
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1988

A study of high school students' learning Logo :
microanalysis of uses of variables.
Richard J. Horlick
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Horlick, Richard J., "A study of high school students' learning Logo : microanalysis of uses of variables." (1988). Doctoral Dissertations
1896 - February 2014. 4359.
https://scholarworks.umass.edu/dissertations_1/4359

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/4359?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

A STUDY OF HIGH SCHOOL STUDENTS' LEARNING LOGO:
MICROANALYSIS OF USES OF VARIABLES

A Dissertation Presented

by

Richard J. Horlick

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment

of the requirements for the degree of

DOCTOR OF EDUCATION

February 1988

School of Education

(c) Copyright by Richard J. Horlick 1988

All Rights Reserved

A STUDY OF HIGH SCHOOL STUDENTS LEARNING LOGO
MICROANALYSIS OF USES OF VARIABLES

A Dissertation Presented

by

Richard J. Horlick

Approved as to style and content by:

Howard A. Peelle, Chairperson of Committee

£44 ’CLllAJkz.
Allen Hanson, Member

--——■—

JL
John CJlement, Member

>h^ c _
Geori’e1 E. Urch, Acting Dean

School of Education

ABSTRACT

A STUDY OF HIGH SCHOOL STUDENTS' LEARNING LOGO:
MICROANALYSIS OF USES OF VARIABLES

FEBRUARY 1988

RICHARD J. HORLICK, B.A., UNIVERSITY OF MASSACHUSETTS

M.A., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Howard A. Peelle

This study explores how high school students develop

an understanding of certain programming language

constructs, particularly focussing on concepts and

misconceptions of variables in Logo. Using a case-study

approach, three nonexpert subjects were asked to solve

simple programming problems that require using variables in

different ways. Selected protocols on one .problem were

subjected to a "cognitive microanalysis", which involves

transcribing protocols, adding commentary, model-fitting,

proposing mental constructs, diagramming probable

interactions and constructing plausible overall

hypotheses. Special attention was paid to the interaction

among subjects' assumptions, action-plans and

experimentation -- based on their ability to utilize

available instructional resources during problem solving.

A protocol diagramming technique was developed for

expressly depicting subjects' cognitive activities,

including decomposition of the problem from a general plan

to domain-specific plans and the interaction of assumptions

and experiments with these plans.

iv

Additional student protocols -- some "near-novice" and

some "near-expert" -- were obtained and superficially

examined for related phenomena. Also, for comparison,

three protocols of adult expert programmers solving the

same problem were analyzed and contrasted with students'

work. Many student-programmers exhibited misconceptions

about variables that interfered with their solving simple

problems. Many of these misconceptions were related to

proper use of punctuation associated with variables. Such

errors were characterized as generally reflecting the

absence of strong, guiding principles of variable use

rather than misapprehensions about the nature of variables

or their notation. Two near-expert subjects demonstrated

impressive instances of the transfer of variable knowledge

from other programming languages.

Overall, students' problem-solving behavior appeared

inflexible and distractible by superficial features of a

problem. Expert behavior was determined to be

qualitatively different. Experts consistently produced

multiple alternative solution-plans and evaluated these

plans based on their consideration of program aesthetics,

solution-optimization and efficiency. Such facility seems

to indicate presence of expert meta-programming knowledge,

which could not be adequately explained by either

programming plans or descriptive knowledge alone. This was

hypothesized to be an integration of both types of

knowledge. The implications of these results for teaching.

v

learning theory and cognitive science were discussed.

Complete transcripts of protocols were included in

appendices.

vi

TABLE OF CONTENTS

Page
ABSTRACT.iv

LIST OF TABLES.ix

LIST OF FIGURES.x

Chapter

1. Introduction . 1

Historical Motivation . 1
Focus. 2
Conceptual Hypothesis . 8
Technical Overview ... 9
Some New Variable Distinctions. 14
Rationale/Importance of Study.• . . 16

2. Review of Literature.23

Cognitive Effects of Programming . 23
Studies of Programmers' Conceptualization

of Programming.33
Cognitive Models of Programming . 37
A Model of Device Learning . 40
Program "Bugs" and Programming Expertise . 45
Programming Plans and Procedural Knowledge 52
Metacognition and Programming Knowledge . 59

Studies of the Learning of Specific
Language Features . 63
Program Control and Expression Parsing . 63
Variables.70

3. Description of the Study.85

Methodology.85
Limitations.88
Subjects.91
Method.9 5
Analysis.100
Schematic Diagrams . 105
Further Analysis . 109

4. Results and Analysis.113

Microanalysis.. • 113
Expert Protocols on Problem A-2.. 113
Nonexpert Protocols on Problem A-2 . 131

i •

Vll

Summary of Other Solutions . 157

Summary of Remaining Solutions to
Problem A-2..

Summary of Solutions to Remaining Problems . . . 176

5. Summary, Implications and Recommendations . 202

Summary of Results.202
Implications . 213

Implications for Education . 213
Implications for Language Designers . 220
Implications for Designers of

Intelligent Tutoring Systems . 221
Recommendations for Further Research . 223
Conclusion.226

APPENDICES ..231

A. Instructional Script . 231
B. Problem Set.240
C. H, Problem A-2.250
D. P, Problem A-2.253
E. B, Problem A-2.260
F. R, Problem A-2.269
G. M, Problem A-2.274
H. A, Problem A-2.283

BIBLIOGRAPHY295

viii

LIST OF TABLES

Page

Table 1, Summary of Subjects' Backgrounds . 93

Table 2, Classification of Problems.98

Table 3, Schematic; H, Problem A-2.115

Table 4, Schematic; P, Problem A-2.120

Table 5, Schematic; B, Problem A-2.125

Table 6, Schematic; R, Problem A-2.132

Table 7, Schematic; M, Problem A-2.139

Table 8, Schematic; A, Problem A-2.146

Table 9, List of Concepts and Misconceptions from Six
Selected Protocols . 158

Table 10, Classification of Misconceptions from
All Problems. 200

ix

LIST OF FIGURES

Figure 1,

Figure 2,

Figure 3,

Figure 4,

Figure 5,

Figure 6,

Figure 7,

Symbols Used in Diagramming

H, Problem A-2 .

P, Problem A-2 .

B, Problem A-2 .

R, Problem A-2 .

M, Problem A-2 .

A, Problem A-2 .

Page
106

. 116

. 122

. 128

. 134

. 142

. 152

CHAPTER 1

INTRODUCTION

Historical Motivation

This study was inspired by the author's frustration as

a teacher of an introductory Logo course.* In each of the

four semesters the course was offered, a large number of

students were observed to have difficulty understanding and
i

using variables correctly and exhibited persistent errors

in variable use. A smaller number of students seemed

relatively immune to these errors and were, in general,

more successful in the course and more likely to take other

courses in the Computer Science curriculum.

* The author was one of three instructors of a one-semester
course, offered in each of four consecutive semesters from
Fall, 1984 through Spring, 1985 at Lincoln-Sudbury Regional
High School in Sudbury, Massachusetts. It was intended as
an entry-level course, challenging enough for students with
previous programming experience but appropriate for
students with little or no programming background. The
course content ranged from an introduction to basic Logo
commands and concepts to fairly complex Logo programming
techniques, including units on recursive operations and
procedures, fractal graphics, and mathematical modeling.
These topics were taught with an extensive set of
worksheets, developed by several individuals in the
Computer Science Department over a number of years. This
allowed an emphasis on hands-on learning and afforded
instructors the opportunity for much individual observation
as students progressed through the worksheets. The author
had used such an individualized approach with good success
in other programming classes, including classes in a
computer camp, for elementary and secondary school
students, for undergraduates studying instructional
computing and with elementary and secondary school students
during individual tutoring sessions.

1

2

Each semester the class became divided into these two

groups. While other instructors also observed similar

errors, none were fully able to help students overcome

their difficulties or explain the misconceptions that

underlie them. This was the dilemma that motivated this

study.

Over the course of nine years teaching computer

programming (primarily APL, BASIC and Logo) the author had

formulated several working theories about how one develops

an understanding of variables in the context of programming

(see Technical Overview). These theories were for the most

part unverified but had been useful in the past and seemed

to have predictive and explanatory power. They were based

in part on a task-analysis of the disparate uses of

variables in programming, in part on observations of

students and in part on introspection. The author's hope

was that through a more careful and in-depth analysis of

natural student dialogs he could either find ways to apply

these existing theories or to develop new theories that

could explain the type of behavior described above as well

as to gain insight into the general development of

programming skill.

Focus

There is little doubt that computers are among the

most important technological innovations of this century

3

and will continue to be a topic worthy of study. In fact,

this decade has come to be known as the "Information Age",

and the computer is seen by many as the only means by which

mankind may cope with the "information explosion." The

proposal is often advanced that the study of computer

technology become a formal requirement for elementary and

high school students. Most often, this is expressed as a

need for a new "literacy" (in the sense that reading and

writing are considered minimal requisite skills), from

which is derived the term, "computer literacy".

Even among proponents of computer literacy, however,

there is little agreement as to precisely what skills or

activities should be mandated. It is generally

acknowledged that computer programmers are the most

sophisticated class of computer users and that programming

is the most general and empowering of computer skills.

This leads some educators to conclude that programming

should play a central role in computer literacy training;

namely that all students should learn some amount of

programming (Luehrmann, 1980). Others see programming

skill as too complex for the average student. Such

educators support instead the use of application packages

by students and argue that it is no more necessary for a

computer user to learn to program than it is for the driver

of an automobile to learn how to repair it.

4

There may be other reasons to discourage mandatory

computer programming in the public school curriculum, e.g.,

a challenge to the assumption that there exists any one set

of general computer skills (see Harvey, 1985). Yet the

"complexity" argument is somewhat disturbing. The

development of two programming curricula, a serious

course-of-study in programming for some students and a

special, watered down approach for the "general" student

could lead to institutionalized "tracking". Such a

scenario would contribute to the schism between the "hard

knowledge" of the technical and the "soft knowledge" of the

less technical computer user that already troubles some

educators (Turkle, 1984).

Whether or not programming is incorporated into the

standard curriculum, teachers must find techniques to teach

complex skills without trivializing them. Furthermore,

programming may have distinct educational benefits and

applications, beyond the notion of some sort of requirement

for informed citizenship. For example, there is some

evidence that programming helps algebra students avoid

certain misconceptions (Clement, 1980). If such claims are

borne out, programming could be used to form new bridges,

not barriers, to knowledge. This makes it imperative that

the means be found to teach programming to all who wish to

learn it.

5

Logo is a programming language developed specifically

as an environment for learning. It is an extensible and

fully modular language in which programmers utilize

recursion and functional composition as the primary control

structures. The best known feature of Logo is the turtle,

originally a mobile robot that could be used as a plotter

but usually now, an internal object on a graphics screen

that simulates the behavior of the turtle-robot. The

turtle can be driven from a local point of view with simple

commands such as FORWARD (abbreviated FD) and RIGHT (RT).

Seymour Papert, designer of Logo, claims that these

features make Logo powerful enough to do college-level

Computer Science but simple enough for very young children

-- that Logo has a "low threshold" and a "high ceiling".

Logo is generally regarded as one of the two most popular

computer languages for instructional use. It is purported

to provide an excellent environment that may accelerate

cognitive development and stimulate some social aspects of

intellectual activity, something which Papert refers to as

"computer culture" (Papert, 1980). These features made

Logo both a practical and an interesting choice as the

language in which this study was conducted.

In terms of content, the focus of this study is on

utilization of variables in the context of Logo

programming. There were several reasons for choosing

variables as a focus. For one thing, variables are a

critical concept to be mastered in learning Logo

6

programming. However, the notion of a variable is a very

general concept, and so variables form a common link, not

only between Logo and other computer languages, but with

other knowledge domains as well. For example, there is a

sizable body of literature on correct and incorrect

conceptualization of variables in mathematics, where they

are of pivotal importance (see Chapter 2). In addition to

mathematics, variable is an important concept in all of the

sciences, in linguistics and in the social sciences. At

the same time, the concept of variable is more discernible

as a conceptual entity, discrete from the syntax and

semantics of a particular programming language, than

comparable sub-concepts such as flow-of-control or

data-structure. In this sense, it was a convenient and

manageable area of concentration through which to gain

insight into the larger questions, the acquisition of

general programming and cognitive skills.

The students chosen as subjects for this study had all
*8

completed the equivalent of at least one semester's study

of Logo. A number of earlier studies have looked at novice

preconceptions (Anderson, 1984; Soloway, Ehrlich & Bonar,

1982; Bonar & Soloway, 1985; see also Chapter 2). Others

have studied how expert programmers structure their

thinking (Soloway, Bonar & Ehrlich, 1981; Adelson, 1981;

see also Chapter 2). But very little is known about the

transition between the two. The study of this transitional

period can tell us a great deal about the learning

7

process. In that sense, this is an inquiry into the nature

of learning.

The approach chosen was qualitative rather than

quantitative. Nine high-school students and three Logo

experts were videotaped during clinical interviews as they

attempted to solve problems drawn from a set of nine.

These tapes were later transcribed and analyzed. Six

problem solutions were subjected to a cognitive

microanalysis. The intent was to study a complex set of

skills in a naturalistic setting.

Finally, this study attempted to collect anecdotal

data for those interested in Logo-learning, especially for

teachers of Computer Science at the high school level.

Effective teaching requires ongoing refinement of one's

instructional approach. Toward this end, teachers, like

other practitioners, hold working theories about their

students' learning (usually in the context of their own

teaching) and conduct "experiments-in-action" as a means to

form and reform working theories (Shon, 1984). Teachers

seldom have the luxury to test their theories in greater

detail or to compare their experiences and observations

with others with similar interests. The author hopes that

the raw data in extensive protocols, as much as the

author's comments and analysis of subjects', misconceptions,

will help educators as they work to refine their ideas and

instructional materials, and to develop more efficient and

effective instruction.

8

Conceptual Hypothesis

This research addresses the following questions: 1.

How do expert and nonexpert Logo programmers compare in

their use of variables in the solution of programming

problems? 2. What variable misconceptions do nonexperts

hold, as compared to experts? 3. How do programming

misconceptions affect the dynamic activity of both expert

and nonexpert on a micro-level, including their utilization

of available resources, planning, production of "bugs",

debugging and experimental activity?

Certain variable misconceptions in algebra appear to

be quite resilient to instruction (Rosnick & Clement,

1980). We want to ask whether misconceptions of

programming variables are similarly resilient to

instruction. If so, what factors might allow or prevent

the efficient utilization of available resources, such as

reference documents, objective facts or past experience,

and how do misconceptions eventually give way to the more

generalizable concepts exhibited by experts? Does mastery

occur gradually and continuously, in stages, or as a

one-step process?

Some recent research suggests that some programming

misconceptions result when general problem solving

9

techniques derived from natural problem solving experience

are misapplied (Bonar & Soloway, 1985). In a similar way,

we ask if developing programmers harbor misconceptions that

are adaptive in that they explain and make accessible some

aspects of variable use that the student-programmer is not

presently able to generalize. Or, can a developing

programmer hold an accurate sub-concept of variable in one

context while maintaining a misconception of variables in

another?

Another critical question for those who endorse

programming as a form of discovery learning is this: How do

developing programmers actually gain insight into areas of

misconception? If we are able to capture observable

examples of intuitive learner insight, (sometimes referred

to as the Aha! phenomenon), we can begin to understand

what it is and how to promote it.

Technical Overview

A task-analysis shows that a Logo programmer must

understand a number of things in order to use variables

effectively. First, one must recognize the relative

permanence of a variable; that a variable, once created,

remains intact until it is explicitly removed, changed, or

until its host environment terminates, (e.g., when a

procedure to which a variable is local stops running).

This is true of both global and local variables, although

10

the issue is potentially much more complicated and critical

to a proper understanding of local variables, especially in

variables local to recursive procedures or to procedures

that call sub-procedures. One must see a variable as an

attribute of its environment, i.e. a local variable is

always associated with a procedure, and a global variable

is always part of a workspace.

Second, one must recognize that by definition a

variable associates a name with a value, where the value

may be any member of a set of permissible values. The Logo

programmer must clearly distinguish between a variable's

name and its stored value. This distinction is often

overlooked, but in certain cases it becomes critical. This

is true in the case of a programming technique called

"multiple indirection." For instance, if a Logo programmer

is asked to interpret the expression:

THING :USER

where "USER is defined as the name of a variable holding

the word, "RICK, as its value, and "RICK is itself defined

as a variable name with the number 642 as its value, then

the programmer must decode a chain of values from variable

names in order to evaluate the expression as the number,

642. :USER must first be evaluated as "RICK before the

number is extracted as the contents of the second

variable. An experienced Logo programmer might read the

above expression as, "the value of the value of the

variable, USER." An equivalent expression to the above is:

11

THING THING "USER

It becomes clear in this example that the expressions,

THING "USER and :USER are, in effect, identical; both

output the value of the variable, USER. Indeed the colon

is sometimes taught as an abbreviation for 'THING "'

(Harvey, 1985).* This can be a point of confusion, however,

since the "dots" (:) that often precede a variable name are

sometimes mistakenly thought of as a mandatory prefix to

the variable name.

Thirdly, in the case of variables whose values are

dynamically assigned with READWORD, READLIST or REQUEST,

one must distinguish between the role of the programmer,

who chooses the name of the variable, and the user who

determines its value. (I like to think of this as a

"temporal" distinction between "function definition" time

and "run time").

Finally, studies of expert programmers suggest that

they recognize certain programming idioms which may utilize

variables (Soloway et al, 1982, and see Chapter 2). The

* This "replacement" interpretation of the colon can lead
to errors as well. It would not be surprising to see a
student attempt to use two colons to create a third
expression:

::USER
This, of course, is not a legitimate shorthand form of
either of the first two expressions.

12

student programmer must learn to utilize variables in

high-level plans when such use is suggested by the

programming problem, and in doing so, simplify the

programming task and concentrate their efforts on unique

aspects of the problem. Common Logo variable idioms

include variable-as-a-counter, flag, representation of a

machine state, argument to a procedure, and user input.

Accompanying standard variable concepts is the concept

of a "function", Logo's only means of representing

covariation. Technically, a function is a procedure that

takes one or more inputs and has an explicit result.

Functional inputs are simply variables local to the

function, but in order to make a procedure produce an

explicit result, Logo provides a special command called

OUTPUT. The expert Logo programmer recognizes that a

function can have only one output (although a function may

have any number of alternative paths to produce that one

output). Functions and variables may be seen as

conceptually very similar. (In fact, a global variable may

be closely modeled by a procedure with an explicit

result). Functions, like global variables, reside within a

workspace.

A function relates to other procedures in a Logo

command sequence in a fundamentally different way from

procedures that do not produce results. A function can be

seen as replacing itself with a value while a

13

non-outputting procedure is normally viewed as performing

some task. In that sense, a function is more like a

variable than a non-outputting procedure.

A variable is distinct from a function, however, in

that a variable may contain only one value at any time

(although that value may be a composite in the form of a

list) while a function represents a covariate relationship,

i.e., it defines the mapping of one or more inputs to the

functional result. Also, functions may be defined

recursively while a variable may not. Both of these

features require one to view a function dynamically (see

also, Kuchemann, 1978, in Chapter 2).

Parameter passing in functions is also somewhat more

abstract than explicit variable assignment, in that the

programmer provides the variable name while defining a

function and the value is given at a later time, when the

function is invoked. This makes it convenient to talk

about the "inside" and the "outside" of a function when

referring respectively to a parameter variable's name and

its value. In terms of parameters this is analogous to the

name-value distinction in a variable.

Functions, like variables, can become associated with

certain common programming idioms, and here too the expert

must learn and be able to apply idioms appropriately.

Common functional idioms include simple functions,

recursive functions and "predicates" (functions that return

the value "TRUE or "FALSE). Of course, local variables

play a critical role within such functional idioms.

14

Some New Variable Distinctions

The above task-analysis is represented in terms of

three conceptual sub-categories, drawn from developmental

psychology. First, the concept of a variable retaining its

value within certain well-defined limits is referred to as

variable permanence, and is viewed as the most basic

variable sub-concept. Second, the clear distinction

between variable name and value -- when assignment of the

name occurs during procedural definition and the value

during "run-time", is referred to as a temporal

distinction. Third, is the clear sense of "where one is"

in the Logo environment, including the distinction between

procedure definition mode (sometimes referred to as "being

in the editor") and "toplevel" (sometimes called "being in

Logo), or between "being in..." one workspace vs. another.

The common use of prepositions in such examples leads the

author to refer to them as a positional distinction.

An ordering of mathematical variables resulting from a

developmental study (Kuchemann, 1978) and the above

technical overview suggested the following classification

of variable use for this study:

1. MAKE-ing a global variable is the simplest

it is "time-constant" and variable usage, i.e.

"dimensionally constant".

2. Both the use of local variables and asking the

user for a value with RQ (in the context of a

MAKE "F00 RQ construct) are less straight

forward. They seem to be akin to Kuchemann's

category "Letter as Specific Unknown", (see also

Chapter 2), because they involve a gap in time

between the selection of a variable name and its

value; i.e. they are "temporally variable".

3. Understanding variables in the context of a

recursive operation or in a problem involving

"multiple indirection" (i.e., one in which one or

more variable names are stored as data within

another, to be decoded by the programmer) were

the most difficult, because they involved both a

"temporal offset" (especially in the case of

recursive operations) and a "dimensional offset"

(i.e., added complexity in terms of the "level"

of recursive calls).

4. A function is a procedure with both inputs and

an output, and may be viewed as representing a

covariate relationship. The concept of

covariation was seen by Murray & Clement (1986)

as more difficult than simple variation,.and one

may assume that this makes a function more

difficult than simple variation in the context of

programming as well, though it is not clear how

this distinction might interact with the abstract

concepts of temporal and positional factors.

16

While the design of this study, involving microanalysis of

a limited number of subjects, precluded an exhaustive

examination of the question of stage-ordering, several

aspects of the above classification are informally explored

in Chapters 3, 4 and 5.

Rationale/Importance of Study

Computer programming is an activity that has aroused

much interest in the educational community. Many respected

educators have voiced their beliefs that computers will

revolutionize education (Luehrmann, 1980). Some see

computers as a more effective means to familiar and more or

less traditional educational ends (Elliott, 1978). Others

have viewed the new technology as a radicalizing force

(Dwyer, 1980). For example, some educators have proposed

teaching students how to think via computer programming

(Papert, 1972).

Recently this latter movement has come under attack

(Pea, 1984). Specifically being challenged is the notion

that programming teaches thinking. At the core of this

criticism is the implication that a large scale educational

commitment is premature or even dangerous due to the lack

of solid evidence both of the nature of programming

knowledge and of its relationship to other thinking. While

17

this objection seems to lay an excessive burden of proof

upon the proponents of computer programming (few if any

traditional subjects could be justified in this manner), it

would be very helpful to know more about the cognitive

nature of programming so that educators could make

intelligent decisions about the appropriate educational

role for this relatively new and, for many students and

teachers, alien activity.

Computer programming is a new area of study in

cognitive psychology. Only in the past ten years or so,

with the development of microcomputer technology and the

resulting growth of the personal computing industry, has

programming become generally accessible to the average

student. As a new area of learning, it provides us with a

rare opportunity to address some fundamental questions

about how people learn. A number of subjects of this

study, for example, exhibited misconceptions that were

surprising and unique (see Chapter 4). Some programming

texts rely on the use of metaphors to teach programming

(e.g., Harvey, 1985), and some researchers suggest that

difficulty in finding ready metaphors underlies many of the

learning problems of novice programmers (Mayer, 1979).

Instead, a rash of new terms to describe the workings of

computer software and hardware have had to be coined, and

computer glossaries to explain these new terms in common

language have proliferated. This scarcity of ready

18

metaphors suggests that computer programming is, in many

ways, quite unlike any other common activity.

The specifics of development of programming knowledge

also have important implications in the field of artificial

intelligence for the development of expert programming

instruction systems (Sleeman & Brown, 1982). Such systems

require a thorough knowledge-base of both concepts utilized

by expert programmers and common misconceptions encountered

by computer programming students. This same knowledge

could aid the thoughtful teacher of programming in

formulating instructional material and in understanding

difficulties experienced by students.

While there is an growing body of practical research

on the teaching and learning of mathematical variables, the

study of variables in the context of programming has lagged

behind, and is largely theoretical. Many basic questions,

such as the relationship between the understanding of

variables in programming and in mathematics, are yet to be

addressed. This exploratory study is a first attempt to

address both deficiencies. As an early attempt at a

general understanding of a complex and important sub-skill

of programming, it seeks to identify the important issues

for more specific follow-up study. For example, one issue

which arose and was addressed during microanalysis was the

important way in which concepts derived from subjects'

experience with variables in other computer languages

19

(BASIC and Pascal, in particular) both enhanced and

interfered with the learning of Logo. Several specific

questions for further research are identified in Chapter

5.

Finally, the clinical approach of this study was

chosen, in part, to help close the gap between the

cognitive researcher and the teacher, an extension of the

more general and long recognized problem of integrating

theory with practice. There is a scarcity of practical

information to help the teacher who, confronted by the

variable misconceptions of his students, must try to

analyze and correct these problems "on the fly". In the

past, cognitive science has often addressed the problems of

teachers, including many practical studies of memory,

cognitive development and learning theory. More recently,

fueled by an interest in expert systems, many cognitive

studies have focused upon isolating the specific

world-knowledge associated with expert behavior (Sleeman &

Brown, 1982). Recent work on intelligent tutoring systems

includes the development of an expert system to teach

computer programming (M. Miller, 1982; Anderson, 1984).

These new systems place a strong emphasis on analyzing

student errors, and such studies hold the eventual promise

to the teacher of well refined prescriptions for particular

programming errors. At present, however, intelligent

tutoring systems tend to be too deterministic and

domain-specific to be of much practical value to the

20

teacher (Sleeman & Brown, 1985). By choosing a descriptive

approach, but one informed by these recent detailed studies

and deterministic models, this study describes learning in

a more natural setting, making these observations more

accessible to the teacher.

From a learning theory point of view, this approach

allows a more integrated and general view of programming

variables in the context of other human experience.

Chapter 4 includes a discussion, informed by protocols, of

how and when specific learning of isolated cognitive skills

become integrated with a general, natural knowledge,

especially in terms of specific and general concepts of

variables. Such general studies as this one can serve as

an invaluable means to critique, verify and expand upon the

theory that underlies necessarily deterministic intelligent

tutoring systems (Lin, 1979).

21

Footnotes

Chapter 1

Luehrmann, A. "Should the Computer Teach the Student or
Vice-versa?", in Computers in the Schools, Tutor, Tool,
Tutee, (R. Taylor, Editor), Teachers College Press, 1980.

Harvey, B. Computer Science Logo Style: Intermediate
Programming, MIT Press, 1985.

Anderson, J., Farrell, R., Sauers, R. "Learning to Program
in Lisp", Cognitive Science, 8, 87-129, 1984.

Turkle, S. The Second Self, Simon & Schuster, 1984.

Clement, J. "Cognitive Microanalysis: An Approach to
Analyzing Intuitive Mathematical Reasoning Processes",
Technical Report, Cognitive Process Research Group,
University of Massachusetts, 1980.

Papert, S. Mindstorms, Basic Books, 1980.

Anderson, J "Learning to Program in Lisp", Cognitive
Science, 8, 87-129, 1984.

Soloway, E., Ehrlich, K., Bonar, J. & Greenspan, J. "What
do novices know about programming?". Technical Report, Yale
University, Department of Computer Science, 1982.

Bonar, J. & Soloway, E. "Pre-Programming Knowledge: A Major
Source of Misconceptions in Novice Programmers",
Human-Computer Interaction, Fall, 1985.

Soloway, E., Bonar, J. & Ehrlich, K. "Cognitive Strategies
and Looping Constructs: An Empirical Study", Technical
Report, Yale University, Department of Computer Science,
1981.

Adelson, B. "Problem solving and the development of
abstract categories in programming languages". Memory and
Cognition, 9, 422-433, 1981.

Schon, D. The Reflective Practitioner: How Professionals
Think in Action, Basic Books, 1983.

Elliott, P. "Computer 'glass-boxes' as advance organizers
in mathematics instruction". International Journal of
Mathematics in Science and Technology 9, (1), 79-87, 1978.

22

Dwyer, T. "Significance of Solo-mode Computing for
Curriculum Design", in Computers in the Schools, Tutor,
Tool, Tutee, (R. Taylor, Editor), Teachers College Press,
1980 .

Papert, S. "Teaching Children to be Mathematicians vs.
Teaching Children About Mathematics", International Journal
of Mathematics Education in Science & Technology, 3, 1972.

Pea, R. "Logo Programming and Problem Solving", Technical
Report, Bank Street College, 1983.

Mayer, R.E. "The Psychology of Learning BASIC",
Communications of the Association of Computing Machinery,
22, 589-594, 1979.

Sleeman, D. & Brown J.S. Intelligent Tutoring Systems,
Academic Press, 1982. *

Miller, M.L. "A Structured Programming and Debugging
Environment for Elementary Programming", Intelligent
Tutoring Systems, Academic Press, 1982.

Lin, H. "Approaches to Clinical Research in Cognitive
Process Instruction", Cognitive Process Instruction:
Research on Teaching Thinking Skills, (Lochhead, J. &
Clement, J., Editors), Franklin Institute Press, 1979.

CHAPTER 2

REVIEW OF LITERATURE

The review of literature begins with an examination of

literature on the general cognitive effects and potential

educational benefits of teaching computer programming.

Following that is a discussion of several interesting

models of programming knowledge and learning. The chapter

ends by looking at some studies of specific features of

computer languages — first at aspects of the flow of

control (which is of peripheral interest to this study) and

then at variables, both in mathematics and in programming.

Cognitive Effects of Programming

Several authors suggest that computer programming can

enhance a student's skill in other knowledge domains while

others remain skeptical about the possibility of such a

transfer. Conflicting studies can be cited to support

either point of view.

Among the first group of authors, some emphasize those

specific skills or concepts utilized both in programming

and in the recipient domain, suggesting that one may expect

to see a transfer through the reinforcement of these

sub-concepts. Some believe that, through the expressive

power of particular computer languages, one may expect

students to gain insight into concepts being modeled in the

language in question. Others see affective aspects of

23

24

programming as providing the greatest instructional

potential.

