included within a procedure to make 

them permanent, although she did eventually remove them 
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from the procedure. She wrote WAGE as a procedure that 

took no inputs, but she consistantly supplied inputs when 

she ran the procedure. Eventually she included a line to 

REQUEST a value from the user, but to the end of her 

interview she ignored the error messages that were caused 

by irrelevant and unused input. A did not recognize the 

possibility of chaining values through indirection. 

Instead she used IF statements to deal with each user input 

as a special case. For example, she coded one line read: 

IF :PL1=[BILL] THEN PRINT :TEACHER 

Notice that A did use the colon here to represent the value 

stored as TEACHER. Though her coding was a slow process 

and she never inserted a parameter variable in the header 

line to accept the parameters she continued to supply at 

run-time, A was able to eventually complete a program that 

worked with the user-supplied input. 

Like M, L put a parameter variable (:W) on the header 

line. In her initial attempts to write a PRINT statement, 

L typed: 

PRINT :NAME 

although she had made no attempt to assign NAME a value. 

This seemed to be an example of what Bonar and Soloway 

(1985) call a "language confound", in this case the 

attribution of the variable name with a naturalrlanguage 

meaning. 
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In her work, L refered to the instructional script, 

located and read information on MAKE and colon punctuation 

but after considering THING she dismissed that critical 

section of the script. "THING, quotes. Bill wouldn't 

help"/ she remarked, "(because) its just like the colon." L 

did not recognize that a strategy based on indirection, in 

which she could chain the value of SALLY to the value of 

PROGRAMMER by using THING twice, or in combination with the 

colon. Like A, she eventually solved the problem by using 

IF statements instead of THING. 

Protocols of all subjects on all problems were viewed 

to locate programming errors and to determine the 

misconceptions that most plausibly explain the errors. 

Errors were classified as being caused by (1) variable 

misconceptions, (2) "pathfinding problems" and (3) mixed 

causes. This classification of misconceptions, with 

references to one or more representative examples, are 

included as Table 10. 
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Table 10 
Classification of Misconceptions From All Problems 

Variable Misconceptions 
A. Problems with the general concept of VARIABLE 

1. "TEMPORAL" misconceptions 
-M, Prob. A; 

confusion between the items of an input-list 
and the order of consecutive reads. 

2. Questions about the permanance of a variable. 
-M, during presentation of Logo 

commands: after MAKE "C :C+1, PR :C 
"will (another) PR :C still be same?" 

-MAKE is not permanent unless it is inside a 
procedure (M, Prob. F), (A, Prob. F) 

3. Viewing variables created with MAKE as distinct from 

variables created as input 
-A, Prob. A-2 

4. Confusing a variable with its value (in header) 
-L, Prob. E-2 (attempts " :7 ") 

5. Dificiencies in the concept of an explicit result 
-(M, Prob. B-2) Fails to distinguish "operation" 

from "procedure" with protracted discussion of OP 
in different contexts (result-passing of primitive 
procedures; OUTPUT used for PRINT) 

-(L, Prob. B-2) Sees no possibility of a 
procedure having an output 

-Using MAKE for OUTPUT (R, Prob. A), (M, Prob B-2) 

B. Difficulties in resolving ambiguous language 
1. Natural Language confounds 

a. Treating PRINT as synonomous w. OUTPUT ("Output" 
interpreted as "outputting to the screen"). 

(M, Prob. A-2, (A, Prob. A-2), (A, Prob. B-2) 
b. A, Prob. D, uses MAKE SETX :X to "make" a dot. 

2. Using an explicit command as a natural language concept 
-M, Prob. B2, considers "using OUTPUT" to use a 
primitive operation that has an output 

-A, Prob C, confusing the atribute of "heading" 

w. the HEADING command. 
. Errors attributable to "Pathfinding" problems 

A. "Avoidance" theories 
1. Blaming Logo after negative theory-responce during 

debugging 
-denial of Logo's ability to handle functions 

and their parameters. (K & R, Prob A) 
2. Reading a problem as simpler than it is 

-M, Prob. B-2 seeing an operation as a simple 

procedure 
-(A, Prob. B-2), (E, Prob. B-2)- 

3. (A's) Inventing false rules: 
"RANDOM can't have a variable for input."; 
"Can I have variables in a MAKE statement?"; 
"You can't have a variable after FD, right?" 

B. Incomplete Idioms 
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1. Mentally clumping procedures by idiom during recall. 
-M, Prob. A2 uses OP inappropriately, as if she 

knows it "belongs" but not how to impliment it 
2. Recognizable idioms in an incomplete form 

-A, Prob. B (almost completes recursive factorial 
, then abandons it for an iterative approach). 

(and see 3, Mark & Larry, Prob. A) 
3. two strategic plans interfering w. one another 

-R, Prob. A, typing first MAKE var. value, then 
OUTPUT (in what he stated was an operation) 

-R & K, Prob. A, ending up with an inefficient 
strategic plan (AVG as recursive procedure vs. 
recursive operation) 
CONFOUNDED by a PASCAL paradigm? 

4. difficulties finding or selecting (once found) 
appropriate facts 

-Passing over information in SCRIPT 
(L, Prob. F, reads but passes by THING) 
-Tries, then deserts correct construct 
-A, Prob. A-2, uses OP, then deserts it 

Errors of mixed interpretation 
A. Difficulties with syntax 

1. Failure to supply "destination" procedure 
2. Irregular direction of operational flow 

-A, Prob. A-2, MAKE S*2 RQ for doubling the input 
-A, Prob. B-2, RANDOM 100 - :S ("trying to get the 

of the random pick") ) 
-0, Prob. A-2, (e.g., ...FIRST :S * :S FIRST 

3. Difficulties w. quotation marks 
-Quoting commands within brackets 

(Larry- [:X :Y] ) 
-K's inablity to explain QUOTES in MAKE "N (value) 
-Quoting dots 

M, Prob. A-2: MAKE ":X ... 
A, Prob. A-2: PR ":S * 2 
A, Prob. A-2: MAKE ":S RQ 

B. Inconsistancies in use (of colons, OUTPUT, etc.) 
-inconsistant use of OP in a recursive proc. 
(K, Prob. B & Prob. B-2 

-OP for simple case only) 
-R's (Prob A), inconsist use of : with variables 

C. difficulty COMPUTING WITH an internal model (as though "keeping 

too many balls in the air") 
-K, Prob. F, confusion about "direction of reference" of 

co I on 
-L, Prob. F, acknowledges parts of a solution 

(:BiI I="Programmer, :Programmer = [$20 PER HR.]) but not how 

to combine them. 

D. simple slip 
-R, variable names didn't agree (Prob. A, Prob. A-2) 



CHAPTER 5 

SUMMARY, IMPLICATIONS AND RECOMMENDATIONS 

Summary of Results 

As noted in Chapter 3 (see Limitations), the chosen 

methodology of this study precludes any claim to objective 

results in the sense of statistically proving or disproving 

a particular hypothesis. Rather, the goal of a study such 

as this must be to describe important aspects of subject 

behavior and to generate hypotheses that plausibly address 

the important and intriguing questions raised by such 

behavior. The results reported in Chapter 4 are primarily 

comprised of a set of observations of the behavior of 

expert and nonexpert programmers accompanied by the 

author's running commentary, which represents an attempt to 

reasonably interpret these observations. It is important 

now to shift from the specifics of microanalysis to a more 

general summary of the results cited in Chapter 4: 

1. The protocols of nonexpert subjects, especially of those 

classified as "near-novice" (see Chapter 3) included many 

cases in which the misconceptions displayed by the subjects 

were local to the problem and inventive in nature. Very 

few resembled the sort of strongly held, resilient and 

high-level misconceptions described by Clement in his study 

of the "Students and Professors problem" (Clement, 1980). 

In fact, most of the observed errors seemed more 
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attributable to "missing conceptions" (the absence of 

strong, guiding, high-level predictive assumptions) than 
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"misconceptions" (mistaken assumptions or wrong facts). 

This lends support to the conclusions of Brown & VanLehn 

(1979) and Bonar & Soloway (1985) that many observable 

errors are "inventive" in the sense that they are 

idiosyncratic and appear to be generated by the 

problem-solver rather than learned. 

The author confirms the observations of these 

researchers that such errors can occur when a subject 

encounters a knowledge gap and reasonably attempts to fill 

that gap with knowledge drawn from general experience (what 

Bonar refers to as "bug-patches"). This pattern seems to 

reflect the problem solver's need for closure on a 

problem. It also demonstrates that the task of integrating 

descriptive knowledge into one's existing knowledge base is 

a complex process. 

The implication of "bug-patching" is that descriptive 

knowledge must be forced into a packet of meaning in order 

to be useful and retrievable during problem-solving. This, 

presumably, is the what drives the need for closure. This 

supports a major conclusion of this study: that neither a 

procedural nor a descriptive model alone is sufficient to 

explain the acquisition of a complex cognitive skill such 

as programming; rather, descriptive knowledge and 

procedural knowledge must interact in complex ways and over 
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an extended period of time, leading eventually to the 

meta-programming knowledge seen in expert programmers (see 

also #6, below). 

2. Experts' solutions on Problem A-2 were fundamentally 

similar to one another, and differed markedly from 

nonexpert solutions to this problem. I would concur with 

Adelson that novices seemed easily distracted by 

superficial information — by any surface resemblance of 

this problem to a familiar problem (Adelson, 1981). Their 

most common difficulty seemed to be in integrating new 

knowledge into their existing knowledge-structure. One 

example was in A's solution to problem A-2, when A, failing 

to see a similarity between a new technique for defining 

variables (with a MAKE statement) and a familiar one (as a 

parameter in the header line) ended up inventing a new 

entity -- a "name" as distinct from a "variable". 

Experts, on the other hand, have the ability to ignore 

irrelevant similarities. They appear to have, embedded 

within their image of a programming problem, heuristic 

information or meta-programming knowledge that enables them 

to focus only on certain branches of the tree of all 

possible associations with the problem (Newell & Simon, 

1972). The assumption made here is that this knowledge is 

specific to the domain of programming rather than a general 

cognitive skill, such as a general ability to recognize the 

meaningful and ignore the trivial. 



205 

Furthermore, misconceptions interfered with the 

problem solving of many nonexperts, especially during the 

introduced of new material, and even after approximately 60 

hours of formal instruction and hands-on experience. The 

author assumes that this holds true in general, and that 

misconceptions persist and can hamper programming ability 

well into intermediate stages of programming. This seems 

to favor the wide scope of time favored in a study such as 

Hoc's (1977), which recognized an extended period of 

intermediate programming ability, over the short time-frame 

of Anderson's model (1984). If a student has been given a 

clear introduction to new facts and has demonstrated 

knowledge on a limited sample-problem or two, teachers and 

researchers should not assume that the student is 

performing at expert level, even in this limited domain. 

Rather, it is the view of the author that programming 

expertise (meta-programming knowledge) is a gestalt, a 

wide-view of the whole that is more than the sum of its 

parts. This develops gradually as procedural and 
$ 

descriptive knowledge are reorganized and ultimately 

assimilated into the programmer's existing knowledge 

structure. 

3. The most common variable misconceptions were related to 

Logo punctuation and syntax. For example, a number of 

subjects exhibited a misinterpretation of quotes in the 

first input to a MAKE statement. Three subjects, M, A and 
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L, came up with the following configuration in their work 

on Problem A-2: 

MAKE ":N REQUEST 

Similarly, A struggled over the question of whether or not 

to use quotes before a colon-prefixed variable in a PRINT 

statement, seriously considering the following 

configuration: 

PRINT ":N 

Similarly, M tried putting the variable inside brackets in 

the same problem: 

PRINT [:N] 

L seemed to confuse variable name and value as she 

attempted to create an input parameter and generated the 

following configuration: 

TO FOO :7 

M was unable to explain the meaning of the quotation marks 

in a correctly configured make statement, nor was K (who 

otherwise performed at close to expert level). 

All of the above cases demonstrate a lack of 

understanding of the specific function of each element of a 

variable idiom. For example: the MAKE primitive, the 

quotation marks before its first input, the variable name 

that properly follows the quotes and the assigned value 

(MAKE'S second input) all have distinct and particular 

functions, as does a colon that precedes a variable. Such 

punctuation errors related to variables occurred through a 

broad range of student protocols. 
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This difficulty with punctuation differs from what has 

been reported in studies of the learning of other computer 

languages: the syntax of a language is internalized before 

semantic features. For example. Soloway et al (1982) found 

that implementation plans, including syntactical knowledge, 

were in place before higher level tactical and strategic 

plans. This suggests that there are aspects of Logo syntax 

that cause unusual problems for new programmers. The 

observation of such an apparently general difficulty 

presents a challenge to Logo instructors, and challenges 

the notion of Logo's "low threshold". Variable punctuation 

may be the most awkward aspect of the Logo language; it is 

regarded by some as a language design issue that has not 

been satisfactorily resolved. One new version of Logo that 

Papert has been closely associated with, LogoWriter, has 

added a new command as an alternative to MAKE, with new 

syntax: 

NAME (value) (word) 

It remains to be seen whether this new syntax will be more 

easily assimilated, but since the quotation marks and colon 

have been retained unchanged we see little reason for 

optimism. 

4. Some, but not all, near-novice subjects had difficulty 

with aspects of the REQUEST command, not unexpectedly. The 

issues of timing (programming vs. run time) and person 

(programmer vs. user) were seen as contributing to such 
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errors, but punctuation difficulties were deeply 

intermingled with these other occurrences and may have 

contributed to such errors (see #3, above). For example, 

one near-novice (A, Problem A-2) constructed the following 

line: 

MAKE S*2 RQ 

Although dialog revealed that A intended S to be a variable 

name, she used neither a colon to refer to its contents nor 

quotation marks to use S as a literal input to MAKE. 

However, deeper misunderstandings about variable assignment 

were suggested by this line. From her comments, it was 

clear that A meant to take input from the user, process 

that input using multiplication and store the result in a 

variable. By trying to multiply the first input to MAKE, A 

shows a misunderstanding either of the way the inputs will 

be interpreted when this line is parsed or a complete 

misunderstanding of the timing aspects of interactive 

variable assignment. The dialog and other programming 

experiments associated with this protocol lent greater 

support to the latter rather than the former explanation. 

L and N's work on the same problem more strongly 

indicated a confusion about the timing of this idiom. Both 

of these individuals created procedures in which the 

REQUEST line preceded a line that prompted the user for 

input. However, both described their procedures as 

executing in a normal manner. In both cases, the 

programmer explained the order of execution of the switched 
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lines in terms of the natural language meaning of the 

prompt, a phenomenon related to what Bonar & Soloway (1985) 

labeled a "language confound" (see also #5, below) In other 

words, both subjects ascribed computational power to 

literal data, although such data is, in formal terms, 

meaning free. Neither subject generated any example of 

such data-driven order-of-execution in other problems, and 

so the author interprets these errors as arising out of 

"temporal" confusion related to the use of the REQUEST 

command. 

5. Several subjects (A & M) clearly demonstrated a language 

confound, namely the confusion of the command, OUTPUT with 

the idea of outputting a message to the screen. This 

confirms Bonar & Soloway's observation that natural 

language can interfere with learning to program in Pascal 

(1985). This observation is especially interesting in that 

the phenomenon seems to cross language boundaries. It also 

contributes to a view that the concept of procedural OUTPUT 

is a difficult one. 

The OUTPUT command gave difficulty to the two 

near-experts as well. Both near-experts initially 

attempted to use OUTPUT to solve Problem A (average all 

user input numbers until a "flag" value is entered) as a 

recursive operation, but abandoned the strategy when they 

encountered difficulties with this approach. Eventually, 

both turned to turned to the use of global variables as an 
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alternative to OUTPUT, and both completed a solution of 

Problem A (as a recursive procedure) using this strategy. 