Elliott (1978) has proposed that short, concise

computer programs written in APL ("glass boxes") be used as

advanced organizers in mathematics instruction "...to bring

clarity and structural integration to mathematical,

instructional and cognitive structures important to the

mastery of mathematical concepts". In her example of a

function that outputs the greatest common divisor of its

inputs, she believes that the glass box shows the

relationship of "subordinate concepts" from set theory and

number theory to the "...subsuming concept of GCD"

(Elliott, 1978). Peelle (1980) proposes that mathematics

teachers explore alternative algorithms for common skills

such as addition, as a means to appreciate the possible

alternatives to conventional algorithms, to improve their

own comprehension of mathematics and as a pedagogical model

for their own teaching. He also proposes that by using

recursion in APL programs, students can develop "...a habit

of mathematicians and some computer scientists" (Peelle,

1977). Lewis (1980) reports favorably on the teaching of

recursive Logo programs in a high school pre-calculus

course and mentions, in addition to familiarity with

recursion, two other benefits of including a programming

component in mathematics instruction at this level: (1) a

greater emphasis on the "axiomatic structure of

and (2) the notational power of Logo's list mathematics"

25

structure. In all of the above cases, the authors noted

the expressive power of the particular language chosen as

an important factor of its pedagogical impact.

Some researchers see programming as a means of

teaching logical thinking. Mathematician George Polya

(1958) has suggested that "heuristics", high-level

problem-solving techniques gleaned from interviews with

expert mathematicians, be explicitly taught in schools.

Papert (1980) argues that programming computer graphics in

the Logo language with a graphic object known as a "turtle"

is the ideal forum in which to do this. "I believe that

Turtle geometry lends itself so well to Polya's principles

that the best way to explain Polya to students is to let

them learn Turtle geometry". This is less a formal

suggestion by Papert for a computer-based course on Polya's

problem-solving techniques than a casual afterthought, yet

it reflects Papert's belief that by introducing the right

sort of programming experiences, teachers can shift their

emphasis from rote learning of mathematical algorithms to

the process of mathematical problem-solving (Papert,

1980). Unfortunately, this becomes translated into a

popular belief that any computer programming experience

will automatically make students more logical. Indeed, the

assumption of transfer of programming knowledge to other

domains, specifically the belief that "programming teaches

thinking", has recently begun to come under attack.

26

Pea and Kurland (1984) have argued that there is no

objective evidence that adopting what they call Papert's

"radical child-centered" approach will increase

problem-solving ability. In three studies, they have

sought to disprove what they see as a popular

misconception. In all three, they worked with students who

had just completed a year of learning Logo in what they

describe as an environment based on Papert's ideas.

Students averaged 45 minutes per week of programming time.

In the first study, they tested students for LOGO command

understanding, program writing ability and error correction

ability. They found some interesting things: children found

semantic errors more difficult to locate and correct than

syntactic errors; older children understood far more

commands even though they received the same amount of

instruction as younger ones. However their overall

conclusion was that subject performance in all three areas

was poor (Pea & Kurland, 1984). In a second study. Pea

(1983) found no increase in planning skills in

task-scheduling among young programmers as compared to a

control group. Finally, Kurland (1984) found that these

children understood tail-recursion, but not

embedded-recursion. He further found that his subjects

believed that recursion was a looping rather than a

procedure-calling construct. In a study of the same

children, Mawbry et al (1983) found children's ideas of

what computers are and how they perform to be naive.

I see several problems with Pea and Kurland's

criticisms. For one thing, it seems to me that the

27

subjects in these studies simply had not learned enough

programming to evidence much transfer. The group

reportedly had difficulty understanding conditional

statements and inputs to procedures (Pea, 1983). Rather,

this result may emphasize one of the conclusions of the

current study: that it may take a significant amount of

time before mastery of some fundamental but critical Logo

concepts are reflected in low-level and high-level

planning. Furthermore, it seems that the program in which

Pea & Kurland's subjects were trained was not

time-intensive enough. fourty-five minutes a week, whether

distributed as nine minutes a day for five days or as one

session per week seems, by my experience, to be too little

time to allow for reasonable progress in acquiring new

programming skills, insufficient time to practice skills

already internalized, and (even if we assume a single

weekly time-block) too brief a period for the intensive

activity of true problem solving. More importantly, I

think that Pea & Kurland miss the point of Papert's writing

when they focus on specific claims of cognitive transfer.

It seems to me that the main claim of Papert when he

advocates the use of computers to teach "powerful ideas" is

that programming and the development in the classroom of a

"computer culture" can help the student to understand the

28

nature of inquiry and the attitudes that foster it (Papert,

1980) .

There is a good deal of similarity in the observed

general attitudes and work habits of those who have

demonstrated problem-solving skill. Good problem-solvers

show a greater ability to frame a problem in terms of rival

theories and to design experiments to test them against one

another (Schon, 1983; Driver, 1983; Smith & Inhelder,

1975) . They are more likely to pose their own questions

without prompting (Kamii, 1973; Duckworth, 1973). They

will actively and confidently attack a problem (Polya,

1957; Schoenfeld, 1979; Kamii, 1973); and they will

routinely use heuristics to approach a difficult problem

(Polya, 1957; Schoenfeld, 1979). The development of such

attitudes toward problems seems to be of critical

importance to the development of problem solving

expertise.

Papert and others make this point in a number of

anecdotal reports. Papert (1980) describes the experience

of a fifth grader who had a "bug'’ in the way he added

numbers. (He would add 35 to 35 and get a sum of 610, for

instance). Papert analyzes Ken's problem to be, in large

part, a failure to recognize the adding procedure (or any

procedure) as an entity, which may be altered. He says

that he has seen many children get over such misconceptions

after writing and manipulating their own procedures in LOGO

29

(Papert, 1980). He relates the experiences of another

fifth grader who could remember most things but had a block

against remembering and doing mathematics, and whose

problems were dramatically reduced once he began

programming (Papert, 1980). Turkle talks about a black

fifth grade student, alienated from her white instructors

and classmates, whose experiences writing programs to

generate poems (as well as her experience with word

processing) helped her to overcome cultural isolation and

become a productive young poet (Turkle, 1984). Clearly,

these programming experiences cannot be seen as singular

attempts to teach logic or specific problem-solving skills,

but must be seen as fostering the ongoing development of

attitudes and self-concept as well as cognitive

structures.

Other stories told by researchers suggest that

programming may help to to break down the institutionalized

isolation of most mathematics classrooms from true

mathematics reported by Confrey (1984). Papert (1972)

speaks of "syntonic thinking" (feeling an emotional

connection with the thing being studied), and "learning to

be a mathematician vs. learning to do mathematics". He

describes Deborah, who was immobilized by her frustration

with programming until she developed a means of

constraining the LOGO turtle to 30 degree turns. Turkle

(1984) talks about Ronnie, who forms a link with

mathematics by writing a computer program that makes

30

figures "dance in exactly the way he had envisioned", and

about Anne , who invents original programming techniques so

that she can think of the colors in her computer graphics

as colors on a painter's palette rather than as

"variables". Turkle sees learning breakthroughs such as

these as idiosyncratic. She sees a potential for

fostering, with computer programming, an active

intellectual community, a "computer culture" that shares

ideas, problems and their solutions, and she favors such an

approach over a focus on teaching specific concepts or

facts (Turkle, 1984).

One justification for Turkle's approach can be seen in

Steven Louie's work (1985.) He has reported a modest shift

in locus of control (LOG) toward more internal LOG from

pretest to post test in his study of children who learned

both word processing and Logo programming in a computer

camp. An internal shift in LOC, thought to be a measure of

greater self-confidence and self-reliance, has been

associated with improved learner attributes in the

affective domain and with success in schools. Louie found

no correlation between internal LOC and subjects' regard

for planning as a useful problem-solving skill. He notes

that this agrees with Pea's findings, and suggests that a

sense of "empowerment" is engendered by certain* computer

activities, as suggested by Papert, while planning skills

are not. Louie sees no contradiction between his findings

31

and Papert's claims of the potential of Logo programming to

"teach thinking" (Louie, 1985; Papert, 1980).

On the other hand, Clements and Gullo found that Logo

instruction can lead to improvement in young children in

some measures of cognition that are associated with

planning. They found that after 16 weeks of instruction in

Logo, first graders showed a significant improvement in

measures of metacognition, creativity and reflectivity (the

latter being the tendency to pause before solving a problem

to consider strategy). A second group that used a

sequenced set of CAI programs showed no improvement. While

this seems to be in contradiction with Pea & Kurland's

findings, Clements & Gullo's instruction in Logo was

significantly different from Pea & Kurland's. Clements &

Gullo provided a sequenced set of Logo lessons in which

instructors suggested to their students certain planning

strategies, while Pea & Kurland taught only the basics of

the language. Clements and Gullo's findings can be

interpreted as showing that cognitive skills can be taught

in a learning environment centered upon Logo instruction,

while Pea & Kurland showed that the inclusion of the Logo

language (as opposed to the constructivist philosophy

associated with Logo) does not assure the improvement of

cognitive skills, or, at least, not of planning skills.

Another interesting finding of Clements & Gullo is that

they found no significant difference between their two

groups in general measures of cognitive development.

including Piagetian task measures and the McCarthy

Screening Test (Clements & Gullo, 1984).

32

Whatever the case, in terms of transfer of overall

cognitive skills, the prospects for transfer of programming

knowledge to one particular area of education, mathematics,

may be fairly good. Howe, O'Shea & Plane (1979) compared

learning in a mathematics class that included a computer

programming component with a class that did not. They

found significantly better performance in the class that

programmed (cited in Clement Lochhead & Soloway, 1980).

Clement et al (1980) have shown a relationship between

the use of variables in BASIC and the correct solution of

algebra word problems. They studied both college students

of low to moderate mathematical ability and experienced

engineers. Both groups were asked to translate a

mathematical word problem into an algebraic equation (in

two unknowns) and also to translate a similar problem into

a computer program in the BASIC language. Clement, et al,

found that significantly more subjects performed the

programming task correctly than the algebraic one. They

attribute this, in part, to the very explicit syntax and

semantics of a computer language. They also note that, in

a programming language, an equation takes the form of a

function, an active object that accepts inputs and returns

a result, and that this active form emphasizes the dynamic

nature of a bivariate relation. These results suggest that

33

programming languages provide a powerful alternate

notational system for mathematics instruction (Clement et

al, 1980) .

The author takes the position that programming can

have educational benefits in the affective domain, as

Papert, Turkle Louie all suggest. The power of a computer

language as a highly formal, dynamic representational

system also highlights its potential to enhance instruction

in traditional subjects, including mathematics, as reported

by Clement, Lochhead & Soloway and by Howe, O'Shea &

Plane. Furthermore, as Clements & Gullo have shown,

programming in a language such as Logo is a natural vehicle

for teaching some general cognitive skills, including

metacognition, creativity and introspection, although Pea &

Kurland's studies emphasize that this learning is a

function of the overall instructional environment, not of

the decision to teach programming or of language selection

alone.

Studies of Programmers' Conceptualization of Programming

Two types of studies strongly suggest a picture of

expert programming knowledge as complex in nature,

characterized by the bundling of information based on

functional attributes. In both novice and expert studies,

learning is seen as quite idiosyncratic, suggesting that

programming skill represents a set of internal concepts.

34

associations and/or sub-skills, constructed by the learner

over an extended period of time.

Some researchers have studied the cognition of expert

and novice programmers through performance on memory-recall

tasks. This work is generally based on Chase and Simon's

study of chess expert-knowledge, in which they discovered

not only that expert chess players can memorize much more

of a complex board position, but that they remember board

positions in a different way from novices — essentially,

by structuring their memory of positions functionally, as

offensive or defensive configurations (cited in Adelson,

1981). Beth Adelson, using techniques pioneered by

Tulving, took expert programmers (her graduate teaching

assistants) and students from an introductory programming

class in PPL, (Prototypical Programming Language) and

studied performance on a recall task. She took three

complete PPL programs, scrambled the lines of each and

presented them, one at a time to subjects in a "free

recall" format. This was done through nine trials, and the

recall-performance of the subjects after each

administration was graded, summed and analyzed, using a

technique expected to uncover subjects' subjective

organization. She found that both novices and experts

showed subjective organization based on conceptual

categories, but that experts organized by semantic

categories, while novices grouped by command type

(syntactically) in their recall performance. The semantic

35

organization of the experts apparently explained their

ability to eventually reconstruct the original programs.

It would have been helpful if Adelson had provided raw data

or analysis of each trial separately rather than summed

performance alone, to see whether or not the expert's

performance was strongly weighted by later trials, when the

experts had completed their reconstruction of the scrambled

programs or were due to a more unconscious organization by

semantic chunks. In any case, this study strongly suggests

that an expert's association of programming code is

significantly different from that of a novice, with experts

grouping code into functional chunks (Adelson, 1981).

Another study viewed expert programming as associated

with the functional "chunking" of programming code, and

provided some insight into the mechanism by which this

grouping may take place. Soloway, Ehrlich, Bonar and

Greenspan (1982) compared the performance of two groups

(one that had completed a first semester course in Pascal

and another that had just completed a second semester

course) on some simple programming problems in Pascal. The

researchers found that while the more advanced group

(termed "intermediates") might use an inefficient looping

construct for a given problem, their choice of an overall

looping strategy was usually superior to that of novices

and acted as a good predictor of programming success. The

authors have constructed a partial frame model of looping

plans with which to explain this phenomenon. In it.

36

specific blocks of working Pascal code ("tactical plans")

are seen as descendants of a smaller number of computer

language specific "implementation plans", which are in turn

seen as the descendants of an even more abstract and

presumably language independent "strategic plan", such as

that which acted as such a good predictor of success

(Soloway, et al, 1982). For example, when asked to write a

Pascal program to allow the input of integers until a "flag

value" (9999) is read, then average the non-flag integers,

students might choose a "Process-i/Read Next-i" strategy or

a "Read-i/Process-i" strategy. Choosing the latter

strategic plan proved to be the only good predictor of

success with this problem. Expert Pascal programmers

generally suggested use of the WHILE looping construct as

the most efficient choice, but there was no significant

relationship between the choice of that implementation plan

and success unless the preferred strategic plan was also

chosen. Intermediate programmers did slightly worse than

novices on this problem. It is not clear why this is so,

although in an earlier study these same researchers

established that the "Process/Read" strategy was preferred

by novices and seemed to be a more natural construct;

intermediate performance may have decreased as a result of

their internalization of the less natural but more

efficient strategic plan favored by experts. (Soloway et

al, 1981).

37

Cognitive Models of Programming

In addition to the functional chunking of programming

knowledge, expert programmers are also said to have the

ability to construct "detailed mental models of how the

computer is functioning" (Pea & Kurland, 1984). These

models are described as dynamic in nature. Supposedly,

experts can build these "...runnable mental models, and can

simulate computer operations in response to specific

problem inputs" (Collins & Gentner, 1981, cited in Pea &

Kurland, 1984) .

Mayer (1979) hypothesized a cognitive architecture for

programming knowledge that is an isomorph of machine and

language architecture. He suggested a hierarchical

structure composed of eight "levels of knowledge" of the

BASIC language, each level providing the constituent

"atoms" of knowledge for the level above it. They were as

follows:

1. The physical machine.

2. Transactions (sounding very much like

assembly language, but really an abstract

formation). These commands consist of

operations, objects and memory addresses;

e.g., "Create (some numeric value) in memory

space A1".

3. Pre-statements. When one attempts to

construct all BASIC commands using only

38

transactions, one finds that BASIC

statements may represent more than one set

of transactions. Each set is defined as a

pre-statement.

4. Statements; legal BASIC commands.

5. Mandatory chunks; FOR/NEXT, READ/DATA,

IF/THEN and other primitively paired

statements.

6. Basic non-manditory chunks; statement

combinations that are often found together

as idioms, related to Soloway's "tactical

plans".

7. Higher chunks, apparently large

functional blocks of code, or modules.

8. Program.

Mayer proposed that students learn at all of these levels,

except for #1. He suggested, for example, that students

learn to distinguish

LET A=1

LET A=A/2 (Mayer, 1979).

In a later study, Mayer (1981) claimed some success in

improving BASIC language learning by exposing students to

machine-language like constructs in this framework.

However the learning of some programming concepts seem to

be retarded by this exposure, a phenomenon that he does not

sufficiently explain (Mayer, 1981). Mayer seems to be

39

looking unrealistically for an exact correspondence between

physical, machine architecture and conceptual structure.

Mayer's notion, at least of the importance of

machine-level concepts in learning high-level languages, is

strongly supported, however, in the work of Wyer & Cannara

at Stanford University, who taught students both Logo and

SIMPER, a simulation of assembly language. Three groups

were established, one that learned Logo first, then SIMPER,

a second that learned SIMPER first, and a third that

studied both simultaneously. Surprisingly, Wyer & Cannara

found that the third group performed the best of the

three. They found "...some confusion between the

languages, but each illuminated aspects of the other.

(This) outweighed the effects of the interference between

them" (cited in duBoulay, O'Shea & Monk, 1981).

DuBoulay et al (1981) used the concept of the

"notational machine", which they defined as "an idealized

conceptual computer whose properties are implied by the

constructs in the programming language employed". They

promoted a language design that provides feedback on the

current state of the notational machine. Such features

were said to provide "commentary" on the notational device,

which they believe makes the notational device accessible

to the user and so the language easier to learn (duBoulay

et al, 1981). Thus, they believe that error messages

should be consistent with and relate to features of the

40

notational machine, as should, ultimately, screen displays,

keyboard design, even sound and graphics. (One can see

such features implemented on some of the window-and-mouse

operating systems now commercially available). In terms of

general language features for a first language, duBoulay et

al recommended logical simplicity (the use of simple and

effective logical constructs), syntactic simplicity (a

simple syntax with few rules and few exceptions) and

functional simplicity. They defined functional simplicity

in terms of Mayer's "transactions". To be functionally

simple, a language must have relatively few primitive

conceptual "transactions", and instructions in the language

must be each be composed of relatively few of them

(duBoulay & O'shea, 1981). While it is helpful to have a

concrete definition of "language simplicity", there is

insufficient evidence to accept Mayer's "transactions" as

the conceptual basis for it.

A Model of Device-Learning

Both the ideas of experts' functional bundling of

knowledge and through building runnable mental models can

be justified with a developmental model such as Hoc's

notion of "machine learning" (1977), which will herein be

utilized as a conceptual framework of concept-learning.

Hoc proposed a model based on a machine-like construct

which he called a "device". He defined device as "a means

of relating the conduct of both processes and behavior of

41

the subject to his environment". (By this definition,

one's own body can be thought of as a device). Such a

device must have operations which it performs, and the set

of rules for these operations constitute what Hoc calls its

"device language". One never directly interacts with a

"device", only with a "device language". This is a

critical aspect of this model; the constructivist notion

that the reality (of the "device") is only understood

indirectly through interaction (with the "device language")

(Hoc, 1977).

In the context of computer languages, the device

language might be the low-level operation codes of a

machine-language or the more symbolic commands in a

high-level computer language. In the former case, it seems

that the "device" in question would be the computer

itself. However the latter case is less obvious. If one

treats the Logo language, for example, as a "device

language", then what is the "device" underlying it? The

physical computer hardware? One could interpret the

situation in that way, as does Meyer in his analysis of

BASIC. However Hoc's approach was to talk about the device

as an idealized representation of the computer language

(like duBoulay's "notational machine"). The "device" of

Logo is a characterization of the entire language, above

and apart from its grammar and syntax.

42

The human subject in Hoc's model acts upon the device

language, and "catches information" through the responses

of the language to his actions. Simultaneously, the

subject is receiving feedback from his personal

environment, which eventually, through a process Hoc calls

"interiorisation", comes to codify this dialog as a mental

representation. "As soon as the subject is able to operate

a device mentally and predict the outcome", says Hoc, "even

if incorrect, we say that he's constructed a representation

with which he can make calculations". Hoc refers to this

representation as a "Systeme de Representation et de

Traitment" or SRT, (translated as "Representation and

Processing System"), which seems to correspond closely to

the "runnable mental model" of Collins & Gentner.

Any experimental subject may be thought of has having

a vocabulary of SRTs in place. Given a new device. Hoc

believes that a subject will adopt an analogous SRT and

attempt to use it, making superficial alterations as

necessary to adapt it to the new application. If this

strategy leads to unrepairable errors, (i.e., the SRT is

basically inappropriate), then he must adopt a more generic

SRT, which will require more editing than a close match

would have. Hoc sees this as a costly approach, to be

avoided where possible. These processes, which-can be

likened to Piaget's processes of assimilation and

accommodation. Hoc refered to as "representative activity"

("talk" between SRTs), and are a part of the

43

"interiorisation" of the representation.

Once an SRT is constructed, it may be used, according

to Hoc, to solve problems. A situation may be seen as a

problem, "when the subject represents to himself a pair of

states ...the initial state and the final state... and a

procedure which leads from one to the other in one or

several of the SRTs he has at his disposal, providing such

a procedure is not translatable, word-for-word, into the

device language." He sees a problem solution as "the

organization of the actions that the device is capable of

performing from an initial state to obtain the objective".

Notice that the aspect of this model that deals with

problem-solving "...emphasizes the construction of a

procedure in the device language and the definition of a

representation of initial and final states compatible with

that language" (Hoc, 1977). This is thoroughly compatible

with the notion of bundling knowledge into functional

classes, presented earlier. Again, a device and a device

language are seen as inseparable constructs, and the mental

representation (SRT) a subjective model of some aspect of

the device, whether accurate or not. SRTs are functional,

runnable bundles of device language, which may themselves

be bundled together in order to solve a given problem.

Presumably, procedures for individual problem solutions

themselves then become SRTs.

44

This does not mean that expert programmers always

generalize from their problem solutions, however. Hoc

makes a distinction between a general and a specific

solution to a problem. "It is one thing to ask a subject

what is to be done in each case". Hoc states, "and another

to ask him to construct a general solution for all cases"

(Hoc, 1977). Vermersch (1972) defined the latter as

"algorithmic behavior", and found that subjects often had

trouble developing a general algorithm, even when they are

familiar with many specific ones (in Hoc, 1977). Here

Hoc's model falls short, failing to close his theoretical

system by describing the means by which one generalizes

classes of problem solutions. Using a Piagetian framework,

one may assume that this involves a reorganization of

knowledge, some sort of internal mental activity resulting

in greater abstraction and more generalized mental

representation of an entire class of problems. The

question remains whether such reorganization takes place in

the development of programming expertise.

Hoc's model is flexible and elegant; it makes a clear

distinction between the formal and psychological aspects of

a language, and it explains their interaction. It

distinguishes between a language grammar and the conceptual

device that the language grammar suggests. It models

concept learning as a mental representation of the

conceptual device (rather than of the device language). It

provides an explanation for the idiomatic bundling of

45

programming knowledge observed independently by others and

offers a framework for describing the means by which

"runnable mental models" may be built and then linked

together to form an expert knowledge-base composed of such

models. It is also strongly reminiscent of Piaget's

familiar description of cognitive structures, and this

increases its utility as tool for analyzing the divergent

work in this general field.

Program "Bugs" and Programming Expertise

The analysis of program errors and debugging behavior

will be an important technique used in this study. By

analyzing programming bugs and debugging activity, other

researchers have gained important insights into how both

experts and novices think about programming and how they

solve programming problems

Debugging falls into the category of the "pragmatics"

of programming, recommended as a focus in computer

instruction by Minsky (1970). Papert (1980) believes that

debugging is an important cognitive skill, which he feels

can be learned through programming in a language such as

Logo. This suggests that debugging strategies and

associated skills may develop independently of other

programming concepts. Surely, some students of computer

programming come to develop very domain-specific and clever

debugging strategies that undoubtedly help account for

46

programming success. But debugging ability must at some

point become closely linked with other programming

conceptualizations to produce the unified knowledge typical

of experts. In Hoc's model, errors simply provide data

about the programming language; they are an aspect of the

device language. It is difficult to describe any

distinction at all between internalization of general

concepts and debugging skills using that representation.

While other models of programming knowledge would allow one

to treat debugging skill as independent, existing studies

provide little support for that view.

In order to confirm and expand his model of "device

learning" described earlier. Hoc (1977) constructed an

experiment using an analysis of bugs of different sorts to

establish the deep conceptual functioning of programmers of

different levels of expertise. He assigned 20 COBOL

programmers (from a commercial software house), with

abilities ranging from near novice (but having an knowledge

of COBOL syntax) to expert programmers. He asked all of

them to create a flowchart of a computer program to control

the ticket dispensing and coin-changing functions of a

theoretical automated ticket dispenser, with only the

communication protocols between parts of the change machine

and the controlling machine specified. By Hoc's analysis,

this task required the development and interiorisation of

new subjective representations (for the change-making and

ticket dispensing devices) and the active use of the

47

programmer's mental model of the COBOL computer language.

He studied programmers' generation of errors, (classified

with a taxonomy designed to show the relation of an error

to the subject's SRT) as well as their activities in

creating the flowchart, and gave a structural analysis of

their final or "terminal" flowchart. By design, the study

was focused only on "representative activity", i.e., the

subject's manipulation of his internal model of the devices

in question, not interaction with the device language. His

assumption, one which will be adopted in this study, was

that a subject's physical activity (creating flow charts,

diagrams and programming code) can be taken to represent

internal activity and can indicate a great deal about a

subject's conceptual processes, because their work is

sharply focused on those aspects of the problem that they

find troublesome.

Hoc analyzed his results using his model of device

learning, to find three stages of interiorization of COBOL

SRTs. The first corresponded with the performance of

novice programmers, who show little of Vermersch's

"algorithmic thinking"; Hoc believed programmers in this

first group had constructed only minimal SRTs. They did

not calculate in an SRT associated with COBOL,’ made little

association between similar classes of "test-condition"

tasks, but rather constructed a horizontally wide "tree

structure" in their flowcharts, indicating an attempt to

deal with many similar processes as special cases. They

wrote little COBOL code in early passes at the flowchart,

and when they did attempt to write code, they tended to

commit errors as well.

48

The second group were seen to have partially

internalized cognitive models of COBOL. Their terminal

flowcharts were more vertical, utilizing conditional

branching rather than looping, they did write in

programming code in places that they found familiar

problems, but abbreviated other, difficult parts of the

problem.

The third group, who Hoc believed had thoroughly

interiorized both an accurate mental representation and a

large library of usable algorithms, tended to return to

writing abbreviations rather than COBOL code, but moved

quickly to define the "best representation of the data, to

detail only the difficult parts of the problem for which

there are no obvious algorithms". It is not clear how Hoc

distinguished between "difficult" parts or "best

representations" and their opposites, and he apparently

made no attempt to associate group membership and other

measures, though his anecdotal descriptions of the meanings

of different factors was informative.

Jefferies (1982) provided some support for a model

such as Hoc's. He found that experts debug programs in a

fundamentally different way than do novice programmers. He

believed that experts use the "runnable mental models ,

49

mentioned earlier, in their debugging activity. He also

found that "Experts read for flow of control as expert

readers do, rather than line-by-line as does the novice"

(cited in Pea & Kurland, 1984).

It is not clear to what extent computer language

learning and expertise differs between computer languages.

In a examination of bugs in learning the APL language,

Eisenberg & Peelle (1983) found programming bugs that

seemed to have no ready analogy in reported bugs in other

programming languages.

APL combines an extensible language design (i.e.,

programs, once defined, follow the same syntactic rules as

primitive functions), with a rich set of functions and

operators, which may be functionally composed or organized

into programs. It has an extremely simple rule for

evaluating expressions with no hierarchy of functions, and

utilizes its own keyboard and symbol set. Eisenberg &

Peelle's classification of bugs was an informal one, and

was designed in part to uncover the specific idiosyncrasies

of APL programming. They found some bugs to persist well

into intermediate stages of programming, while others

passed out of use as novices gained a modest exposure to

the language. For example, in their "Naive Bugs" and

"Babel Bugs", found especially in novices with previous

experience in other programming languages, neophyte APL

programmers showed a tendency to ignore new, more efficient

50

functions in favor of more familiar ones. Their "Logical

Bugs" indicate failures to understand the semantics of

APL's primitive logical functions or to construct correct

Boolean expressions, (not a fault in program logic or

flow-of-control, as others have used the term) (Mayer,

1981; Soloway et al, 1982). "Dummy Bugs" come when novices

try to write APL procedures. One they report as very

persistent, and seems to result from the combination of a

misconception about replacement of a function call with its

result and the way APL handles a result used as input to

another function. "Inventive Bugs" of various types seem

to indicate an early tendency of students to develop a

model of APL's grammatical structure and that novices

interact with the language experimentally to a degree that

researchers of other languages have not reported (Eisenberg

& Peelle, 1983) .

Debugging may be useful as an instructional device as

well. Lemos (1979), building on the concept of "team

debugging" developed by the IBM Chief Programmer Team,

implemented a program of what he calls "Structured

Walk-Throughs" in teaching COBOL programming. Using one

section of a beginning and one of an intermediate COBOL

programming class, he had his students critique each

others' un-debugged programs. After critiquing, students

had an opportunity to correct their own programs and run

them one time only. This was continued over a 10 week

period. Control groups, composed of other sections of the

51

same classes, received more detailed instruction about the

language but did no critiquing of the sort described

above.

At the end of this time, Lemos administered a one hour

test of language grammar, program reading/debugging and

program writing. He found no significant differences

between the groups in understanding language grammar or in

their program reading and debugging skills. But the

Structured Walk-Through group showed a significant

improvement in their ability to successfully complete a

program writing task. They also showed a significant

decrease in the number of test-runs required to complete

programming assignments during the remainder of the

semester (Lemos, 1979).

With these results, Lemos concluded that the

Structured Walk-Through more efficiently teaches good

programming practice. The results are confusing, though.

After so much more emphasis on critiquing in the groups

doing Structured Walk-Through, why did they fail to

demonstrate an improvement in program debugging skills?

One would expect to see such improvement, simply as a

learned behavior, especially if one views debugging as an

independent skill. If the Structured Walk-Through students

did not show improvement in understanding language grammar

or in programming reading, then what accounts for the

decrease in program writing time? One explanation is that

52

Lemos's approach helped habituate students to proofreading

before a test-run. Turkle (1984) has identified several

personal styles, and has seen them reflected in programming

habits; careful proofreading is one of the traits

identified with what she calls an "obsessive-compulsive"

style personality. Lemos may really be teaching some

aspect of behavior related to a personal style. Turkle is

critical of the tendency of many teachers to favor the

obsessive-compulsive style, and notes that teachers often

confuse programming style with demonstrated programming

ability, something that Turkle believes will discourage

students with the more creative and less organized

("hysterical") learning style more typical of young girls

(Turkle, 1984). In any case, Lemos's study diminishes the

view that debugging is primarily an independent cognitive

skill.

Programming Plans and Procedural Knowledge

In an attempt to explain bugs in the addition

algorithms of young children. Brown & VanLehn proposed a

procedural model for knowledge and misconceptualization

(1979). They likened a correct addition algorithm to a

procedure in a computer programming language which includes

all the steps necessary to carry out the process of

addition—in effect, a plan for doing addition. They

postulated that errant algorithms are generated when a line

or part of a line is somehow lost from a correct plan, and

53

the missing parts are then "patched" by a set of repair

rules and evaluation heuristics called "critics", the

metaphorical equivalent of a "bug" in a computer

procedure. This results in a procedure which will "run"

but produce faulty results. Brown & VanLehn's "critics"

seem to function as a mechanism to resolve ambiguity and

provide a kind of closure. They have developed a computer

program called BUGGY to simulate "bug-patching" in the

algorithm for addition. They have also generated all known

student math bugs for this type of problem, and only a few

bugs generated by their model have never been seen to arise

in student work (Brown & VanLehn, 1979). The predictive

power of this model argues for its validity.

Brown & VanLehn's research suggests that children are

constantly altering personal computational algorithms in

unconscious, somewhat automatic and sometimes maladaptive

ways. If the structure of BUGGY has some real

correspondence in human information processing, then the

mandate for teachers is to learn better how to understand

the logic behind their students' incorrect answers and

provide them with the insight to correct their own "buggy"

plans. This implies not only listening to one's students

but also learning to recognize when a student's wrong

assumptions, though not apparent, have led to the

maladaptive plans evidenced in student errors.

54

While the author is suspicious of any notion of

problem-solving that de-emphasizes human choice, protocols

utilized in the present study include long episodes of

plan-dominated activity. Some programming errors seem as

persistent as the difficulties with addition algorithms

studied by Brown & VanLehn, and both of these things

suggest that some of the of high-level notions of

programming may be internalized as procedural structures,

similar to Brown & VanLehn's addition algorithms.

Anderson (1982) generalized the notion of procedural

knowledge to all cognitive structures and proposed a

mechanism for the learning of any cognitive skill. He

theorized that any skill is learned in two stages. In the

first stage, the "declarative" stage, the skill is encoded

as a set of facts which can be utilized by general,

interpretive procedures (previously internalized). In the

second, "procedural" stage, knowledge has been formulated

into a domain-specific "production", composed of a

condition specifying when to use this production and a

sequence of actions given in terms of existing productions

(Anderson, 1982). It should be noted that the productions

function as goal-setting mechanisms. Anderson's assumption

is that only one goal may be actively pursued at a time,

and so productions can be thought of as plans for

organizing which aspects of a problem the solver will

attend to.

55

In a prolonged study of the first 30 hours of learning

to program in Lisp, the parent-language of Logo, Anderson,

Farrel and Sauers (1984) observed a large increase in speed

when students solved a novel problem and then a second,

analogous problem. They interpreted this increase in speed

as indicative of the proceduralization of the problem as a

complex cognitive skill, a process that they call

"knowledge compilation". In mapping the productions

associated with a nontrivial problem, they produced a

hierarchical tree structure, composed of frames with a

variable to represent all potential objects of each

action. They observed a common, and what they believe to

be a natural, progression through the frames that make up

the tree as top-to bottom and left-to-right. Besides the

limitation to one active goal, they perceived a limit of

what they call "working memory" to be a major constraint on

this production system, and they interpreted several

observed difficulties during the declarative stage as a

function of this limit (Anderson, et al, 1984).

M. L. Miller's (1980) extensive analysis of high

school students' thinking aloud while doing

graphic-oriented Logo programming proposed a different

hierarchical tree structure for programmer planning.

Miller felt that the three stages of planning activity

were, in order, identification (identify the problem as a

previously solved problem), decomposition (decompose into

sub-problems) and reformulation (reform into an alternative

56

problem). He implemented this idea into a structured

planning and debugging environment called SPADE-0.

Initially SPADE-0 was programmed to guide students through

the identification, decomposition and reformulation

processes, in that order, carrying each to completion in a

top-to-bottom, left-to-right pattern. Complaints and

suggestions from users led to a set of "preference rules"

that override that order in the present implementation.

New considerations for ordering, integrated into the

preference rules included: (1) solve main steps before

interfaces (e.g. build both a "square" and a "triangle"

before creating a super-procedure to combine them into a

"house" (2) prefer direct neighbors (in the tree) and (3)

prefer simpler to more complex goals. Miller observed that

all of these "preference rules" served to minimize future

modification. He called this the "least-scope principle",

and he saw it as the motivation in the "top-down" approach

sometimes taught as a preferred planning structure in

programming courses (M.L. Miller, 1982)

Bonar & Soloway (1983) have found that "novice

programmers have deep and interesting misunderstandings"

derived from general experience and knowledge. They

suggest that student-programmers utilize those aspects of

general knowledge that most closely (but not exactly) match

the programming problems that they encounter. But such an

association often matches the problem only in superficial

ways and may eventually lead to programming errors. Bonar

57

& Soloway use the term "natural language strategies" for

these potentially distracting strategies. They uncovered,

through close examination of the "loud thinking" of novices

(a technique in which problem solvers are asked to

verbalize their reasoning as they work on a problem) and

through a very careful look at novice bugs, some of the

natural language strategies developed by novices as they

attempt to understand looping structures as they learn to

program in Pascal. In specifying a procedure for

repetitively processing a string of information in a

non-programming context (the problem was to determine

average salary for factory workers as they leave work

through the gate, trailed by their supervisor), the natural

strategy, produced by all subjects, was to read the salary

from each worker, then add it to the sum of the salary of

all previous workers (keeping track of the number of worker

so far encountered) and finally, upon meeting the

supervisor, to compute the average. They refered to this

as a "Read-Process" strategy. In a similar Pascal problem,

however, that strategy tended to lead to errors (Soloway et

al, 1982).

In a later study that drew heavily on Brown &

VanLehn's theory of addition errors (mentioned previously),

Bonar & Soloway (1985) reported other sources for

programming errors and proposed a general mechanism for the

generation of programming bugs. They believe that most

bugs begin with gaps in programming knowledge (PK), which

58

they see as distinct from natural knowledge. In groping

for a means to fill this gap, novices usually draw upon

natural knowledge, thus generating a bug. Repetitious

techniques found in common problem solving experience, such

as seen in the factory gate problem, above, are referred to

as "step-by-step knowledge (SSK)", and a bug can occur when

"SSK confounds PK". However, other bugs seemed to be

related to natural language interpretations of programming

concepts. Bonar & Soloway classified these as a type of

SSK, but I like to think of them in a separate category,

and refer to them as "natural language confounds". Still

other bugs can result from confusion of programming

constructs with one another (Intra-PK confounds), or with

knowledge from other domains, such as mathematics (Other

Domain confounds) or with aspects of the current operating

system (OS confounds). Both Brown & VanLehn and Bonar &

Soloway refer to these "confounds" in general, as "bug

generators". In a broader view, it is possible that "bug

patching", in programming, mathematics or other domains,

may serve as a mechanism to integrate new knowledge into

existing mental constructs. Only when it becomes

"compiled" into an algorithm and used in an unconscious and

maladaptive way should it be thought of in negative terms.

To summarize the research cited on planning, Anderson

et al (1984) believe that raw novices begin with'

descriptive knowledge utilized by general problem solving

plans and progress to domain-specific, procedural knowledge

59

through the encoding of problem solving plans called

compilation. Soloway et al (1981), Bonar & Soloway (1985)

and Hoc (1977) all studied plans, which are close analogs

to procedural knowledge, and all saw procedural knowledge

as developing first as low-level implementation plans and

progressing to high-level strategic plans. One sees a

picture emerge of the learning of a complex cognitive skill

as a movement from general knowledge to domain specific

knowledge which slowly accumulates (in a building-block

fashion) back to general knowledge. The studies cited

above provide some detail as to the first two stages, but

what of the third? The author proposes that the final

stage of learning programming, or of any similar cognitive

skill, must entail the integration of domain-specific

knowledge into general knowledge structures. Only at this

point can one fully reflect on one's own knowledge. I

propose the term "meta-programming knowledge" for this

stage of true mastery, to emphasize the important role of

metacognition.

Metacognition and Programming Knowledge

Silver, Branca & Adams (1984) summarized general

research on metacognition in terms of two themes: "(1) with

development, individuals adopt an active, self-directive

role in certain areas, and (2) individuals develop the

ability to monitor and evaluate their own cognitive

processes." While there is some disagreement on this point. it

60

development in both of these areas seems to progress both

with age and with experience in a particular domain. They

saw this development as corresponding to an awareness of

and attention to structure, i.e., the sort of "functional

chunking" previously discussed, though they note that

metacognition may decrease when cognitive skills become

completely automatic.

Smith & Inhelder (1975) used a block-balancing task

(which was already known to progress through several

stages, linked to general cognitive development) to study

the "micro-formation of physical knowledge." Several blocks

of varying shape and construction, including some built

with hidden weights, were presented to children ranging in

age from 4.5 to 9.5 years. The researchers distinguished

between actions related to theory-testing and goal oriented

activity. As expected, subjects' behavior fell into

age-linked stages. In a pre-study, children eithteen to

thirty-nine months old were observed placing blocks on the

fulcrum in a single location and pressing down hard above

the fulcrum. If the block fell, they would replace a block

in the same position and press down once more. The

youngest children in the formal study seemed to know that

movement could lead to success, but had little ability to

predict the results of their action. They began by

balancing blocks at a random location , sometimes pressing

down from above the fulcrum like the toddlers. However

they would progress to making small adjustments based on

61

proprioceptive information, until a block was balanced.

These children were able to balance the more complicated

blocks (i.e., ones with asymmetrical structure, some

requiring counterweights or especially ones with hidden

weights), in much the same way as they balanced the

simplest ones, i.e. using proprioceptive information. Some

began to shift their attention to an exploration of the

properties of blocks, a shift that Smith & Inhelder saw as

indicating the development and testing of predictive

theories.

More advanced subjects began near the geometric center

of the base of a block, then made small shifts to quickly

balance the simple blocks (i.e., the unweighted,

symmetrical ones), and eventually to balance all blocks but

the ones requiring counterweights. Some children at this

stage became distracted by the weighted and asymmetrical

blocks, and began to explore these, apparently trying to

develop new and more predictively powerful theories. Often,

these subjects would begin to experience difficulty

balancing the asymmetrical and hidden-weight blocks that

they had previously balanced successfully, although they

could achieve success if they closed their eyes. Smith and

Inhelder believed that these children were also shifting

their attention toward the theory that has been shown to

develop at around seven years of age, that of balance based

on weight. Older children were seen to pause BEFORE

attempting to balance a block and placing it close to its

62

balance point on the first try. This pause before the

problem was seen as indicative of an internal process of

theoretical prediction. The notion of experimentation as

being either theory-responsive or goal-responsive, the idea

of retrograde learning as indicative of a new

theory-in-development and the attention to pauses as an

indication of internal processing are several features of

Smith & Inhelder's study which will be important mechanisms

for analyzing experimental activity in the present study.

Papert (1980) observed that children often are unable

to recognize mathematical algorithms as correctable

entities, which supports the notion of a procedure-like

bundle of algorithmic knowledge. His claim was that

programming experience helped some of these children to

identify and correct math bugs by making them more

conscious of bugs and debugging behavior (Papert, 1980).

This suggests that procedural knowledge can be "edited"

through self-conscious activity (metacognition), that the

right kind of activity can result in a shift to

metacognition, and that computer programming can provide

such activity. If metacognition is an important component

to mathematical problem solving, as Silver et al (1980)

believe, then it is likely to be important in computer

problem solving as well. Experimentation, according to

Smith & Inhelder, can at some stages induce metacognition

and shift focus from goal achievement to theoretical

reformulation. All of this leads the author to see

63

metacognition as the final stage in learning programming,

following first the use of natural problem solving concepts

and strategies that lead to many programming bugs and then

the development of domain specific programming plans.

This concludes the review of literature on general

conceptualization as it relates to programming skill. The

next section goes on to examine some particular features of

programming languages as they effect learning, most notably

program control and the use of variables

Studies of the Learning of Specific Language Features

All of the studies mentioned up to this point have

been top-down, attempting to describe the nature of expert

programming knowledge. The following studies, however, are

bottom-up. They examine in detail the conceptualization of

particular constructs, specifically the concepts of program

control, expression parsing and variables.

Program Control and Expression Parsing

Sime, Green & Guest (1977) saw two sorts of important

information implicit in a computer program, which were

commonly used by experienced programmers. ' The first,

sequential information, was generally recognized as the

sequence of commands that are developed when an experienced

programmer translates a problem into a program. The

64

second, which they call "taxon information", was not so

commonly recognized but was equally important to the expert

programmer. Taxon information refers to the taxonomy of

the underlying problem, and can be thought of as the

residual information left after code is written that can

aid the programmer, for example during debugging, in

recreating the original problem.

To test this hypothesis, they created three

pseudo-languages. One allowed only for a JUMP command as a

control structure. Dijkistra (1980) has criticized this

control structure as destructive to the smooth and simple

translation by the programmer from the dynamic process that

the programmer has in mind as a goal to the text of the

actual program (i.e., it is weak in sequential information)

and back again (i.e. weak in taxon information). This has

been the underlying argument in favor of the nesting

constructs favored by the proponents of structured

programming.

A second pseudo-language had logical structures

allowing nesting in a fashion similar to ALGOL, i.e. of the

form

IF (condition) THEN

BEGIN

STMT 1

STMT 2

END

65

ELSE

BEGIN

STMT 3

STMT 4

END

The third language allowed structuring but also

required a redundant statement of the condition controlling

the nesting structure. In constructing it, Sime, et al

(1975) decided to forego the use of BEGIN and END to mark

the scope of the control structures, but chose instead a

scheme such as;

IF (condition) STMT1 STMT2

NOT (condition) STMT3 STMT4

END (condition)

They felt that this hybrid structure was richer in taxon

information.

In testing the ease with which these languages were

used by beginners and then by expert programmers, they

found that the simple nest structure was most susceptible

to syntax errors, mostly caused by forgetting the last of a

BEGIN/END pair. It also performed the worst in terms of

perfect execution of the first programming pass. The JUMP

language was most susceptible to logical errors, (i.e.

errors in regard to the program logic). Their hybrid

language, which required the statement of the condition

before the THEN clause and also before the ELSE clause, was

66

10 times faster to decode! By Sime et al's analysis, this

performance was due to the clearer taxon information in

that language. They were critical of the performance of the

structured style, and saw much of the justification for it

by researchers such as Dijkstra to be lacking in

experimental evidence (Sime, et al, 1977). This criticism

may account for the lack of reasonable performance observed

by some researchers in solving fairly simple programs in

PASCAL, even by intermediate-level programmers (Soloway et

al, 1982).

L. A. Miller found that the conditional construct was

itself at odds with natural problem specification. He

found that non-programmers preferred a "qualificational"

("put all the red things in box 1") over a conditional ("if

thing is red, then put it in box 1") IF statement in their

natural statement of a problem or in a first computer

language (cited in duBoulay & O'Shea, 1981). This seems to

support Sime et al's emphasis in taxon information, in that

a qualificaional construction seems to point more strongly

to the taxa being acted upon than does the conditional

form.

In another study of Miller's (1974), he found that

novice programmers were far more successful using the AND

construct than using OR. He administered tests of program

generation with a pseudo-language of his own design,

featuring only a conditional branching command for altering

67

sequential flow of control. The tests were administered

under computer control, and Miller was able to report not

only on the successful completion of the sorting problems

given to subjects but also on the amount of time spent

making selections by command type in AND problems as

opposed to OR problems. He found that OR problems required

almost half-again as much overall time to complete, but

more than twice as much time making modifications and

viewing displays and 10 times as much total editing time.

Miller found that thirty-three of sixty-seven

programming errors generated were in conditional

statements, indicating the importance of an efficient

conditional structure in a computer language. OR problems

also resulted in more errors than AND problems overall by

two to four times. Problems that required the negation of

a conditional also gave the novice programmers trouble.

The worst performance of all was for OR problems requiring

one but not both conditionals to be inverted. Most

surprising of all. Miller found that as many as 50% of his

subjects would reconstruct an OR problem to force it into

an AND program structure. This strategy led to more errors

in conditional statements, but fewer implementation errors,

indicating that once the conversion was made, programmers

understood their programs better and had less trouble

manipulating them (Miller, 1974).

*

68

All three of these studies of program control

structures support Bonar & Soloway's notion that novices

possess strong, natural inclinations toward some structures

over others (Bonar & Soloway, 1983).

Program control in Logo is not the same as in Pascal,

or in the proto-languages used by Sime et al, or in

Miller's two studies. Sheil (1981) has offered, in a

data-analysis language for Social Scientists called IDL,

what he believes to be a more natural language structure

than iteration, and one which is also closer to the control

structure of Logo. IDL offers a small set of highly

specialized operators and uses only functional composition,

which he believes is easier for novices to use, as a

control structure. (Functional composition is the main

control structure in Logo, as well.) Sheil found that users

did find IDL to be simple and natural to use in most

applications, but that more complicated uses required too

deep a nesting of functions and of parentheses for the

novice user. He also found IDL inappropriate for many

computer applications which were essentially procedural,

(e.g., automating office procedures) (Sheil, 1981).

In a functional language such as Logo, the main rule

of precedence is that, barring parenthesization, functions

are ordered in precedence from left to right (this is

identical to functional composition in mathematics). The

exception in Logo are the infix operators, (+,-,*//)/ which

69

bind most tightly and are themselves ordered as per

algebraic convention. This is a variation from the simple

grammatical structure suggested by duBoulay et al, and may

be a source of confusion for novice programmers. The

author's assumption is that in order to attain expertise as

a Logo programmer one must learn to compose functions, even

deeply nested functions, and to master the rules of

precedence for exceptions such as the infix operators

mentioned above.

Allen & Davis (1984) support the use of functional

composition as an underlying language structure. In their

discourse on the state of computer programming languages

today, they offer three categories: procedural, functional

and relational. In the first category they lump BASIC,

PASCAL, FORTRAN and most versions of LOGO. In the second,

they places APL, LISP and TLC-LOGO. "In a purely

functional language the notation only describes

relationships between components and makes no demands on

how these relationships are computed". Allen & Davis argue

that functional languages are more mathematical, that they

"...can be looked upon as abstract descriptions of

phenomena independently of how (or even if) they are

executed on a machine. This abstraction means they have

notational/expressive power that may be reasoned with and

about." Their third category is the relational family,

including "logic programming languages" such as PROLOG.

Such a language "expresses problems as a collection of

mt AlfcfeL;

70

logical assertions — typically assertions about individual

objects and relationships between objects. Though these

assertions appear to be purely descriptive, such notations

are executable." Relational languages also may be

abstractly manipulated, but are "descriptive" rather than

"prescriptive", i.e., they describe a problem rather than a

solution. (Allen & Davis, 1984)

While program control and expression parsing are

beyond the scope of this study, both functional composition

and the primitive control-structures of Logo must be

considered in the light of the above discussion. In

particular, this study will bear in mind the effects of

control structure in a programmers' use of the REPEAT

statement, of sub-procedures, operations, recursion and of

workspace organization, (workspaces being collections of

the "abstract descriptions of phenomena" that Allen & Davis

describe).

Variables

An understanding of variables is sometimes seen as an

important measure of programming ability. DuBoulay et al

recommended a programming environment that included a

visual display of currently defined variables as well as

other features (duBoulay et al, 1981). Soloway et al found

that some novice-programmers see loops with internal

counters and loops that affect external variables as

71

distinct cases, to which they ascribe unique

knowledge-frames. Kurland & Pea (1983) suggested that

understanding the role of the local variables is landmark

in understanding recursion.

We can learn something about how variables are

perceived by examining the metaphors that are commonly used

to understand them. Harvey (1985) claimed that there are

several metaphors for variables commonly used by Logo

experts. Some experts think of a variable as a mailbox.

The name of the variable corresponds to a person's name on

the mailbox, and its value can be likened to a letter

inside. Others think of a variable as a frame with a slot,

like the frame in a taxi cab that announces the name of the

driver, with the driver's nameplate corresponding to the

value of the variable. Still others think of variable

names as labels for something and their values as the

things being labeled. What all of these metaphors have in

common is: (1) a distinction between variable name value,

(2) a functional distinction between the outside of a

variable (its name) and the inside (its value) and (3) the

idea a one-way reference of a variable's name to its value

but not back again (e.g., one looks in a mailbox to find

what's inside, but never examines a letter to determine

what mailbox it was placed in) (Harvey, 1985).

A simple developmental model for variables is

suggested by Rodgers (1980). She makes an attempt to

72

correlate the stages of cognitive development of students

with the cognitive demand of various concepts of

variables. She notes, first, the assertion of

developmental psychologists that children move from a focus

on concrete objects, to begin to classify objects into

groups and finally to classify processes, ideas and even

problems into groups. Concomitant with this is the

movement from physical to more abstract representations,

and of a simultaneous change of logical analysis from a

less formal to a more formal style (Inhelder & Piaget,

1958) .

Rodgers suggests four "hierarchical levels of data

structures" in BASIC: (1) simple data, (2) simple

variables, (3) "structures through which the data are

addressed less directly", such as arrays or records and,

finally, (4) programmer-defined data structures. While

Rodgers' approach of linking computer concepts with

developmental theory is appealing, the author finds some

problems in her her categorization of data structures. As

an example of "simple variables", she offers both

10 INPUT A

20 PRINT A

and

10 LET A=1

20 LET B=A+1

30 PRINT B However, the author has found

73

through experience that the INPUT statement of the first

program is far more difficult for novice BASIC programmers

to understand than are the PRINT or LET statements.

Perhaps this can be explained in terms of a dynamic

interaction between the programming environment and the

data structure.

The variables in the second program are "temporally

constant", in that their values were introduced at the time

that the program was written; all values can be easily

decoded by simply looking at the program listing. This is

not to say that they were necessarily written at the same

time; line 10 might have been defined 2 hours before line

20, but even were this the case a novice programmer would

have only slightly more trouble understanding the program

than if both lines were written at one 2 minute sitting.

The point is that A and B are both members of "the

program", a single conceptual unit that can be viewed by

the LIST or executed with the RUN command. Contrast this

with the first example. A novice might experience

difficulty in recognizing the value and understanding the

meaning of "A", because the variable here is created at

what can be called "programming time", while its value is

assigned at a distinct conceptual time-frame, known to

programmers as "run time". Most BASIC instructors and most

BASIC textbooks fail to recognize the importance of this

feature of the programming environment, and Rodgers seems

to make the same mistake. (She also fails to make a

7 4

distinction between lines of a program and statements

executed outside of a program in "immediate execution"

mode, another "temporal" distinction).

Based on experience, the author tends to agree with

some aspects of Rodgers’ hierarchy; for example it seems

that students do have more trouble understanding variables

than simple data, and that user defined records are more

confusing to students than primitive data structures. This

may be explained in terms of levels of indirection. A

variable is a name for data but a data-type definition is a

name for a type of name. To understand the latter, it

would seem that one must rely on knowledge of simple naming

conventions of the former. It is not clear, however, that

there is anything inherently more difficult about arrays

than simple variables.

The problems chosen by Clement et al (1980) in the

previously cited study that showed that college students

and engineers had better success translating a word problem

into a program then into a mathematical equation, required

an understanding of co-variation to be solved correctly.

Students were asked, in part of the study, to talk about

the problem and to explain their solution as they were

solving it, a technique known as "Loud Thinking". For

example, when explaining his answer ,(6S = 1P) to the task of

writing an equation to expresses the relationship of six

students for every professor, one student commented;

75

"There's six times as many students, which means it's

six students to one professor and this (points to 6S)

is six times as many students as there are professors

(points to IP)."
^ *

The authors comment, "The correct equation, S=6P does not

describe sizes of the groups in a literal or direct

manner. Rather, it describes an equivalence relation that

would occur if one were to make the group of professors 6

times larger". Their results show that during programming,

subjects are better able to see the relational role of

variables. They did not study the question of whether

programming experience has a long term effect on students'

ability to solve such problems (Clement, Lochhead &

Soloway, 1980) .

The body of literature on variables in programming is

very sparse, but variables have been studied extensively in

mathematics. While one cannot assume that identical skills

are involved in using variables in computer programming and

variables in mathematics, a general concept of variable

should integrate the idea from both domains. For this

reason, several studies of concept development and

misconceptions of variables in mathematics form the basis

of a generalized concept of variable.

In a Piagetian study, Kuchemann (1978) presented a set

of fifty-one questions to 3000 high school students in

Great Britain. Based on the results, Kuchemann has

76

identified six distinct categories of variables which he

believes are mastered at different stages of development.

His statistics both differentiate some problems as more

difficult than others and show direct relationship between

age and success rate in each category.

Kuchemann’s categories range from more concrete uses

of variables to more abstract. They include the following

(in the order of Kuchemann hierarchy): "Letter Evaluated"

(e.g., a+5=8 ; a=?), "Letter Ignored" (e.g., a+b=43 ;

a+b+2=?) and "Letter as Object" (e.g., write an equation

for the perimeter of a geometric shape illustrated with

four sides labeled "h" and one labeled "t"), "Letter as

Specific Unknown" (e.g., write an equation for an

incompletely drawn figure with n sides of 2 units each),

"Letter as Generalized Number" (e.g., c+d=10, c<d, c=?) and

"Letter as Variable" (e.g., "Which is larger, 2n or

n+2?") .

Kuchemann interprets these results as showing that the

understanding of the concept of variability is linked to a

kind of "closure"; the more indefinite the value

represented by a letter, the more difficult it is to

understand. In other words, the concept of variable is seen

to correspond to a Piagetian ordering from concrete to

abstract. A true understanding of mathematical variability

lies at the end of this scale, with a recognition that a

symbol can stand for any given instance in an infinite

series of acceptable values.

77

Applying this to programming, one would expect a

command in Logo like

MAKE ML 7

to correspond with the category, "Letter as Object",

because the meaning of the letter can be immediately

associated with a specific thing. The command,

MAKE "X RQ

corresponds nicely to the category, "Letter as Specific

Unknown"; the letter stands for that specific value which

the user will enter at a later time. An input to a

procedure could also be thought of as similar to the

category of a "Specific Unknown"; (whatever number the user

supplies when he uses this procedure"), but the integral

relationship between a procedure name and its parameter

inputs suggests a closer association with the category of

"Letter as Generalized Number" (i.e., the letter stands for

any permissible number). The output of a function

corresponds to the "Letter as Variable" classification,

since the programmer must specify the relationship of the

functional result to its input in the form of an algorithm

(Kuchemann, 1978). If Kuchemann results are correct, and

if the association we suggest is accurate, then one would

expect that the each class of variable use mentioned here

in sequence would be more difficult to master. While this

question is beyond the scope of this study, Kuchemann's

78

extension of the ideas of a concrete/abstract continuum and

a need for closure to the examination of variability have

influenced both the design and the conclusions of the

present study.

In a study of subconcepts and misconceptions of

covariation in algebra word problems, Murray & Clement

(1986) found three independent subconcepts — single

variables, functions and equations; and three skill levels

— basic, static/discrete and dynamic/continuous. As with

Kuchemann's model, an unadorned MAKE statement would appear

to parallel the simplest sort of variable while functional

output would seem to parallel the most complicated, while

variables with their values interactively assigned by the

user and procedural inputs would seem to lie somewhere in

between (Murray & Clement, 1986).

Finally a particular algebra misconception, the

reversal error in the Student and Professor Problem,

discussed earlier (Clement et al, 1980) was found to be

very resilient to explicit instruction (Rosnick & Clement,

1980). While several instructional approaches were

utilized, including identifying errors, suggesting

conceptual models, graphing, plugging numbers into the

reversed equation and demonstrating the correct solution,

none were found to be very effective. The authors reported

that other misconceptions showed signs of similar

resistance to instruction. This seems to enhance the

79

importance of the positive effect of programming found in

the previous study (Clement et al, 1980). Apparently

programming was not used as an instructional technique by

Rosnick & Clement (1980), and that study shed no further

light on the question of whether programming exerience

somehow taught against the reversal error in the earlier

study (Clement et al, 1980) or whether the effect was due

to a greater linguistic simplicity of the functional form

of the equation.

While much of the research cited here is intriguing

and emphasizes the complex nature of variability, it does

not address many of the basic questions about variables in

programming. One question is the role that mastery of the

concept of variability plays in programming skill

development. What is needed is a careful charting of the

subconcepts and misconceptions of variables as they occur

over the course of learning to program. Another useful

observation would be of the images and metaphors utilized

by programmers at different stages of development to

determine, for example, if nonexpert metaphors have the

same consistency that Harvey finds in those of experts

(Harvey, 1985). The relationship between variables in

mathematics and programming variables needs to be further

explored as well. In what ways are programming variables

truly a subclass of mathematical variables and in what ways

ere they a unique and independent class of their own? More

extensive pedagogical models of variable learning in the

80

context of programming must be developed to integrate some

of the features discussed here and to produce specific

suggestions for instruction.

Footnotes
Chapter 2

Elliott, P. "Computer 'glass-boxes' as advance organizers
in mathematics instruction". International Journal of
Mathematics in Science and Technology, 9, (1), 79-87,
1978 .

Peelle, H.A. "Alternative Algorithms in APL: Implications
for Education", Proceedings, APL '80, Association for
Computing Machinery, 1980.

Peelle, H.A. "Learning Mathematics with Recursive Computer
Programs", Journal of Computer-Based Instruction, 3, (3),
97-102, 1977.