Similarly, Problem B (write a procedure that gives the 

factorial of any number) suggested the use of the OUTPUT 

command in a recursive operation (this was the approach 

chosen by all three experts). Both of the near-experts 

abandoned initial attempts to code the problem this way, 

choosing an iterative model with global variables instead. 

In both of these problems, both near-experts blamed their 

difficulties on what they imagined to be Logo's inability 

to specify either procedural output or to allow recursion, 

although one of the two admitted difficulty with recursion 

in Pascal as well. In these cases, both near-experts 

demonstrated a rigidity in their approach and in their 

ability to integrate new information from the instructional 

script about OUTPUT. 

Rigidity of this kind was not in evidence in the work 

of these near-experts in most other areas, however. 

Neither demonstrated any difficulty using or generating 

local variables, global variables, interactive procedures 

that poll the user for a value and store it in a variable 

or punctuation such as colons or quotation marks. These 

skills seem to have been directly transferred from their 

own "meta-knowledge" developed as a result of their 

experience programming with other languages. The one 

exception seems to have been in utilizing explicit results 

to compose recursive operations, as mentioned above. 



6. Procedural knowledge acquisition is less 

"matter-of-fact" than one would think after reading 

Anderson's article (1984). Specifically, the following 

observations may challenge the simplicity of Anderson' 

model: 

-A subject's plans are often directly reflected 

as behavior. This makes procedural knowledge 

(incorporated in the diagrams of this study as 

"plans") much more obvious to the observer than 

descriptive knowledge. So it is more noticeable 

and measurable. However, these two types of 

knowledge should not be thought of as isolated 

from one another. The detailed probes of this 

study have revealed a number of misconceptions 

that appear to be a strong causative factor of 

procedural errors. Some of these were explicitly 

described by subjects but most were not. 

-The claim of Adelson (1981) that expert 

programmers are able to adapt to unique and 

unfamiliar situations is supported by the 

observations of experts in this study. In 

particular, experts consistently demonstrated an 

understanding of ambiguous solutions and 

questions of program optimization and aesthetics; 

but it is difficult to explain this solely with 

Anderson's notion of pre-packaged clusters of 
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experts in this study showed an expanded 

awareness of the implications of various elements 

of programming activity and of connections 

between the parts of a programming problem. With 

these observations, programming expertise seems 

more closely related to an ability to form 

analogies than to a rule-driven mapping of a 

problem to a solution. 

-Anderson gives several examples of novice 

programmers, after being presented with factual 

information about a language-feature and one or 

two examples, '’compiling'’ this information into 

an internalized cognitive skill ("procedural 

knowledge"). In this study it was observed that 

procedural knowledge sometimes develops with much 

more difficulty, stretched out over the "learning 

life" of a student, (i.e. more stretched out over 

the learning curve), and that descriptive 

knowledge appears to exert an important influence 

on planning. For example, consider the 

difficulties of several subjects internalizing 

correct punctuation for a MAKE statement, 

mentioned earlier. In none of the protocols 

subjected to microanalysis was consistent mastery 

of the use of colons and quotation marks 

demonstrated without an accompanying high-level 
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conceptualization of a variable (e.g., 

variable-as-container). We hypothesize that 

procedural knowledge as it might be observed by a 

teacher or researcher is built upon a conceptual 

framework; it requires the presence of an 

existing body of conceptual knowledge into which 

new knowledge must ultimately become 

assimilated. 

Implications 

Implications for Education 

1. Implications for Computer Literacy 

There seems to be a growing interest in creating a 

new, general, and mandatory "computer literacy" requirement 

in schools, i.e. a policy requiring that all students be 

exposed to certain aspects of computer technology. Some 

educators believe that such a policy should be provided 

primarily to counteract "computer anxiety." They believe 

that the thrust should be to give students enough 

familiarity with computer hardware and software to be 

comfortable when they use computers in the future. This 

seems a modest objective, although it does not clearly 

suggest which computer applications should be emphasized. 
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However, others believe that this is too shallow a 

goal, and that the mandate for the schools should be to 

teach students those skills that are likely to be useful to 

them in college or in the workplace. While there is no 

clear consensus as to exactly what these skills should be, 

some that have been proposed are: word processing, usage of 

data bases and business software, and computer 

programming. 

The general performance of the nonexperts in this 

study seemed to indicate that some computer skills 

associated with computer programming are slow to develop. 

The development of programming ability (and, probably of 

other computer skills as well) requires not only the 

learning of facts and the development of procedural 

knowledge but also their incorporation into one's existing 

framework, occurring over a significant period of time. 

Such an investment of time and effort should not be taken 

lightly. This suggests that a full-scale commitment to the 

mandatory teaching of computer skills be approached with 

caution, at least until it becomes clear exactly which 

skills will truly become a requirement for informed 

citizens of the future. 

2. Implications for a theory of teaching 

It has been almost 10 years since the introduction of 

low cost microcomputers into the consumer market and. 
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subsequently, into many classrooms, but educational results 

appear to be quite uneven. Why do some students learn to 

master computers and others remain "computer illiterates", 

"computer anxious" or "computer phobic"? Certainly, 

affluent students have differential access to computers 

over those less fortunate, both at home and in public 

institutions such as schools in the more affluent 

communities where they are likely to live. But economic 

differences, while important to consider and to try to 

counteract, do not tell the whole story. For example, 

Turkle (1984) has expressed her concern that boys seem to 

dominate girls in access to computer resources. 

Personal interest and motivation may be an important 

factor in explaining how some children attain computer 

mastery. Two high school age subjects (the two 

near-experts) each claimed hundreds of hours of programming 

and other computer experience. The results of this study 

suggest that an extended amount of hands-on experience such 

as this is necessary for true skill-mastery. While all 

educators recognize and support diversity in the interests 

of their students, there is something disturbing about the 

gap between computer "haves" and "have nots". What does 

one say to the student who expresses a sincere wish to 

learn how to program but is frustrated by the difficulties 

she encounters in the process? (Some of the subjects in 

this study fell into this category). The problem for the 

teacher becomes how to help such a student accumulate 
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enough computer experience to elevate her skills. In large 

part, this may mean focusing less on course content and 

more on helping students to avert frustration and gain 

access to those internal rewards of programming that have 

motivated other students to invest the amount of time 

necessary to become successful. 

Another observation with implications for teachers in 

general is that misconceptions are often adaptive. In 

other words, they represent theories that often lead to 

programming success, although they are basically 

inappropriate and must ultimately fail. Yet, as a result 

of their adaptive nature, they often work for the student, 

i.e. produce correct code, and so may be elusive, veiled 

from the ready view of the teacher. All of the 

near-novices had used variables as parameters in most of 

their (admittedly brief) programming experience, and in 

most cases their teachers must have felt that they 

understood variables, at least in this context. What may 

not have been apparent was that their behavior was often 

dogmatically linked to familiar examples, rather than being 

based on a firm and accurate theory of variable use. With 

new types of Logo variables their stereotypes were 

challenged. Some of these misconceptions were exposed in 

microanalysis, but it is extremely difficult for a working 

teacher to interview individual students in this, kind of 

detail. Rather, it is likely that, for students with deep 

misconceptions, the weakness of their predictive theories 
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will eventually affect their behavior while the 

misconceptions themselves may never be identified. Some 

students will probably recognize their oversights and 

eventually correct their own misconceptions, but some may 

not, experiencing only frustration and a vague sense that 

something is wrong. 

All teachers are expected to evaluate the performance 

of their students; most teachers would like to go beyond 

this, to help students recognize misconceptions that cause 

mistakes and correct them. This study suggests the 

complexity of the latter task. Where time permits, a 

methodology such as that utilized in this study could 

provide teachers with a valuable insight into their 

students thinking. 

3. Implications for teaching Logo 

An inordinate number of the variable misconceptions 

observed in this study were related to problems with Logo 

syntax and punctuation. In the light of these results, it 

is difficult to imagine any student becoming proficient in 

the Logo language until they overcome these difficulties. 

This suggests a link between the understanding of syntax 

Qnd the concept of a variable in programming. If teachers 

are aware of this problem, they may be able to* help 

mitigate it. This research supports the recommendation of 

Davidson (1985) that teachers of Logo include an explicit 
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treatment of syntax, that they emphasize its importance and 

strive to reveal to their students its implications. 

Rather than teaching syntax as a single unit, Logo teachers 

should help their students to focus upon syntax at all 

levels of instruction. For example. Friendly, in a new 

book on Logo, (1987) uses the metaphor of a "Genie" for the 

Logo parser (to accompany the better known metaphor of the 

"turtle" for Logo's graphic cursor) as a means of teaching 

aspects of Logo syntax. The adoption of such a metaphor 

and the teaching of syntax in general would also present an 

opportunity for Logo instructors to give a clear exposition 

to the concept of a data structure as they teach about 

brackets and quotation marks, and a careful discussion of 

variables as they discuss the meaning of the colon. 

Another observation relevant to the Logo instructor is 

that variable misconceptions persist far beyond the novice 

programmer stage, and so Logo instructors need to extend 

the scope of time in which they view variable learning. in 

particular, it seems important to attach greater importance 

to the question of what their students learn about 

variables after they have been taught the basic facts. As 

a means to this end, the author believes that teachers 

should emphasize an extensive period in which students 

carry out programming projects. In a programming course 

utilizing this design, as much as fifty percent of class 

time would be devoted to writing original computer 

Programs. During this extended utilization period, the 
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teacher would play a supporting role and would only present 

new material as it was needed by individual students. 

One clear advantage of this approach is that it would 

give the Logo instructor a better opportunity to observe 

errors, discuss with students their thinking related to 

those errors and through such probing uncover elusive 

underlying misconceptions. The teacher's role is thus 

transformed; rather than providing information, he now 

plays a coaching role, providing help and inspiration. 

Dwyer (1980) uses the analogy of a flight instructor to 

characterize such an arrangement. 

Another advantage is to strengthen students' concept 

of variables through experiential learning. While the 

question of how expert knowledge is developed is beyond the 

scope of this study, experience seems to play a vital 

role. All experts and near-experts in this study evidenced 

extended independent programming experience. If any 

received formal programming beyond their introduction to 

Logo, they also had extensive hands-on programming 

experience. While the concept of a variable seems simple 

and straightforward, this study demonstrates the degree to 

which near-novice programmers do not utilize information at 

their disposal. Extended programming experience may be the 

only way that some students come to terms with the 

subtleties of variable use. 
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The author also believes that Logo instructors should 

recognize the importance of the meta-programming knowledge 

of expert programmers. Their ultimate goal should be the 

development in the students of an ability to readily 

integrate and use new knowledge. This is an ambitious 

goal, as emphasized by the present study; but the author 

would argue that students would be better off to come away 

from any programming instruction with real programming 

facility, even if they had only been exposed to a limited 

subset of the language, than with broad factual knowledge 

but little demonstrated ability to solve programming 

problems. In any case, teachers must consider the 

long-term view of their discipline, and the observation of 

experts in this study shows that an ability to deal with 

ambiguous approaches to a problem, optimize programming 

effort and to appreciate the aesthetics of programming best 

characterize expert performance. 

Implications for Language Designers 

Recognizing that the concept of variable is a problem 

for many students, designers of future implementations of 

Logo should consider how the language could support the 

development of a correct concept of a variable. For 

example, at the University of Edinburgh,*duBoulay et al 

(1981) have developed an experimental version of Logo 

called ELOGO that provides the programmer feedback on 

variables, program control and other factors to provide a 
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feature they call "visibility" for the programmer. In 

regards to variables, a "visible" environment might 

represent every assignment of a value to a variable name in 

some sort of iconic fashion. For example, whenever a 

variable is globally assigned, a box might appear in the 

corner of the computer monitor, labeled with the variable 

name and holding the assigned value. If the value changed, 

then the contents of the box would be replaced by the new 

value. Local variables could be similarly represented. 

For example, when a procedure with parameter inputs was 

executed, the local variables would "pop up" on the screen, 

next to existing global variables, when the procedure was 

concluded, the local variables would either disappear 

(certainly they would cease to have defined values) or 

change in some way that suggested that they were only 

names, awaiting the assignment of values passed as 

parameters when the procedure is called again. 

Implications for Designers of Intelligent Tutoring Systems 

Recent attention has been paid to the development of 

intelligent tutoring systems (ITS). Such systems grew out 

of an interest in the development of an active, discovery 

approach to automated tutoring. ITSs are based upon 

sophisticated models of student behavior, but in that 

field, according to Sleeman, "Much remains to be discovered 

and made explicit", and he calls for "...more precise 

theories of teaching and learning" (Sleeman & Brown, 
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1982). One generally accepted teaching technique is the 

Socratic method. With Sleeman & Brown's belief in the need 

for an ITS to incorporate discovery learning, it may be 

worth considering how one might model Socrates' teaching 

style. 

At the heart of the Socratic method is the teacher's 

ability to pose relevant counter-examples that lead the 

student to question weaknesses and contradictions in his 

own theories. Another feature of a Socratic 

teaching-discourse is that students must generalize from 

their own working theories. An ITS utilizing the Socratic 

method would need the ability to diagnose student 

misconceptions in order to determine which 

counter-questions to pose, elucidate responses from the 

user and be able to evaluate these responses. The system 

would require the ability to analyze misconceptions from 

student solutions using general as well as domain-specific 

knowledge and an algorithm for generating 

counter-questions. 

The present study attempts to shed light on the nature 

of conceptions and misconceptions, but in the process 

raises further questions for the ITS designer. Some 

misconceptions observed in this study appear to be more 

resilient than others. Difficulties with OUTPUT, for 

example, occurred even in near-expert protocols. How would 

an ITS recognize and handle such a resilient 
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misconception? Similarly, in this analysis, some 

programming errors were considered to be related to 

underlying misconceptions. Using this approach, an ITS 

would need to distinguish between a fundamental 

misconception and a superficial one. This might be a 

behavioral distinction — misconceptions that showed 

resilience to instruction (that persist or often recur 

during the course of instruction), might be identified as 

deep misconceptions, requiring special treatment. On the 

other hand, the list of misconceptions in Chapter 4 of this 

study (see Table 9), compiled from analysis of student 

solutions, included several misconceptions that were 

observed in more than one subject. A detailed study such 

as this, but with a much larger number of subjects, could 

result in more complete map of the possible 

misinterpretations of a given problem. 

Recommendations for Further Research 

Some of the variable misconceptions observed in this 

study appeared to be quite widespread and somewhat 

resilient to instruction. For example, misconceptions as 

to the use and meaning of punctuation, specifically of 

colons and quotation marks, appeared in most near-novice 

solutions to Problem A-2. A controlled study-of this 

particular phenomenon is suggested. Specifically, 

comparative studies to determine effective ways to correct 
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punctuation misconceptions (or alternatively, to teach 

correct concepts of punctuation) would seem to be in 

order. Elusive misconceptions, such as those inferred in 

microanalysis, need to be exposed to be corrected. 

Students may do this themselves, responding to 

contradictions between their internal model of the world 

and observed behavior by bringing into question assumptions 

that may be faulty. In order to further our knowledge of 

effective instruction, researchers need to find which 

approaches are effective in exposing such misconceptions 

either to the view of the student or the teacher. 

Specifically, the author would recommend an 

examination of the role of independent programming as a 

means to uncover hidden student misconceptions and to 

increase a focus on the utilization of descriptive and 

procedural knowledge. One study might be a comparison of 

an introductory Logo course with an emphasis on independent 

programming, using an extended "utilization period" as 

described above to reinforce variable concepts with a 

fact-oriented course in which reinforcement is done with 

more traditional methods (quizzes, sample programs). The 

two groups could them be compared by determining the 

success or failure of students in each on a programming 

task involving variable use. 

Another recommendation would be to further the 

time-scope of learning through a detailed study of 

* 
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programmers with over 120 hours of combined instruction and 

programming time. Anderson studied the first 60 hours of 

LISP programming and uncovered some basic mechanisms to 

explain the initial performance of his subjects. This 

research was of subjects with over 50 but less than 120 

hours of Logo experience, roughly the equivalent of a 

one-semester, introductory course, and revealed the 

difficulties in integrating individual units of knowledge 

in a problem-solving situation. It also included as 

subjects expert programmers, with hundreds of combined 

hours of formal instruction and programming experience, and 

revealed a striking contrast between experts' 

meta-programming—knowledge and the inflexibility of 

near—novices. A detailed study of the period of learning 

bracketed by the near-novices and the experts, such as a 

detailed study of students in a second semester Logo 

programming course, would follow the development of 

students from approximately 120 hours of instruction and 

experience to about 240 hours. The two near-experts in 

this study, for example, reported about 200 hours of 

programming experience (albeit in languages other than 

Logo), and demonstrated much of the meta-programming 

knowledge typical of experts. Such a study would have a 

good chance of catching the development of 

meta-programming-knowledge, and of uncovering the ways that 

near-novice knowledge is refined into the more easy and 

natural thinking of expert programmers. Such information 
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might help us to find ways to facilitate the transition in 

other students. 

The possibility of a transfer of knowledge from other 

languages seems worthy of further examination as well. 

This might take the form of a quantitative study of 

pure-novices vs. those with other programming language 

experience. If differences can be found, further study to 

isolate the specific areas in which other-language 

knowledge aids in Logo-learning (and where it does not ) 

would help to reveal more about the anatomy of learning in 

general and learning to program in particular. 

Another area worthy of further study is the idea of 

meta-programming-knowledge put forth in this study. The 

use of certain terms in a particular context, for example 

the use of prepositions in reference to procedures or of 

pronouns in reference to interactive processes may be 

correlated to important knowledge about programming. A 

linguistic analysis of expert programmers vs. programmers 

at other levels might reveal this. 

Conclusion 

As discussed in Chapter 1, the concept of a variable 

in Logo programming is a complex but an interesting 

knowledge construct, that can provide insight into the 

nature of programming-skill acquisition. While the 
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particular distinctions of Logo variable-use, cited in that 

chapter, did not necessarily transfer to other intellectual 

domains such as science or mathematics, the general concept 

of a variable is important to these and other disciplines. 

While the literature reviewed in Chapter 2 examined the 

general nature of programming knowledge, of the concept of 

variable in mathematics, and of other programming 

constructs (such as control structures), the paucity of 

work focused on programming variables called for an 

exploratory approach. 

What were seen in Chapter 2 were a number of general 

themes, reflected in the literature on programming skill 

development, that acted as filters, providing alternative 

ways to view the results of the current study. At the 

highest level, these either depicted programming knowledge 

as a concept (e.g., as a "runnable mental model", 

internalized in the expert programmer), or as a production, 

built up from programming experience and stored as 

procedural knowledge (e.g., Anderson et al, 1984). The 

descriptive approach of this study, specified in Chapter 3, 

was chosen to allow a wide view of the complex concepts and 

skills associated with programming in general and 

variable-use in particular. Diagramming techniques were 

taken from other studies and combined to allow the 

representation of both conceptual knowledge and procedural 

knowledge and the interaction between them after careful 

niicroanalysis. 

L 
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In Chapter 4, the results of microanalysis revolved 

around the diagrams of six student and expert protocols on 

a selected problem. Concepts and misconceptions, inferred 

in microanalysis, were collected from these diagrams and 

summarized in a Table 9. Highlights of all subjects on all 

nine problems (which represented diverse examples of 

variable use) were discussed in that chapter and summarized 

in Table 10. In general, the results emphasized the 

qualitative difference between expert and novice behavior. 

This was primarily categorized in Chapter 5 as a difference 

in the way these two groups integrated new programming 

knowledge and experience with high-level, general 

knowledge, and was termed "meta-programming knowledge". 

Meta-programming knowledge was hypothesized to be a 

secondary reorganization of both descriptive and procedural 

knowledge into integrated, general knowledge structures. 

It was recommended that meta-programming knowledge be 

emphasized in teaching programming and examined in greater 

detail in further studies. 
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Appendix A 
Instructional Script 

Here Is a summary of some important features of the Logo computer 
language. 

Every line of Logo is composed of procedures and inputs to 
procedures. 

Print is a built-in or "primitive" procedure that prints its Input on 
the screen. For example; 

PRINT 5 

puts the number 5 on the screen. The number 5 here is an input to the 
print procedure, i.e. it is an argument or parameter that alters the 
behavior of the command. 

Print can take as Input a number, a word or a list. For example, 

PRINT "ONEWORD 

pr ints out a word, 

ONEWORD 

and 

PRINT [HERE IS A LIST] 

pr ints out a list. 

HERE IS A LIST 

An input can also be an expression, i.e. a set of one or more 
operations the whole set having an explicit result, so you can print 
the result of numeric expressions, such as 4+5. 

4+5 
RESULT: 9 

When used as an input to PRINT... 

PRINT 4+5 
9 

the expression is, in effect, replaced by its result. The plus sign 
Is a special procedure known as a numeric operator. 

Here are some other numeric operators; 

PRINT 3/2 ...division 
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1 .5 
PRINT 2-10 ...subtraction 

-8 
PRINT 3*4 ...multiplication 

12 

You can also print the result of certain procedures that operate on 
words or lists. We say that such a procedure has an OUTPUT. FIRST 
outputs the first item of of its input. If the input is a list, FIRST 
will output its first Item, usually a word. 

FIRST [ RED GREEN BLUE ] 

RESULT: RED 

the first of a word is always a word with one letter. 

FIRST "CATAPULT 

RESULT: C 

Since FIRST has an explicit result, its output can act as the input 
for another procedure, such as PRINT 

PRINT FIRST "CATAPULT 

In other words, procedures with explicit results can act as 
expressions for other procedures. Such a procedure Is sometimes called 
an "operation". 

RANDOM is a procedure that outputs a random positive integer, from 0 
to one less than its input. RANDOM 3, for example, might output 0, 1 
or 2 

RANDOM 3 

You can also print something that has previously been stored as a 
variable. A variable can be created with a MAKE statement, such as 

MAKE "N 6 

Once created, you can use a variable by typing a colon immediately 
before its name. 

: N 

RESULT: 6 

The colon here literally means "the value of the thing named 'n'". 
another way to say this in Logo is with the procedure THING. 
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THING "N Notice that :n RESULT: 6 and THING "N are 
identical operations. 

:N is shorter, but THING can be useful, for example, sometimes 
programmers store one name inside another: 

MAKE "VARNAME "N 

In this example, you could use either the colon or THING to get the 

value one of the variables 

•.VARNAME 
RESULT: N (the value of 

VARNAME) 

THING "N 
RESULT: 6 

but you would need THING to get the 6 directly out of VARNAME. 

THING :VARNAME 
RESULT: 6 

(: VARNAME Is "N ... this is the value of the thing named by "n) 

THING THING "VARNAME 
RESULT: 6 

,(Identical to the previous line), but not; 

::VARNAME 

Make Is sometimes a useful way to count things, if you start by 
making 1 the value of C 

MAKE "C 1 

, you can increment C by one by MAKE-ing C its present value plus 1 

MAKE "C :C+1 
: C 

RESULT: 2 

This can be done repeatedly; 

MAKE "C :C+1 
: C 

RESULT: 3 
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Several commands are useful for doing graphics. 

DRAW 

All drawing is done with a triangular object known as "the turtle". 
FORWARD moves the turtle in the direction that it is presently facing; 

FD 30 

(The back of the turtle Is indicated by the unshaded bar). The turtle 
is conceived of as having a pen, that can be picked up to prevent it 
from tracing its path 

PU FD 10 

and put down again 

PD FD 15 

LEFT and RIGHT turn the turtle a given number of degrees. 

RT 45 

LT 90 

The turtle has certain properties that you can inquire about at any 
time, it has an absolute heading, like a compass heading of West 
North-west 

HEADING 
RESULT: 315 

It has Cartesian coordinate, including an x-coordinate 

XCOR 
RESULT: 0 

And a y-coordinate 

YCOR 
RESULT: 55 

Other procedures can change the turtle state. 

The heading can be changed with the SETHEADING command 

SETH 180 

(...to point due South). 

SETX can be used to position the turtle at a specific x-coordinate 
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SETX -50 

SETY specifies a y-coordinate 

SETY 5 

SETXY can be used to move directly to a position identified by an x,y 
pair. 

SETXY 100 45 

Any of these commands can be used as part of a programmer-defined 
procedure. To define a procedure, type the word "TO", followed by a 
procedure title. 

TO LINETURN 

You will immediately go into the Logo editor. Type in commands in the 
order in which you want them executed; 

FD 10 
RT 30 

When you are done, type END, and then "CTRL"-"c", (typing both keys at 
once). 

LINETURN DEFINED 

To execute the procedure, type its title. 

LINETURN 

(Draws a line and turns) 

Your procedure can have an output. 

TO PI 
OUTPUT 3.14 
END 

PI DEFINED 

Running the procedure... 

PI 
RESULT: 3.14 

...causes It to output Its specified value. 

It should be noted here that as soon as a procedure outputs something, 
It immediately stops. In this case, that didn't have much effect, 
since Pi had nothing left to do after it outputted, but latter it will 
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matter. 

One programmer-defined procedure can use other programmer-defined 
procedures; 

TO PARA 
LINETURN 
FD 50 RT 150 
LINETURN 
FD 50 RT 150 
END 

PARA DEFINED 

PARA 

(Draws a parallelogram) 

If you provide one or more variable names on the top line when you 
define it. Your procedure can take inputs: 

TO C.SQUARED :A :B 
PRINT [C SQUARED IS ] 
PRINT :A * :A + :B * :B 
END 

C.SQUARED DEFINED 

C.SQUARED 5 10 
C SQUARED IS 
125 Here, A becomes 5 and B becomes 10. 

Each of the Input names in the top line is given a value when the 
procedure is used. Unlike variables created with MAKE, these 
variables only exist while the procedure is running. 

: A 
A HAS NO VALUE 

Another way to take in a value is with 
REQUEST is abreviated, is usually used 
statement to assign a variable "on the 
wanted to ask a person for their name, 

I ike this. 

the REQUEST command. RQ, as 
in conjunction with a MAKE 
fly". For example, if you 
you might write a procedure 

TO INQUIRE 
PRINT [WHAT IS YOUR NAME, ANYWAY?] 
MAKE "PLAYER1 RQ 
PRINT :PLAYER1 
PRINT [ THAT'S A NICE NAME!] 
END 

inquire DEFINED 
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INQUIRE 
WHAT IS YOUR NAME, ANYWAY? 

Here the computer pauses for the REQUEST; I'll type In my name. 
RICK 

(The computer types...) 
RICK 
THAT'S A NICE NAME! 

Any variables created with MAKE, either Inside or outside of a 
procedure, are permanent. Logo remembers the value of PLAYER1 

:PLAYER1 
RICK 

, even though the INQUIRE procedure has finished running. 

Sometimes you want a procedure to behave differently in different 
situations. For example, you might want a procedure to stop running 
when your friend types in her name. This can be accomplished with an 
IF statement. 

( 
TO INQUIRE 
PRINT [WHAT IS YOUR NAME, ANYWAY?] 
MAKE "PLAYER1 RQ 

Its form Is IF, followed by a condition, THEN, and an action or set of 
actions to be carried out if and only if the condition is true. 

IF :PLAYER1-"LISA THEN STOP 

PRINT :PLAYER1 
PRINT [THAT'S A NICE NAME!] 
END 

STOP Is the command that makes a procedure stop running. 

INQUIRE 
WHAT IS YOUR NAME, ANYWAY? 
LISA 

INQUIRE 
WHAT IS YOUR NAME, ANYWAY? 

RICK 
RICK 
THAT'S A NICE NAME! 
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A procedure can be written that uses itself. This is a technique 
known as recursion. I'll change LINETURN into a recursive procedure. 

TO LINETURN 

(Change procedure to read: 

TO LINETURN :L 
(I'll change LINETURN to take an input) 

IF :L < 3 THEN STOP 
(This if statement will stop the procedure if :L gets too smaI I I) 

FD : L 
RT 30 
LINETURN :L-3 

(Here I add the recursion) 
END 

) 

LINETURN DEFINED 

DRAW 
LINETURN 300 

(Draws a spiral-like figure) 

This new version stops if its input is very small. Otherwise it moves 
and turns, as before, but it then does another LINETURN with a 5 
smaller input. That LINETURN does the same thing, including a call of 
another LINETURN. This continues until some LINETURN has an input of 
less than 3. When that procedure stops, its parent procedure is 
finished, and then its grandparent, and so on until all LINETURNS can 
end. 

Logo also allows you to create recursive operations. For example, the 
operation of exponentiation (i.e., raising to a power) is sometimes 
defined recursively as follows: 

TO EXP :BASE :P0W 

If you are raising the base to the 0 power, then the answer is 1, 
because anything raised to 0th power is 1. 

IF :P0W - 0 THEN OUTPUT 1 

Otherwise, the result Is defined as the base times the base raised to 
one-1 ess power. 

OP :BASE * EXP :BASE :P0W-1 
END 

EXP DEFINED 

EXP 2 4 
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RESULT: 16 

This concludes the summary of Logo. 



Appendix B 
Problem Set 

The follow problem set is ordered from the simplest and most 
interesting problem (as determined by a pre-analysis) to the least. 
The first four problems are meant to establish a baseline measure for 
the four variable classes established earlier, global variable 
(Problem E-2), explicitly-read variables (Problem A-2), procedural 
inputs (Problem D) and operations (Problem B-2). The remaining 
problems involve the use of one or more of these same variable classes 
but differ in their greater complexity due to several different 
factors, (see comments for each problem). 
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Problem E-2 

Create a variable called NUMBER, such that 

PRINT :NUMBER 

prints out the number 7. 

Problem E-2; Comments 

A problem In global variable assignment, probably the simplest 
example of a variable. Besides requiring an understanding of the 
basic syntax of the MAKE statement, subjects should appreciate such 
limitations as the "lifespan" of a variable and the distinction 
between its name and value. In a mature concept, one would understand 
the function of both the quotes in the MAKE statement and the colon 
("dots") used to retrieve the value. 
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Alternate Problem A-2 

Write a procedure that first prints the message, 

GIVE ME A NUMBER 

, and then prInts 

THE NUMBER SQUARED IS... 

, foI lowed by the square of the number supplled by the person using 
the program. As an example, after the program Is used once, the 
screen might look like this; 

GIVE ME A NUMBER 
2 
THE NUMBER SQUARED IS... 
4 

Problem A-2; Comments 

This problem requires that the use of varivble, and that the 
variable name and value be defined at different times (a "temporal 
offset"). The wording was intentionally left ambiguous as too exactly 
how and when the procedure would collect the value, although the 
author expected most subjects to use the RQ command (Terrapin dialect 
only) or the RW command (LCSI dialect only). Both commands have a 
complex syntax; they take no input, but pause for a user-input and 
output a something as soon as the user hits the return key. RQ 
outputs the entire user-input as a list, RW outputs the everything the 
user had typed, up to the first space or carriage return, as a word. 

Original the problem was given to subjects using an LCSI 
dialect. This version of the problem statement was retained for those 
subjects who used an LCSI dialect (the minority). For the majority, 
who needed to use RQ, the interviewer utilized a "teaching probe" to 
aid them in overcoming any difficulties they had extracting the first 
word of user-Input. 
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Problem D 

Write a procedure called MOVE that takes two numbers as Inputs, an X 
and a Y coordinate. The procedure should move the turtle to that 
point on the screen. For example; 

MOVE 100 -5 

should move the turtle to that point on the screen with an 
x-coordinate of 100 and a y-coordinate of negative 5. 

Problem D; Comments 

Involves use of a local variable and requires correlation between 
variable defined In the header line (as a variable name), in the 
program body (as a parameter) and the value provided at the time of 
the proceduraI call. 