Polya, G., How to Solve It: A New Aspect of Mathematical
Method, Princeton University Press, 1957.

Papert, S. Mindstorms Basic Books, Inc., New York, 1980.

Pea, R. & Kurland, M. "On the Cognitive and Educational
Benefits of Teaching Children Programming: a Critical
Look", Technical Report, Bank Street College, 1984.

Pea, R. "LOGO Programming and Problem Solving. Technical
Report, Bank Street College, 1983.

Kurland, M. & Pea, R. "Children's Mental Model of their
Own Recursive LOGO Programs", Technical Report, Bank Street
College, 1984.

Mawbry, R., Clement, C., Pea, R. & Hawkins, J. "Structured
Interviews on Children's Conceptions of Computers",
Technical Report, Bank Street College, 1983.

Schon, D. The Reflective Practitioner: How Professionals
Think in Action, Basic Books, 1983. ' “

Driver, R. The Pupil as Scientist, Open University Press,
1983 .

Smith, A. & Inhelder, B., "If You Want to Get Ahead, Get a
Theory", Cognition, 3, 195-212, 1975.

Kamii, C. "Pedagogical Principles Derived from Piaget's
Theory: Relevance for Educational Practice", in Piaget in
the Classroom (Schwebel, M. St Raph, J., Editors), Basic
Books, 1973.

Duckworth, E., "The Having of Wonderful Ideas", in Piaget
in the Classroom (Schwebel, M. St Raph, J., Editors), Basic
Books, 1973.

81

* l

82

Schoenfeld, A., "Can Heuristics be Taught?", in Cognitive
Process Instruction: Research on Teaching Thinking Skills
(Lochhead, J. & Clement, J., Editors), Franklin Institute
Press, 1979.

Turkle, S. The Second Self Simon & Schuster, New York,
1984.

Confrey, J. "An Examination of the Conceptions of
Mathematics of Young Women in High School", unpublished
paper, 1984.

Papert, S. "Teaching Children to be Mathematicians vs.
Teaching Children About Mathematics. International Journal
of Mathematics Education in Science & Technology 1972~!

Louie, S. "A Report of a Pilot Study", Tucson Learning
Center, Tucson, Arizona, 1985.

Clements, D., Gullo, F. "Effects of Computer Programming on
Young Children's Cognition", Journal of Educational
Psychology, 76:6, Pp 1051-1058, 1984.

Clement, J., Lochhead, J. & Soloway, E. "Positive effects
of computer programming on the students understanding of
variables and equations". Proceedings of the Association
for Computing Machinery, National Conference, 1980.

Adelson, B. "Problem solving and the development of
abstract categories in programming languages". Memory and
Cognition 9, 422-433, 1981. -

Soloway, E., Ehrlich, K., Bonar, J. & Greenspan, J. "What
do novices know about programming?". Technical Report, Yale
University Department of Computer Science, 1982.

Soloway, E., Bonar, J. & Ehrlich, K. "Cognitive Strategies
and Looping Constructs: An Empirical Study", Technical
Report, Yale University Department of Computer Science
1981.

Mayer, R.E. "The Psychology of How Novices Learn Computer
Programming. Computing Surveys, 13, (1), 1981.

duBoulay, B., O'Shea, T. & Monk, J. "The black box inside
the glass box: presenting computing concepts to novices".
International Journal of Man-Machine Studies, 14,
237-249,1981.

Hoc, j.m. "Developmental stages in learning to program"
International Journal of Man-Machine Studies, 9, 87-105,

83

Minsky, M. "Form and Content in Computer Science",
Communications of the Association for Computing Machinery,
17, (2), 197-215, 1970.

Eisenberg, M. & Peelle, H.A. "APL learning bugs", APL Quote
Quad 13, (3), 11-16, 1983.

Lemos, R. "An Implementation of Structured Walk-throughs
in Teaching COBOL Programming", Communications of the
Association for Computing Machinery, 22, 6, 1979.

Brown, J.S. & VanLehn, K. "Towards a Generative Theory of
'Bugs'", Cognitive and Instructional Series # 2, Xerox Palo
Alto Research Center, 1979.

Anderson, J. "Acquisition of Cognitive Skill",
Psychological Review 89, 4:369-406, 1982.

Anderson, J., Farrell, R., Sauers, R. "Learning to Program
in Lisp", Cognitive Science, 8:87-129, 1984.

Miller, M.A. "A Structured Planning and Debugging
Environment for Elementary Programming", in Intelligent
Tutoring Systems, (edited by Sleeman, D. & Brown, J.S.),
Academic Press, 1982.

Bonar, J. & Soloway, E., "The Bridge From Non-Programmer to
Programmer", University of Massachusetts, Amherst;
Department of Computer and Information Science 1983.

Bonar, J. & Soloway, E., "Pre-Programming Knowledge: A
Major Source of Misconceptions in Novice Programmers",
Human-Computer Interaction, Fall, 1985.

Silver, E., Branca, N., Adams, V. "Metacognition: The
Missing Link in Problem Solving?" Proceedings of the 4th
International Conference for the Psychology of^athematTcs
Education, 1980.

Sime, M.E., Green, T.R. & Guest, D.J. "Scope Marking in
Computer Conditionals- A Psychological Evaluation",
International Journal of Man-Machine Studies, 5, 105-113
1977. "

Dijkstra, E.W. "Goto statement considered harmful".
Communications of the Association for Computing Machinery
11, 3, 147-148, 1968.

Miller, L.A. "Programming by Non-programmers International
Journal of Man-Machine Studies 6, 237-260, 1974.

Sheil, B.A. "Coping with Complexity" in Cognitive and
Instructional Sciences Series, Xerox Palo Alto Research
Center, 1981.

84

Allen, J. & Davis, R., "In praise of fingertips",
unpublished paper, 1984.

Harvey, B., Computer Science Logo Style: Intermediate
Programming MIT Press, 1985.

Rodgers, J. "Teaching Beginners to Program: Some Cognitive
Considerations", unpublished paper. University of Oregon,
1980 .

Inhelder, B. Sc Piaget, J. The Growth of Logical Thinking
from Childhood to Adolescence, Basic Books, 1958.

Clement, J., Lochhead, J. Sc Soloway, E. "Positive effects
of computer programming on the students understanding of
variables and equations". Proceedings of the Association
for Computing Machinery, National Conference, 1980.

Kuchemann, D. "Children's Understanding of Numerical
Variables", Math in School, September, 1978.

Murray, T. Sc Clement, J. "Progress Report: Evidence for
Building Blocks Contributing to a Robust Concept of
Variation and Covariation in Two-Variable Algebra Word
Problems", Cognitive Process Research Group, 1986.

Rosnick, P. Sc Clement, J. "Learning Without Understanding:
The Effect of Tutoring Strategies on Algebra
Misconceptions", Journal of Mathematical Behavior, 3, (1),
3-27, 1980.

CHAPTER 3

DESCRIPTION OF THE STUDY

Methodology

This study focused on the learning of and impediments

to understanding variables in computer programming in the

Logo computer language. Subjects included high school

students who had a modest amount of training and experience

with Logo and adult expert Logo programmers. After

subjects were administered a concentrated instructional

presentation on relevant Logo commands, each was asked to

solve between four and seven programming problems in a

microcomputer environment. The researcher was present

during all problem-solving and encouraged subjects to

discuss their thinking and the reasons for their actions.

These interviews were videotaped and later analyzed using a

cognitive microanalysis technique to uncover subjects’

understanding of Logo variables within the context of their

planning, factual knowledge and experimental activities.

The cognitive microanalysis approach basically

involved a detailed analysis of subject-protocols in an

attempt to plausibly reconstruct subjects' cognitive

processes. While one cannot directly study cognition, one

can make assertions about cognitive processes that explain

observable behavior. Actual transcripts of protocols are

included as appendices, to allow readers to evaluate this

analysis independently or to utilize the raw data to

85

86

analysis independently or to utilize the raw data to

formulate their own hypotheses. Analysis is provided in

the form of a commentary on the protocols plus a collection

of first order models concerning the cognitive processes

operating in the subject. Diagrams are included as a means

of representing this commentary.

The fundamental assumption in this study is the

constructivist notion that the individual builds his own

internal model of the world which influences his

perceptions, actions and learning. Such a viewpoint places

a greater burden upon the teacher to meet the student on

his own terms, since learning is seen as a necessarily

personal construction. Several studies have guided this

approach. Smith & Inhelder's (1975) study of how

experimental activity influences and is influenced by both

theories and goals suggested the fundamental classification

of protocols into three categories (i.e. theories, goals

and experimental activity). The assumption that a

programmer maintains only one active goal at a time was

borrowed from Anderson et al (1984), along with his

convenient classification of knowledge as either

"procedural" or "descriptive" (although the term "plan" is

preferred here for the former and "theory", "concept" or

"assumption" for the later). Also loosely adapted from

Anderson was the notion of a hierarchical tree structure

for procedural knowledge, which forms the skeleton of the

researcher's model of experimental

87

programming/problem-solving and the basis of the

diagramming method employed here. Clement's (1977) study

of mathematical reasoning provided insight into the complex

interaction of plans with active, semi-active and latent

theories and misconceptions. Soloway, Bonar and Ehrlich

(1981) provided a frame model for plans and the notion of

misconceptions arising from natural problem-solving

strategies. The follow-up work of Bonar & Soloway (1985)

(informed by a much earlier theory by Brown & VanLehn

(1980)) brings with it the notion that "buggy" conceptions

may be generated by gaps in knowledge and includes specific

observations of programming misconceptions such as the

notion of a "language confound" (a misconception resulting

from the misapplication of linguistic knowledge). We

borrow from Hoc's (1977) study of device learning the

assumption that physical activity during problem-solving

(drawing flow charts or code on scratch paper, speech or

keyboarding) generally indicates concepts that are under

active development rather than those already internalized,

and also an alternative conceptual framework for

understanding how programming experience leads eventually

to the building of "runnable mental models."

Constraints on hypotheses generated in a cognitive

microanalysis lie in their internal simplicity, consistency

and ability to believably explain the protocol (Easley,

1979). Assertions made in any descriptive study must

explain the data in question, though they need not be

88

approach (Lin, 1979). This approach is clearly inferential

and cannot provide absolute proof of any aspect of our

hypothesized model of cognitive activity. Rather, the

reader must bring to this study a willingness to

hypothesize with the writer on possible explanations for

subjects' behavior. The reader ultimately decides whether

the analysis is worthwhile, based on its overall

plausibility in explaining the data. This seems a

reasonable first approach to the study of internal

processes which have not been well documented in the past,

and which are in any case far from transparent, even to the

problem solver herself. The approach is "naturalistic" in

that it attempts to minimize the effects of observing on

the behavior of subjects.

Limitations

One general limitation of this study has already been

mentioned: that the nature of the analysis forbids any

claim of objective proof of cognitive structures inferred

from protocols. This is in part a result of the nature of

the activity: one cannot study thought processes directly,

but only through observable behavior. However, it must be

noted that the researcher's choice of a descriptive rather

than a quantitative approach necessarily complicates this

issue. A controlled study, while more limited in scope.

89

assures a level of objective proof impossible with a more

subjective design.

Another limitation is the lack of generalizability to

other subjects. The presence of conceptions or

misconceptions in one subject cannot be construed to

indicate their presence elsewhere. The goal of this study

is akin to the goals of field studies in anthropology and

ethology: to construct plausible hypotheses concerning

cognitive structures — hypotheses which are informed by

careful observations from case studies. What the

researcher hopes to establish here is an initial set of

observations and hypotheses that may be used as a basis for

more quantitative follow-up research. Chapter 5, a

discussion of the results of this study, suggests a number

of areas that merit further study.

As mentioned earlier, a premium was placed on

maintaining a natural and non-obtrusive environment during

interviews. Although it is the assumption of this study

that the observed behavior is closely akin to behavior that

would have occurred had the experimenter not been present,

it is important to acknowledge that this assumption is open

to question. Any observation has the potential to

introduce a bias. The generalizations and conclusions

drawn from these data may be subject to the same bias;

i.e., the behavior observed in these protocols may differ

significantly from unobserved behavior.

90

Subject selection must also be acknowledged as a

limiting factor. Subjects, outside of the three adult

experts, were all of High School age, were generally of a

modest programming background and were drawn from three

different educational programs. Results may not generalize

to other age groups, other computer languages, or to other

stages of Logo learning. The instructional approaches of

these three educational programs were not coordinated in

any way, although they did share some similarities. In any

case, instructional approach must be thought of as an

uncontrolled variable in this study.

Two different computers, the Acorn and the Apple (both

Apple lie and Apple 11+ models) were used in interviews.

Two versions of Logo (Terrapin and Apple Logo) were used on

the Apples, and the Acorn had its own version of Logo (but

which was very similar to Apple Logo). Two versions of

each problem were prepared to partially compensate for

these differences, but in some cases the differences could

not be avoided. These cases are noted in discussions of

the interviews in Chapter 5.

Finally, certain environmental limitations must be

noted. Video taping was momentarily interrupted on some

occasions by technical problems or by the other people

entering the room where interviews were held. Also, most

interviews were conducted in two sessions, separated by

between four hours and three days.

91

Subj ects

Subjects for this study were drawn from two distinct

groups: adult experts and high school students of varying

abilities.

The first group consisted primarily of seven high

school age students having over 50 but less than 120

classroom hours in an introductory Logo programming course,

accrued within six months of the study. The majority of

this group was composed of five female high school students

selected at random from among the twenty volunteers, all

first year participants in a six week Summer mathematics

and computer programming experience called " Summermath",

held at Mt. Holyoke College in South Hadley, Massachusetts

during June and July, 1986. Two additional students had

completed a one semester Logo programming class conducted

at Lincoln-Sudbury Regional High School, an upper-middle

class high school located in a suburb of Boston,

Massachusetts, during September and October, 1986. These

two were randomly selected from among six students who

volunteered for this study. None of these students had any

previous experience with Logo. This combined group of seven

students will be identified throughout this study as

near-novice programmers.

Two high school students who were junior instructors

of Logo at New England Computer Camp, a computer camp

92

composed of about 125 mostly upper-middle class children

ranging in age from eight to eighteen, were identified as

having advanced Logo programming ability. Both of these

individuals had approximately thirty hours of formal Logo

instruction, but also had over 100 hours of experience in

other programming courses, and claimed over 200 hours of

independent programming experience, mostly in BASIC and

Pascal. They clearly constituted a special category, since

much of their demonstrated Logo skill seemed to derive from

their experience with other languages. This second group

will be designated as near-expert programmers, and these

interviews were analyzed with special attention to the role

that their knowledge of other languages played in their

conception of variables in Logo.

Three adult experts were chosen from the Logo

programming and teaching community based on a recognized

mastery of the Logo language and of Logo programming
$

techniques. All three have authored published articles

about Logo learning or programming practice. The adult

experts were studied to provide a model of expert Logo

• problem-solving and variable conceptualization.

Background information was collected for all nonexpert

subjects. This included chronological age, school grade,

prior computer experience and instruction, (including

instruction in Logo prior to their current class). This

data is summarized in Table 1.

Table 1
Summary of Subjects' Backgrounds

Age Previous
Yrs/Mos Logo

Experience
Near-novIces:

Summermath:
E 15/2 None

Other
Programming
Experlence

None

N 15/6 None

M 17/0 None

BASIC:
41 hrs. instruction,
41 hrs. programming

None

A

L

17/4 Approx. 15
hrs.; used
occasionaIly
in Geometry
c I ass;

16/11 None

BASIC:
52 hrs. instruct ion
52 hrs. programming

PascaI: 75 hrs. instr.
50 hrs. programming

BASIC: 20 hrs. instr.
10 hrs. programming

ncoIn-Sudbury:
15/4 5 hrs. in

8th grade;
30 hrs. in
6th grade

BASIC:
120 hrs. instruct ion,
60 hrs. programming

No Data AvaiIable

Near-experts:
L 16/9 9 hrs. in- Assembly: 54 hrs.

struction, BASIC: 36 hrs. instr.
6 hrs. 100 hrs. programming
programming C: 18 hrs.

FORTRAN: 40 hrs.
Forth: 5 hrs.
Lisp: 5 hrs.
Pascal: 198 hrs. instr.

18 hrs. programming

R 17/2 9 hrs. in- Assembly: 18 hrs.
struction, BASIC: 109 hrs. instr.
6 hrs. 300 hrs. programming
programming Pascal: 228 hrs. instr

520 hrs. programming

93

Other
Computer
Exper i ence

SpeI Iing & Educa¬
tional games:
3 hrs.

AppIeworks
41 hrs. instruction
, 41 hrs. keyboard

Drawing pictures with
MacPaint.

Accounting software
SAT preparation
Games
Print Shop
Word Processing

"A lot of computer
games" (No specific

data given)

Varied and extensive-
no specific data
coIlected

Varied and extensive-
no specific data
coI Iected

94

For the near-novices, information was informally

gathered about the instructional approach used in their

current Logo programming classes.

Subjects from the SummerMath had completed their fifth

week of a Logo program that emphasized mathematical

discovery with graphics. Each subject spent ten hours per

week in combined Logo instruction and programming for a

total of about fifty hours. Instruction was done with

printed worksheets supplemented by class presentations and

individual help. Variables were introduced as local

variables in procedures to draw geometric shapes. Text

commands, including PRINT, FIRST and LAST, were briefly

introduced in the worksheets. REPEAT was introduced in the

context of the repetition of graphic commands. Global

variables were presented briefly in an exercise in the

worksheets but not emphasized. Cartesian commands (SETPOS,

XCOR, YCOR) were introduced in a worksheet exercise as

well.

The course at Lincoln-Sudbury had lasted twelve weeks,

meeting fifty minutes per day, five days a week for a total

of fifty hours. This course emphasized text commands and

list processing, including PRINT, FIRST, LAST, BUTFIRST,

BUTLAST, LIST, SENTENCE, FPUT and LPUT. The OUTPUT command

was introduced in the first two weeks of instruction and

emphasized throughout the class, leading to the idea of a

function that recursively traverses a word or list.

Graphic commands were taught briefly, as were commands

relating to Cartesian coordinates, the latter in a

worksheet on graphing.

95

Method

The focus of this study was on how conceptions and

misconceptions of variables influence the action-plans and

experiments of high school students at an intermediate

stage of learning the Logo computer language. The two

operational goals were: (1) generalize from observations of

the interaction between concepts and misconceptions and

subjects' action-plans and experimental activities; (2)

identify Logo programming errors involving variables and

uncover those misconceptions that can plausibly be seen as

causing them.

Programming problems were chosen that required each of

four common classes of variable use:

- global variables: these are simple

variables, accessible inside or outside
¥

of a procedure. Global variables are

associated with the workspace as a

whole and can be reported with a Logo

system command such as PO NAMES.

- local variables: These are variables

used as labels for function

parameters.

- variables whose values are explicitly

requested at run-time: These are global

variables initiated in the midst of a

procedure with a command line such as:

MAKE "NAME READLIST,

where READLIST pauses to accept input

from the program user. (In other

versions of Logo, substitute REQUEST

for READLIST).

- functions: A function is the only way

to represent a covariate relation in a

non-relational language such as Logo.

For example, a relation like Y=2X might

be converted into a function, F, taking

as input an instantaneous value for X

and outputting the Y-value for that

input. Creating such a function in

Logo requires not only the use of a

local variable but also an OUTPUT

command to provide an explicit result

to the function.

Nine problems were chosen to represent each of these

classes at varying levels of complexity (See Figure 2;

problems are listed in their entirety in Appendix B).

Initially, subjects were shown an 18 minute

instructional videotape, which explicitly presented all

the commands and concepts needed to solve these problems

97

At its conclusion, nonexpert subjects were invited to ask

the interviewer any questions about the instructional

videotape (experts were asked for critical comments), and

an instructional script containing the text of that

presentation was made available to each problem-solver to

use at will for the remainder of the session (see Appendix

A). * Subjects were then videotaped while attempting to

solve the problems, which were presented to them in a

random order to control for any effects arising from the

order of presentation.

In preliminary sessions, subjects were given all nine

problems, but five of the complex problems were found to be
«

inappropriate for intermediate programmers and were given

only to experts in the later stages of data-collection.

This left a core of four simple problems. Problems E-2, D,

A-2 and B-2, one for each class of variable-use (see Table

2).

* With this design, a subject who fully utilized the
initial instruction had the essential building blocks with
which to construct a problem solution. In this sense, this
was a study of the efficient utilization of available
information. Our prediction was that the subjects' need to
mentally refer to the instructional presentation or consult
the script at appropriate times reflected in large part a
lack of "readiness" to integrate the concept in question;
i.e., that the concept was for some reason inaccessible to
the subject.

Table 2
Classification of Problems

Simple:
The problem requires only
the concept explicitly named.

Comp lex:
The problem requires more
planning and/or the
additional concepts.

Globa I
varIabIe:

Loca I
variable:

Exp licit
Input:

Function:

Problem E-2 ("Create a varia¬
ble called NUMBER, such that
"PRINT :NUMBER" prints out
the number, 7...").

Problem D ("Write a procedure
called MOVE, that takes...as
input...an X and a Y coordin¬
ate").

Problem A-2 ("Write a pro¬
cedure that first prints the
message, 'GIVE ME A NUMBER'
...).

Problem B-2 ("Write a proce¬
dure called R100 that outputs
a random number from 1 to 100

") • • • j •

Problem E ("Write a proce¬
dure called COUNTER that
prints out how many times
i t has been used...").
ClocaI/globaI distinction}

ProbIem F ("...Write a
procedure called WAGE,
that takes one input...
(and) print(s) out that
person's saI ary...").
(misdIrectIon}

Problem A ("Write a proce¬
dure that...reads in inte¬
gers untiI it reads...
99999"). (iteration or

recursion}

Problem B ("Write a proce¬
dure that computes the
factorial of a number..."),
(recurs ion}

Problem C ("Write a proce¬
dure that...points the
turtle to a new heading,
one half of (its)
start Ing head Ing").
(system "reporters" and
the idea of heading}

98

99

During problem-solving, the interviewer acted as a

listener in the context of clinical interviewing (see

Whimby & Lochhead, 1981), asking the subjects to vocalize

their reasoning and helping them check their work for

superficial oversights and mistakes in the execution of a

stated plan. For example, the interviewer would offer

suggestions for the correction of typing errors, as long as

these suggestions did not unduly influence subjects'

overall problem-solving strategy. At times

counter-examples would be posed, in order to probe into the

programmer's conceptualization of the problem.

When, in the judgement of the interviewer, a subject

reached an impasse, that subject was offered explicit

instruction on one of the more superficial aspects of a

complex problem. This will be referred to as a "teaching

probe". *

*For example, in an early interview, a subject's confusion
over the use of the colon led her to attempt to type

RANDOM :100
In Logo, when a colon prefixes a name, the expression
refers to the value named, a concept sometimes referred to
as misdirection. While misdirection is an important aspect
of the notion of a variable, it was not the focus of this
particular problem. After asking the subject to explain
what she had typed in order to document the error and to
gain some insight into what caused it, a teaching probe was
used to refocus the subject's attention to the problem at
hand. The subject was simply told that the colon was not
appropriate in this situation, a statement which she
accepted at face value. This allowed her to continue work
on more critical aspects of the problem at hand. In this
case, the subject's difficulty seemed to be more one of
correct notation and the meaning of the colon than a
conceptual difficulty, such as difficulty distinguishing a
variable from its value.

100

If such a probe was helpful, it would tend to suggest that

the subject's initial difficulty was due only to a lack of

factual information, while a misconception which shows

resilience to explicit instruction suggests a deeper

problem, either deficiency in prerequisite skills or

concepts or a general deep-seated misconception of the

problem. It should be noted that these teaching probes

were not hints designed to suggest the "right answer", but

rather means to discover possible underlying causes of an

impasse, after it had been sufficiently documented.

Analysis

The analysis stage included two general tasks:

(1) Identify and classify conceptions and misconceptions of

variables. This required first the location of Logo

programming errors or examples of correct variable use and

then the examination of such cases in the overall context

of each subject's problem solving in order to identify

those conceptions and misconceptions which can plausibly be

said to dominate problem-solving. (2) Propose an overall

model of the interaction of plans, concepts and

experimental activity.

As a preliminary step in this analysis-, the researcher

made transcriptions of selected protocols and noted- the

following kinds of subject behavior:

101

Nonverbal Behavior Verbalizations

-keyboard activity

-reading from the script

-pointing/hand gestures -questions

-statements of belief

-answers to questions

-eye gaze -exclamations

-facial expression -"stalling" sounds

-experiments (use of the computer -talking to oneself

to obtain an observable result)

-silence/pauses in activity -irrelevant chatter

The task then was to propose first order models of the

high level cognitive structures that most plausibly explain

subjects' physical behavior and verbalizations. For the

next stage of analysis, one particular problem (A-2) was

selected for detailed examination based on the

interestingness of protocols associated with it. All three

expert solutions of this problem, along with three

particularly interesting student protocols, were selected

and subjected to a cognitive microanalysis.

Several procedural recommendations by Hoc (1977)

facilitated this process. Hoc's assumption that the

majority of internal activity and observable behavior are

dedicated to aspects of a task that are not completely

assimilated was incorporated into this study. Keyboard

activity, pointing, eye gaze and questions for the

102

interviewer were thus viewed as indicating subjects' focus

and areas which they had not yet internalized. Also,

pauses in activity and gaps in verbalization were viewed,

after the observations of Hoc (1977) and Smith & Inhelder

(1975), as indications of more intense mental activity.

Verbal exclamations and facial expressions were

carefully noted, in an attempt to isolate potentially

significant aspects of the affective domain. One of the

purposes of this was to identify intuitive leaps or

insights. (Such insights, dubbed the Aha! phenomenon by

Martin Gardner, are seen by him as the most critical aspect

of the problem solving process (Gardner, 1978)). Another

important feature of affect is a subject's confidence and

conviction or conversely her frustration or level of

fatigue.

Early attempts at analysis verified the usefulness of

the following two-way classification of high-level

cognitive structure, derived from both Anderson (1984) and

Smith & Inhelder (1975):

-Plans correspond to Anderson's "procedural

knowledge" and to Smith & Inhelder's "goals".

These are the high-level procedures which guide

subjects' goal-setting and so drive both physical

and mental activity. Plans are action-oriented.

At their simplest level, they detail behavior to

be carried out in steps by an individual; each of

103

these steps can be thought of as an action-goal.

On a more complex level, plans can invoke other

plans, a process analogous to one procedure

calling a subprocedure. During early attempts at

analysis it was determined that most actions can

be linked to a single goal derived from a higher

level plan, which is in keeping with the findings

of Smith & Inhelder (1975) and Anderson (1984).

The term current goal will be used to designate a

plan-element that seems to be the primary focus

of subject behavior at a particular point in

time.

-Concepts (or misconceptions) are reflected in

action as predictive theories or assumptions

about a given domain. While plans are procedural

in nature and can be recursively decomposed into

sub-goals, concepts and theories are descriptive,

better thought of as statements of fact or belief

than as action-goals or procedures, and seem to

be simple and indivisible (Anderson, 1984). They

can be likened to the mental models described by

Collins & Gentner (1981) and the conceptual

devices of Hoc (1977).

Each of these cognitive structures can be reduced to a

single instantiation. Some plans or concepts are

verbalized directly by subjects, but others can only be

104

induced from subjects' actions. For example, much

problem-solving activity on the computer is based upon

experimental action, as in the classic study of children's

block balancing (Smith & Inhelder, 1975) Early attempts at

analysis indicated that experiments are usually directed

either toward the current goal or toward a particular

theory. Any keyboard activity will be viewed as such an

experiment in this study. While programming errors are

sometimes viewed as "failed" experiments, this is not

always the case. Some failed experiments are

misinterpreted as successful by inexperienced programmers

concentrating on the current goal. At other times,

unexpected experimental results may cause subjects to

dramatically shift their attention from achieving the

current goal to exploring a theoretical prediction that had

previously been taken for granted (Smith & Inhelder,

1975). Utilizing the Smith & Inhelder methodology, this

study classifies all experiments as either goal-oriented or

theory-oriented, and makes note of any shift from goal to

theory.

Theories that are clearly false, i.e., inconsistent

with what they intend to model, can be termed

"misconceptions". In some cases, subjects verbalized a

mistaken theory that directly resulted in a. programming

error. Such misconceptions were, of course, easy to

identify. Other errors seemed to be the result of subjects

choosing an inappropriate plan, either because they

105

misclassified the problem or because the solution required

a mastery of concepts that the subject did not possess. In

the latter case, the researcher identified that

misconception inferred to be most responsible for the

error. During the attempt to simplify and successively

refine the analysis of the selected protocols,

misconceptions that were not initially obvious often

emerged as likely causes for observed programming errors

(Clement, 19 77) .

The plans, theories and activities of these six target

protocols were first diagrammed, and simultaneously a

"schematic" was created as a summary of key parts of each

interview (after Anderson, 1984).

Schematic Diagrams

All symbols used in schematic diagrams, as discussed

below, are shown in Figure 1.

The basic skeleton of these diagrams was a

hierarchical tree structure of plans, diagrammed in

rectangular boxes, placed along a horizontal time-scale

that identified the point at which each plan seemed to

become active. Plans are procedural in nature, and the

normal progression was from a general plan to a more

specific one. This refinement is referred to as a mapping

of the general plan to the more specific one. Such a

mapping was normally diagrammed with a plain line

Page 106

Plans (Anderson's “productions”)
-compiled procedural knowledge
-one current “active" goal
-plans may be active or dormant

Concepts (predictive assumptions)
-influence planning
-influence and are influenced by
activity (including experiment)

Experimental Activity
-Goal or Theory oriented
(From K. Smith and Inhelder)
-Results: (+) or (-)
-May cause shifts to theory oriented
activity (Smith and Inhelder)

Successful competion of a plan (Anderson)

Unsuccessful competion of a plan (Anderson)

Influence

Mapping of Active Plan

Mapping of Inactive Plan

Figure 1
Symbols Used in Diagramming

107

connecting two plans. While these mappings should be

thought of as one-way, the lines that represent them had no

indication of direction; the reader may determine direction

from the orientation of the chart, with mapping proceeding

from earlier, more general plans to later, more specific

plans; from left to right on the page. Thus plans and the

connections between them form a hierarchical

tree-structure. When a specific plan is successfully

executed by a subject, a branch of this tree ends, and

attention normally shifts to the next step in a more

general plan (beginning the mapping of a new branch. The

successful mapping of a plan to action is shown with a

check mark. When the mapping fails, planning will shift

unpredictably. An unsuccessful termination of a plan is

shown with an "X". Everything described to this point is

derived largely from Anderson's technique for diagramming

what he calls "procedural knowledge".

Sometimes, a plan ceased to exert active influence

over a subject's behavior. This would them be described as

an inactive plan, and the lines showing mapping from that

plan shifted to dotted lines to graphically portray this

(sometimes temporary) desertion of plan.

Occasionally a plan may exert influence upon an

independent branch of the plan-tree. Influence exerted

upon any construct from another is shown as an arrow (i.e..

0

108

a line terminating in an arrowhead), the arrow showing the

direction of influence.

An important addition to Anderson's technique is the

"thought balloon" which represents a concept, a predictive

assumption about some aspect of the problem domain. A

concept may be discussed directly by the subject, or

strongly implied by her action, or implied by other aspects

of subject behavior. Concepts can influence plans (or

other structures) and plans can influence concepts. As

before, such influence is shown with arrows that show the

direction of influence. However, conceptual knowledge is

seen as different in nature from the procedural knowledge

represented as plans and is normally shown outside of the

actual plan tree; i.e., lines of mapping will normally not

lead to or from concept balloons.

Three other symbols are commonly used. A diamond

represents an experiment. Experiments following the normal

course of planning, i.e. from left-to-right and

top-to-bottom, were diagrammed as part of the plan tree.

Following Smith & Inhelder, experiments were classified as

either goal-response or theory-response. In the first

case, an antecedent plan normally served as the goal being

tested. In the second, the concept showing the strongest

influence over the experiment was usually named as the

relevant theory.

109

Smith & Inhelder have observed in their subjects an

occasional shift in experimental activity from

goal-oriented to theory-oriented behavior. Such a shift,

when detected, was represented as "Home-plate" symbol.

This symbol, used in flow-charting to denote the start of a

process, sits at the head of the new planning-tree,

generated by the shift. Such shifts were sometimes

associated with "ahas", suggesting a connection between

these two ideas.

At times it was convenient to include bits of dialog

on the diagram. Such dialog was shown with a

dialog-bubble. Dialog can influence and be influenced by

any other construct, though it is not normally a part of

the planning tree-structure itself.

Further Analysis

After a concentrated analysis of these six solutions

to Problem A-2, the remaining student-solutions to the same

problem were examined. The plan-structures of these

protocols were informally analyzed, with special attention

paid to variable usage and related misconceptions.

Finally, protocols for all other problems were

surveyed for examples of variable misconceptions. All

variable misconceptions were catalogued into types. In

classifying variable misconceptions, one must necessarily

speculate on the probable causes of observed errors. For

►

110

example, a given error may be related to some previous

instruction or to other previous experience such as other

programming experience or natural language

problem-solving. On the other hand, misconceptions may

reflect inconsistencies or confusing aspects of the

computer language or an incomplete understanding of some of

its complexities, or may reflect a subject's general

conceptual difficulties. Additionally, several causes may

interact with one another in complex ways. Only rarely

could subjects' direct reference to the causes of their

errors be found, making classification a nontrivial

judgement. Accordingly, a loose classification was

developed for what the researcher judged to be the dominant

cause of errors, leading to further speculation on what

caused misconceptions and how they might have been

avoided.

Other interesting comments or behaviors by subjects

that yielded important insights into the learning process

were reported and discussed in an attempt to discover what

may be fruitful areas for further study. Included were

observations that tend to verify, repudiate or elucidate

theories or suggested approaches from the literature cited

in Chapter 2, with the aim of developing guidelines to help

teachers and researchers identify theories and

representations of programming and variable

conceptualization that show the greatest promise for

practical application. The hope is that this these

Ill

comments may help to illuminate thinking on the more

difficult problems of understanding why misconceptions

occur and of finding ways to help students overcome them.

Footnotes
Chapter 3

Smith, A. & Inhelder, B. "If You Want to Get Ahead, Get a
Theory", Cognition, 3, 195-212, 1975.

Anderson, J., Farrell, R., Sauers, R. "Learning to Program
in Lisp", Cognitive Science, 8, 87-129, 1984.

Clement, J. "Quantitative Problem Solving Processes in
Children", Doctoral dissertation. University of
Massachusetts, 1977.

Soloway, E., Bonar, J. & Ehrlich, K. "Cognitive Strategies
and Looping Constructs: An Empirical Study", Technical
Report, Yale University, 1981.

Bonar, J. & Soloway, E. "Pre-Programming Knowledge: A Major
Source of Misconceptions in Novice Programmers",
Human-Computer Interaction , Fall, 1985.

Brown, J.S. & VanLehn, K. "Towards a Generative Theory of
'Bugs'", Cognitive and Instructional Series # 2, Xerox Palo
Alto Research Center, 1979.

Hoc, J.M. "Developmental stages in learning to program"
International Journal of Man-Machine Studies, 9, 87-105,
1977 .

Easley, J.A. "The Structured Paradigm in Protocol
Analysis", Cognitive Process Instruction: Research on
Teaching Thinking Skills, (Lochhead, J. & Clement, J.,
Editors), Franklin Institute Press, 1979.

Lin, H., "Approaches to Clinical Research in Cognitive
Process Instruction", Cognitive Process Instruction:
Research on Teaching Thinking Skills, (Lochhead, J. &
Clement, J., Editors), Franklin Institute Press, 1979.

Whimby, A. & Lochhead, J. Problem Solving and
Comprehension: A Short Course in Analytical Reasoning,
Franklin Institute Press, 1981.

Gardner, M. Aha! Insight Scientific American Inc., 1978.

112

CHAPTER 4

RESULTS AND ANALYSIS

This chapter reports on results obtained in the

following areas:

1. The microanalysis of the work of three adult experts and

three selected High-school age subjects on Problem A-2, the

problem chosen for detailed analysis. This included a full

transcript for each protocol as appendices. Analysis for

each protocol is composed of a summary of the more

important plan-elements and concepts, called a "schematic"

(after Anderson et al, 1984), and a related diagram for

each protocol.

2. A collection of the concepts and misconceptions from the

above microanalysis, in list form.

3. A summary of the remaining solutions to Problem A-2.

4. Highlights of other interesting protocols, including

examples of both interesting variable misconceptions and

moments of insight.

Microanalysis

Expert Protocols on Problem A-2^

Protocol 1: H; Problem A-2: (Note: In order to protect

their anonymity, abbreviations are used to identify

subjects. As a matter of style, such abbreviations will

not be punctuated by a period).

113

114

This protocol is summarized in Table 3. Figure 2

gives the microanalysis of H's solution, in diagramatic

form. (The full transcript of this protocol is included as

Appendix C.) Several aspects of the protocol merit further

comment.

Based on the work of Anderson et al (1984), expert

programmers were expected to begin by mapping a problem to

a general plan and then mapping, in order, each step of the

general plan to more specific plans, eventually coding each

plan into Logo code. However, beginning at 00:05 and

continuing throughout the protocol, H's overall approach

showed a different pattern. He did not begin with an

overarching, general plan. Rather, his approach was to

carefully read through the problem from start to finish,

stopping to code each problem element in order, and

carefully proofreading each block of code before moving on

to the next step of the problem. While the use of such

superficial features as the wording of a problem have been

observed as a strong factor in the work of novice

programmers, it has not been previously reported in expert

programmers (Adelson, 1981; Soloway et al, 1982). The

assumption was that H was using a general-knowledge plan to

Map the problem to a sequence of steps. The proposed plan

contains three parts, applied to each element of the

written problem in turn: I. Read a problem element, II.

Code the problem element III. Proofread that code. A

fourth part, IV. Test the entire procedure, is applied once

Table 3
Schematic; H, Problem A-2

00:05 - Map the written problem onto a plan, MAP THE PROBLEM AS A SEQUENCE
OF STEPS, a two-step Plan: I. READ, CODE & PROOFREAD EACH PROBLEM-
ELEMENT, II. TEST ENTIRE PROCEDURE

00:27 - Maps "Write a procedure that first prints the message, GIVE ME A
NUMBER..." from the written problem onto a WRITE A PROCEDURE THAT
PRINTS A LIST plan and codes that plan directly as:

TO GLUB
PRINT [GIVE ME A NUMBER]

Upon proofreading, Ph proceeds to next problem-element
00:47 - Maps "...and prints, THE NUMBER SQUARED IS..., followed by the

square of the number supplied by the person using the program", from
the written problem, onto a two step plan: 1. READ USER INPUT INTO A
VARIABLE, (0:54: "...I want to pick It off the keyboard"), and
2. REPORT THE SQUARE OF THE VARIABLE.

- Immediately maps #1 onto the template, "MAKE (NAME) RL" and codes
that plan dIrectIy.

01:04 - Refines 2. REPORT THE SQUARE OF THE VARIABLE Into a plan, PRINT A
LIST AND THE SQUARE OF THE VARIABLE BY MERGING THEM INTO A SINGLE
LIST.

01:12 - Maps ...A LIST AND THE SQUARE OF THE VARIABLE... (above) to ...A LIST
AND AN OPERATION...

01:36 - Maps ...AN OPERATION... to a plan to WRITE-AN-OPERATI ON, and
dlrectly codes as:

SQ : N
OP :N * :N
END

01:56 - Proofreadlng-1lnes-2-and-3 shifts attention to a previous
problem-element, (MAKE (name) RL).

02:06 - Refines "READ USER INPUT INTO A VARIABLE to READ USER INPUT INTO A
VARIABLE, AS A WORD, and immediately codes as:

MAKE "NUM FIRST RL
02:15 - Begins to PROOFREAD WHOLE PROCEDURE.
02:25 - Experiment #1. (Goal:CHECK WHOLE PROCEDURE), with positive

result (GOAL +).
02:31 - Experiment (GOAL:CHECK WHOLE PROCEDURE), with positive result

(GOAL +).
02:38 - Task completed, with success.

115

Page 116

0:27
Maps written
problem to

a cK\\V.mg
that prints a list
A Codes as:
TOGLUB
PR [GIVE ME A

NUMBER]

1"=15 sec.

0:47
Vlaps written prob-

j^jToperation can be used to
replace a

variable-expression
(SQ :NUM

vs. J
;NUM*:NUM).^X

cm as a

2:06
Refines A Read user
input into a variable
to Read user inoul
into a variable, as a
word, and
immediately codes as
MAKE "NUM

FIRST RL

0t05
Map written
problem to Map the
problem as a scaucnc

Read, code and
proofread next
problem clement j

\ Read user input
nto variable

B Report square of th<
.an able
!fe codes as a templetc

UAKE "NUM RL

1:12
Maps ...A LIST
AND THE SQUAR1
OF THE

1:36
Maps ...an operation
to a plan to
Write an operation.

•
1:56

Proofreading lines 2
and 3 shifts
attention to a
previous problem-
element,
(MAKE (name)

RL)

/ VARIABLE... to
...A LIST AND AN
OPERATION...
& codes as:
SQ :NUM

and directly codes as
SQ :N

I Read. Code A
Proofread each
problem element
II Test entire
procedure

OP :N*:N
ENE

\ >
I:U4

Redefines BReport
the square of the
variable to a plan to
Print a list and the
square of the variable
?v merging them into
a single list

Figure 2
H, Problem A-2

2:15
Begins to Proofread
whole procedure

117

the last problem element is coded. The author assumes

that, in his rapid, initial reading, H has determined that

this plan is appropriate for this problem, i.e., that

problem steps are sufficiently independent to be coded

individually. Such a plan and the ability to use it

appropriately represents a more pragmatic aspect of

programming knowledge. An approach such as this may have

functional advantages for the expert. It may serve as a

means to minimize errors (mapping problem-elements onto

lines of code in an organized way, so as to avoid

overlooking any problem-element) and/or minimizing the time

required to code a solution by combining a proofreading

pass with a coding pass. (Notice that H appears to place a

strong emphasis on assuring the accuracy of each step

before going on to the next).

Once H settled on this strategy, he proceeded to

efficiently map each part of the problem to an appropriate

plan and to quickly code each plan into a procedure called

"GLUB". He made only one error in coding (at 0:51).

Otherwise H seemed to have no difficulty recovering

appropriate plans or accessing facts needed to correctly

code these plans into Logo commands. In fact, plans and

the resulting code seemed to come without much conscious

effort, exactly as one using Anderson's model of compiled

procedural knowledge would predict.

118

The most complex part of the procedure is line 3.

Notice that H preceded [THE NUMBER SQUARED IS] with SE,

showing that he had already determined at that point (1:04)

that the PRINT procedure on this line should utilize a list

composed of two elements, and that H has mapped this to a

plan to use an operation as the second element (at 1:12).

H wrote this operation, SQ, and managed to interface the

two procedures, GLUB and SQ without difficulty. Notice

also that rules of syntax are well internalized for H. He

appropriately used quotation marks, spaces and colons

without confusion or difficulty. This was one of the most

striking distinctions between expert and near-novice

protocols.

H's ability to catch a minor error through

proofreading alone, as he inserted the previously omitted

FIRST before RL in line 2 (t 1:47), provokes speculation as

to the nature of expert proofreading. H's careful reading

of the problem at this point can be seen as an attempt

stimulate his memory of dormant facts or plans, but the

efficiency of H's behavior, i.e., his ability to predict

the mis-performance of this segment of code through reading

alone, encourages a different reading; that H was,

literally, "running" these lines of code through his own,

internalized model of Logo. That is, H was stepping

through each line of code, predicting the computer's

parsing and execution for each step along the way. Such

evidence of an expert "playing computer" in this way lends

119

support to Hoc's idea of "machine learning" as a

highly-predictive, functional organization of expert

programming knowledge.

H's comments on the name he had chosen for his

procedure, GLUB, is a short meta-discussion of

procedure-naming. His selection of this particular name

was related both to his thinking about procedures and his

aesthetic judgement about the problem as well. Besides

demonstrating H's understanding that the programmer has the

flexibility of choosing a descriptive name, his comments

suggest that H makes it a practice to choose titles for

procedures that reflect something about their function.

The fact that he commented on his choice of name at all

suggests that he attends to this aspect of programming in a

way that is somewhat surprising. Such examples of

metacognition were quite common in expert protocols in

comparison to those of either near-novices or

near-experts.

Protocol 2: P; Problem A-2: Table 4 is the schematic P's

solution to Problem A-2; Figure 3 is a diagram of the

microanalysis of that solution. (See Appendix D for a full

transcript). P began by keying in on the phrase, "Write a

procedure..." (at 0:20) and quickly coded this as the

header-line of a procedure, SQUARE. Here, P appeared to

focus on one part of the written problem-statement, much as

did H. Unlike H, however, he did not maintain a

Table 4
Schematic; P, Problem A-2

00:20 - Maps "Write a procedure..." to a general plan to Wr I te-a-procedure.
This plan Is composed of steps to I. Code-header-1 Ine II. Code-
remaInder-of-procedure and III. Check-the-procedure.
(This approach seems related to the Map-the-problem-as-a-sequence-
of-steps plan of P.)

00:34 - Maps I. (from general plan to WrIte-a-procedure) onto the template:
TO (proc. name) {Input(s)}

and codes, as:
TO SQUARE (ret.).

00:42 - Maps II. Code-the-remaInder and the fact that "Its going to ask for
a number"
(00:38) to a 3 step Pol I-user-for-1nput plan, Including: 1. Prompt-
user 2. Accept-user-input, 3. Use-inputed-vaIue

00:53 - Maps #1 to a plan to Print-a-Iist, and codes as PRINT [GIVE ME A
NUMBER]

01:11 - Maps #2 and #3 to two alternative plans, A Four-Line-Program and
a Three-Line-Program. The original version of the Three-line-
program is never coded, but is later described as operating without
creating a name for user input. One possibility is as follows:

TO SQUARE
PRINT [GIVE ME A NUMBER]
PRINT SE [THE NUMBER SQUARED IS] PRINTNUMBER
END

TO PRINTNUMBER
OP RQ (* itself)- (perhaps OP SQ RQ, where SQ outputs the

square of its input).
END

The above would be in keeping w. P's comments at 05:08, 05:27
and 05:58.

01:32 - He selects the Four line program for this solution.
01:38 - Notes RQ as a needed tool in the mapping the four line program
01:52 - Maps middle two lines of this four line program (line 1 is already

coded as PRINT [GIVE ME A NUMBER], to a line-by-line plan to a.
Receive-user-lnput, b. PrInt-a-message c. Use-inputted-value
(Note that the fourth line (c. Use-inputted-value) corresponds
exactly to the previous plan for II. Coding-the-remainder, 3. Use-
inputted-value (0:42)).

02:01 - Maps a. to two alternative plans: al. Store-RQ-wIth-MAKE and
a2. Use-a-sub-procedure-on-RQ.

02:23 - After extensive consideration beginning 02:01, including some sort
of Internal debate (2:23), P settles on a2., Use-a-sub-procedure...
In retrospect, one consideration is reported as a desire for the
greater "robustness" afforded by this choice (07:23, 07:42). (We
treat this as a piece of meta-knowledge, growing out of 1. the pre¬
vious internalization of both plans and 2. Pragmatic concepts of
"robustness", "optimization" & "efficiency").

02:32 - Maps a2. as I. CaIl-procedure-wIth-RQ-as-Input and II. Define-
procedure-to-use-requested-vaIue, and codes I. as PRINTANSWER RQ.

02:49 - Maps II. as a Procedure-taking-number-in-l1st, a 3-step plan consis-

120

ting of 1. Code-header 2. Print-something 3. Report-result-using-
requested value, and codes 1. Code-header, as:

TO PRINTANSWER :NUMBER INLI ST
03:10 - Codes 2. Print-line as PRINT [THE NUMBER SQUARED IS...]
03:17 - Begins to code 3. Report-resuIt-using-requested-vaIue as

PRINT..., but pauses in the midst of his coding.
03:39 - After some thought, beginning 3:29, P decides an a revision of

steps i. and ii. of a2. Use-a-sub-procedure-to-get-RQ, specifically
to alter i. to i.2 CaI I-procedure-to-get-FIRST-of-RQ and to alter
ii. to ii.2 Define-procedure-to-use-FiRST-of-RQ. P later reports
this as balancing greater efficiency (in not unnecessarily repeating
an operation (08:12, 08:25) against the greater "robustness" of the
earlier plan for a2. (07:06-07:59)

03:47 - Codes 1.2 by inserting FIRST before RQ In line 2 of SQUARE.
04:00 - Codes ii.2 by changing :NUMBER INL1ST to :NUMBER.
04:12 - Returns to the coding of 3. Report-result-using-requested-

value (from Interruption at 03:17), producing the line:
PRINT :NUMBER * :NUMBER

04:28 - Executes II. Check-the-procedure by calling SQUARE and entering
2 as input.

04:39 - Task completed, with success.

121

1"=10 sec.
Page 122

0:34
Maps I Code the
header onto the
template for
any procedure;
TO(procedure name)

(inputs)
and codes as: 0:53

Maps 1 .Prompt user
to a plan to
Print a list.

i codes as
. PRINT [GIVE ME

A NUMBER]

0:20
Maps writen problen
to a general plan to

0:42
Maps II Code the
remainder and
interpretation of
problem statement
(0:38-"its going to
ask for a #)
to plan to

I Code the header
II Code the remainder
III Check the
procedure

1. Prompt user
2. Accept user input
3. Use inputted value

-©

TTT
Maps #’s 2&3 to twt
alternative plans a
“Four line program'
& a
‘Three line program
1:32 Selects
Four line program'
plan

Figure 3
P, Problem A-2

4:39
-comp. w. success

123

step-by-step approach but proceeded to refine his general

plan to a more problem-specific one, shifting his attention

(at 0:42) to functional aspects of the problem.

Another notable feature in P's approach was his

attention to alternative solutions. First, in refining a

loose plan for an interactive input from the user, P

developed plans for both a three-line and a four-line

version of the solution. After choosing one of these

alternatives, P proposed two alternative approaches to

storing user-input data. His ability to conceive of and

determine the respective advantages of more than one

potential solution to a programming problem illustrates

that P has deeply internalized each alternative. He seemed

able to visualize each solution in some detail, as if the

code were already written, behavior markedly different than

that of any of the student-programmers. In this analysis,

such ability to reflect on virtually any aspect of the

problem is viewed as more than descriptive or procedural

knowledge, but a higher level of understanding encompassed

by the term "meta-programming knowledge".

Much of time expended by P in solving this problem was

devoted to several "internal debates", which he described

in some detail in retrospect. Hoc (1977) might describe

him as running some sort of mental model at this point.

However, I see P's interest in the optimization of his

solution as key factor. The recognition and manipulation

124

of alternative plans and discussion of optimization

typifies the meta-programming knowledge exhibited by all

adult experts of this study. Other features of the dialog

that can best be described as a sort of meta-knowledge are

p's initial attempt to avoid the "extra baggage" of naming

the REQUEST with a MAKE statement (at 5:08), his ongoing

consideration of a second, "three-line version" of the

procedure and his descriptive naming of the of the

sub-procedure PRINTANSWER and of its input, first as

:NUMBERINLIST and later as :NUMBER.

Protocol 3: B; Problem A-2: Table 5 is the schematic for

this protocol, and Figure 4 is a diagram of the solution.

(For a full transcript, see Appendix E).

Notice that B started with a general Write a procedure

plan, as did all of the experts who attempted this

problem. However, unlike the others she shifted to a more

specific plan to Write an interactive procedure before

creating the header line of her procedure. While this more

closely matches the behavior predicted by Anderson for a

programmer with already compiled procedural knowledge, her

ordering was less regular, digressing from the consistent

top-to-bottom, left-to-right order of plan-execution that

Anderson predicts on two occasions (at 1:11 and at 6:25).

These "detours" from Anderson's order are interpreted as a

means by which B checks critical aspects- of her code. This

phenomenon appears to be closely related to the "preference

Table 5
Schematic; B, Problem A-2

00:50 - Initially maps the problem onto a general plan to WrIte-a-procedure:
I. WrIte-the-procedure, II. Check-the-procedure

00:57 - Influenced by the example, B maps I. WrIte-the-procedure
onto a plan to WrIte-an-interact Ive-procedure ("...square, or
something..."), which will "...basically request them (the users) to
give me an Input, which will be the number two". Based on the visual
structure of the example (4 lines: computer prompt, user enters number
, computer embellishment, square of user input), we assume this to be
a 3 step plan: A. Ask-user-for-input, B. Accept-user-input,
{C. Use the input). (Brackets here denote a part of the plan which
is unsupported by direct evidence).

01:05 - Maps the problem to one or more (unspecified) alternate plans (see
the extensive discussion starting at 08:49), but continues with the
the original plan.

NOTE: B's quick mapping of the problem to alternative plan(s) is diagrammed
as an extra branch from the starting node of the diagram. This representation
is somewhat inelegant and arbitrary, but allows a reference to the interesting
discussion of alternative plans at the end of the protocol and emphasizes the
formulation of alternative plans as an important aspect of this protocol.

01:11 - Maps {C. Use-the-Input) onto a two-step plan to Use-a-tool-on-the-
input: 1. WrIte-the-tooI, 2. WrIte-the-1 Ine-that-uses-the-tooI.

NOTE: This differs from Anderson's "natural" top-down, left-to-right order
for utilizing procedural knowledge, with which we would expect her to begin
work on A. Ask-user-for-Input, followed by B. Accept-user-input.

01:22 - Maps 1. WrIte-the-tooI to a frame-type plan to wrIte-an-operation:
a. WrIte-an-operation, (frame)

TO (name) (variable)
OUTPUT (expression-wlth-varlable)
END

and b. Check-the-operation,
...Immediately CODES a. WrIte-an-operation, as:

TO SQUARE :NUM
OUTPUT :NUM * :NUM
END

01:44 - b. Check-the-operation maps to Experiment #1.
Goal: Check-the-procedure

SQUARE 4 (ret.)
-> RESULT: 16

Result: Goal (+)

NOTE: B. interprets RESULT: 16 as a positive result; she seems in no way
distracted by "RESULT:" as an error message, which it technically is,
suggesting that she either expected this response to her experiment or
treats the "RESULT:" error message as a special case.

125

Table 5, cont.

01:51 - With the positive result of Experiment 1, B turns to the Inactive
plan A. Ask-user-for-Input, maps It to a plan to Print-a-list and
Immediately codes as:

TO SQ.NUM
PRINT [GIVE ME A NUMBER]...

02:32 - Maps B. Accept-user-Input and the example to a plan to Echo-user-
input. Presumably the "two" In here question ("...you want me to print the
number two there?") serves only as a reference to the "2" in the example, not
as a constant).

02:56 - Following a dialog with I, B drops plan to Echo-user-input.

03:11 - Maps B. Accept-user-Input and 2. Write-the-Iine-that-uses-the-tooI
and the example as plan to Print-the-sentence-of-a-phrase-and-the-
square-of-the- Input.

03:55 - Codes the plan to PrInt-the-sentence-of-a-phrase-and-the-square-of-
the-input as:

PRINT SENTENCE [THE NUMBER SQUARED IS:] SQ FIRST RQ

04:08 - (Discussion of an alternative plan for an Interactive-procedure-
using-MAKE, informed by the concept of a Distinetion-between-user-
and-programmer)

06:09 - Experiment #2:
Goal: II. Check-the-procedure

SQ.NUM
->"THERE IS NO PROCEDURE NAMED SQ IN SQ.NUM...",

Result: Goal (-).

06:12 - Previous experiment quickly stimulates a general diagnostic plan to
Find-the-error and Patch-errant-code

06:14 - Find-the-error plan, the error message ("THERE IS NO PROCEDURE SQ...")
, and a presumed Set-of-lnterpretive-DiagnostIc-Principles (including
the concept of a varlable-as-an-element-of-a-workspace) leads B
to Interpret the error as a CaIl-of-a-non-existant-procedure.

(8:00 - "I'm trying to call a procedure by that name and
there Is no name...").

The interpretation is almost instantaneous and relatively automatic
for B,...

(7:50 - "...Its sort of rote at this point...")
...suggesting some sort of compilation process.
This Interpretation (as the CaIl-of-a-non-existant-procedure and the
plan to Patch-errant-code, maps (Immediately) to a matched plan to

126

Table 5, cont.

Patch-a-caI I-of-a-non-exIstIng-procedure:
1. FInd-errant-procedural-caI I,
2. FInd-Intended-procedure-name

(8:00 - "...so by saying POTS...),
3. Correct-spelling.
(1. FInd-errant-procedural-caI I Is achieved InstanteousIy by an

Immediate examination of the error message).
(2. FInd-Intended-procedure-name is nearly instantaneous, the
correct name (SQUARE) being recalled from memory).

06:18 - 3. Correct-spelling maps to a change in procedure SQ.NUM ("SQ" is
changed to "SQUARE")

06:25 - Experiment #3
Goal: Verify previous mapping of 2. Find-intended-procedure-name to
SQUARE

POTS
-> a list of titles, including SQUARE, appears on the screen

Result: Goal (+)

06:30 - Experiment #4
Goal: I I.Check-the-procedure

SQ.NUM
->GIVE ME A NUMBER
12
->THE NUMBER SQUARED IS 144

Result: Goal (+)

06:39 - Problem completed w. success

127

1"=10 sec.
1:51

Maps A. Ask user
for input
onto a plan to Print:

2:32
Fuses B Accept user
input & the example
onto a plan to
Echo user input

3:11
Map B. Accept user
input AND 2. Write

tool into a combined
plan to
Print the
SENTENCE
of a phrase and

r

input

«v.
%

Figure 4
B, Problem A-2

N

20 seconds

Page 128

9:00
Discusion of interactive

„jjfocedures using MAKE

129

rules" that M. Miller (1982) said were demanded by subjects

working in the strict top-to-bottom and left-to-right order

initially designed into his Logo planning and debugging

environment. Miller believed that preference rules were an

attempt by the programmer to optimize her efforts by

preventing mistakes in the first programming pass, thus

reducing the likelihood of needing a later debugging pass.

This is exactly how B's ordering of her work on Problem A-2

is interpreted in this study, as an attempt to save time

and effort by selectively expanding upon those aspects of

her plan deemed critical. This is classified as another

example of expert meta-programming knowledge, in which an

expert programmer evaluates her own problem solving.

B's metaphor of the "branches" formed by alternative

plans (at 03:19) provide a wonderful and powerful insight

into her conceptualization of the problem. For one thing,

they demonstrate B's complex value judgements based on

subtle aspects of the problem (see comment at 9:00) rather

than a static and deterministic mapping of the problem onto

internalized procedural knowledge. For another, they

indicate that the mapping of a problem to an initial plan,

and of goals to sub-goals can be not only one-to-one but

may also be a one-to-many mapping. This ability to

acknowledge and manipulate multiple alternative solutions

to a problem, exhibited both by B and by P, seems to be

another aspect of the meta-programming knowledge of

experienced and sophisticated programmers, and related to

130

evaluative concepts that they exhibit, such as

optimization, efficiency and elegance in programming.

The instantaneous debugging in response to an

experiment (at 6:09) and B's comments about it shed light

on the development of the pragmatics of programming,

specifically of debugging skill. Two aspects of B’s

debugging activity seem notable. First, error messages have

an explicit meaning for her, evidenced by her clear

interpretation of the error message at 8:09 and by her

ability to interpret another error message, the outcome of

a successful experiment (at 1:44). Second, B's debugging

seems both like and unlike simple procedural knowledge.

Debugging knowledge does seems to be subject to a

compilation-like process (note B's near-instantaneous

interpretation at 7:50). However, the process of

understanding an error message involves a highly

interpretive reading of the error followed by the selection

of a plan to patch the error, from the myriad of all

possible error patches. Complicating the issue is the fact

that error-fixing is by nature an operation, acting upon

existing code rather than creative/productive process like

the generation of computer code from scratch. In the

diagramming of this protocol, this complex debugging

process is represented simply, as an arrow, showing the

influence of a failed experiment on an inactive plan. This

is, necessarily, an oversimplification of the process.