In the pre-instruction I wiI I show an example of definition of a 
procedure with INPUT IN THE HEADER LINE and Demonstrate SETPOS. 
During the session, I wi I I verify that the subject understands the 
Cartesian coordinate system for both positive and negative numbers and 
and answer any questions about SETPOS or Cartesian coordinates. 
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Problem B-2 

Write a procedure called R100 that outputs a random number from 0 to 
99, such that if you then type FD R100 the turtle will draw a line 
segement, but PRINT R100 prints a random number from 0 to 99. 

Prob. B-2; Comments 

RANDOM and OUTPUT will be explained, with examples, during 
pre-instruction. Any questions about RANDOM will be answered 
immediately. Some of likely difficulties include confusing PRINT 
("screen output") with OP. 

244 



Problem E 

Write a procedure called COUNTER that takes no Inputs, and that prints 
out how many times it has been used. For example, the first time you 
type COUNTER, it will print "I", the second time "2", etc. 

Problem E; Comments 

Before presenting, demonstrate the MAKE statement. Answer any 
questions about the longevity of global and/or local variables. 
Subject should understand the term "inputs" as it is used in the 
problem. This problem requires that subjects have or develop a 
variable-counter plan. To be successful, the programmer must 
understand that global variables are accessable within a procedure as 
well as outs Ide. 
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Problem F 

Type In the following commands; 

MAKE "BILL "TEACHER 
MAKE "GEORGE "PROGRAMMER 
MAKE "SALLY "PROGRAMMER 
MAKE "PROGRAMMER [$20 PER HOUR] 
MAKE "TEACHER [$15 PER HOUR] 

Now write a procedure called WAGE, that takes one Input. If the input 
is a person's name (e.g. SALLY), the procedure should print out that 
person's salary. For example, 

WAGE "SALLY 

should print 

$20 PER HOUR 

, (Sally being a Programmer). 

Prob. F; Notes 

Like E-2 & E, this problem requires a distinction between name 
and value, but has a much greater complexity, requiring several levels 
of indirection. Subjects may have difficult keeping track of this 
many levels. Using an object alternately as both value AND variable 
name probably requires greater ability to deal of abstraction. 

As In E, the programmer must understand that global variables are 
accessable within a procedure as well as outside. 

Notes: Explain, with example, MAKE and PRINT .-NAME, and answer 
questions about same. 
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Problem A 

Write a procedure or procedures that repeatedly read In integers until 
it reads the integer 99999. After seeing 99999, it should print out 
the correct average. That is, it should not count the final 99999. 

Problem A; Comments 

This problem was originally used to study conceptualization of 
flow of control In Pascal. Without convenient looping constructs in 
Logo (Logo does have a REPEAT function, but the repetition cannot be 
conditioned), the easiest solution is probably a recursive procedure 
with an IF/THEN/ELSE conditional. 
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Problem B 

Write a procedure or procedures that compute(s) the factorial of a 
number. Try to put it In as brief a form as possible. 

Prob. B; Comments 

Notes: Solutions may be either iterative or recursive. I start by 
providing a comprehensive definition of factorial, including an 
example. During the recursive definition, I wiI I use the word 
"recursive". 

Beside using input and output, subjects must be able to utilize 
or develop plans for either a recursive operation or a looping product 
in order to solve this problem. 



Problem C 

Write a procedure that, when run, finds the turtle's present 
compass-heading and points the turtle to a new heading, one-half of 
the starting heading. The procedure should operate correctly, no 
matter what was the starting position or heading of the turtle. 

Prob. C; Comments 

Notes: This problem tests use of machine state variables, specifically 
the subjects understanding of the SETH and HEADING commands, and of 
the concept of absolute heading. Start the turtle at heading 0. 
Interviewer should verify that the subject understands the term 
"heading", and define it if she does not. Subjects for this problem 
should previously have been exposed to the the SETH command, but it 
should NOT be explicitly mentioned during presentation of the problem, 
unless the subject specifically asks for a tool to set the turtles 
absolute heading. (The same is true for the HEADING command). 

When the subject says that she has finished, have her test at 
least twice, first with at a start heading 0 and a second time after 
the interviewer has turned the turtle with the command, "SETHEADING 
270", (NOT the command LT or RT something)! This state-change should 
be explained to the subject as it is done, and she should be allowed 
to alter his procedure If she wishes, but if the solution is not 
heading specific, the turtle heading should be secretly reset, for a 
third test. 

This problem requires an appreciation for certain 
"state-variables". To do it, a subject must recognize that for each 
compass heading Is a distinct SETH input and a particular value for 
HEADING. 
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Appendix C 
H; Problem A-2 

00:00:00 H: (takes written prob. from I. and begins to read) 
"Write a procedure that prints the message...ok... 

COMMENT: From 00:05 on, H's overall approach shows an unexpected 
pattern. He does not begin by classifying the task as a prototype and 
then actualize the plan, completing one step at a time, as Anderson 
claims is typical. Rather, his approach is to carefully read through 
the problem from start to finish, stopping to code each problem 
element as he recognizes it, and carefully proofreading each block of 
code before moving on to the next problem element. We treat this as 
general plan, MAPPING THE PROBLEM AS A SEQUENCE OF STEPS. This plan 
contains four, sequential steps, I. READ A PROBLEM ELEMENT, II. CODE 
THE PROBLEM ELEMENT III. PROOFREAD THAT CODE, IV. ONCE THE LAST 
PROBLEM ELEMENT IS CODED, TEST THE ENTIRE PROCEDURE. Our assumption 
is that H's selection of this approach indicates a piece of pragmatic 
knowledge. We assume that, in his rapid, initial reading, H has 
determined that this plan is appropriate for this problem, i.e., that 
problem steps are sufficiently independently to be coded 
individually. Such a plan may serve to optimize programmer efficiency 
by minimizing errors In the mapping aspect of the task. His emphasis 
seems to be on insuring the accuracy of each step before going on to 
the next. 

00:05 well, we'll do this,... 
(types ED) 

(a recently written proc. appears in the Logo editor) ) 
...I like procedures; my favorite; oh jeepers;... 
(types (ctrI.)-C) 
(types: ED [GLUB] ) 

( TO GLUB 
END ...appears in the Ed. screen) 

...my favorite procedure is... 

I: This is A 2. 

00:14 H: ...:A 2, I'm sorry; my favorite name for procedures that don't., 
(moves cursor to r. of top line) 
...do anything that makes any sense is "glub", so... 

00:18 (looks at problem) 
...it prints, urn, give me a number, and then prints, the number 
squared is; 

00:27 (looks up at screen) 
Ahhh, "TO GLUB",... 
(types: (ret.) ) 
...so we'll say, "PR I NT GIVE..." 
(types: PR [GIVE ... ) 
"...GIVE ME A NUMBER"... 
(types: ...ME A NUMBER] ) 
Ahh... 

00:37 (looks at problem) 
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'n' it prints "THE NUMBER SQUARE IS"... 
(turns toward screen) 

00:40 OK, make 
(types: (ret.) ) 
(types: MAE... ) 
(hits DEL key to erase last letter) 

00:44 (turns to problem) 
(reads, rapidly and Inaudlbly) 

00:47 Ok, "MAKE...", ahh. . . 
(types: ...KE ) 
(2 sec. pause) 

00:51 ...Oh well; "MAKE...NUM..." 
(types: ... HNUM RL ... ) 

00:54 RL"; So I want to pick It off the keyboard. 
(types: ... (ret.) ) 
And then It says "PRINT, urn,... 
(looks at problem for 1.5 sec.) 

/ 

01:04 ...sentence of "THE NUMBER SQUARED IS,..." 
(types: PR SE [THE NUMBER SQUARED IS] ... ) 

01:12 Ah; now... 
(looks down at prob. for 1 sec.) 
(looks up at screen ) 
(Immediately types*. ••• :N^M ) 
I'm saying square dots number... 

I: "SQ" 

H: SQ...!'m gonna write that,... 

I: "Dots NUM", Ok. 

01:24 H: (looks down at problem) 
Urn; number squared Is that number supplied, blah, might look 
like the number squared, OK,... 

01:29 ..."THE NUMBER SQUARED IS";... 
(looks up; reading off screen) 
"PRINT SENTENCE of; THE NUMBER SQUARED IS square dots number"; ok 
(moves cursor down 2 lines, (below END) ) 

COMMENT: The above seems to be an attempt by H to verify the coding of this 
line. 
01:36 ...and we will write, "TO SQUARE dots N, output dots N times dots N, 

END"... 
(types: TO SQ :N 

OP :N * :N 
END ) 

01:47 (looks up at screen, reading) 
...urn, OK, "GLUB PRINT GIVE ME A NUMBER", it'll print give me a number 
, make number (unintelligible) pick a number,... OK. 
The number squared Is..., but I've made a mistake. 

COMMENT: In proofreading this line, H recognizes an error and shifts his 
attention to the correction of this error. 
01:56 (moves cursor up to GLUB, line 3, Just I. of the last word on that 
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Iine (:NUM) ) 
I need to say the number squared is the square of, I used RL, and I 
have to get, ah, f i rst... 

02:06 (types : ...FIRST ) 
...of the list that I caught, so it'll make number squared, is square 
to the first of the list; TO SQUARE the list, blah, blah blah blah, 
(still looking at screen) 

02:15 (types: (ctrl)-C ) 
Ok, that ought to work, we'll try it out. 
Urn, "GLUB... 
(types: GLUB 

GIVE ME A NUMBER ) 
GIVE ME A NUMBER". I'll give the number, ah... let me give a number I 
recognize, 3. 

02:25 (types: 3 (ret.) 
THE NUMBER SQUARED IS 9 ) 

The number squared Is 9. "GLUB,... 
02:31 (types: GLUB (ret.) 

GIVE ME A NUMBER ) 
GIVE ME A NUMBER"...Minus 2... 
(types: -2 ) 
THE NUMBER SQUARED IS 4". So far it's right, I think it's right. 

02:38 (turns to I.) 

I: Ok 
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Appendix D 
P; Problem A-2 

0:00:00 P: (reading) "Alternate problem A-2. Write a procedure that prints 
the message, 'Give me a number,' then prints 'The number squared is' 
followed by the square of the number supplied by the person using the 
program. As an example, after this program is used once the screen 
might look like this: GIVE ME A NUMBER, 2, THE NUMBER SQUARED IS 
4." 

00:19 (places hands on keyboard, looking from problem to screen to prob. to 
screen) 

00:20 OK. Well it says write a procedure, so I'm gonna...wrIte a procedure 
let's caI I it "Square". 

00:27 (crans neck to bring head closer to problem) 
(speaking slowly) 
You don't...ask...me; 
(2 sec. pause, looking at problem) 

00:30 (returns head to normal position, looking at keyboard) 
...OK, you don't specify a title for me... 
(gestures w. I. hand to I. of k.b., fingers fully extended, palm up, 
and looks to screen) 

00:34 ...so I'm going to type "To Square",... 
(types*. TO SQUARE ... ) 

00:38 (turns to problem) 
.. .and...uh...11's going to ask for the number... 

00:42 (turns to screen, pointing w. I. i. finger to r. side of top line) 
...so I'm not going to put any input; I'm not going to give it any 
Input hopper here; 

00:45 (types (ret.) ) 
...it's "To Square". 
(1 sec. pause, looking at problem) 

00:48 And, urn, the first thing it's supposed to do is print the message, so 
we're going to say "Print"... 

00:53 (types: PRINT [.. . ) 
...and the message I'm going to put in a list; "Give me 
a number." 
(types: GIVE ME A NUMBER ]... 
(2 sec. pause, looking at problem) 
(types: ... (ret.) ) 

01:03 And...then it is supposed to...urn... 
(5 sec. pause, (before and after "...urn...", still looking at problem) 
(removes hands from keyboard, looking at problem) 

01:11 ...Do you want me to use exactly this format? That is, urn, a four 
Iine format,... 

01:17 (slicing gesture w. r. hand, makes 4 parallel lines in air to r. of 
screen) 

...Just the way this is printed? 
(points to several lines of problem w. I.J. finger) 

01:18 You say, as an example, after the 
program is used once, the screen might look like this. 

I: You could give an alternative if you think it would be better. 
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01:32 P: Ok, well, let me do exactly this one first, and then I'll tell 
you what I was thinking of. 

I: Okay. 

01:38 P: (hands to keyboard, looking at screen) 
Print "Give me a number." So, ah, now I want to do, what is it, 
request in this; RQ; In this dialect? 

I: Yea. 

01:48 P: SO, um... 
(2 sec. pause, looking at problem) 

01:52 ...since I want to get the number here,... 
(on "since", P slides I. i. finger I. to r., below line 2) 

01:56 ...and...then I want to print something else,... 
(on "then", uses same sliding gesture. Just below previous one) 

01:59 ...and then I want to use it,... 
(on "then", uses same gesture, 1 line lower still) 

02:01 (begins tapping gesture w. I. i. finger in the 1st (unwritten) "line 
below line 2) 
...I'm inclined either to do a "Make" here, you know to grab hold of 

that number... 
(grabbing gesture w. cupped I. hand, palm up, to I. of screen) 

02:08 ...'cause I'm going to have to defer the use of it later on,... 
(holding I. hand, palm down, in front of his body, P slides r. hand 

, palm down, from I. palm down 6 inches. Repeats gesture.) 
...maybe I'll use a subprocedure or something like that. 

02:12 Um; Why... 
(6 sec. pause, w. fixed gaze to the r. of the screen) 

02:20 ...I'll use a subprocedure. 
(2 sec. pause) 

02:23 The problem is, to find; no...I'm gonna...yes, I'll use a 
subprocedure... 
(the above is punctuated w. a pair of gestures done twice, in quick 
succession. P first points to the problem w. r. i. finger ( on 
"The problem..." and "...I'm gonna...") followed by a gesture of 
dismissal, literally throwing up his hands, on "...no..." and 
".. .yes...") 

...'cause I'm going to keep to exact format that you've got here and 
then I'll show what difference I might have done. 
(slaps the problem w. all fingers of r. hand "...keep...")' 

02-32 Um; (2 sec. pause, looking at screen) Print answer... 
(types: PRINTANSWER(space) ... ) 

... request. 
(types: ...RQ (ret.) 

END (ret.) 
(ret.) ) 

COMMENT: The second return indicates that at this poing P had it in mind to 
follow up with a sub procedure. 
02:39 (points w. I. I. finger to line 3) 

I'm using a subprocedure called "Printanswer"... 
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I: Um huh. 

02:43 P: (points to RQ, on r. of 3rd line) 
...and I'm giving it the input of, um, a request, which is going to 
ask for the number here. 
(on "...ask...", P turns to point at problem w. r. i. finger) 

1: Okay 

02:49 P: So-we-say, "TO PRINTANSWER",... 
(types: 

TO PRINTANSWER(space).. . ) 
...and, you know, some number in list... 
(types: 

...:NUMBERINLIST(ret.) ) 

I: Number in list? 

03:00 P: Number in list... 
(points at line 0 of PRINTANSWER w. 1. i. finger) 
...To "Print answer, colon, number in list, um... 

1 : Uh huh 

03:06 

03:10 

03:17 

03:21 

03:29 

03:39 

03:44 

03:47 

P: (2 sec. pause, looking down at problem) 
...print,... 
(types: PR 1 NT(space)... ) 
...because you want a separate line. 
(points to prob. w. r. 1. finger) 
(types: ...[... ) 
Print a message "The number squared is"... 
(types: ... THE NUMBER SQUARED IS...] 

(points w. I. 1 
...times itself 
(1.5 sec. pause 
if 1 don't care 

(ret.) 
...and then "Print",... 
(types: PR 1 NT(space)... 
(2 sec. pause, looking at screen) 
...and now 1; 1 need to multiply the number 

, finger to :NUMBERINL1ST on 
Ah. . . 

, looking down at keyboard) 
about robustness in 

taking the first of that request,.. 
(points to "RQ" in line 2 of SQUARE 
(3 sec. pause, looking at screen) 
...so, ah...but let's; let's do it... 
(moves cursor up to line 2 of SQUARE 
So, I'm going to go back up the first 
(points to line 2 of SQUARE 
... so... 
(moves cursor r., to the "R" of 
...the second line of the first 
(types: FIRST 

(line now reads: 

) 

that's in this list... 
top line of PRINTANSWER) 

this program 1 could simply try 

f inger) w. 1 . i 

) 

) 
program, 

RQ) 
program is going to be "Printanswer... 

) 
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PRINTANSWER FIRST RQ ) 
...first of the request." 
(points w. I. I. finger to line 2 of SQUARE ) 

I: Uh huh. 

03:56 P: So that "To square, print give me an answer",... 
(pointing at line 1 of SQUARE) 
"Prlntanswer first of request."... 
(pointing to IIne 2 of SQUARE ) 

04:00 ...and then "Prlntanswer"... 
(points w. I. I. finger to rNUMBERINLI ST on line 0 of PRINTANSWER ) 
...is not going to be a number in a list anymore but; 
(moves cursor down to r. side of line 0 of PRINTANSWER) 
(Child crying in background), 
Poor child... 
(deletes 6 chars, on write of that line) 

(line now reads: 
TO PRINTANSWER :NUMBER ) 

04:12 "Number". And then it says, "Print the number squared 
is"... 
(points w. I. I. finger at line 1 of PRINTANSWER) 

04:18 "...number...times...number." 
(types (at the end of line 2): 

...rNUMBER * rNUMBER 
END (ret.) ) 

(proc. now reads: 
TO PRINTANSWER rNUMBER 
PRINT [THE NUMBER SQUARED IS...] 
PRINT rNUMBER * NUMBER 
END ) 

I think ! believe this. 
(2 sec. pause, looking at screen) 
(types: (ctrl)-C ) 

04:28 So, let's see; "Square",... 
(types: SQUARE(ret.) 

GIVE ME A NUMBER ) 
..."Give me a number", 2,... 

04:33 (types: 2 
THE NUMBER SQUARED IS ...4 ) 

"The number squared is; 4." 
(nods his head in the affirmative) 

I: Okay 

04:39 p: Okay, well, urn,... 
(types: ED (ret.) ) 
..."Ed", what I had wanted to do, I mean this 
sort of forced me to go;... 
(points up and down screen w. I. I. finger) 
(makes 4 slicing motions in front of the screen & turns to problem) 

4:46 ...getting that extra line in there, making it a four line program 
made it actually slightly harder for me to write than if I had 
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allowed myself a three line program. 
(turns toward screen) 

04:57 What I really wanted to do; 
(4 sec. pause, looking at screen) 

05:03 ...well I still have to use that number twice, don't I; I still have 
to use that number twice.... 
(moves cursor down to line 1 of PRINTANSWER) 

05:08 Well, what I had wanted to to was put "The number squared is" and 
the answer all on the same line,... 
(points w. I. i. finger to line 1 of PRINTANSWER on "the number..." 
and to line 2 on "...the answer...") 

...but actually it doesn't save me any room... 
(points w. I. i. finger to RQ in line 2 of SQUARE) 
...'cause I still have to hold on to that number... 
("holding gesture" w. I. hand to I. of screen, as before, on 
"...hold...", then points to RQ again) 

...to use it twice, so that's about as good as... 

I: You were thinking you could write It in fewer lines? 

05:27 P: Well, what I didn't want to have to do is name this request, 
(pointing w. I. i. finger to line 2 of SQUARE) 

I: How do you mean? 

05:34 P: Urn, well, as It stands, I get a request, so the number is 
typed in from the keyboard,... 
(still pointing at 2nd line of SQUARE) 

05:40 ...urn, and I either have to name it so that I can type this line 
In between the "the number squared is",... 
(pointing to line 1 of PRINTANSWER) 

05:48 ...or, and I could have done that with the local, or just with the 
make up here or something, but I chose to use a subprocedure. 
(points w. I. I. finger to 2nd line of SQUARE, then to Oth line 
Of PRINTANSWER) 

05:55 But that also names it, it's naming it "Number". 
(pointing w. I. i. finger to ":ANSWER" in line 0 of PRINTANSWER) 

05:58 And I guess in my head I was thinking I could get away without that, 
and I can't get away without that. 
(turns to look at I. for 2 sec. pause) 
I ... I ... I .. 

06:08 ...it Just felt like It was extra baggage to have to give it a 
name, but obviously I have to multiply it times itself so it has 
to be somewhere for me to use. 

06:18 |'m using it twice, at least,... 
(pointing to 2nd line of PRINTANSWER) 
...and in this case only twice, urn, so I don't save very much by 
avoiding this Intervening step,... 
(pointing to line 1 of PRINTANSWER) 

06:27 ...that's what I was hoping to do, to you know, print "The number 
squared Is," and I was thinking maybe I could put that all on one 
line but it doesn't really save me anything at all. 

6:35 Here's another version, but It's (unintelligible). 
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(Inserts SE In front of “[THE NUMBER ..." on IIne 1 of PRINTANSWER) 

(line now reads: 
PRINT SE [THE NUMBER SOARED IS...] ) 

COMMENT: Apparently suggesting merging line 2 with line 1, though he does not 

remove the carriage return separating the two lines. 

I: Put a sentence in front of that and have "Print"; have 'NUMBER 

COLON NUMBER"? 

06:43 P: Yeah. At the end. 

I: Okay. Let me just ask you quickly, you changed NUMBER INLIST 

to NUMBER... 

P: Yes 

06:52 I: ...In "Print answer" and you also changed the second line 
of "Square" from "Print answer request" to "Print answer first 
request." 

P: Yes 

I: ...and If you could maybe just explain that quickly. 

07:06 P: Okay, well, originally, when I said "Print answer request,"... 
(points w. I. I. finger to that line of SQUARE) 
...what I was thinking to myself is, urn, I was thinking of robust 
programming. 
(turns toward I.) 

07:15 Ah, when I take a request, the person could type 
anything, including nothing, he could give an empty line. 

07:23 Urn, with an empty line, and this thing Is asking for a number,... 
(points w. I. I. finger to line 2 of SQUARE) 
...clearly in a good robust program it ought to be able to, you 
know, do the right thing if you don't give it a number, you give 
it nothing, or you give it a word. 

I: Urn hm. 

P: And, ah; ah; 
(4 sec pause, looking at screen) 

07:42 So my sort of standard thing to do when I hit a line like that is 
just to go ahead and take it, and let "Print answer" worry about 
filtering out...figuring out whether it got the right stuff. 

07:53 Well, I decided I wasn't going to build in ail of these bells and 
whistles, to try to figure it out. Urn, and realized that, in here; 

07:59 the point Is the first of request Is going to be bad news if somebody 
Just hits an empty line. 

I: Uh huh. 

08:05 P; Okay. And I figured I'd take care of that in here,... 
(scratches fingers of I. hand In front of PRINTANSWER procedure) 
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...but then when I realized In here I would, 
(points w. I. I. finger to :NUMBER * :NUMBER In SQUARE) 

08:12 ...If I wasn't going to do that building, then by the time I got down 
to "Print number times number," It would be "Print first of number In 
list times first of number in list," and that's repeating a 
computation here,... 

08:25 ...there's no point to repeating that computation 
unless I were planning on doing something clever with it, and 
since I'd already given up on that Idea, I Just decided to put the 
first out here, give "Print answer" only the number,... 
(pointing w. I. I. finger to line 2 of SQUARE) 

08:38 ...and then I changed the name here because I always like 
my names to refer to what I've actually got. Before it was going to 
be a number in a list, because that's what "Request" does. 

08:47 So there you are. 
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00:00 

00:16 

00:17 

00:22 

00:39 

00:50 

00:57 

COMMENT 

01 :05 

01:11 

01 :22 

Appendix E 
B, Problem A-2 

B: Write a procedure that first prints the message "Give me a 
number" and then prints "The number squared is" followed by the 
square of the number supplied by the person using the program. 
So, I've gotta write the program. ...The screen might look like this 
"Give me a number, 2, the number...square... is". 

I: Yea. 

B: Okay. So now do you want me to just do it or do you want me to 
tell you what I'm doing? 

I: Right, I should make it clear, I do want you to talk about urn, 
you know alot of things so I'd like you to talk about,..uh... the 
process as you go through it as much as possible, and urn, yeah, I mean 
that's a good enough answer for you because you're familiar with loud 
thinking. 

B: Okay, urn... 

I: And I'll be a I i stener 

B: Bright, okay. Urn... 

I: By the way, that's a problem for the camera, that's in part for me 
too. 

B: So, I would write a procedure called, probably, "Square" or 
something... 
Urn, and it's going to be interactive with the user 
because I want to, basically request them to give me input, which 
will be the number two. 

: Note the use of "them" to denote the user, "it" and "me" for 
the procedure. 
Urn, actually if..., there are a couple ways I 
would do this problem. I'll show you one way. Urn... 

I: Okay. 

B: It would be nice if, urn, if I had a little procedure called 
"Square" that just squares a number and; outputs a square of a number. 
Okay, so I can say to "Square dots num",... 
(types: 

TO SQUARE :NUM(ret.) ) 
•..where Num is my variable, and I'll just output, you want me to 
write that out? Output... 
(types: OUTPUT... ) 
••."dots num times dots num"... 
(types: ...;NUM * :NUM(ret.) 

END(ret.) ) 
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...and there's my little square procedure. 

« 

I: Okay. 

B: (types (ctrI.)-C ) 
01:44 Okay. So now when I type "Square four",... 

(types: SQUARE 4(ret.) 
RESULT: 16 ) 

...um. I'll get the result "sixteen", okay? 

I: Okay. 

01:51 B: So I'm going to use that In my, um, procedure, FOO, I don't know 
what I'll call It, um, you want me to... 
(types: TO ... ) 
...give It a real name? 

I: Anything you want. Anything you like. 

02:00 

02:05 

02:13 

02:22 

02:28 

02:32 

B: To do "SQ dot Num"... 
(types ...SQ.NUM(ret.) ) 
...Okay? Um, so the first thing I want to do 
is have it ask the person, um, a question, so I'm going to say 
"Print, uh..." 
(types: PRINT ... ) 
"Print, uh, give me a number",... 
(types: ...[GIVE ME A NUMBER].. . ) 
...um and I always like things to look exactly the way they will on 
the screen,... 
(types: ...(ret.) ) 
...um,... 
(3 sec. pause) 
...I suppose you want me to have it print the number two there, right? 

02:39 I: Um, well let's see... 

B: Bright. 

I: Why do you say that? 

02:46 B: Well, just because of the way it's printed there as a "2" 

I: Oh the... 

B: And that will... 

I: I meant that to be, um, that's a, that's a... 

02:56 B: Will that be something that the person types... 

I: Just what the person types in, you know. 

B: Okay, that makes it easier. 
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03:00 I: This should probably have a question mark, "Give me a number" 
should probably have a question mark before it. 

03:04 B: Bright, I'll put in a question mark. Urn, or a colon, how about 
that since it's a statement and all that... 
(moves cursor to r. end of line 1 and inserts a colon before "]" ) 

I: Okay, right. 

03:11 B: Urn, and then what I'll do Is I'll "Print" urn;... 
(types: PRINT ... 
(4 sec. pause) 

03:19 ...this Is interesting, this is interesting, 'cause I always; what's 
nice about these problems Is as I'm doing them I can think of, like, 
three different branches or something about how I would, sort of, 
solve it, and then I try and think of the most concise way to do it; 

03:35 ...urn, really, what I would do is I'd say "Print a sentence... 
(types: ...SENTENCE ... 

03:43 ...made up of "The number squared" urn, "is",... 
(as she types: 

...[THE NUMBER SQUARED IS]... ) 
03:55 ...and then, urn, "SQ first request". 

(types: ...SQ FIRST REQUEST(ret.) 
END ) 

I : Uh huh. 

04:08 B: Now, that's not necessarily the; if I were doing this for, urn, 
kids to use or something like that, I wouldn't necessarily do this 
because I don't think it's necessarily clear what's going on. 

I: You mean the Internals of that program are not as clear as a 
demonstration? 

04:29 B: Right, right, it's not as, sort of linear; sequential, urn, if; 
(1 sec. pause) 

04:36 ...you know, another way I could have done it was to create a variable 
called "Number" but since I learned LOGO from Brian Harvey, I always 
learned that you never use MAKE, so I try to avoid it whenever 
possible when it wasn't...the right thing to do. 

I: So, let me see if I understand the advantage of using a variable 
would be what? For someone, you said, as a sort of exemplary program 
if you're using It to teach with, uh... 

05:02 B: Well, like here,... 
(points w. r. I. finger procedure on the screen with a single, quick 
stroke going from header to last line) 

5:04 ...urn, if kids are trying to figure out what's going on 
here,... 
(turns r. hand, now holding It palm up in front of screen) 
••.it's not clear where the person has really typed in the number 
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that the... . 
(rotates r. hand clockwise at wrist, w pinching gesture of fingers) 

...programmer's asked them for. 
COMMENT: The distinction between "the programmer" and the user ("them") is 

made concisely. 
05:14 In other words, I haven't specified a real container for that 

number,... 
(r. hand palm up, as before, then pinches her fingers on "container ) 

I : Uh huh. 

05:19 B:...and it's sort of magically included in this last, ah, line 

here,... 
(points w. r. i. finger to 3rd line) 
...urn, so that it's actually doing the requesting,... 
(circles the word "REQUEST" on the screen w. r. i. finger) 
...getting the number... 
(clenches r. hand Into a fist in a "grabbing" gesture) 
... and then automatically passing it down to that, uh, Square 
procedure that I have as a tool hanging around. 
(on "...automatically passing it down..." B. pulls fist away from 
screen and down, retaining clenched hand) 

I : Yes. 

05:38 B: Urn, now of course if I have a problem, if really what I wanted 
to say Instead of Just the "Number squared is"... 
(slides her pointing r. I. finger along 2nd line) 
.. .such and such,... 
(bounces r. hand, held w. palm up, three times, moving from before 
screen to r. of screen) 

05:47 ...urn, if i wanted to say "The number, (whatever the number is) 
squared is",... 
(slides pointing r. I. finger to same line, pausing between "NUMBER" 
and "SQUARED" during the phrase "...(whatever the number is)...") 

...then I would have to reorganize my thinking because I haven't... 
(circles REQUEST on line 2 w. r. I. finger) 
...given that number sort of a label; or a name. 

06:00 I: Uh huh, uh huh. How would you do that; you might want to test 
this.... 

06:04 B: (laughs) 
I'd better test this and make sure the thing works. 
(1 sec. pause) 

06:09 Urn, so "SQ dot num"... 
(types: SQ.NUM... ) 
I doubt it, ah ,.. . 
(types: ...(ret.) 

GIVE ME A NUMBER: 
THERE IS NO PROCEDURE SQ IN LINE 
PRINT [THE NUMBER SQUARED IS] SQ REQUEST 
AT LEVEL 1 OF SQ.NUM ) 
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...there's no procedure named "SQ". 
nfi-14 What did I call It? Square? 

(types: ED(ret.) > 
I guess I called It square. 

I: Um... 

B: Yes, I did. 
(moves cursor to IIne 2 of SQ.NUM and changes SQ to SQUARE ) 
(types: (ctrI.)-C 

POTS(ret.) 
TO SQUARE :NUM 
TO SQ.NUM 

B: There. Yeah I called It "Square". So "SQ dot one",... 
(types: SQ.NUM ) 

GIVE ME A NUMBER: ... 
) 

..."Give me a number", I don't know, twelve,... 
(types: ...12(ret.) 