131

Nonexpert Protocols on Problem A-2

%

Protocol 4: R; Problem A-2: The schematic and diagram for

this protocol can be seen as Table 6 and Figure 5,

respectively. (The full transcript is included in Appendix

F).

R's discussion of the "...crucial few lines" of the

problem (at 1:24), by which he referred to that part of the

problem that is eventually coded into line 4 (see 3:43) is

a very interesting one in that it shows an aspect of R's

problem solving that more closely resembles that of experts

than of most high-school aged subjects. Such a comment

indicated a sort of evaluatory thinking that seemed to

guide the development of his plan to Write an interactive

procedure and influence the way R carried out the remainder

of the solution.

One striking aspect of this comment about the crucial

part of the problem is that it came so early on in the

protocol. R seemed to have temporarily deferred

consideration of the earlier aspects of the problem until

after he identified this critical part, indicating some

sort of a pre-processing of the problem to locate clues for

efficient solution or "heuristics". The assumption made

about this first pass is that R progressed through the

problem in a step-wise fashion, considering functional

aspects of each problem-element until he found one that

Table 6
Schematic; R, Problem A-2

00:50 - Maps the problem onto a 2-part plan to WrIte-a-procedure:
I WrIte-the-procedure, I Check-the-procedure.

00:52 - Immediately maps I Write-a-procedure to a 4-step plan to Write-an-
InteractIve-procedure:

A. Prlnt-somethlng,
B. Input-something,
C. Prlnt-somethlng,
D. PrInt-the-square-of-the-stored-Input.

Immediately codes I. WrIte-a-procedure as:
TO SQUARE...

Notice that D. PrInt-the-square-of-the-stored-Input Is more detailed
and better refined than A, B or C.

In the section that immediately follows (1:01 - 2:45), R refers to
each of these steps, leading to the conclusion that, rapid as it is,
R's coding reflects this entire plan (presumably in the form of "com¬
piled" procedural knowledge (Anderson's term, 1982).

He also (at 1:24) describes his thinking in some detail. Of particu¬
lar Interest is his focus on the "...crucial several lines..." that
required more careful attention. In discussion, R described a kind
of evaluatory thinking which guided the development of his plan to
Write-an-interactive-procedure. The author hypothesizes that R is
progressing through the problem from start to finish, breaking it
Into functional steps as a sort of first pass at the problem.
Such a process appears quite similar to the diagnostic knowledge of
some experts. The main reason for selecting this explanation over a
number of alternatives (see below) was R's reference to specific Logo
commands that can be associated with the proper coding of the
problem, made in the order of the problem itself. This suggested that
R was somehow "walking through" the problem.

The author assumes that R is matching each part of the problem with
a previously internalized plan (i.e., compiled procedural knowledge),
and that a failure to find a match indicates a "harder" or
more "crucial" aspect of the problem. Such a first pass at the prob¬
lem would serve at least two functions: 1. it would allow R to
determine which parts of the problem most acutely need his attention
and 2. it could serve as a "critic" for alternative approaches to the
problem, and help to determine which choice was most efficient, in
the diagram, this is shown as a Stepwise-heuristic-evaluation-of-the-
problem.

It would be possible to interpret this activity in a number of
alternative ways. For example, one could interpret the subject's
differentiation between certain parts of the problem as information
compiled along with the procedural knowledge of the Write-an-inter-

132

Table 6, cont.

active-procedure plan. Although It seems unlikely that he
has encountered exactly this problem In the past. It might
closely enough resemble a previously solved problem to allow such a
transfer of knowledge. The author regards this as slightly less
plausible than the first explanation, however.

Another alternative would be to treat evaluatory information as a
collection of learned facts (l.e. descriptive knowledge). A computa¬
tional analogy would be an numeric evaluation factor associated
with each command, that designates that command as more or less impor¬
tant or difficult or crucial. However, this seems too static a
representation for this process describe here.

02:45 - R resumes his keyboard activity by quickly coding A. Print-something
(with this skeletal plan "fleshed out" with information taken directly
from the written problem, (see 2:43 & 2:48)), as:

PRINT [GIVE ME A NUMBER](return)
02:51 - R codes B. Input-something (and the written problem, see 2-51) as-

MAKE "NUM RW
03:26 - Codes C. Print-something as:

PRINT [THE NUMBER SQUARED IS...]
03:43 - Codes D. PrInt-the-square-of-the-stored-Input (which has been refined

at an earlier point in the protocol) as:
PRINT :A*:A

04:07 - Maps II. Check-a-procedure to a plan lib. Check-aI I-possibI e-cases
and immediately codes into Experiment #1-

"SQUARE"
->GIVE ME A NUMBER

«4 ii

->THE NUMBER SQUARED IS...
->1521

(Goal: Mb. Check-a I I-poss I b I e-cases)
Result: Goal (-)

R seems to use this result to quickly diagnose his error, (the
use of an incorrect variable name in line 4).

04:34 - With the understanding of his error derived from Experiment #1 R
recodes line 4, PRINT :A*:A to:

PRINT :NUM * :NUM(return)
04:42 - Maps Mb. Check-aII-possIbI e-cases to Experiment #2-

"SQUARE"
->GIVE ME A NUMBER

ii y n

->THE NUMBER SQUARED IS...
->49

(Goal: Mb. Check-a II -poss I b I e-cases)
Result: Goal (0) (l.e. neutral)

04:55 - Maps Mb. Check-aIl-possible-cases to Experiment #3-
"SQUARE"

->GIVE ME A NUMBER
"25"

->THE NUMBER SQUARED IS...

133

Page 134

Stepwise heuristic
evaluation of the

problem

1"=15 sec

3:43
Codes as:
PRINT :A * :A

r
0:52
mmediately
vVrite the prc
:o a four-ste
Write an

maps I
Dcedure
? plan to

•ocedure: nteractive m
\ Print something
1 Input something
2 Print something

k D Print the square of
stored input

0.50

Maps the problem
onto a plan
to Write a
procedure:
I Write the
procedure
II Check the
procedure
and immediately
codes I Write the
procedure os'.:

TO SQUARE

2:51
Codes B
Input-something as:
MAKE “NUM RW

_t

£
3:26
CODES C
Print-something as:
PRINT [THE
NUMBER
SQUARED IS...]

4:34
Recodes D. Print the
square of the stored
input as:
PRINT
:NUM*:NUM

:A will be
“the value of the

(inputted) number”

2:45
Codes A
Print-something as:
PRINT [GIVE ME
A NUMBER]

Figure 5
R, Problem A-2

4:07
Experiment

Goal: lib Checks
all possible cases

...4
THE NUMBER
SQUARED IS...

1521
Result:
Goal (-)

4:42
Experiment

rGoal: lib Check
all possible cases

...7
THE NUMBER
SQUARED IS...

49
Result:
}oal (+1

4:55
Experiment

Goal: lib Check''
all possible cases

...25
THE NUMBER
SQUARED IS...

625
Result:
joal

135

seemed more important. One indication of this is the fact

that R failed to refer back to the written problem until

2:43, when he needed more detailed information in order to

code line 1 during a second, coding pass through the

problem.

It would seem that R's first pass entailed an attempt

to match each part of the problem with a previously

internalized plan (i.e., compiled procedural knowledge).

(Compare this with H's step-wise method in his expert

solution). Failure to find a match during such a process

would indicate a "harder" or more "crucial" aspect of the

problem. Such a first pass at the problem would serve at

least two functions: (1) it would allow MA to determine

which parts of the problem most acutely needed his

attention and (2) it could serve as a "critic" for

alternative approaches to the problem, helping to determine

which choice was most efficient. In the diagram, this is

shown as a Stepwise heuristic evaluation of the problem.

It would be possible to interpret this activity in a

number of alternative ways. For example, one could

interpret the subject's differentiation between certain

parts of the problem as information incorporated in the

previously compiled procedural knowledge represented by the

Write an interactive procedure plan. Although it seems

unlikely that he has encountered exactly this problem in

the past, it might closely enough resemble a previously

136

solved problem to allow such a transfer of knowledge. The

main reason for selecting the given explanation over this

alternative is that R referred to the coding of noncrucial

parts of the problem (at 2:03), in the order of the problem

itself, suggesting an active rather than a passive

process.

Another alternative would be to treat evaluatory

information as a collection of learned facts (i.e.,

descriptive knowledge). A computational analogy to this

would be a numerical evaluation factor associated with each

command, designating the relative importance of that

command. However, this seems too static a representation

to explain the above protocol.

Another interesting feature of this protocol is R's

attitude on procedure testing, reflected in his comments at

5:10 and 5:19. These comments suggest that he has

internalized certain aspects of program-testing behavior,

making it a natural and semi-automatic process. This

reminds one strongly of Anderson's notion of knowledge

compilation, and would seem to lend support to that

researcher's assertion that a cognitive skill (here

procedure-verification in the successful problem-solving of

a near-expert) can be explained by the compilation of

procedural knowledge.

R readily utilizes the error message (at 4:26),

resulting from the failure of Experiment 1, to isolate a

137

programming error and immediately repair it. This

suggests, as it did with expert programmers, that R has

internalized more than descriptive facts and rote

procedures but an understanding of the underlying process

of programming, i.e., meta-knowledge of the programming

process. Again, other explanations are possible. For

example R may have internalized a body of procedural

knowledge that directed his search for the cause of the

failed experiment. If R had previously committed a similar

error, using an incorrect reference to a particular

variable, this might predispose him to check variable names

for consistency on encountering odd results from a line

that uses the variable. However the absence of ready

examples of such behavior in near-novice protocols, even

when those protocols showed evidence of knowledge

compilation, suggests that such knowledge comes later,

after much procedural knowledge has already been

internalized. This also suggests that debugging may be

linked to other meta-programming knowledge.

It should be noted, however, that neither R nor the

other near-ex-pert, K, have spent protracted amounts of time

either studying or programming in Logo (see Table 1). This

suggests to the author that meta-programming-knowledge

developed by these two subjects during their extensive

programming experience with other languages may in part

have been transferred to their work in Logo. In any case.

►

the assumption is that this is the case with this

particular protocol.

138

Protocol 5: M; Problem A-2 Table 7 is the schematic for M's

work on this problem. Figure 6 is a diagram of the

microanalysis. (For full transcript, see Appendix G).

One of the most striking features of this protocol is

the presence of so much discussion of outputting and the

OUTPUT command. This may be a carry over from Problem B-2,

M's first problem and the one immediately preceding this

one. There, as here, M exhibited contradictory conceptions

of OUTPUT that seemed to be competing for dominance.

On the one hand, M held a misconception that allowed

her to associate the OUTPUT command with the idea of

"screen output". This seems to be a good example of what

Bonar calls a "language confound", i.e., a "bug" (a buggy

concept or misconception) generated by the

over-generalization of one's natural language knowledge

(Bonar, 1985). Alternatively, this association may be

thought of as reflecting a natural or "correct" approach to

the idea of procedural output. In at least one other

computer language, APL, the default action for the explicit

result of a function is to print it on the current output

device. In APL, therefore, there is no equivalent to

Logo's PRINT command, only commands to direct functional

output and "formatting" commands to reorganize output as a

Table 7
Schematic; M, Problem A-2

01:07 - Maps problem onto a two-step plan to WrIte-a-procedure: I. Write-the-
procedure, II. Check-the-procedure, and Immediately codes I. Write-the
-procedure as: TO NUM(ret.)

02:02 - Maps I. WrIte-the-procedure and the problem statement to a three-step
plan to WrIte-an-InteractIve-procedure: A. PrInt-a-prompt, B. Accept-
&-report-user-input, C. Report-square-of-user-Input, and Immediately
codes A. PrInt-a-prompt

02:46 - Maps B. Accept-&-report-user-Input and two misconceptions (a "language
confound": OUTPUT-means-"screen-output" (see also, 3:23 and 3:47) and
a misreading of the problem as requiring the procedure to Echo-the-
input) to a plan to Simultaneously-accept-&-report-user-input. Her
initial attempt is to code this plan with a single command line
utilizing the OUTPUT command; she will eventually give up on this
approach (see 4:03 & 4:13).

It should be noted that in her work on a previous problem (Problem
B-2) M. sometimes exhibited the same language confound as she does
here (OUTPUT-means-"screen-ourput"), while at other times she showed
a deep, detailed and correct understanding of the concept of output,
sometimes explaining and using the OUTPUT command in a manner that
seems contradictory to the way she uses it here. Our belief is that
the concept of procedural output is actively under development in this
subject, and that part of this concept-refinement process involves
resolving ambiguities and contradictory assumptions, leading M. to
fluctuate between two rival concepts of OUTPUT.

03:23 - Deserts the plan to SimuItaneousIy-accept-&-report-user-input and
maps it to a Two-step-pIan-to-accept-&-report-user-input:
1. Accept-user-input-into-a-variable and 2. Echo-user-input-using-
OUTPUT. M. begins to consider using MAKE to code 1. Accept-user-
input-into-a-var i ab I e, but does not yet begin actual coding.

In describing her present goals, M. says, "I'm going to be given a
number here; I want to put that number in a variable..."
This line gives evidence of two important concepts. First, M.
makes a DistI netion-between-user-and-programmer. "I" is really a
reference to the M. as the programmer, distinct from the person
who is "...going to (give) a number" (see also, 4:42, 4:47, 4:57).
Second, she has internalized the metaphor of a VariabIe-as-a-
contalner; both her use of the word, "variable", in this context and
the use of the preposition, "in", indicates that M. understands this
Important concept.

04:00 - After M. considers coding 2. Echo-user-Input-usIng-OUTPUT command
(3:47), she suddenly decides that It Is unnecessary for her
procedure to echo the inputted value, and abandons 2. Echo-user-input
-usIng-OUTPUT. Note, though, that M. has not necessarily abandoned
the belief that OUTPUT-means-"screen-output", and that she later
utilizes OP in a fashion almost identical to that which she proposes
here (14:32), an error attributable to both the OUTPUT-means-"screen-

139

Table 7, cont.

output" misconception and to a degree of "cross-talk" from the Echo-
user- I nput-w I th-OUTPUT plan developed here.

04:13 - M. returns to the plan 1. Accept-user-lnput-into-a-varlable, mapping
this plan to an Imp IImentatIon plan based (apparently) on the example
given In the Instructional demonstration (MAKE "PLAYER1 REQUEST),
Frame-pIan-for-an-InteractIve-varlable (see also, 5:44, 6:25, 6:49)
and begins coding with: MAKE "X...

04:42 - Another concept Is revealed In M.'s question, "...how do I make MAKE
dots x that number that they just typed In?". The concept Is of
VarIable-as-an-aI las (the variable names rather than contains the
value In question), and through the rest of this protocol It replaces
the VarIabIe-as-contaIner concept. Both are generally recognized as
valid and useful ways to represent a variable.

04:57 - M. expresses another concept In comparing the still missing section of
this Idiom to the Idea of a parameter Input; that the unknown command
or commands Transfer-data-from-outslde-to-lnslde-the-procedure (see
also 5:09, 5:50).

07:35 - After I. supplies a command, REQUEST, that will meet M.'s specifica¬
tions, M. uses RQ to complete her coding of the Frame-mode I-for-an-
Interactive-variable (see also 09:52).

10:08 - Following a suggestion by I., M. begins to impliment the plan II.
Check-the-procedure by exiting edit mode.

10:29 - Experiment #1 - "NUM"
->GIVE NUMBER

"2(ret.)"
->?

(Goal: II. Check-the-procedure)
Result: Goal (0; l.e., neutral) (10:37: ...I can't tell from what
I've done so far, so I'd better just go on with the program").

11:12 - In what the researcher interprets as a shift to the theoretical
question and apparently Influenced by a notion that Dots-belong-
with-a-varlable, M. considers re-coding the Frame-pIan-for-an-
interactive-variable as:

MAKE :X REQUEST
11:32 - M. abandons this re-coding, apparently based on a frame-related

notion that Quotes-belong-in-this-frame. M. seems so to have become
so attached to the Frame-pIan-for-an-interactive-varlable that we
treat it here as a predictive assumption. This may be related
to her concepts of Varlab Ie-as-contaIner and Variable-as-alias, though
there is no direct evidence of this.

12:12 — Influenced by the concepts of Varlable—as—container and Variable—as—
alias, M. maps C. Report-square-of-user-Input to a plan to Report-
square—of—user— Input—using—a—var i able, and codes this as:

:X * :X
12:48 — In a new attempt to resolve the theoretical confIict between the

ideas that a) Quotes-belong-in-this-frame and b) Dots-belong-with-a-
var lable, M. re-codes the Frame-plan-for-an-lnteractive-varlable as:

MAKE ":X REQUEST
(discussion only)

140

Table 7, cont.
13:01 - l.'s comments lead M. to abandon this coding.
13:46 - As part of coding of Report-square-of-Input-usIng-a-variable, M.

Inserts the line:
PR [NUMBER]

as an abbreviation of the commentary line, "The number squared is".
14:32 - Influenced by her misconception that OUTPUT-means-"screen-output",

M. re-codes Report-square-of-user-input as:
OP :X * :X

This is not a correct use of OUTPUT (see commentary within the
transcript).

14:43 - In what we interpret as another shift to a punctuation, M. asks
whether :X * :X will be Interpreted literally or symbolically by the
OUTPUT command.

15:13 - Experiment #2: NUM
GIVE NUMBER

2
* DOESN'T LIKE [2] AS INPUT IN LINE
OP :X * :X
AT LEVEL 1 OF NUM

Theory: :X * :X will be interpreted symbolically rather than literally
Response: Theory (+)
(I. offers a "fix" for this error using FIRST Just before REQUEST on
line 2; see commentary in transcript for a discussion of this
procedural compromise).

17:33 - Experiment #3: NUM
GIVE NUMBER

2
RESULT: 4

Goal: Check-the-procedure
Response: Goal (+)

1 "=30sec
2:02

Codes A
Prinl-a-prompt as:
PRINT [GIVE ME
A NUMBER]

Page 142

2:02
Maps I
Write the procedure
to a three-step plan
to Write an
interactive procedure
A Print a prompt
B Accept & report
user input

1:07
Maps the written
problem to a plan to

I Write the
proceudre
II Check the
procedure

TTT
Maps B Accept &
report user input
to a plan to
Simultaneous

3:23
Immediately begins
to “code" (discussior
only)
1 Accept user
input into a
variable as:
MAKE ...

4:13

Maps (failed) plan 1
Accept user input
into a variable and
the Distinction
between user &

■ programmer to lb
Frame plan for an
interactive variable

4:13
Immediately codes
lb Frame plan for an
interactive variable,
influenced by the
concepts of Variable as
alias and Variable as
container, and the idea
that A command
should transfer data
from outside to
inside the procedure as:
MAKE “X ...

2nd shift to
punctuation
(will OP :X*:X be
interpreted
symbolically or
literally?]

(after Interviewer supplies “RQ”)

V*4#»v

accept and report
user input & “codes
(discussion only) as:
OUTPUT :X

V
Distinction-between-

user-&-
programmer f

3:23 ^
Maps B Accept &
report user input to a
two-step plan lib
Accept &
report user input
as a variable
1 Accept user input
into a variable
2 Echo user input
using OUTPUT

$(

Shift to theory:
Punctuation

Command should
Transfer-data-from-
outside-to-inside-

proceedure

11:12
12:48

Recodes lb Frame Recodes lb Frame
plan for at plan for an
interactive variable interactive variable
as: as:
MAKE :X RQ MAKE “:X RQ
(discussion only) '<y\. (discussion only)

/

Dots-belong-
with-a-variable

Quotes-belong-in-
this-frame

Distinction-
between-user-&-

programmer

15:13
Experiment 2

heory: Testing symbol!!
vs literal parsing NUM

GIVE NUMBER 2
* DOESN’T LIKE [2]

AS INPUT IN LINE
OUTPUT :X * :X

AT LEVEL 1 OF NUN
.Result: Theory (+)^

13:46
Inserts:
PRINT [NUMBER]

\
\

r*s*r*rvrwr** r

12:12
Maps C Report-

square-of-user-input
and the concepts of

Variable-as-alias and
Va r i abl e- as- contains
to i plan to Report-
the-sauare-of-user-
inr ut-with-a-
variable and
inunediately codes
as :X*:X

Figure 6
M, Problem A-2

14:32
Recodes Report the
square of user
input with a
variable as:
OUTPUT :X*:X

10:29
Experiment

Goal: II Check-the-
proctdure Num 2

Result: Goal
(leutral)

143

character matrix. With this view, M's misconception could

be attributed to a weakness of Logo's design. While this

might carry import when considering the design of future

versions of Logo, our view of programming-learning requires

the learner to sometimes adjust to and find ways to

internalize arbitrary constructs, and leads us to an

explanation for this misconception that focus on the users'

rather than the designers' failings.

On the other hand, in her earlier work M expressed

some very strong, descriptive ideas about functional

output. In that solution, M functionally decomposed a long

Logo command-line; i.e., she accurately described how the

outputs of some procedures were simultaneously the inputs

to others. There, as here, M's difficulty seemed not to be

with the general concept of explicit result but isolated to

the mechanics of constructing a user-defined procedure with

an explicit result.

One can see a similar dichotomy between two well known

variable metaphors that M has assimilated. Variable as

container and Variable as alias (Harvey, 1985) and her

difficulty deciding on the punctuation needed to implement

this knowledge in the context of creating an interactive

variable using MAKE and REQUEST (at 11:12). while REQUEST

was new to her, M seemed quite comfortable with variables

cis parameters in the header line of user defined functions,

and had previously used MAKE to store preliminary

144

calculations in a variable (see 8:42). One could simply

claim that M had become disoriented by this new context,

but the author sees M's lack of a strong concept of the

meaning of quotation marks and colons as the primary cause

for her trouble. M neither recognized that the quotation

marks in the MAKE statement prevented the proposed variable

name from being executed as a procedure (i.e., identified

it as raw data) nor that a colon preceding variable name

refered to the contents of that variable. (Davidson (1985)

suggests that both of these ideas are important enough to

be explicitly taught to students as part of a unit on Logo

syntax). M did seem to recognize a distinction between

variable name and value but rather than using the colon in

a principled way, M appeared to have developed an arbitrary

rule that associates the colon and a variable without a

clear rationale. In both her use of variables and of

procedural output, M appeared to hold a high level concept

while struggling with the problems of implementation. If

one treats M's high-level concepts as descriptive

knowledge, this could be interpreted as supporting

Anderson's ordering of descriptive before procedural

knowledge (Anderson et al, 1984). The author, however,

views M's high-level concepts as an early development of

meta-programming knowledge, not as the collection of simple

facts that Anderson describes.

Another interesting part of this protocol is M's

development and coding of a Frame plan for an interactive

145

variable. Even though she has never coded such a frame, M

has gleaned from the instructional videotape a very strong

understanding of both its function (see 4:47) and its form,

except that she had forgotten the last command in the

frame, REQUEST (see 6:49). In contrast to her recall

performance on other aspects of the instructional

presentation (for example, note her difficulties with

OUTPUT command) this seems remarkably good. In fact the

frame plan seemed to immediately become much more than a

simple plan, something more akin to an accepted fact that

was strong enough to dissuade her from the rule that Dots

belong with variables (see 11:32 and 13:01), which she

probably internalized well before this interview. What

leads to such ready assimilation of this particular frame

into the conceptual framework of this learner while others

seem to go by the wayside? There seems to be a sort of

"readiness factor" operating in one case and absent in the

others. The Distinction between "user" and "programmer",

which M has apparently brought with her to this interview,

seems a good candidate for such a critical factor. The

recognition of this distinction seems an inescapable

prerequisite to understanding the notion of an interactive

variable and it appears to be strongly in-place at the

onset of the protocol.

Protocol 6: A; Problem A-2: Table 8 is the schematic for

this protocol and Figure 7 is the related diagram.

Table 8
Schematic; A, Problem A-2

00:39 - Maps problem onto a plan to WrIte-a-procedure (see 4:03). We assume
that this Includes Includes the steps I. Code-a-procedure, II. Check-
the_procedure. A. Immediately maps I. Code-a-procedure to a plan to
Wr|te-an-Interactive procedure, with steps A. Ask-user-for-input,
B. Accept-lnput (see 03:00), C. Use-the-Input.

00:45 - Codes A. Ask-user-for-Input as a print statement.
01:35 - Maps B. Accept-lnput and a knowledge of the INPUT command In BASIC

to a plan to 1. Code-wlth-an-INPUT-prImItIve. A. poses this plan as
a question to the I., as an Immediate attempt to 2. Test-coding-with-
an-INPUT-pr Iml t I ve. We treat this as Experiment #1 - "Is there an
INPUT?" (Goal: 2. Test-cod Ing-w11h-an-1NPUT-prim111ve). Response:

Goal (-)
02:07 (The plan to Code-wIth-an-INPUT-prImItIve Is expanded upon in

discussion at this time. A. explains that such a command-line would
1. include the word, "INPUT" (1:35, 2:11), 2. use a variable to hold
the Inputted value (3:00, 3:17) (though note A.'s incorrect statement,
"It (the computer) gets a variable (sic) from the person typing it
ln")(see COMMENTS in transcript)).
Two concepts that one would expect to be associated with the BASIC
INPUT statement seem to be in evidence here. First, the concept of
a distinction between programmer and user (see 3:00) and second the
what I call a "temporal" concept of programming, specifically the
notion that the designation of a variable name and the assignment of
its value will come at different times (see 3:17).

04:10 - Through a definitive statement, (I: "There is no INPUT statement...")
I. establishes a result (Goal (-)) to 2. Test-coding-wIth-an-INPUT-

pr imltIve.
04:19 - With the failure of the above experiment, A. returns to the plan

B. Accept-lnput, adopting a two step plan 1. Accept-lnput 2. Report-

input .
04:30 - A. begins reading the Script, in a search for the means to code B.

Accept-user-input. We see this as a Search-for-keyword plan, really
a general technique to exhaustively search some domain for an instance
with certain attributes. It is composed of two steps, a. Find-a-
keyword, b. Test-the-keyword (to see whether it is appropriate). In
the event of a failed test, these steps can be repeated until an
appropriate keyword is found. Note that such a plan can be randomly
applied to every element within the domain, as A. begins doing
here (see 4:50), or the search can be optimized through the use of
some sort of heuristic.

04:50 - in carrying out a. FInd-a-keyword, A. finds the keyword, PRINT, in the
Script, leading to a plan to Use-PRINT. She immediately codes this
plan as PRINT :S. While we treat the selection of PRINT as the
candidate keyword, A.'s choice may have been in part based on her
recognition that PRINT may be a useful tool for this particular

problem (see 11:40).
05:10 - Codes C. Use-the-Input as PRINT [THE NUMBER SQUARED IS] and

PRINT :S*2
06:08 - Executes Experiment #2 - "A"

->THERE IS NO NAME S

146

Table 8, cont.

IN LINE PRINT :S
(Goal: b. Test-the-keyword and simultaneously II. Test-the-
procedure).
Result: The error message Is Interpreted as a failure of PRINT
as the desired keyword (Goal (-) for b. Test-the-keyword). However
the Influence of II. Test-the-procedure seems so strong that one
tends to predict that A. would have Interpreted a positive result to
the experiment as verifying this theory, and Immediately ended her
work here. This dual goal seems a bit of a hedge; A. does not
seem confident In the present approach of using PRINT to accept
Input (4:50 :"...Thls probably won't work, but I can't think of any
other way to do It"), but If It does, she Is prepared to declare the
problem solved. Upon failure, we would now expect A. to renew her
Search-for-keyword plan and return to step a. FInd-a-keyword (with
some new candidate for the desired keyword, selected randomly from
the script).

06:21 - (Rather than Immediately trying a new keyword, In response to the
failure of the above experiment, A. begins a lengthy (2 min. 20 sec.)
discussion of the problem. We view this as a temporary abandonment of
the exhaustive FInd-a-keyword plan to review descriptive knowledge
about the problem. As we see it, descriptive knowledge here
function as HEURISTICS to direct the search, though this may not be
the subject's conscious goal. Specifically, A. describes the needed
keyword as similar to a parameter In the header line In that it will
store user Input in a variable (6:41, 7:27) but dissimilar in that
the Input needs to occur at a later point in time, (i.e., during prog¬
ram execution rather than at the time of the procedural call) (7:50)).

08:41 - A. returns to searching the Script for an appropriate keyword (1. Find
-a-keyword).

09:16 - I. refers A. to a section of the Instructional Script that demon¬
strates the use of MAKE and REQUEST to store user input in a variable.
This terminates her search for an appropriate keyword.

10:06 - After reading this section of the Script, A. maps B. Accept-input to
a frame-type plan to Use-MAKE-to-accept-Input. Her notion of the
frame seems to be composed of 4 parts, as follows:

(l)MAKE (2)"(3)(variable name) (4)REQUEST
A. immediately codes (1) & (2).

10:45 - After deleting what had been line 1 (PRINT :S), and coding:
MAKE "... ,

A. seems to invent a misconception. Based on what we believe to be a
deeper misconception, or more correctly, a non-conception (the Absence
-of-a-theoretleal-model-for-punctuation-with-variables), A. asserts
that Colon-punctuatI on-1s-as-a-integral-part-of-the-assocIated-
variable-name (it really Is Just a shorthand means to designate
"value-of") leads to a coding error:

MAKE ":S REQUEST
Strictly speaking, this Is a legal and acceptable coding In this par¬
ticular version of Logo, (create a variable, :S, to hold the user's
Input), but in terms of A.'s obvious Intent (to create a variable, S)
It must be considered an error.

11:40 - a. Codes 2. Report-input as line 2: PRINT :S . This is identical to

147

Table 8, cont.

the previous coding of line 1, but we Interpret Is as schematically
(l.e., functionally) different.

11:53 - Experiment #3 - "A" (Goal: II. Test-the-procedure)
-> THERE IS NO NAME S IN LINE

PRINT :S
Result: Goal (-)
The experiment falls with same error message, but for a different
reason. Earlier, as A. realized, this message Indicated her failure
to find the appropriate keyword to allow the procedure to take user
Input. This time, her error amounts to a misspelling of the variable,
the result of her misconceptions about variable punctuation. Inter¬
estingly, in is very likely that A. has already made this distinction.
She must have great confidence In MAKE as a tool to illicit user input
(for the very good reason that it was offered to her as a given),
and she never again alters the line in question, the second line of
this procedure.

12:20 - A., observing the state of the computer screen after the previous
error message, determines that b. Report-Input Is superfluous,
a mls-goal (see 12:31), and develops and executes a plan to
Correct-the-error-by-removing-the-offend Ing-1ine. The line is super¬
fluous, but this has nothing to do with A.'s current difficulties
with variable 'S'. A. is still, prematurely, focused on the
goal II. Check-the-procedure, and by blaming a suspicious looking
line she seems to be trying with some desperation to carry out that
goal. Her failure to develop a quick theoretical understanding of
error messages is a sharp contrast to the expert's ready ability to
recognize and act upon error messages.

12:40 - Experiment #4 - "A"
-> THERE IS NO NAME S IN LINE

PRINT :S*2
(Goal: II. Test-the-procedure)
Result: Goal (-)
A. seems surprised by the new error, and dIssappointed that her
Correct-error-by-removing-the-offending-line plan did not successfully
end her work on the problem. Note that this error message might have
been interpreted as a partial success in terms of her present goal,
to complete testing the procedure, since more of the procedure ran
successfully before an error message was encountered.

13:28 - A. says, "I just want to give this quotes, and see if it makes any
difference". This comes after a long pause, it seems that A. has
begun to SHIFT attention from her original goal, (Check-the-procedure)
to a theory-testing plan meant to aid A. in understanding Logo
punctuation.

It is our view that A. has developed a plan to Experiment-with-
punctuation, a two part plan, composed of of: 1. Try-punctuation and
2. genera Iize-about-punctuation. This plan is probably influenced
by A.'s previous goal (Check-the-procedure), and by the Absence-of-a-
theoretical-model-for-Logo-punctuation.

148

Table 8, cont.

With line 2 gone, the object of A.'s attention Is the fourth line of
the procedure, and so, in our analysis, the experimental plan must
also be influenced by the earlier plan, C. Use-the-Input, but
we see the new Experiment-with-punctuatIon plan as primary, and 1. Try
-punctuation maps to a more specialized plan to Use-quotes-to-supress-
the-error-message. This Is coded immediately as: PRINT ":S*2 .
The protocol from this point on reveals a good deal of impatience on
A.'s part to be done with the procedure; we would have expected her to
choose a more careful and controlled plan for exploring punctuation.
We believe this is an artifact of the semi-active goal-oriented plan
II. Check-the-procedure, a sort of "crosstalk" between a "goal
response" and a "theory response" activity (as observed by K.S. &
Inhelder). This seems to be true for the remainder of the protocol,
and you may note it reflected in our diagram from here on.

13:58 - Experiment #5 - "A"
-> GIVE ME A NUMBER PLEASE

"5"
-> THE NUMBER SQUARED IS
-> :S*2
(Goal: II. Check-the-procedure)
Result: Goal (-) (14:00 "No, no, no, no!")

14:36 - Following the failure of Experiment #5, A. immediately states that
"...when you have some'm with quotes around it, it'll have what's
Inside". This appears to be a transfer of the concept of quotes from
BASIC, a reasonable but not exact isomorph to quotes in Logo. A.
goes on to theorize that the cause of the failure of the last experi¬
ment was due to the quotes before the colon, and develops a plan to
FIx-error-by-removing-quote, and codes this plan at 15:06.

15:14 - A. develops a second plan, "...for no particular reason"
to Fix-error-by-addlng-spaces (on either side of the '*'),
and codes the plan. Note that this is a legal configuration for the
PRINT command, and would work if line 2 read MAKE "S RQ instead of

MAKE ":S RQ.
16:00 - After a long examination of the script, A. develops a plan to Fix-

error—by—swi tch I ng—MAKE—for—PR I NT and codes the plan, though she has
little confidence In any of these plans ("...I don't know if this is
gonna work, either...").

16:18 - Experiment #6 - Goal: FIx-error-by-switchIng-MAKE-for-PRI NT

"A" __
-> GIVE ME A NUMBER PLEASE

"3"
-> THE NUMBER SQUARE IS
-> THERE IS NO NAME S IN LINE

MAKE :S * 2
Result: Goal (-)
Although the predominant high-level plan at this point is the loosly
experimental plan to experiment with punctuation, the immediate goal
to FIx-the-procedure... (reinforced by II. Check-the-procedure)
strongly Influences A.'s experiment, as indicated by the fact that she
follows Its failure with new plans to fix the procedure, but not by

149

Table 8, cont.

rejecting the overall strategy of using MAKE to replace PRINT. Our
assumption Is that A. Is capable of careful experimental activity, but
Is not purely operating In that mode.

16:57 - A. develops an original theory: that Variables-are-distinct-from-
"names". A. associates "name" with the MAKE statement and "variable"
with parameter inputs, but she Is not simply making a distinction
between global and local. A. claims that a "name" can be
composed of any number of characters, while a "variable" must be made
up of only one letter (17:26). A.'s idea seems re Iated to at least
two preconceptions. First, she has undoubtedly been exposed to
variables In Algebra, where they are usually limited to one character
(One-Ietter-varIabIes-from-AIgebra). Second, while she has written
procedures with inputs before, A. apparently has only seen and used
one letter names, and has apparently generalized from this a limiting
rule for legal "names" (Logo-inputs-may-have-only-one-character)

18:45 - Based on her reading of the script, and questions associated with her
theory that VarIables-are-distinct-from-names, A. develops a plan to
FIx-error-by-removIng-coIon and corrects line 2 to read:

MAKE "S RQ
This corrects the error which been causing her trouble since

10:45.
18:56 - Continuing her plan to FIx-error-by-removIng-coIons, A. changes line

4 to read:
MAKE S * 2

While this strategy did fix line 2, it does not make sense out of
line 4.

19:04 - Experiment #7-
Goal: Fix-the-error-by-removing-the-colon.

"A"
-> GIVE ME A NUMBER PLEASE

ii 211

-> THE NUMBER SQUARE IS
-> THERE IS NO PROCEDURE NAMED S IN LINE

MAKE S * 2
Result: Goal (-)

20:07 - After examining the script and the screen for over 10 seconds (A.
seems very confused after the last experiment repudiated her last
Fix-the-error plan), A. formulates a plan to FIx-the-error-by-
usIng-the-exampIe-as-a-frame, and codes line 4 as:

MAKE "S * 2 RQ
20:50 - Experiment #8- Goal: Fix-the-error-usIng-the-exampIe-as-a-frame

"A"
-> GIVE ME A NUMBER PLEASE

”6"

-> THE NUMBER SQUARED IS
-> * DOESN'T LIKE S AS INPUT IN LINE
-> MAKE "S * 2 RQ
Result: Goal (-)

21:19 - a. quickly develops a new plan to FIx-the-error-by-removIng-spaces-
around-the-asterisk. We assume that this is Influenced by the concept
that Spaces-may-affect-arIthmetIc-operators, derived from previous

150

Table 8, cont.

experience or a piece of learned descriptive knowledge. A. codes
the plan by changing line 4 to:

MAKE "S*2 RQ
21:30 - Experiment #9- Goal: FIx-the-error-by-removIng-spaces-around-the-

asterIsk.
"A"

-> GIVE ME A NUMBER PLEASE
"3"

-> THE NUMBER SQUARED IS
-> (at this point, the procedure pauses, waiting for keyboard input).
Result: Goal (-)
While the goal is not reached, this experiment helps A. to gain
insight into her problems. After observing the behavior of line 4
(see 21:34 and 21:44), she aborts the rest of the experiment, laughs
and expresses a new gained insight into why line 4 should not
use a MAKE statement. (For example at 22:37: "This line is supposed
to take the input...of the first MAKE statement, and...mu11ipIy it by
2 and print out the answer". This seems markedly different from the
rambling style of A.'s recent activity. We regard it as an "aha!",
related to some realizations about MAKE and RQ, and it marks the end
of her experimentation with punctuation

22:57 - A. interprets the result of the last experiment as an indication that
Line-4-shouId-not-use-REQUEST, and she removes that primitive, but
she is confused as to what command should take its place, despite her
clear analysis at 22:37. The reason for her inability to translate
"...take the input of the first MAKE...multiply it by 2 and print
out the answer" into a line that PRINTS 2 times a variable is
not clear. It may be due to fatugue, or the interference of her
recently Invented misconception that names and variables are distinct
entitles, or a need for closure related to the goal II. Check-the-
procedure, or a combination thereof.

23:57 - A. returns to her Search-for-keyword plan. After examining the script
, A. maps a. Find-a-keyword to a plan to Use-OUTPUT which she immed¬
iately codes on Iine 4 as OP S*2

24:20 - b. Experiment #10-
Goal: b. Test-the-keyword

"A"
-> GIVE ME A NUMBER PLEASE

"3"
-> THE NUMBER SQUARED IS
-> THERE IS NO PROCEDURE S IN LINE
-> OP S*2
-> AT LEVEL 1 OF A
Result: Goal (-)

24:44 - Maps a. FInd-a-keyword to a plan to Use-RQ and codes line 4 as
RQ*2

24:56 - Experiment #11-
Goal: b. Test-the-keyword

"A"
-> GIVE ME A NUMBER

"5"

151

minutes
Question to

i.- “Is their am
r INPUT?” ^
foal: Code(B. Accept input:
^with INPUT Primitive A

("NO”)
Coal (-)

A notion of
Timing during

program execution I minute

Codes A.
Ask user for input
as PR [Give me a #,
Please] Distinction between

USER and me,
the programmer

In place
Concept of

INPUT from the
BASIC language

Maps 8 Accept
input to a plan
to Code with

f-'t 6:21
Specification of
attributes of the

needed command, in
descriptive terms

(Must take User input,
stored in variable

but during exection
V time) J

INPUT
primitive

4:50

finds PRINT in
the script & maps
a. Find a keyword to
a plan to Use-PRINI
& immediately codes
as PRINT :S

4:30

Maps 1 .Accept
input to a
p an to Search for a
kevwork
a. Find a keyword
b. Test the keyword

jf 6:08

^^Uxper. 2-"A’^^
JT (Goal: b. Test the^W
^keyword & ii Test Proc^
THERE IS NO NAME S

IN LINE PRINT :S
A. Resumes her searchU

Goal (-) V

5:10

Codes c. Use the
input as
PRINT [THE
NUMBER
SQUARED
IS]
PRINT :S*2

1"=10 sec.

Figure 7
A, Problem A-2

:39

Maps I Code the
procedure to a plan
to Write an
interactive
procedure:
A Ask user for input
B.Accept input

C Use the input

:39
Maps problem to
a plan to Write a
procedure
I Code the proc.
D Check the proc

2 minutes
fit

Page 152

10:06

Maps B. Accept
input
to a frame-plan to 1.
Use MAKE to

10:45

Frame plan to
Use MAKE to
accept input
& concept of
Colon as integral
part of variable
name to code:
(MAKE “):3
REQUEST

accept input:
MAKE “(var. name)
REQUEST
(& codes : MAKE

“.-)

-0-

,-r-*'

«'■*’*'

■»'Sr‘

12:20

Correct error by
removing the
offending line

tiU'*L'*.'*0#k'^'»k'*v'»k'*k,*.,*v'^'^,*.'*.'*.,«^,<k,<KMK,*v,«v,#>.'*.'*k'*>'<K'»>,«>'*>*>'*.>«.'*.'fc>«

L

14:00

21:30
Experiment #9^

~ Goal:Fix error by
r removing spaces around ^
aslerick "A” GIVE ME A

^NUMBER PLEASE "3’TH
^TUMBER SQUARED \

(pause)
Goal(-)

Page 153

154

Several features of this protocol are worth

mentioning. At 1:35, A asked the interviewer whether there

is an INPUT statement in Logo. This direct question was

treated as an experiment to test a plan to code the problem

using the proposed INPUT command. It was assumed that this

represented, in part, a transfer from A's previously

internalized knowledge of the BASIC language (which has an

INPUT command that can be used in exactly this type of

situation) to a plan to use the same command in Logo. (A

may also have been influenced by the presence of the word

"input" in the problem statement, (see Appendix B)).

There is little research on the transfer of knowledge

between computer languages but this observation (along with

others, including R's work on Problem A-2, mentioned above)

suggests that this question merits more careful attention.

A couches the question in terms of a command that might

form a complement to the OUTPUT command (which does exist

in Logo but not in BASIC). This suggests an alternative

explanation for her proposing INPUT. However, since the

command A proposed (to allow the user to supply information

to a running procedure) and Logo's OUTPUT procedure (which

designates the explicit output of a function) are not exact

parallels, this explanation is regarded as less likely than

the transfer of knowledge from BASIC.

At 4:30, A began an exhaustive search of the

instructional script for a keyword that will accept user

input. Then, beginning at 6:21 and lasting until 7:50 A

155

shifted to a review of known facts about variables, perhaps

as heuristics to help her with the search. This suggests

that descriptive knowledge may play a complementary role

with procedural knowledge, and that the problem solver

requires both factual knowledge and experience to

eventually derive true meaning from both.

A produced an error (MAKE H:S REQUEST) at 11:40 which

was identical to one considered (but then abandoned) by M

(see above) and by others as well. This is seen to occur

due to the lack of a clear conception of syntax and

punctuation in a MAKE statement, and of the meaning of

quotes and colons in Logo. The presence of this error in

more than one protocol supports Davidson's assertion that

Logo syntax and punctuation should be carefully included in

instruction (Davidson, 1985).

Starting at 13:28, A shifted her attention from the

current goal to the meaning of quotation marks, ("I just

want to give this quotes, and see if it makes any

difference at all"). The result of this. Experiment #5,

leads her to an insight on the function of the quotes, as

expressed at 14:00. Many of A's attempts to check her

procedures lead to theoretical questions, many of them

about punctuation. The shift mentioned, above, and the

"cross talk" between goal-oriented procedure checking and

theory-oriented experimentation on punctuation indicate the

156

sort of shift from goal to theory observed by Smith &

Inhelder (1975).

At 16:57, A generated a new and original

misconception; that parameter inputs are distinct objects

from variables created with MAKE. She called the former a

"variable", but refered to the latter as a "name".

(Normally in Logo, these two terms are considered

synonymous). While the term, "name", was probably inspired

by the previous error message, ("THERE IS NO NAME S...M),

A's unique, dual classification is assumed to be the result

of an earlier misconception that Logo variables have only

one character, which prevented her from integrating the two

concepts of variables into one more general conception.

At 21:57, as A viewed failed Experiment #9, she gained

some insight into a long standing errant plan that led her

to use MAKE in line 4 where she should have PRINTed

something. As procedure A was executing, she observed a

pause in that line, and after 2 seconds she laughed and

aborted the experiment and corrected the error. While

other errors in the procedure were never completely

corrected, A seemed to have temporarily risen out of the

confusion exemplified by a long series of poorly controlled

experiments. Even though she never corrected the remaining

errors or completed writing the procedure, A's spontaneous

insight, coupled with an exclamatory verbalization (in this

157

case a laugh), meets our qualifications for an insight, or

"Aha!".

This concludes the summary of the microanalysis of the

six selected protocols. A list of concepts and

misconceptions implied in these six interviews are

collected as Table 9.

Summary of Other Solutions

Summary of Remaining Solutions to Problem A-_2

E; Problem A-2:

In general, E probably had the greatest difficulty of

any subject in this study. In the work on Problem A-2, the

second problem she worked on, E was able to enter the text

editor and to write two lines that correctly printed the

messages called for in the problem ("GIVE ME A NUMBER" and

"THE NUMBER SQUARED IS :"). At this point she stoped

editing and tested the procedure. E gave no clear

indication whether or not she recognized that important

aspects of the problem remained to be solved. The

assumption was that she did, and that the next section of

her work began as a test of the code she had already

written.

Table 9
List of Concepts and Misconceptions from Six Seclected Protocols

Concepts:
1. An operation can be used to replace a variable.
2. A variable can be used as input for arithmetic operators.
3. Meta-knowledge about the relative advantages of alternative approaches
to a problem.
4. Concept of robustness in programming.
5. Concept of efficiency in programming.
6. Concept of optimization in programming.
7. General diagnostic principles for interpreting error messages.
8. Concept of variable and procedure as elements of the workspace.
9. Concept of variable as container.
10 Concept of variable as an alias.
11. Distinction between user and programmer.
12. REQUEST transfers data from outside to inside a procedure.
13. The template: MAKE "(variable name) (value)
to assign a value to a variable name.
14. Notion of timing during program execution.
15. Knowledge of INPUT command from the BASIC language.
16. A theoretical model for punctuation with variables.
17. Concept of a string, from BASIC.
18. Variables from mathematics.

Misconceptions:
1. Punctuation misconception: Dots must always prefix a variable.
2. Misapplication of knowledge of INPUT command from the BASIC language.
3. Lack of a theoretical model for punctuation with variables.
4. Logo inputs may have only one character.
5. "Variables") are distinct from "names" (Parameter inputs vs. global
variables).
6. Spaces may affect arithmetic operations.

159

The remainder of her problem solving was driven by the

immediate results of E's recent activity, first by the

results of this test and then by results of each successive

bit of activity. E's behavior accentuates the importance

of some very basic assumptions about programming, and the

degree to which programmers take them for granted. Without

the overarching theories that guide activity and attention

and give meaning to the responses of the environment, the

problem solver is left to drift, responding to every

meaningless stimulus with the same attention as that

granted critical junctures in problem solving. In this

sense, E's behavior can be viewed as the antithesis of R's

approach to this problem.

In E's case, the overarching theory that is

conspicuous in its absence is a strong concept of procedure

and a clear distinction between the Logo environment and a

defined procedure. E started off quite properly, testing

the code she had already defined under the title, NUMBER,

but as that incomplete procedure finished executing (the

procedure simple printed two lines of text on the screen),

E failed to recognize that it had stopped. She behaved as

if she had already imbued the program with the ability to

take input from the user (the part of the problem that she

had not yet addressed), and typed in the number that she

wanted squared, 12. With RESULT: 12, (really an error

message from the top level of Logo), E began to experiment

with the computational ability of Logo in "calculator"

160

mode. The author assumes that E noted that 12 was not the

square of itself, but became completely absorbed with the

error message that had appeared on the screen. She next

typed in two sixes, followed by carriage returns, and

seemed surprised to see two identical lines, "RESULT: 6",

on the screen. Apparently E intended to enter two numbers

and see their product as the only result, as if she was

still working under the control of a procedure that already

had the ability to take input and compute with it. Next, E

began to experiment with the phenomenon of "calculator

mode". She typed, "6+6(return)", and saw RESULT: 12 (she

was probably still trying to square the number 6, but was

confused about the process of squaring and did not realize

that it entails double multiplication, not addition). E

remarks, at this point, that "Its just like a

calculator...". Considering the her overall performance,

this seems like quite an insight for E. "But its weird

because you have to write the answer, kind of",

acknowledged that E was having trougle explaining what had

occurred with her present state of knowledge. However, she

seemed very curious and excited (and surprised) by

calculator mode, and tried two more simple addition

problems, 3+3 and 2+2.

At this point, E claimed that her procedure, NUMBER,

was responsible for these results, which were really the

response of Logo's operating system. When asked to explain

how her procedure worked, E entered the editor and

161

attempted to explain this calculator-like activity in terms

of the simple and incomplete procedure that she had really

written, and of course she could not. She seemed to lose

confidence this explanation, after first suggesting that

the colon, the last item in the second list that she has

printed, allowed the procedure to accept user input.

("Dots...,I guess, are where its leaving room for the

person to write an answer in. And the computer figures the

answer, 'cause that's the procedure that I typed in"). E

then claimed that the procedure was done, but she seemed

unsure of herself, and in the remaining problems given

during another 45 minutes of her interview she demonstrated

few episodes of more or less free experimentation such as

she did on the above problem.

Upon review, this seems a wonderful teaching

opportunity missed. E's seemed to truly have been enjoying

her discoveries and insights as she used the computer as a

calculator. It is true that she was operating under the

mistaken assumption that she was using her own procedure

during this period. However, the content of her conceptual

insight seems less important than several affective aspects

of E's behavior in this section. While during other parts

of her work on this problem E seemed slightly frustrated

and confused, in this section she seemed to feel in control

and to be gleaning information from the results of each

experiment; i.e., each time she hit the carriage return she

appeared to be engaged in an active learning process.

162

While the goal of this study was understanding subjects'

programming and not actively instructing them, this

interview does point out the lengths to which a teacher of

programming may have to go at times to understand the

assumptions of their students.

N; Problem A-2:

N's work on this problem was in several ways similar

to that of A, reported earlier. N, like A, had studied

BASIC programming and her work toward solution of this

problem, like A's, was in some ways helped and in some ways

hindered by this knowledge. Helped in that N, like A,

showed sophistication in some of the high-level variable

concepts related to this problem. Hindered in that N, like

A, sometimes became confused in the implementation of these

plans by elements of the BASIC language. In N's case, this

sort of other-language distraction was more pronounced.

Both N and A generated long protocols somewhat rambling in

nature and which ended without success.

Quite early in the protocol, before attempting to

actually type in any code, N verbally reviewed the problem

and discussed her developing plan to solve the problem. In

addition to demonstrating an understanding of procedure

definition and naming (with TO NUMBER) and the syntax of a

Logo PRINT statement, N considered how to make her

procedure square a number, and decided on the use of a

163

variable. She stated, "You have to have a variable in

there", (although, through much of the rest of the

protocol, she mistook a semicolon for a colon as correct

punctuation for a variable). N made a clear distinction

between a variable name and the number-value that might be

bound to it. "It represents a number you might type in and

it doesn't have a certain value, it can be any value." This

showed that N had a strong general concept of a variable.

N went on describing the use of an interactive variable:

"When you've pushed (;B), when you're putting in the

number, which is 2, it would be the same thing...the number

is B."

N further demonstrated a basic understanding of

variables when she decided to change a variable referred to

several times in her procedure. She quickly and easily

changed the variable everywhere it occurred. Furthermore,

her reason for changing the variable was reminiscent of the

work of experts, with their attention to aesthetics and

optimization. N changed a variable name when she felt that

the new name would better represent its function in the

procedure.. She changed variable names twice, first

changing B to P ("P is for 'Product'"), than changing P to

F (for "factor").

With such an informed discussion of the high-level

aspects of variable use, it is surprising that N was unable

to complete the problem. N's lack of progress was largely

164

attributable to difficulties not in planning but in

implemention. As with other nonexperts, this was in

general characterized by a lack of flexibility and an

inability to interpret and utilize information in the form

of error messages, references sources and previously

learned facts. In particular, N had problems finding ways

to elicit interactive input and with punctuation.

Early in the protocol, N formulated the following

line:

PR "GIVE ME A NUMBER" ;P

(at a later point in the session, this became:

PR [TYPE IN A NUMBER] :P

and finally:

PR [TYPE IN A NUMBER :P] .

The original quotation marks were a carry over from BASIC

(this will be discussed shortly), but the line may also be

related to an INPUT statement in BASIC. Compare it with

this line in BASIC:

INPUT "GIVE ME A NUMBER"; P

The input statement shown here prompts the user, pauses for

user input and stores the inputted value in the variable,

P. Obviously, the only difference between this and the

line that N wrote was in the first word. This speculation

was supported by the observation that N seemed surprised

that her procedure did not take input from the user, even

though she understood the concept of an interactive

variable. Interestingly, when N attempted the problem in

165

BASIC, toward the end of the interview, she used the

original Logo configuration exactly and attributed to it

the ability to elicit user input ("If you type in '6' (the

variable is 6)"), At a later point, N introduced a

variable in the header line and from that point on she

supplied a parameter when using this procedure.

N, like all near-novices, had considerable difficulty

with punctuation. As mentioned previously, one of the

first lines of code that she wrote,

PR "GIVE ME A NUMBER" ;P

contained quotation marks as used in a BASIC "string".

(When she initially coded this line, N referred to the

punctuation as "parentheses"). N consistently used

quotation marks in this way until the interviewer

instructed her in the correct punctuation of a list with

square-brackets.

N prefixed all variables with a semicolon (rather than

the correct punctuation mark, a colon) for much of the

interview. About half way through the protocol she

remembered that the correct punctuation was a colon. This

correction was not prompted by any experimental results or

comments by the interviewer but by N's recollection alone,

and so it is treated as the activation of a dormant

memory. This seems similar but not identical to an

insight, which we normally think of as a working-out of

some theoretical question. It is more difficult to

166

understand why an individual remembers some facts easily

but not others, and how and why relevant facts are suddenly

recalled. In N's case, there are indications that she was

initially distracted by the juxtaposition of a semicolon

and a variable name in BASIC's INPUT statement, as

mentioned earlier. The visual proximity of the semicolon

to a variable and the close relationship between the

semicolon and the full colon punctuation probably led N to

suppress any memory of correct punctuation (probably rote

memory as opposed to functional encoding) and her adoption

of the former in place of the later. Once N did recall

that a colon was the correct punctuation to use in

association with a variable, she used it consistently from

then on.

L; Problem A-2:

L began in much the same way as N. She quickly made

her first attempt at coding the problem:

TO NO. :N

PRINT [GIVE ME A NUMBER]

PRINT :N * :N

PRINT [THE NUMBER SQUARED IS]

PRINT "

This was similar to N's work in two ways: (1) The only

provision for user input was as a parameter variable on the

header line, and (2) the line to print the squared value

(PRINT :N * :N) preceded a line meant to introduce it;

167

(PRINT "THE NUMBER SQUARED IS"). However, upon visually

reviewing the procedure L recognized that the order of

execution of lines 2 and 3 was incorrect. Her first

modification was to line 2, which she changed to:

MAKE "N N * N

This was her description of the procedure:

"This says, 'Give me a number', you put in the
number and then, whatever the number is, it will
make that number to double itself, so instead of
printing it, it will make it that."

Notice that L described the inputting of a user-supplied

value in the midst of program execution, as specified by

the problem, not as a parameter during the procedural

call. When asked to specify the point at which the

procedure takes in the number, L recognized this

contradiction ("(otherwise) it'll say, 'NO needs more

input' "). Sensibly enough, she began to search for an

alternative way to accept user input, first by asking a

direct question (which the interviewer refused to answer)

and then by inspecting the instructional script. Within a

minute she recoded line 2 to:

MAKE "NUMBER RQ

and deleted the parameter variable in the header line. She

vacillated for a few minutes on the use of MAKE in line 2,

but upon a careful reading of the instructional script she

returned to this configuration, with the following

comments:

"Now I understand, I need to REQUEST it, because
its asking a question; I want it to ask

168

them...for a number, and then they'll type the
number, and then it'll say, "THE NUMBER SQUARED
IS", and then I'll have to write a procedure to
square the number".

A few seconds later, L changed the 4th line to:

PR :NUMBER1 * :NUMBER1

but almost immediately changed PR to RESULT ("Because

that's what the result of the square would be"). Again, L

had come up with (essentially) a correct coding and then

abandoned it. L then tested this version of the procedure,

and Logo complained that "THERE IS NO PROCEDURE NAMED

RESULT", so she tried MAKE as an alternative to PR, and

made several other alterations. Within 6 minutes, however,

L returned to her original (and correct) coding of line 4,

resulting in an almost perfect coding of the procedure:

TO NO.

PR [GIVE ME A NUMBER]

MAKE "NUMBER1 RQ

PR [THE NUMBER SQUARED IS]

PR :NUMBER1 * :NUMBER1

END

The only error in this procedure is that RQ always outputs

a list, and the multiplication operator accepts only simple

numbers as input. When L tested this procedure, line 4

failed for this reason, and the interviewer quickly

explained the problem to L and suggested the insertion of

FIRST before RQ in line 2 as a way to fix it. (In Chapter

3, this problem was recognized as an irritating

169

distraction, resulting from differences in versions of Logo

used by various subjects). Immediately following this

explanation, 22 minutes into the interview, L inserted

FIRST before RQ in line 2, but through an oversight, she

deleted the colon in the second NUMBER1 in line 4. Once

again, her procedure was very close to done, but before

attempting to test it L began 10 minutes of alterations

that lead her further and further from completion. First

she changed line 4 to a MAKE statement. (This is the

second time the lead command of this line had been changed

from PRINT to MAKE). Rather than adding the missing colon

to the second NUMBER1 variable, L then deleted the colon

form the first NUMBER1, only to reinsert it a minute later,

ending up with:

MAKE "NUMBERl :NUMBER1 * NUMBER1

The error message (THERE IS NO PROCEDURE NAMED NUMBERl),

produced when L then tested this procedure, led her only to

replace the quotation marks with a colon and the colon with

an equals sign. Further corrections were no more

consistent with error messages received. L went on to

introduce the FIRST command after the first occurrence of

the variable, NUMBERl. Finally, in a postfix

configuration, L introduced FIRST after each occurrence of

the variable:

MAKE "NUMBERl FIRST=NUMBER1 FIRST * NUMBERl FIRST

And introduced a new line 5:

PR :NUMBERl

170

The equal sign that she used may have been a throwback to a

LET statement from L's light background in BASIC. The

apparent postfix configuration may have grown out of an

attempt to imitate line 2:

MAKE "NUMBER1 FIRST REQUEST

In other words, L could have seen this structure as:

MAKE (variable name) FIRST (remainder of line)

Soon after this, L and the interviewer agreed to abandon

the program. The protocol indicated that error messages

and the instructional script influenced L's work less than

her confusion about punctuation. Many of her changes to

punctuation seemed arbitrary; some may have been

experimental, but none (following the 22 minute mark)

showed indication of a strong, high-level theory about

punctuation and its relationship to variables.

0; Problem A-2:

0 read the problem and immediately coded it, as

follows:

TO SQ

PRINT [GIVE ME A NUMBER]

MAKE "N RL

PRINT [THE NUMBER SQUARED IS]

PRINT :N * :N

END

This coding was flawless except for a two minor errors:

(1) 0 used RL, a command to accept a user-supplied list in

171

the version of Logo with which 0 was familiar, rather than

rq, its equivalent in this dialect; (2) The multiplication

operator (*) requires its inputs to be words, not lists,

and so the user-supplied value must be converted into a

word. This can be easily corrected by inserting the FIRST

procedure before RQ on line 2. In this case, FIRST would

extract the first word from the list output of RQ,

essentially converting the user-input into a word.