THE NUMBER SQUARED IS 144 ) 
..."The number squared Is 144". 

I: Okay. 

06:39 B: Okay? 

I: Let me, some, there's a lot of...(LAUGHS), I'd love to have 
branching videotapes so we could pursue some of these branches 
you're talking about, um... 

06:43 B: Oh, I know... 

I: You got an error message there, I think the error message was 
something like "There Is no procedure SQ In line something of SQ 
dot NUM, and you... 

06:56 B: Do you want me to go, I can go make the error again, if you 
want. 

I: Well, I think,... 
07:00 ...does that sound right to you? 

07:04 B: (types: ED(ret.) ) 

I: Um, or maybe, or Just as you "Make" it If you talk about, I mean 
you quickly... 

B: (moves cursor to 2nd line and changes SQUARE to SQ) 
07:ii (types: (ctrI.)-C ) 

I: It looked like that, ok. 

06:18 

06:25 

06:30 

06:33 
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07:12 B: Right, so I give "SQ dot num"... 
(types: SQ.NUM(ret.) 

(duplicates earlier error message) ) 
...and It said "Give me a number there is no procedure named "SQ in 
line print" it tells me what line the error is In... 
(pointing to the middle of the error message) 

I: Uh huh, 

07:20 B: And at what level that's in case I made a recursive procedure 
that's in some other level down there or whether It's called a 
subprocedure... 
(pointing to the following line of the error message) 

I: You know this version of LOGO very well. 

B: (laughs) 

07:33 I: Urn, but if you could, you then asked about what you called 
another procedure you'd written and you did a "POTS", what was, urn; 
do you remember anything of the thought processes that very quickly 
led you to fix something that made everything work? 

07:50 B: Oh, I mean at this point this is sort of, urn, rote, I know it 
says "There is no procedure named Square", it,... 
(points to first line of error message) 

08:00 ...I know that, I'm trying to call a procedure by a name, and I don't 
have a procedure by that name. So by saying "Print out titles",... 
(types: POTS(ret.) ) 

08:11 ...I get the titles of the names of the procedures I have, and so I 
can look at that and I can say, oh yeah, I don't have one called "SQ" 
I remember what I did was I called it "Square". 

I: Uh huh. And you recognized right away that the, well the line is 
printed out there for you... 

08:22 B: Right, right,. . . 

I: Print sentence... 

°8:25 B: ...but, I mean, I didn't even look at the rest of the line, I 
just said when it said "There is no procedure named SQ" I knew 
automatically that I made, that I could call it "Square" instead of 
"SQ". 

I: Yeah, yeah. 

08:37 B: 'Course there's not a lot of stuff In my workspace, so, that was 
easy. 

I: Okay. Well thanks, that's helpful to have you talk about; urn,... 
what about any of these other branches, any of them that are worth; 
uh, noteworthy... 
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08:49 B: Well, so, for example, suppose, urn. Instead of It saying um, 
"The number squared Is such and such" that I wanted it to say, um 

09:00 "The number twelve squared Is 144"? 
COMMENT: Had this line in the problem been worded this way, B. would 
apparently have selected this alternative. While this seems a subtle 
distinction in execution, B. recognizes this final declarative sentence 
would strongly favor one approach to coding over another. 

I: Um hum... 

09:04 B: 
(types: ED ) 
Then, probably what I would do since I like having a little 
procedure "Square" around as a tool, um, is I'd probably do someth 
like, um, "Make quote number first request",... 
(moves cursor just r. of SQ in Iine 2 of SQ.NUM ) 
(deletes SQ and inserts: MAKE "NUMBER FIRST (ret.) 

In front of REQUEST on that line; ) 
(Procedure now reads: 

TO SQ.NUM 
PRINT [GIVE ME A NUMBER:] 
MAKE "NUMBER FIRST REQUEST 
PRINT SENTENCE (etc.) ) 

...first because request; you really want to know all this? 

ng 

I: Yes, yeah. 

09:25 B: "Request" um, will output a list and I, a list of one, ah, it 
output a list, since what I'm doing is typing in number, that's a 
element list. I need to get that number out of the list so I say 
"First of request" and that will, the first of course in a one 
element list is that element. So I want this... 
(circles "NUMBER w. r. I. finger) 
...to be, ah, a number. Of course I don't need to do that here 
because it's not going to know that anyway*,... 
(points to [THE NUMBER SQUARED IS] w. r. I. finger) 

09:58 ...when I put it; but I put It in; its just interesting but, um.. 

I I 
one 

I: When you print It. 

B: Yeah. So... 

I: It won't matter if it's a list or a number? 

10:08 B: Right. I have to put a parenthesis here,... 
(inserts "(" before SENTENCE in IIne 3 of SQ.NUM ) 
...because I'm now going to have more than two Inputs to sentence, 
sentence Is going to take, ah, well, other than two inputs, it's 
going to take three in this case. 

I: Um hum. 
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10:20 B: So I'm going to print a sentence out of the number sq... "The 
number"... 
(moves cursor to r. of "[THE NUMBER" and Inserts "] " ) 
...dots number",... 
(Inserts: ...:NUMBER ) 
...okay, because my number will be in that variable... 
(pointing w. vague waving motion of r. I. finger, approx. 18 in. 

in front of screen) 

I: Urn hum. 

10:32 B: Urn, then I guess I'm having four inputs to sentence,... 
(types: "[" between NUMBER(space) and SQUARED on line 3 of 

SQ.NUM ) 
..."SQUARED IS",... 
(moves cursor r. to SQ on that line ) 
...and now here,... 
(points w. r. I. finger to FIRST REQUEST in line 3) 
...if I leave this here "Request" is going to ask me,... it's 
going to wait for me to type in something again, I already have, have 
my something... 
(adds "ARE" to r. of SQ ) 
(deletes FIRST REQUEST ) 
...and it's "dots number". 
(inserts: :NUMBER) ) 
So that would be my new version and... 

11:00 ...of course up here, just to make things nice, I'd say someting 
I ike cleartext. 
(inserts: CLEARTEXT 
as new Iine 1 ) 

(proc. now reads: 
TO SQ.NUM 
CLEARTEXT 
PRINT [GIVE ME A NUMBER:] 
MAKE "NUMBER FIRST REQUEST 
PRINT (SENTENCE [THE NUMBER] :NUMBER [S! 
QUARED IS SQUARE :NUMBER) 
END 

I: Urn hum. 

B: You want to see it? 

I: Yeah. 

B: (types: (ctrl.)-C 
Alright, "SQ NUM",... 
(types: SQ.NUM(ret.) 

GIVE ME A NUMBER: 
"Give me a number", twelve,., 
(types: 12(ret.) 

THE NUMBER 12 SQUARED 
"The number twelve squared Is 

IS 144 
144". 

) 

) 

) 

267 



I: I see, I see. Do you use the term "GREEDY" for procedures that 
use parentheses, the ACORN manual uses the term, calls those "GREEDY" 
procedures... 

11:25 B: Well, I wouldn't call them "GREEDY" because, urn. In actuality, 
urn, prImItIves(?) that take parentheses mean that you use 
parentheses any time the number of Inputs Is anything other than the 
default number. So for example, I could use sentence with one Input, 
and In that case I would still need parentheses. I can use It with 
no Inputs. 

I: Urn hum. 

B: I don t know why you'd want to but, very often times when you'Id 
12:00 only use it with one input, and so that isn't really being 'greedy' 

that s kind of the other side of greediness... 

I: Urn hum, yeah, that's true, that's true, urn, but not all 
procedures can be so parenthesized so, to operate that flexibly. 

B: Right, right. 

I: Okay. Urn, anything else? 

B: Nope. You have another problem? 

I: (guffaws) 

B: 
or 

Alright, I'm going to say goodbye, you want me to 
do you want me to leave all my stuff here? 

say goodbye. 

I: Urn, whatever you like. 

B: Going to lend my my "SQ" procedure again? 

I: No, none of these should use each other, urn, well thank 
course you might find a way to use that “Square" procedure 

you, 
again. 
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Appendix F 
R, Problem A-2 

00:00 R: Problem A-2, alternate Problem A-2. Write a procedure that 
first prints the message "Give me a number" and then prints "The 
number squared is" followed by the square of the number supplied 
by the person using the program. As an example, after the program 
is used once, the screen might look like this: "Give me a number... 
...2...The number squared Is...4". 

00:32 I: Okay, I should mention and probably should specify in this sheet, 
or should have specified on this sheet that "Give me a number" Is 
printed by the computer. The "2" would be printed by the user; 
would appear, you know, ah... 

R: Uh huh. 

I:...as a result of what the user did. The 
computer would print the next two lines, "the number squared is"... 

00:48 R: (nods his head up and down) 
Okay. 

I: ...and "4". 

00:50 R: Okay. So first we'll; 
00:52 (types: TO SQUARE ) 

I: You say "TO SQUARE", can I stop you for just a second? 

01:01 R: Yeah? 

I: I'm Interested in something, you read the problem, I would say 
going over It carefully, I think, urn, and very quickly, in all cases, 

I believe, moved into typing something, urn, can you tell me about 
that, was there any gap in time at all, was there an instantaneous... 

01:24 R: Yeah, yeah, I thought about the crucial several lines that would 
do what the program use...was... 

I: What was that thought process like? Was it like, urn, let me see 
where the few crucial lines... Or was it like, obviously the crucial 

I ines are... 

01:42 R: Yeah, like I sort of dismissed the print and input parts 
because those weren't very hard to do. And then I focused on like 
what would actually acccomplish what the procedure is supposed to 
accomplish. 

I: Uh huh, and what were the, maybe, you haven't written it 
yet, but what were the crucial, what did you decide were the 
crucial... 
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02:03 R: Okay, the crucial line would be what...the one that printed the 
square of the number, because all the other lines were just "PRINT" 
or Input.., or inputting the...that number... 

I: Could you perhaps, and I'll stop disturbing you from, from doing 
the solution, could you perhaps talk about the crucial;., it's a 
wonderful Idea, I'm really glad I asked. And if you could maybe 
point to it when you hit the crucial part of the problem. 

02:27 R: Okay. 

I: Very interesting; urn, well. I'll shut up for, but, you know, that 
idea of, there, locating a crucial part of the problem is a 
fascinating idea. 

02:36 

02:43 

02:45 

R: Airight. 

I: Hum...'cause, you know, well I should shut up... 

R: (laughs) 
Okay. 
(briefly looks down at the problem). 

I: I'd love to talk to you a little bit about this after 

R: (types: 

Sure. 
PRINT ... 

we're done. 

I: By the way, I should have mentioned earlier that I'm,... 

02:48 R: (looks down at written problem for 1.5 sec.) 
(types: 

...[GIVE ME A NUMBER] (ret.) ) 

I: ...while I'm, you know, particularly trying to avoid certain 
sorts of questions of discussions, urn... 

02:51 

02:54 

R: 
(types: 

MAKE... 
(looks down at written problem for 1.5 seconds) 

..."NUM RW... 

I: ...I don't know whether that's come up with us or not... 

R: (types: 

... (ret.) ) 
(turns to look at I for 17 secs.) 

03:04 I'm very happy to talk and would love and very much enjoy by 
the way, talking with you about any of this, Including your own you 
know, personal reaction to it if... 
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03:13 R: Okay. 

I: ...ah...I would find that very, I would just be very interested in 
that and your're welcome, you know, please keep that in mind, urn. 

03:23 R: Okay. 
(turns toward screen; 3 second pause, looking at screen) 
So... 

03:26 (types: 
PRINT [THE NUMBER SQUARED IS...] (ret.) ) 

I: Allright, you typed "To square print give me a number" then "Make 
quotes NUM RW" then "Print the number squared is", dots and a bracket, 
then "PRINT... 

03:43 R: (types: PRINT... ) 
Okay, now this Is the crucial part. 
(types: ... :A*:A ... ) 

I: "Print colon A times colon A". Okay. 

03:50 R: Which, um, each "colon A"... 
(points with right thumb to first :A, then second) 
(turns toward I) 
...tells the computer to use the value of 
the number which would be, in effect, that number times itself. 

03:59 I: I see. 

04:05 R: (types: 

END (ret.) 
SQUARE DEFINED 

(ret.) 

) 

I: And you type "End", okay. 

04:07 R: (types: 

SQUARE (ret.) 
GIVE ME A NUMBER ) 

I: "SQUARE DEFINED, you type "Square", 
number"... 

the program says "Give me a 

04:10 R: (types: 

Hmm. 

(ret.) 
THE NUMBER SQUARED IS... 
1521 ) 

I- You type "4", and It says "The number squared is 1521". 

R: Which is because I was careless... 
(points with right thumb to line 4, then line 2; back and forth 
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several times) 

...and changed the name of my variable In between without thinklnq 
about it. 

i Okay, pointing at "MAKE NUM READWORD" and "PRINT DOTS A TIMES 
DOTS A"? 

04:26 R: (types: ED [SQUARE] 
Yeah, l should have used either "NUM" or "A", but not both. 

I: Hmm. Okay. 

04:34 R: (moves cursor down to line 4) 
I was Just thinking about what you said, 
(changes Iine 4 to read: 

PRINT :NUM * :NUM 

I: I should keep my mouth shut probably (laughs). 

04:42 R: (types: 

(Ctrl.)C 
SQUARE 

GIVE ME A NUMBER 

I: I'm sure. It's a lot easier 
listen to me babble on about th 

to program than it is to program and 
Is, eh? 

04:47 R: (types: 7(ret.) 

THE NUMBER SQUARED IS... 
49 

) 

I •• You say "Square give me a number 7" 
squared is 49". it says "The number 

04:55 R: (types: 

SQUARE 
GIVE ME A NUMBER 

14 

THE NUMBER SQUARED IS. 
196 

l: Square> 9|ve me a number, 14, the number squared is is6». 

05-'01 R: one more. 
(types: 

I : 

SQUARE 
GIVE ME A NUMBER 

25 

THE NUMBER SQUARED IS.. 
625 

) 

"Square, give me a number. 
25, the number squared is 625". 
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05:08 R: Okay. 

1 : Why the three tests? 

05:10 R•* Oh, just checking, urn, | was sure it 
Just, like, playing around with things 1 

worked 
didn't 

before, 
know. 

1 : Um hum. Do you usually check?... 

05:19 R: Yes... 

1 : As you go through a process? 

R: ...to make sure, like, it would work in any case. 

1 : Okay. 

273 



Appendix G 
M, Problem A-2 

0:00:00 I: (Reads the written problem) 
00:35 Ok? So is it clear which parts the person types in and which parts 

the person types In here? The computer types... 

00:44 M: Ah, you type in the name of the procedure and then the computer 
takes over. 

I: Uh-huh. And then the computer types, "Give me a number", ok, and 
you have to type... 

00:56 M: The number. 

i ...the person there has to type, the number, and then the 
square of it is four. 

01:02 M: Um-hmm...Ok. 
(4 sec. pause, looking at screen) 

01:07 (types: TO ) 

I: Ah, one thing you should do, there, 
screen; ...ah, clear the procedures. 

01:15 M: (erases TO and types GOODBY(ret.) ) 

Is type "GOODBYE", to clear the 

(M corrects this misspelling to GOODBYE to restart Logo). 

01:44 Ah, we'll call this, "To num"... 
(types: 

01 :56 

02:02 

TO NUM(ret.) 
(looks down to written problem) 
Ok; 

(4 sec. pause, looking at problem) 
Well first we want to give it a print 
(types: PR... 
(turns to I.) 
Now If you want it to print 
brackets, I mean? 

a list you put it in parentheses? Ah, 

I: Brackets, right. 

02:12 M: (types: 

(turns to keyboard) ^ 
(4 sec. pause, eyes wandering over keyboard) 
Hmm..."G" 

I: You don't have to type the whole thing 
Just type "Give number"... if you don't want. You can 
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M: Thank you. 
(types: 

...GIVE NUMBER?](ret.) ) 
02:39 O.K.(7 sec. pause, looking at the screen, then down at the written 

problem) 
02:46 Now to take this number and to reprint It would you put "Output 

dots x"; ah... output...ah...how did you do that, again? I forgot." 
(laughs) 

COMMENT: This Is an example of the same "language confound" for OUTPUT 
observed In other protocols, (OUTPUT may mean "screen-output"). In other 
words, M Is using the term "output" to mean "screen output", and uses this 
association as an (incorrect) formal interpretation of Logo's OUTPUT 
command. 

03:05 I: Tell me more specifically. . . 

(I tells M that she may ask questions freely) 

03:21 ...So you're asking now? 

03:23 M: Ah, I'm going to be given a number here; 
(points to screen, line 1 of procedure). 
I want to put that number in a variable, so I can use it whenever I 
want it, and the first way I want to use that variable Is to reprint 
it back on the screen" 

I: OK. OK. Urn. 

03:41 M: So do you use a MAKE statement?" 

i: You can use a MAKE statement to create a variable, yeah. 

03:47 M: But I wanna output it. So the first thing I want to do is output 
it back to the person. So if they type in a 2 
(points above top I. of keyboard, then sweeps finger in big arc, 
to point to her right side, keyboard high) 

I type back; give them back the 2. I guess if they do a 2 
(points to top, left keyboard, then top, computer screen) 
it will go anyway, won't it?" 

I: It will go where? 

^4:03 M: If they type in 2, 
(points to top left of keyboard) 
it will be on the screen anyway. 
(points to top left screen) 

I: I will be on the screen yea. You don't have to echo the 2 back. 

04:13 M: Ok. So I Just want to make this... 
(points to screen) 
...a variable. So I can use a MAKE statement? 
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I: Yea. 

04:22 M: (begins typing) 
Now I've probably forgotten how to use It correctly at this point, 
(types: 

MAKE ... ) 
Make...now let's see. 
(types: ..."X ) 

04:42 (3 sec. pause, looking at the screen) 
Now how do I make make dots x that number,... 
(points to screen w. I. I. finger) 
...that they Just typed in? 

I: Which number. 

04:47 M: You say give number, ... 
(points to screen with left index finger) 
...they give you a number,... 
(points to mid-air, 12 inches in front of screen) 
...how do you make dots x... 
(points to screen w. I. i. finger and slides finger to r.) 
...the number which they give you? 

COMMENT: M. seems here to show an excellent understanding of the function of 
a line that assigns user-input to a variable, (including the notion of a 
variable as an "alias", standing for a value), even though she does not at 
this point remember the last part of it, the REQUEST statement, nor does she 
yet demonstrate a full understanding of the concepts related to it. 

I: Ok, you remember; (sighs) thats...if you ask me... 

04:57 M: They give you inputs.... 
COMMENT: This comparison to parameter input, a construct more familiar to M., 
•s the first indication that she has some understanding of the function of 
her missing word". At the heart of the comparison between parameter input and 
the REQUEST statement is the fact that both techniques allow a programmer to 
bring into his program information from the outside. 

I:...a more specific question about something we 
talked about before... They give you inputs. So would it 
be something that you define in the top line as inputs? 

05:09 M: (5 sec. pause, looking at screen) 
Urn...I guess so. 

I: Ok. So maybe...what's...tel I me; tell me what it is you're looking 
for in a little more detail...I know you're looking for something to 
Just get that number, but if you could explain to me*,... I think I know 
something of what you're looking; you're looking for something to tyDe 
r Ight now, r ight? 

05:38 M: Urn hm. 

I: Should It be one thing you type, or a long' line of things? 
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05:44 M: Its probably 2 or 3 words. 

I : Two or three words? 

05:50 M: You write give number and they give you a number, I want to know 
how to transfer the number that they give you, such that that number, 
whatever It may be, the computer knows that number Is now x. 

I: Right. Ok, there was a command I showed you at the beginning, 
when I talked about this thing, do you remember what that was? 
That you could use to have someone specifically type in a number? 

06:22 M: Well MAKE makes the variable ... 

I: That's right. 

06:25 M: ...in the middle, and that's what I'm doing. An interactive 
variable, yea? 

I: Uh-huh. Well, if I'd asked you, "MAKE"... I f I'd asked you to type 
to the person, give me a number, and then have the program print the 
number 10, no matter what number they gave you print the number 10, 
you could say make x what? 

06:49 M: Um...(8 sec. pause, looking at the screen) 
MAKE X PRINT, or MAKE X NUMBER? I don't know. I forgot. I've 
forgotten what you did, you did this exact same thing as an example, 
you said make, urn, PRINT, urn, WRITE YOUR NAME, and then, you know, 
name, MAKE NAME the variable, or whatever; I mean you did the same 
thing. If I had written it down, I would have it now. (laughs) 

COMMENT: In an apparent reference to the line she had seen in the introductory 
presentation, (MAKE "PLAYER1 REQUEST), M. correctly uses the term "interactive 
variable" (at 6:25) and is searching for that idiom, has at this point shown 
no clear understanding of the functional role of the part of the idiom that 
she cannot recall (REQUEST). Notice that the use of quotes as punctuation 
within the Idiom poses no apparent problem at this time (although see 11:12). 

I: There was a command to read something from outside of the program 
back into it... 

07:32 M: Right. 

I: ...and that was request, R, Q. 

07:35 M: OK. That was the only one that I didn't really know at the time, 
(types ...RQ) 

(M. makes several procedural suggestions, Including a suggestion to 
provide subjects with a reference of Logo commands, with examples). 

NOTE: During M's Interview, subjects were given an oral review of Logo, 
ar>d there was neither an instructional videotape nor a written script for 
hQr to refer to. 
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08:25 I: You hadn't seen REQUEST before, right? 

08:27 M: I hadn't seen request before. 
COMMENT: M. must mean that she has not seen and used REQUEST before this 
interview (she has already acknowledged that REQUEST was part of the 
instructional example given at the start of this session). 

I: That's a good suggestion, that's an issue I'm gonna have to think 
about, because I don't want to make this a quiz of memory. But let 
me think about that. 

08:42 M: Because I Just learned MAKE. I mean, I wouldn't have known that 
one either. 

I: You just learned that when you sat down? 

08:49 M: No, urn, i learned that just the other day in making my final 
project. 

I: What were you doing? 

08:58 M: What did I do? 

I: Yea, what were you doing when you used MAKE? 

09:02 M: I used it several times. I was using the law of sins and the law 
of cosines. And I needed to take my answer from the law of cosines and 
put it In the law of sines, and I needed it for a variable later on. 
But I never would have remembered from what you did at the beginning 
to use make here, except if I had used it before. 
(pointing quickly to the center of the screen) 

COMMENT: The experience to which M refers helps to explain her clear under¬ 
standing of the concepts of variable-as-container and variable-as-aIias. 
This raises some important questions about the role of rehearsal in the 
development of predictive theories. 
09:26 

(Discussion of methodology, including the idea of using an instruc¬ 
tional videotape) 

09:52 Ok. Now, what this will do; now tell me, what this will do is the 
REQUEST... 
(points with left index finger to line 2, then slides left index 
fInger up to line 1) 
•..will, urn, take that number?" 

(POlnting t0 l,ne 2 with ,eft ,ndex fln9er) 
E: By pointing first at the REQUEST line and the PR [NUMBER?] line, and 
ernating between those two lines several times, M seems to be refering to 

e number that will eventually be input by the user. It is not clear why 

att ihS n0t point t0 the x ,n the same ,lne as th© REQUEST; she may be 
"Niiurcd^109 mean 1 n9 to the data being printed, (l.e., assuming the use of 

uMbtR? as an argument to PRINT will be semantically Interpreted by Logo 
p enomenon was that was observed later In M's work In a follow-up problem 
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probIem A). 

I: Why don't you try it and find out, I don't want to give you too 
much...(unIntel Iigible)... 

10:08 M: Ok. 
(types: ENDCret.) (ctrl.-C) 

NUM DEFINED ) 

I: ...Because remember, our goal here isn't just, I mean you're trying 
to solve the problem but to find out what's hard or easy about these 
things. 

10:21 M: Ok. (looks down at problem statement for 2 seconds) 
(turns to look at I) 

10:23 Well it's hard if you've never seen the word REQUEST, so you don't 
know, exactly, its definition. 

I: I understand. 

10:29 M: (types: 
NUM(ret.) 

GIVE NUMBER 
2(ret.) 

? ) 
COMMENT: The-procedure exits, returning to command level. 

10:37 Now it may not know what to do with the number. 
See I can't tell from what I've done so far, so I'd better 
Just go on with the program. 
(types: ED [NUM] ) 
(inserts blank before END) 

10:58 Ummmm; let's see... 
(14 second pause, looking at screen, down at the written problem for 1 
second, then back to the screen) 

11:12 Maybe I should have it "MAKE dots X". 
(pointing to line 2 w. I. I. finger) 
(7 second pause, looking at screen) 
That's usually what we're doing for a variable. Let me try that. 
(moves cursor to over the " in MAKE "X RQ) 
(abruptly stops moving cursor and looks up from the keyboard to the 
screen) 

11:32 No! For a make statement, you need that,... 
(points to line 2 w. I. i. finger) 
...don't you? 

I: You usually use a...(1 second pause); before I describe anything, 
you know, I think your idea is very good. And I think I'm gonna make 
my videotape, and I think I'm gonna write the entire script down, for 
people to refer to. And what it would say there, what I used as an 
example was MAKE quotes x, and that was because quotes was just, x 
was Just a word. And when you use it, the dots means the thing 
known as...the thing named by the variable name used. So that line 
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Is...very similar to what you just had. 

12:12 M: (moves cursor back to next, blank line) 
Ok. Dots x. 

(M spends some time searching the keyboard, first for then for 
times ("*") (with questions for I.) ). 

(types: 
: X * : X ) 

12:48 OK. (5 second pause, looking at screen) So MAKE x*, does this have to 
be MAKE... 
(pointing to screen with left index finger) 
...dots x? I mean make quotes dots X? Or Is it just x? 

13:01 I: No, thats just fine. 

13:04 M: Just fine. Ok. Urn,... 
(2 second pause, looking at the screen) 
...and then I get an answer for that, and then I 
need to output that answer. 
(2 second pause, looking at the screen) 
Urn... 
(7 second pause, looking at the screen) 

13:21 ...so first I have to do this 
(pointing down to the written problem) 
(2 second pause, looking at problem) 

13:26 I wanna go up... 
(with some difficulty, M. puts blank line between lines 2 and 3) 

13:46 Ok. Now I wanna do, "Print", P, R. 
(types: PR... ) 

I: You can Just type NUMBER, if you want. 
COMMENT: There appears to be established here a clear agreement that "NUMBER" 
will stand as a abbreviation for "THE NUMBER SQUARED IS..." (see 17:45) 

M: (types: 
. ..[NUMBER] 

14:14 ..well, then I don't really need this bracket. 

I: We I I...that's ok. It won't hurt. 

) 
because its not a list. 

14:21 M: Urn; and then ; urn... 
(moves cursor down to next line) 

14:32 Now; I want to output the answer, so... 
14:43 (types OP before :X * :X) 

If I put OUTPUT that, will it output this,... 
(pointing to the screen) 
...or will It output dot x times dot x? 
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I: Wi I I It output 4 or wlI I it output dot x times dot x, or wi I I it 
output? 

15:01 M: If the number was two,... 
(points to the screen) 
...would it output 4? 
(points down and towards center of screen) 

COMMENT: The first alternative is that the procedure would print, literally, 
:X * :X (see 15:38). 

I: Well I don't want to run it for you. 

15:09 M: Try it. 

I: Well, yeah, why don't you just try it. 

15:13 M: (types: (Ctrl.-C) 
NUM DEFINED 

NUM... ) 

I: Your question was, would it output 2 or would it output 4? 

15:23 M: (types: ...(ret.) 
GIVE NUMBER 

2(ret.) 
* DOESN'T LIKE [2] AS INPUT IN LINE 
OP :X * :X 
AT LEVEL 1 OF NUM ) 

I: Hang on a second. Your question, before, you thought it might 
output 4 but what was the other thing It might have output if you 
gave It a 2? 

15:38 M: Um...well, actually It wouldn't have, it might have outputted dot x 
times dot x. 

I: You mean just put those letters on the screen? 

15:53 M: Right. But I realized it wouldn't 'cause it's not quotes. 

(I. explains that RQ "always puts brackets around" what it takes in; 
suggests, as a fix to this problem with multiplication, putting 
FIRST just before RQ on line 2. M. makes that correction) 

COMMENT: In the Logo dialect used during the design phase of this study (and 
used in several of these Interviews), Input could be taken in as a word 
with the READWORD command whereas the dialect used here permits only 

1 Ist—input. To adapt to this unavoidable complication, the 
Researcher adapted the Instructional presentation depending on the dialect 
being used and determined to avoid the issue of "preparing" number input in 
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this problem by immediately suggesting the "fix" suggested above. 

17:33 M: Now let's try. 
(types: 

NUM(ret.) 
GIVE NUMBER 

2 
NUMBER 
RESULT: 4 ) 

17:45 I: "Number", "THE NUMBER IS" and it says, "RESULT: 4". OK? You happy 
with that? 

17:50 M: Sure. 
COMMENT: The last line is technically not correct since "RESULT: 4" 
being in reality a gently worded error message. Had the procedure 
contained additional lines they would not have been executed, making 
this more obvious. Unfortunately, M's missing this point probably 
only reinforces her misconception that OUTPUT-means-"screen-output". 

I: Fine. 
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Appendix H 
A, Problem A-2 

(I. shows Andrea the Instruction Script, not available during the 
her previous session). 

00:00 I: Reads the problem ("Write a procedure that first prints the message, 
, 'Give me a number'... ) 

00:37 I: All right so what do you think? 

A: So what do I think...um 
00:45 (types: TO A (ret.) 

...ok... 
(types: PRINT...) 

00:55 A: Um...Your saying print; I don't know what punctuation to use. 

1: Ok, if you looked back on the sheet you'Id see brackets... 

A: Brackets. 

I: ...print uses brackets as punctuation. 

01:07 A: So, (looks at u.r. keyboard) they're up here, right? 

I: Unshifted, yea. 

01:10 A: (types [GIVE ME A NUMBER...) 
01:23 Can I put please? (smiles) Just make it a polite computer. 

(types ...PLEASE ] (ret.) ) 
01:31 (4 sec. pause, looking at screen) 

01:35 A: Can you; is there such a thing, you know, like how you have output 
(waves with hand at center of screen) 
...in a program, so you can have input? 

I : Um-hm 

01:46 A: ...I don't know if that would do it. 

I: Have the word input? 

A: Yea 

I: Well there certainly is a word output, urn; there's not really a 
word Input; urn...so that doesn't; where does the word input come from; 
why did think of the word Input? 

°2:07 A: Just because I remember that there's an output before... 

I: Uh-huh. 
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02:11 A: ...saying that like if an if, IN...AN...IF statement or whatever 
saying if Its built on an output, saying that...I was Just wondering 
If you could have an Input that's just the opposite. 

02:25 I: Uh-huh, uh-huh; You know there's another computer language that 
has an input statement, uh, that's BASIC that has an input statement. 
You ever done BASIC? 

A: Yea. 
Comment: The idea for a primitive INPUT command may come from any of a number 
of sources, or from a combination thereof. The word "input" in the problem 
statement Is the probably the most direct influence, probably interacting with 
A.'s experience with an INPUT statement in BASIC (see the following inter¬ 
action) . 

I: You ever do an input statement in BASIC? 

02:40 A: Yea, and also I've done Logo on Atari. 

I: Did that have anything like an input statement 

02:51 A: Yea, I think so...I think so. (Said while staring at the screen). 

I: Well, how would you write it if you had an input statement? Or, 
you know, alternatively if you know another way. 

03:00 A: Well ,cause I Just wanna say that Its gonna get a variable. That's 
what I want to teI I it. 

Comment: "It (the computer) Is gonna get a variable", (what it actually gets 
from the user a value to be stored in the variable) shows that A. does not 
make a clear distinction between variable name and value. On the other hand, 
A. seems to understand very well the roles of the computer, prompting for 
input and using a variable to hold same, and the user ("the person") as the 
supplier of this input (see the following). 

03:11 

03:17 

03:25 

I: What's the it that's gonna get a variable? 

A: The computer's gonna get a variable 

I: The computer's gonna get a variable? From where? 

A: From the person typing it in. 

I: Ok. The computer's gonna get a variable from the person 
it in. 

A: Um-hm 

I: Now you're inside procedure A 

A: Um-hm 

typing 

I: What, uh.. you know what...why are you in procedure a, I mean why 



not, uh... is there a reason why you're in procedure A? 

03:43 

03:50 

04:00 

04:03 

04:10 

04:19 

04:30 

04:50 

04:58 

05:10 

05:55 

05:59 
Comment 
cat ion 

* as an 

A: What, you mean, like, the name? 

I: Yea, or why did you write a procedure, you know. 

A: Just because, so, like, you could have a procedure and you could 
do with all types of different numbers. 

I: So this has to take place inside a procedure, huh? 

A: Well yea, also this says "write a procedure". 

I: Yea, thats...and...that's a good clue. 

A: Yea (laughs). 

I: Alright, well, what about this Input statement? There's no input 
statement. In fact I don't think Atari Logo's got an input; do you 
remember how to use an input in BASIC? 

A: I don't know. I don't want to think about it (laughs) but, urn... 
(looks at screen for 5 secs.). 

I: Would it help to look at these things? 

A: Yea, it would, (takes a copy of the Script) 
(Looking at page 1 of Script) 
Print...ok... 
(turns to page 2 of Script) 
A: What...ok...One thing that I could try to do is, urn... it 
probably won't work ... 
(types: PRINT :S (ret.) ) 
but I can't think of any way other to do it, because, urn...we I I I 
could probably tell you what the computer's gonna say to me, but I 
don't care. (Smiles, briefly) 
(types: PRINT [THE NUMBER SQUARED IS] 

PRINT :S*2 ) 
(Procedure now reads: 

TO A 
PRINT [GIVE ME A NUMBER PLEASE] 
PRINT :S 
PRINT [THE NUMBER SQUARED IS] 
PRINT :S*2 

1:0k, well what is...Just tell me what the S star 2 means. 

A: It means to, like, times it by 2. 
: "It" must describe the value input by the user. Her use of multipli 
rather than expotentI at ion Is a conceptual error, not a mistaking of 
sign for expotentI at Ion. 

I: Ok. Good, yea, that's right 
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06:08 A: (types: 
(types: A 

(types: 2 

(ctrI)—C 

GIVE ME A NUMBER PLEASE 

THERE IS NO NAME S IN LINE 
PRINT :S AT LEVEL 1 OF A 

) 

) 

I: It says, "give me a number please...There is no name S in Print S 

at level one of A". Why does It say that? 

06-21 A: Because; I KNEW it was gonna say this, because I don't have, like 
in the definition, I don't have dots s, so it doesn't know, you kno 

It ... doesn't know. . .. . 
-omment: Here begins a notable SHIFT from the Immediate goal of exhaustive y 
estlng keywords to fill the role that she has so eloquently described to 

development of heuristics to aid her search through a review of descriptive 

knowledge about this aspect of the problem. 

I: Doesn't know what? Fill in the "you know". 

06:41 A: (Smiles) It doesn't know what that dots s is, because I haven t 

told it the right thing. 

06:56 I: So what do you need in your program? What would fix that? 

07:04 A: Um... 
(4 sec. pause) 
(Types: ED (ret.) ) 

07:11 I need something right there (points to center of screen), 
instead of "print", I Just need, I don't know...I mean... 

Comment: A here demonstrates a functional understanding of a line to accept 
user input, at the location where one would expect to fInd 11. Th i s i s 
probably based on her experience with an INPUT statement in BASIC, notable in 
that it indicates some TRANSFER of a concept of variable from one computer 

language to another. 

I: I mean, what...well, what would that thing do, that you put there 
Instead; so you mean the line instead of print s, you'd put something 

there Instead of print s? 

07:27 A: Yea, It probably, It might still have an s, but, like, it would 
get It*so the computer would take the number, and so yuou wouldn't 
have to; It was like, if you had a variable (points to top r. of 

screen) 

I : Uh-huh 

A: ...an' you could say; I could say "to A dots s", but then; 
when It says "a defined" and you had to type In a, you had to type 
in a number as well, and thats not what it wants... , 

Comment: Again, A. seems honed In on the problem, (here explaining why adding 
a Parameter to A would not be appropriate), but neither the instructional 
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presentation nor the Script are apparently sufficient for her to refine an 

imp| imentatIon plan. 

I: Uh-huh, uh-huh 

07:50 A: ...It wants it to print out give me a number please, and then have 
you be able to, like, type in a number,...so, urn...(8 sec. pause) 

08:03 I: Ok, so you need something to let you get a number; Is that what you 

sa I d? 

A: Yea. 

I: And it would have an s in It somewhere, in the line it would have 
an s in it somewhere; and it would remember; what; what would; lets 
say the person typed in 2, what would that be, you know, what would 
that have to do with the rest of the program. Lets say the person 

typed In 2. 

08:27 A: OK, It said, gIve me a number please and it typed in 2? 

I :Yea 

A: Then it'd print, (points to screen) "the number squared is" and 

It would take the 2 times 2... 

I: Uh-huh 

A: ...whIch is four. 

I : Right. 

08:41 A: (Looks at Script). This is to type lines and stuff. 
(10 sec. pause, reading Script). 

08:55 Does It, I ike...does it understand when you say like... does it 
understand words like exponent and stuff like that? 

Comment: We discount this question of a primitive as a distraction, possible 
due to something A. saw during her examination of the Script. 

09:06 I :No. You have to type that in. 

A: Ok, so it doesn't...ok. 

I: Those are procedures you'd have to type in. 

09:11 A: Ok (looks at Script for 7 secs.) 

09:16 I; Urn...a IrIght; welI...there's a section here, (takes Script from A.) 
that, you know I think you've described at least a lot of the behavior 
of the command that you need. (Sorting Script, then hands it back 
to A). Allrlght, Just; why don't you look at the section from here 
down. 
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og-48 A: (Reading Script) 
10-12 Oh, ok! Ok I remember. Ok (smiles), you see t s 

because I had never seen this before. 

I: Yea, I know. 

10:23 A: (deletes PRINT :S) 
Ok. Then I can say, like... 

(types, in its place: 
MAKE ... ) 

make; do I have to use? (looks down at Script); yea. 

(types: ) 
Comment: The quotes are seen as part of a frame for accepting 
user. The form of this frame is: 

MAKE "(variable name) REQUEST 

input from the 

10:45 (stares at screen; blows hair out of eyes) 
(2 sec pause) So, urn...(3 sec. pause) Its still 
right? So why don't l...do this, if not I can 

(types: ...:S RQ ) 
Comment: A. sees DOTS (:) as part of the variable name, 
abbreviation of 'THING "'. This generates a bug. (":S 
hinders A.'s efforts for the remainder of this session. 

a variabIe, though ; 
Just...(unintelIigab 

rather than as an 
rather than "S) that 

e ) 

I: Ok, what have you just typed, there? 

A: Ok, I'm saying, alright, to make dots s, which is a variable, urn, 
a request. 

I: Ok, but you've got quotes in front of the colon, right? 

A: Yeah. 

I: ...which Is fine, you say make quotes dots s; rq Is request, 
now what does request do? 

A: Its, like, its; its asking the computer to the; or, you know, its; 
its an input kind of thing. 

11:34 

17:44 

I : Ok. 

A: ...Indefinite its says, like, playerl; but you could; but 
I mean; put anything. 

I: Yeah. So that's what a name is? 

A: Yeah. 

I: So, for; in a name you can use any word you want to. 

A: Yeah. 

I: And In a variable; how does that work. 
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A: Then you usually say, dots. Or you could have a colon, and Its, 

I Ike a letter. 

17:55 

18:09 

18:21 

18:32 

18:45 

18:56 

19:06 

I: Uh huh. 

A: (looks at screen; pause) 
...Um.*• 

I: Does a name start with any punctuation or end with any 
punctuation? 

A: No (looks down at script) 

I: Ok, like, for examp'; is there a name in here, in INQUIRE? 

A: Yeah. 

I: What's; what is it? 

A: Its, um, in the make statement... 

I: Yeah 

A: ...it...it Just says... 
(short pause, looking at script) 
, well It has a quote around it, one, but, like... 

I: Which, which; read it to me. MAKE... 

A: Quote PIayerl. 

I: Ok, so; which is the name 

A: Playerl 

I: Playerl. Ok. So, playerl is a name, and its got quotes in front 
of it. And is there a variable in there? 

A: No. There isn't 
(moves cursor to line 2) 
So I'm gonna eat this. 
(changes line 2 to read, MAKE "S RQ) 

I: You take out the colon from the make statement. 

A: (moves to line 4, removes : so that line reads: MAKE S * 2) 
...take out that. 

(types: ctrl-C 
A 

GIVE ME A NUMBER, PLEASE 
I: All right, and you took the; now you've got the bottom so that the 
...the make statement in there says, "make quotes s something"... 
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A: (Types: 2 
THERE IS NO PROCEDURE NAMED S IN LINE 
MAKE S * 2 

I: ...and then the bottom line says "make no-quotes s dots s time 2', 

I think? 

19:23 A: Urn; well, I took out the dots. 

I : Oh, Just s; MAKE S tImes 2 

A: (Smiling); Yeah (under her breath) 

1: All right, so It says give me a number please, and you type 2, it 
says, "the number squared is", and "there is no procedure s in line 

make s times 2. 

19:40 A: (types: ED) Its just this stupid (unintelligible) 

I: (unintelIiglble) 

A: (moves cursor to 4th line) 
(unintelligible) Uh...(looks at script)...urn (looks at screen; moves 
Iips). 

20:05 I: What should that line do? I mean 's... 

A: ( Moves cursor r. 4 spaces) 
It should; ah... 
(looks down; adds ' "' after MAKE) 

20:26 It should...this line (points to upper 1/3 of screen) should take the 
number you put in up there and times it by two. 
(moves cursor to right side of line 4) 
But Its not because It doesn't like me. 

I : Uh huh 

A: (unintelIigible) 
(adds RQ to end of line, to read: 

MAKE "S * 2 RQ ) 
(types: ctrl-C 
A 

GIVE ME A NUMBER, PLEASE ) 
(quietly) A; Give me a number please. 
(types: 6 

THE NUMBER SQUARE IS 
* DOESN'T LIKE S AS INPUT IN LINE 
MAKE "S * 2 RQ ) 

20:54 I: ok, it says give me a number please, type 6, it says the number 
square is, and It says "star doesn't like s as input In line 
MAKE "S * 2 RQ". 
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A: (types ED) 
Ummm... 
(moves down to 4th line; deletes S) 

21:19 Oops! I really didn't mean to do that. I wanted to get urn closer, 
(replaces the S ) 
I don't know what to do. 
(deletes the spaces on either side of the *) 

(line 4 now reads: 
MAKE "S*2 RQ ) 

(types: ctrl-C 
A 

GIVE ME A NUMBER PLEASE 
3 

THE NUMBER SQUARED IS 
(pause in program) 

(2 sec. pause, lips move; laughs) 

I: Allright, it says "Give me a number please", you type 3, It types 
"the number square is", 
What's going on here? 

21:44 A: Because Its Just like the other one, I mean. Its Just like 
(points to top 1/3 of screen) 
...wait a mi' 
(types: ED 

? ) 
Ohps. Excuse me. 

I: What? 

A: (types: ED) 
21:57 No! because this is just; this (points to top 1/3 screen) line is 

Just like that line (points up 1-2 inches), its waiting for... 

I: Its just like the make s request 

A: Yes 

I: Its waiting for what? 

A: Its waiting for somebody to type in a number 
(moves cursor down to 4th Iine) 
, and that's not what its supposed to do. 

I: Urn hm. 

22:14 A: But It; It doesn't know what its s'posed to do. 
(Begins looking at script) 
And I don't know what its s'posed to do. Or I do, but... 
(stI I I reading scrIpt) 

I: What's, what's; or, you know what Its supposed to do but you don't 
know what you're; how to do it in Logo, is that the...? 
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A: Yeah. 

I: What's it supposed to do once you; something about the role of 

that line? 

A: What, this line? (pointing to top 1/3 of screen) This line... 

I:Yeah; the bottom line, Just before the END, yeah. 

22-37 A: This line is supposed to take the input up here (moves finger up, 
1 to 2 in.), of the first make statement, and times it ... multiply 
It by 2, and print out the answer. 

I: Ok. 

22:52 A: (looks at screen) 
22:57 And obviously, 

(moves to end of line 4) 
I knew this before, it wouldn't be request, 
(deletes RQ ). 
because, ...urn (stares at screen for 3 sec.) 

23:07 (looks down at script for 3 sec.; up at screen for 4 sec.) 
(yawns) ...urn (looks down at script for 8 sec.)... 

23:28 i don't know. 

I: Do you want to, you know, work on it some more, or do you want to 
go on to the next one? 

23:34 A: I don't know. I; I'd like to work on it but I; I don't know... 
(staring at screen) 

23:39 I don't know what to do... 
23:45 (Looks at script) 

Urn; because... 
23:57 (looks up at screen) Ok. 

(changes line 4 to: 
OP S*2 
ctrl-C 

(laughs) I don't know, I just put that there, 's (shrugs) 

24:19 I: Ok, OP? 

A: (types: A 
GIVE ME A NUMBER, PLEASE 

I: So that's; that line says OP... 

A: (types 3 ; 
THE NUMBER SQUARE IS 
THERE IS NO PROCEDURE S IN LINE 
OP S*2 
AT LEVEL 1 OF A ) 

I: ...» no colon s times 2 right? 
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A: 2...yea. 

24:27 

24:36 

24:44 

24:56 

24:58 

25:01 

25:18 

25:24 

I: Alright, you type A, It says "give me a number please", 't sez 3, 
“the number squared Is", and then is says "there is no procedure S... 

A: S . . . 

I: ... in Iine op s times 2". 

A: (types ED) 

I: Why does it think s is a procedure? 

A: Urn; because;it just does. 
(moves cursor to 4th line, deletes OP) 
No, I don't know. 

I: Urn hm 

A: (blows hair out of eyes) 
so...(3 sec. pause, looking at screen) 
(changes Iine to RQ*2) 
(laughs; shakes head I. to r.) 
(unlntelIIgible) 
(types ctrl-C) 

I: All right, now you change that line to RQ * 2 

A: (types A 
GIVE ME A NUMBER, PLEASE ) 

Yeah. It won't work either, but I Just... 
(types: 5 

THE NUMBER SQUARE IS ...) 

I: Give me a number, 5, you say, the number square is... 

A: (4 sec. pause, looking at screen) 
(types: 5) 

I: You type 5, it says, "star doesn't like BRACKET 5 as input 
in line, request times 2 at level 1 of a. 

A: (types: ED ) 

I: Do you understand that? You know, that's something... 

A: Yea. 
I: ...that I don't know if l...0k. 

A: (moves cursor to line 4, deletes RQ) 
I do, but, I mean, I Just don't know what to do to...to make it 
better; or to; you know; to make it correct 
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25:32 I: Ok. Do you want to Just pass on this one? Let It; let It lie? 
And If something comes to you, you can come back to it. 

A: Yeah, I might as well. I mean, I don't want to, but. 

25:43 I: Ok. Well its no; we'I I be able to over these later, too. 
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