On first typing line 4, 0 had used a quotation mark

and quickly gone back and changed this to a colon. Before

0 tested this procedure, he was asked to explain these two

types of Logo punctuation. At first 0 said he didn't know,

but when pressed he explained, "Quotes means...making the

variable; (the colons) mean using the variable...as far as

I know." 0's programming performance seemed strong; this

first pass at coding revealed no conceptual problems other

than the same lack of care regarding the data-type of the

inputted value that many others, including experts, had

shown. Aside from his tentativeness, his definition of the

colon seemed acceptable. His description of the quotation

mark, though not a general definition, properly identified

it as used in the MAKE statement.

As 0 went on to test his procedure, he encountered a

M* doesn't like [2] as input" error message. One would

have expected him to correct the error without much

difficulty, but 0's inability to glean information from

172

this and later error messages led him to a long and

rambling attempt to correct his procedure. The first thing

0 did was to change the spacing of the line in question,

but the same error message occurred. When 0 could suggest

no other means to repair this error, the interviewer drew

0•s attention to FIRST in the instruction script. 0

responded by inserting FIRST before the left-hand argument

of "*", though not before its right-hand argument, and the

error message recurred. In an attempt to suppress this

particular error, 0 changed the fourth line to read as

follows:

PR FIRST [:N * :N

This produced a new error, "FIRST DOESN'T LIKE []". 0

moved the close-bracket (]), to enclose the first ":N",

which printed ":N" before the original error message (*

doesn't like [2]...) recurred. At this point 0 asked the

interviewer for help and he was advised to use FIRST before

both occurrences of :N, changing line 4 to the following:

PR FIRST :N * FIRST :N

This repair left one problem for 0 to solve. The left-hand

input to "*" (FIRST :N) needed to be parenthesized in order

to prevent "from parsing :N before FIRST "converts it

to a word. However, 0 was frustrated by this problem as

well. Even with the suggestion that parentheses might be

useful in this situation, 0 had difficulty. At one point

he used square-brackets in place of parentheses. At

another point he generated a partially postfix expression.

173

reminiscent of one of L's productions:

PR :N FIRST * FIRST :N

In general, these examples demonstrate 0's poor sense

of how Logo expressions are parsed. 0's lack of a strong

conception of parsing was probably his most significant

problem, underlying his generally poor performance. This

nearly complete inability to bring meaning to his

interpretation of each of Logo's responses to his

experiments led 0 to express his sense of the futility of

any attempt to understand and correct his errors. His

response to each error message was haphazard, and aimed

toward superficial aspects of each error. Rather than

analyzing each error, 0 tended to exhaustively alter each

element of the errant line, in hopes of stumbling upon the

solution. As close as he was at the beginning of session,

0 was unable to independently complete his coding of the

problem, and his final attempt was far from the mark. The

difference between his initial proposal for coding and his

performance when he encountered errors was striking.

K; Problem A-2:

K, like R, had extensive experience with several

programming languages, including a great deal of

independent programming in Pascal and especially BASIC.

His performance was similar to R's in that he was able to

quickly and accurately code the problem, interpret error

messages and correct any coding mistakes.

174

Before K began any coding, he thought about the

problem for about 10 seconds and then immediately began

typing. In coding the top line, he started to introduce a

parameter-variable but changed his mind after a few seconds

thought and went on to the rest of the procedure. He coded

the rest of the procedure rapidly and with little

difficulty. His only error was the use of RQ, a command

from the Terrapin Logo dialect with which he was familiar,

as a means to elicit interactive user-input rather than RL

or RW from the Apple Logo dialect being used for this

interview. Once the interviewer explained the two options

available to him, K chose to use RW, recognizing that he

wanted the users input in the form of a word, and he easily

made this correction, leaving his procedure in the

following form:

TO SQ

PRINT [GIVE ME A NUMBER]

MAKE "NUM RW

PRINT :NUM * :NUM

END

In discussion, K suggested that, as an alternative, he

could have created a procedure in this dialect called

"RQ". He was not specific in the formulation of this

procedure, other than that it would include the RW command

175

and that the original procedure would need to call this new

procedure, which he calls "S", in some way. The

consideration of alternative problem solutions has been

seen only in the protocols of expert subjects and of the

other near-expert, and the assumption made by the author is

that K's attention to such alternatives grows largely out

of his extensive experience in other programming languages

rather than his modest training in Logo. At one other

point, when coding the fourth line, K began to code the

line with a MAKE statement. He, apparently, considered

storing the square of the user-supplied value in a second

variable, but decided on the above coding, with PRINT.

This is a second example of K's recognition of alternative

codings of the problem.

K had no trouble with punctuation. He used quotes and

brackets correctly and without the need for any aid. The

assumption made here is that in K's experience with other

computer languages, specifically with BASIC and Pascal, he

had developed both concepts and practical knowledge that

informed his behavior. One similarity between these two

languages and Logo is a distinction between commands and

data, an important issue in the use of Logo punctuation

such as the quotation mark and the bracket. Unlike BASIC

or Pascal, Logo utilizes a special punctuation mark, (the

colon) for a reference to the contents (as opposed to the

name) of a variable. K showed no difficulty in use of

colons, even though neither of the two languages with which

176

he was so familiar use special punctuation for a reference

to a value, relying on syntax alone to distinguish a

procedure call from variable-use.

Summary of Solutions to Remaining Problems

Much interesting data was collected on the eight

problems other than Problem A-2. The method used during

analysis was to successively refine the focus of this

study, first by transcribing and examining the general

performance of all subjects on the four "simple problems"

(see Figure 2) which were attempted by all subjects and

later by focusing on a particularly promising problem.

Problem A-2. A brief summary of subjects' performance on

the remaining problems is in order here (this data is

available upon request from the author). To begin with,

solutions of the three simple problems besides A-2, in

alphabetical-order, are discussed in some detail. The

remaining five problems, those classified as "complex" (see

Figure 2) were administered only where time permitted, and

generally only to subjects who had demonstrated mastery of

the prerequisite, simple problem. Each complex problem is

mentioned, also in alphabetical order, with highlights of

those solutions that seemed most intriguing. Finally, a

classification of observed misconceptions is presented in

outline form.

177

Problem B-2: Write a procedure called R100 that outputs^a
random number from 0 to 99, such that if you then type FD
R100 the turtle will draw a line segment, but PRINT R100
prints a random number from 0 to 99.

This problem required a simple understanding of a

function and the skills that enable a programmer to define

a function in Logo. Fundamentally, this meant an

understanding of the meaning, syntax and practical

applications of the OUTPUT command. Secondarily, solution

of this problem required the correct use of RANDOM. Both

of these ideas were covered in the Instructional

Presentation.

All three experts solved this problem quickly and with

efficiency, coding R100 as an operation. One of these, H,

felt that the wording of the problem was deceptive,

although he was delayed only briefly. In later discussion,

H explained that, in his initial interpretation, the latter

part of the problem statement ("...such that if you then

type FD R100 the turtle will draw a line segment, but PRINT

R100 prints a random number from 0 to 99") suggested the

inclusion of an if clause as a sort of filter, to determine

whether the user's input required that the procedure draw

lines or print on the screen.

Two non-expert subjects (E and L) showed virtually no

assimilation of either the concept of an explicit

procedure-result or the mechanics of the OUTPUT command

from the Instructional presentation. One of these two, E,

used a PRINT command in place of OUTPUT. It was not clear

►

178

if this error was related to the "language confound" that

led several subjects to use OUTPUT rather than PRINT on

Problem A-2 to mean "Output to the screen". L had a great

deal of difficulty with the problem, and especially the

syntax of RANDOM. Neither of the two were able to solve

the problem, or to show much progress on the problem before

they gave up on it.

Six subjects (J, K, R, 0, M and A) seemed to have at

least a vague sense of functional output as they began to

work on the problem. One of the six (J) seemed familar

with the word, OUTPUT, in the context of Logo programming

but worked in a disorganized and ineffective manner until

finally giving up on the problem. Three of these six (0, M

and A) misinterpreted the examples, which demonstrated how

the output of R100 could be used by two primitive

procedures, FD and PRINT, as the goal of the problem. Two

of them (L and A) initially tried to code R100 as a

procedure that drew a dashed line; the other (0) as a

procedure that printed a random number rather than

outputting one. 0 and A struggled with the problem,

showing little clear direction until they had produced

identical miscoding of R100, with PRINT in place of the

correct, OUTPUT:

TO R100

PRINT RANDOM 100

END

For both of these subjects, the error message (R100 DIDN'T

179

OUTPUT) led them to the correct coding as they appeared to

express some insight into the meaning of the OUTPUT

command. They both continued working on the problem but

made little progress toward a solution before quitting.

The two near-experts (K and R) searched the Instructional

Script for a procedure that, in the words of one, declared

an "explicit result". Both of them found and selected

"OUTPUT" quickly and immediately and correctly implemented

it.

M's work on this problem was very interesting. She

was one of those who initially coded it as a procedure to

draw a dashed lines. M claimed she had never seen the

OUTPUT command before the administration of this problem,

and no knowledge of the command was revealed in her code.

However, as she worked on a procedure that imitated one of

the examples, M began to discuss the passing of explicit

results from a primitive operator (RANDOM 100) to a

"destination" procedure (FD) in the line:

REPEAT 7 [PD FD RANDOM 100 PU FD 10]

She referred to her work as "Experimenting with

outputting", and though she eventually became frustrated, M

seemed to recognize the nature of her predicament,

eventually summarizing her work as a difficulty "making

some kind of connection between procedures". This seemed

to indicate not only the concept of an output but a concept

of the functional composition of operators, although M

could not forge these concepts into a proper implementation

180

of the actual problem. The author interpreted the

"crossover" conversation about functional composition as an

example of a shift from goal to theory-oriented activity,

as described by Smith & Inhelder (1975). This suggested

that she had a partially developed concept of OUTPUT in

place at the beginning of the protocol.

Before stumbling upon the OUTPUT command, A produced

at least three interesting configurations:

1. A raised questions about whether or not to use

':* with the numeric input to RANDOM, considering

"RANDOM :100 ."

2. She had difficulties with the mechanism for

variable assignment, especially with its syntax.

At one point she proposed using "RANDOM 100 = :S"

as the coding of a plan to assign a random number

to variable S.

3. A used MAKE in place of OUTPUT in one coding

of R100, producing the following:

TO RND100 MAKE "S RANDOM 100 PU FD 10

PD END

Problem D: Write a procedure called MOVE, that takes two
numbers as inputs, an X and a Y coordinate. The procedure
should move the turtle to that point on the screen. For
example:

MOVE 100 -5
should move the turtle to that point on the screen with an
x-coordinate of 100 and a y-coordinate of negative 5.

Problem D tested subjects' ability to use accept

parameter input to a procedure and input and to use that

181

input (as a variable) in the body of the procedure. SETXY

was discussed in the instructional presentation in the

context of a brief explanation of cartesian coordinates.

All three experts coded this problem quickly, as a

procedure using SETXY. One (P) paused upon first reading

the problem, then remarked that MOVE was really "just an

ALIAS for SETXY", and immediately coded the problem.

Several non-expert subjects tried to write MOVE using

only FD, LT and RT commands. E approached the problem in

this way, but had difficulty using parameters, and was

unable to conceive of a way that the procedure could be

generalized to work regardless of the turtle's starting

heading. 0 and L both succeeded using this approach. L

had to overcome many implementation problems. 0's solution

was much less error-ladden.

In his initial coding, K attempted to code the problem

as a procedure, MOVE, which had two inputs, :X and :Y. In

the body of the procedure, K used SETPOS, a primitive in

the Logo dialect that he was familiar with. SETPOS takes a

list-input composed of an x and a y coordinate. In order

to convert :X and :Y into a single list he tried to simply

enclose them within brackets:

SETPOS [:X :Y]

in the body of MOVE.

When he was unable to merge the two inputs in this way, he

shifted to using two other Logo primitives, SETX and SETY,

182

each of which takes a single number as input. K quickly

completed the coding using this strategy, and in a

follow-up discussion had the interviewer explain the fault

with his first approach. M solved the problem using this

second strategy (SETX and SETY), and claimed it was "just

like" other procedures she had already written. A also

solved the problem quickly, using SETX and SETY. She

initially coded the header line without variables, but

added :X and :Y immediately after deciding on this

approach. When asked about their function, she explained

that, "...those are just variables. They just happen to be

the x and y coordinate". Both these remarks and the speed

with which she solved the problem suggested that A had a

good grasp of both how to define local variables and how to

pass parameters.

R initially misread the problem as having to REQUEST

input from the user, but soon completed the problem once he

caught this minor error.

Problem E-2: Create a variable called NUMBER, such that
PRINT :NUMBER

prints out the number 7.

This problem, which involved a straightforward use of

MAKE to assign a value (7) to a global variable (:NUMBER)

was solved quickly by all experts, who found the solution

obvious.

183

The two near-experts, K and R, also solved the problem

quickly, as did 0. One interesting fact was that K, even

though he used MAKE correctly and in general used

punctuation with great understanding, could not explain the

reason for quoting the first input of MAKE. His rote use

of this punctuation this subject, whose work work in

general showed something approaching meta-programming

knowledge of the experts, suggests that this idiom,

unsupported by conceptual understanding, may persist for

some time without necessarily being reflected as an error

in coding performance.

R, on the other hand, could explain the purpose of the

colon in the line:

PRINT :NUMBER

"The colon tells Logo that what follows is not a constant;

look to what it points to.” In this passage, R described

the role of the colon both as a data-type designator and in

reference to its implementation at a machine language

level, where the variable can be thought of as a "pointer",

(i.e., referring only to the address of the memory cell

where the value in question is stored, not to the value

itself).

Most of the remaining non-experts were able to code

this problem correctly. 0 had no difficulty describing the

function of the colon as he coded the problem after a quick

reading of it. He explained that, "The variable has '7'

184

inside of it, so when I do 'PRINT :NUMBER', it111...print

out the number." A could not remember which command to use,

but returned to the Instructional Script, quickly found the

MAKE command and used it correctly to solve the problem.

M started by creating a procedure, D, with a parameter

variable, :N. In the body of the procedure, however, she

coded the MAKE statement on the first line, and a PRINT

statement on the second. M quoted the first input to MAKE

("N) and considered quoting the second input as well (the

number 7), showing that she had no clear conceptual

understanding of the quotation mark. Furthermore, M's

initial performance indicated that she did not distinguish

the parameter, :N, from the global variable. M called the

procedure without supplying an input, and in response to

the error message, D NEEDS MORE INPUT, M spontaneously

decided to change the global variable name from :N to

:NUMBER, then used procedure D (this time supplying a

numeric input), observed its execution and declared the

problem solved. What was interesting was that M's behavior

suggested that she did not conceive of global assignment

with MAKE, the goal suggested by a careful reading of the

problem, as distinct from procedural definition.

L tried a similar approach. She refered to the task

in the correct context; "I'm trying to create a

variable...", but an early attempt at the problem produced

the following code:

185

TO RICK :NUMBER

MAKE "NUMBER :7

PRINT :NUMBER

END

This coding and L's behavior throughout the interview

indicated that she, like M, did not carefully distinguish

between local parameter and global assignment in this

context. However the bulk of L's behavior for the

remainder of the protocol was in reaction to the error

message produced by ' : 7• , as she struggled over correct

punctuation for a number.

Problem A: Write a procedure or procedures that repeatedly
reads in integers until it reads the integer 99999. After
seeing 99999, it should print out the correct average.
That is, it should not count the final 99999.
(Note: This problem was taken from a novice/expert study of
Pascal (Soloway et al, 1981).

One of the experts solved this problem with a single

recursive procedure using an IF-THEN-ELSE clause to either

accumulate the sum of inputs into a a global variable and

increment another counter-variable or, when the flag value

(99999) was detected, print the average. The other two

experts used a recursive operation as a sub-procedure.

This sub-procedure monitored each input to determine

whether the flag value had been entered, at which point it

outputed the sum of inputted values. This sum was used by

the super-procedure to print the average.

186

K, one of the near-experts, wrote two procedures, a

main procedure, AVG, and SUMMER, a sub-procedure to collect

numbers. Initially, K made an attempt to code SUMMER as an

operation, but he encountered many difficulties with this

approach, primarily related to the pragmatics of outputting

the correct value in all situations. Finally, he abandoned

this idea and coded SUMMER as a recursive procedure, using

a global variable to accumulate sums and passing that value

by refering to that global variable in AVG. In summarizing

his solution, K attributed the failure of his initial plan

to Logo's limitations, specifically an (imagined) inability

to deal with explicit results, (this even though K had used

OUTPUT successfully in Problem B-2).

R, the other near-expert, had an initial plan that was

sound: write a recursive procedure, using an if clause to

accumulate totals or print the average value, depending on

whether or not the user inputs the flag value. But, a

succession of minor errors resulted in error messages that

distracted him from this plan, leading him in an outward

spiralling of increasing insecurity as he questioned his

more and more basic assumptions about Logo. R ended up

with a slightly different plan that used two procedures, a

super-procedure that initialized two variables to 0 (R had

been confused by earlier results caused by left-over values

in a global variable from previous problems) and then calls

a recursive sub-procedure with four IF clauses (two to

accumulate the total and recurse if the flag value was not

187

encountered and two to decrement the counter variable

(which was incremented upon entering the procedure) and

print the average when it did encounter the flag value.

He, too, accused Logo of depriving the programmer of the

ability to declare explicit results.

M encountered what I call "temporal difficulties"

(difficulties related to the timing aspects of program

execution) in her failed attempt at this problem. After

her initial plan to write a recursive procedure that stops

upon encountering the flag value, M shifted to the idea of

collecting all values at one time, in a list, and began

asking questions about the use of ITEM extract elements

from a list. This second plan would require an organized

plan to traverse the list, computing the total of it's

elements. However, she was unable to implement either of

these plans, and ended up with the following

configuration:

TO D

PR NUMBER

MAKE "X FIRST RQ

MAKE "Y ITEM 2 RQ

MAKE "Z ITEM 3 RQ

OP :X*:Y*:Z/2

END

Ignoring what appear to be more straightforward mistakes,

the failure to quote NUMBER and the incorrect divisor in

her averaging algorithm, notice that M used REQUEST in each

188

of lines 2, 3 and 4, as if it were a variable that held the

desired input-list rather than a procedure to allow dynamic

interaction with the user. However it would be an

oversimplification to summarize M's misconception as simply

mistaking RQ for a variable. The author's analysis is that

a variety of conceptual weaknesses in both plans,

especially a number of weak temporal concepts, led M to

spliced together parts of both plans into the odd

configuration seen above.

When she ran this procedure M was surprised and unable

to explain its behavior and soon gave up on the problem.

In a subsequent discussion of the code, M explained that

line 1 "...should take the first number, second line,

second number, third line, third number, because it says,

'ITEM 3 of the list'", but when asked, "What is the name of

the list that ITEM 3 is taking the 'Z' from?", M answered,

"Number", referring to the argument to the PRINT statement

on the first line of the procedure, not RQ, as one would

expect. During her later work on Problem E, M discussed

her conception of REQUEST: "When you have it ask a

question and you get an answer then you can use that answer

by doing the command RQ." Here M describes RQ as an active

agent in both eliciting a value and refering to it. Rather

than saying that M believes that RQ is a variable, the

author believes that M associates RQ with the variable in

the frame:

MAKE "(varname) RQ

189

This frame, which was cited in the instruction

presentation, has the function of saving user input for

later reference. REQUEST plays the role of forging a

communication passageway from the programmer (M) to the

user (some as yet undesignated individual who will interact

with this program at some point in the future). It is the

variable that serves a storage function, not RQ. M has

trouble making this distinction, probably because she is

unclear about the temporal aspects of RQ in the above

frame.

Conceptual aspects of ITEM in M's second,

list-traversal plan are weak and ill-defined as well.

Problem A calls for a procedure that generalizes to any

number of user-input values. For those that solved the

problem, this was done with some type of recursion and

either a global variable (in a recursive procedure) or a

local variable (in a recursive operation). The latter

would appear to be more useful here, since M's intent was

to collect all values at one time as a list, but she was

unable to develop such a plan. The above configuration

represents M's attempt to approximate the behavior of a

general plan for the purpose of the interview, but instead

of using FIRST, ITEM and the addition and division

operators to compute the average, in effect mimicking the

effect of a (non-general) operation, M chose to extract

each value from the pseudo-list and store each into a

variable before arithmetically manipulating them. M seems

190

to have seen this as a simpler approach although it clearly

takes more steps than operating on the values directly. M

probably felt that variables are more permanent than

operational results. (An alternative explanation is that

punctuation difficulties in expressions using any of the

tightly-binding arithmetic operators may lead some

programmers to favor more easily puntuated variables over

function calls.

Problem B: Write a procedure or procedures that compute(s)
the factorial of a number. Try to put it in as brief a form
as possible.

The mention of brevity in the wording of this problem

was designed to encourage its coding as a recursive

operation. All three experts solved it rather quickly in

this way. K's solution was also a recursive operation, and

he described an alternative recursive procedure using

global variables. R initially attempted to solve the

problem with a recursive operation but was unable to

complete it and shifted to a recursive procedure plan.

This led to a quick solution. Two near-novices (L and A)

tried this problem and failed. Both of their attempts

showed some evidence of a high-level, recursive plan but

both of these subjects encountered implementation

problems. One (A) made initial attempts to solve it as a

recursive operation, then shifted to recursive procedure

plan using global variables but was unable to implement

either plan.

191

Problem C: Write a procedure that, when run, finds the
turtle's present compass-heading and points the turtle to a
new heading, one-half of the the starting heading. The
procedure should operate correctly, no matter what was the
starting position or heading of the turtle.

This question was meant to examine subjects'

understanding of a primitive operation (SETH). Results for

this problem, however, were not very interesting, because

most of the subjects who attempted it solved it without

much difficulty. All three experts, both near-experts and

two near-novices (L and A) wrote procedures that utilized

both HEADING and SETH commands. All but one of these

non-experts found this information after an efficient

search of the script. One of the near-novices (A)

correctly utilized the SETH command in a procedure that

always set the turtle to a constant heading. This solution

did not meet the constraints of the problem, even though A

considered her solution to be complete.

Problem E: Write a procedure called COUNTER that takes no
inputs, and that prints out how many times it has been
used. For example, the first time you type COUNTER, it
will print "1", the second time "2", etc.

The expectaton was that any subject who understood the

permanent nature of a global variable would have been

likely to use a global variable with the program, COUNTER,

to solve this problem. All three expert subjects solved

this problem quickly using this strategy, although one of

them (H) briefly considered using DEFINE to dynamically

192

redefine COUNTER before he shifted to a global variable

strategy and immediately solved the problem.

Both near-experts immediately recognized the same

strategy to quickly solve the problem. Neither mentioned

the idea of pointers in their solution, but considering R's

discussion of Problem E-2 it seems likely that one or both

of them had used pointers to create linked-lists in Pascal,

a technique closely rated to indirection in Logo.

Only two near-novices, M and A, attempted Problem E.

Upon reading the problem, M immediately focused on the key

question, "How do you make (a procedure) aware it's been

used?" She recalled a technique to draw a figure known as a

pursuit curve "...by remembering coordinates", an apparent

reference to the MAKE command. However, M then considered

using REQUEST, based on the following logic:

"Each time you typed COUNTER, you have to use the
knowledge that you typed COUNTER before, again.
So you have to use what has been typed in again.
So that's what REQUEST does. The person types in
something and REQUEST uses that again, for
something else."

M's misconception of RQ (a confusion about timing aspects

of the familiar frame,

MAKE "(varname) RQ

mentioned earlier) seemed to have resurfaced in her work on

this problem. Again, this was reflected as a failure to

distinguish between the function of RQ, a command to bridge

193

the partition between program time and run time, and the

storage function of a variable. She went on to suggest an

association between this problem and the technique of

recursion used in association with a counter variable.

"You need recursion, anyway", she said, "if it were used

right...upping itself". Neither the association of the

problem with RQ nor with recursion led M to fertile

intellectual ground, and failing to make much progress she

soon gave up on the problem.

A found MAKE in the Instructional Script and developed

the following procedure:

TO COUNTER

MAKE "C C+l

MAKE FRED RQ

IF :FRED=[COUNTER] THEN MAKE "FRED :FRED+1

This procedure contains several punctuation errors, and

when A began to test it they produced error messages that

led A to give up on the problem very quickly. (It was the

last of eight problems that she had attempted, and A may

have been too fatigued to work seriously on debugging this

procedure). Clearly the procedure was incomplete. A

mentioned the possibility of adding a print statement. The

first line (MAKE "C C+l) which she later deleted but

considered reinserting just before she stopped work on the

problem, was an attempt to implement a counter-variable,

like one she had found in the script. (Notice, however,

that she left out the colon punctuation in the second C).

194

In the second line, although she omitted a quotation mark,

A seemed to have made an attempt to implement a frame-model

for an interactive variable. Her plan might have involved

making COUNTER recursive, and one could consider the

attempt to increment FRED in the IF statement of the third

line as a simple oversight in a plan to endlessly accept

input from the user, incrementing the counter variable (C)

whenever [COUNTER] was input. There is not sufficient data

to verify this, however, since A mentioned neither the role

she intended for FRED nor any plan to make the procedure

recursive. A's inconsistent use of variables and variable

punctuation, however, and the observation that the

resulting error messages distracted her from making any

further progress on the problem, support the authors

contention that difficulty in using variables is a serious

problem for some Logo programmers at this level.

Problem F: Type in the following commands:
MAKE "BILL "TEACHER
MAKE "GEORGE "PROGRAMMER
MAKE "SALLY "PROGRAMMER
MAKE "PROGRAMMER [$20 PER HOUR]
MAKE "TEACHER [$15 PER HOUR]

Now write a procedure called WAGE, that takes one input.
If the input is a person's name (e.g., SALLY), the
procedure should print out that person's salary. For
example:

WAGE "SALLY
should print

$20 PER HOUR
(Sally being a programmer).

All three of the experts and one of the near-experts

(R) recognized that this problem could be easily solved by

using THING to interpret the contents of one variable as

195

the name of a second variable, a process called

"indirection". All four of these subjects quickly

developed a procedure that contained a key line of either

the form:

PRINT THING :(varname)

or:

PRINT THING THING "(varname)

and completed coding with little difficulty. The second

near-expert (K) started with a similar plan to solve the

problem using THING, but began to have trouble with once he

tried to code the key line. His early coding attempts used

SALLY, the variable name used in the example, punctuated at

different times with a colon, a quotation mark and with no

punctuation at all. Since K had previously demonstrated an

understanding of variable punctuation, this was interpreted

as being primarily due to difficulties with the complexity

of the dual-indirection of this line. K eventually

developed a rule to algabraicly manipulate variable names

and punctuation. Essentially, K determined that a colon

could be replaced by the word, THING, followed by a space

and a quotation mark. Following this rule carefully

allowed him to successfully finish the problem quickly

thereafter.

All three of the near-novices who attempted this

problem came up with interesting approaches. M, who would

later use a MAKE statement to successfully solve Problem

E-2 stated her conviction that a MAKE statement would only

ft.

196

be permanent if included within a procedure. She appeared

to understand some high-level aspects of indirection and

discussed the similarity of this problem of this to a

nested-repeat statement. She appeared to understand the

what a global variable was and the use of a colon to

punctuate it, likening the problem to procedural output. M

was able to recall THING as a useful tool. However, her

critical problem was an apparent inablity to utilize THING

to formulate the key line. In her later work on this

problem, M created a chain of values with MAKE statements,

typing:

MAKE "A "B

MAKE "B "C

MAKE MC "D

but became distracted by this activity, as she stated,

"O.K., Now I've got MAKE A B, MAKE B C, now I need MAKE C

A." In her example, M created an isomorph of the problem

showing that she recognized its chain-like nature, but the

solution required that she repeatedly apply THING to

unravel this chain, arriving at the desired value, not use

the MAKE statement to assign a new value to "A.

A had various difficulties in this problem with

punctuation and variable use. She inserted all of the MAKE

statements called for in the problem statement within the

procedure, WAGE. Like M, she seemed believe that the MAKE

statement had to be included within a procedure to make

them permanent, although she did eventually remove them

197

from the procedure. She wrote WAGE as a procedure that

took no inputs, but she consistantly supplied inputs when

she ran the procedure. Eventually she included a line to

REQUEST a value from the user, but to the end of her

interview she ignored the error messages that were caused

by irrelevant and unused input. A did not recognize the

possibility of chaining values through indirection.

Instead she used IF statements to deal with each user input

as a special case. For example, she coded one line read:

IF :PL1=[BILL] THEN PRINT :TEACHER

Notice that A did use the colon here to represent the value

stored as TEACHER. Though her coding was a slow process

and she never inserted a parameter variable in the header

line to accept the parameters she continued to supply at

run-time, A was able to eventually complete a program that

worked with the user-supplied input.

Like M, L put a parameter variable (:W) on the header

line. In her initial attempts to write a PRINT statement,

L typed:

PRINT :NAME

although she had made no attempt to assign NAME a value.

This seemed to be an example of what Bonar and Soloway

(1985) call a "language confound", in this case the

attribution of the variable name with a naturalrlanguage

meaning.

198

In her work, L refered to the instructional script,

located and read information on MAKE and colon punctuation

but after considering THING she dismissed that critical

section of the script. "THING, quotes. Bill wouldn't

help"/ she remarked, "(because) its just like the colon." L

did not recognize that a strategy based on indirection, in

which she could chain the value of SALLY to the value of

PROGRAMMER by using THING twice, or in combination with the

colon. Like A, she eventually solved the problem by using

IF statements instead of THING.

Protocols of all subjects on all problems were viewed

to locate programming errors and to determine the

misconceptions that most plausibly explain the errors.

Errors were classified as being caused by (1) variable

misconceptions, (2) "pathfinding problems" and (3) mixed

causes. This classification of misconceptions, with

references to one or more representative examples, are

included as Table 10.

FOOTNOTES
Chapter 4

Adelson, B. "Problem solving and the develpment of
abstract categories in programming languages". Memory ana
Cognition 9, 422-433, 1981.

Soloway, E., Ehrlich, K., Bonar, J. & Greenspan, J. "What
do novices know about programming?". Technical Paper, Yale
University, 1982.

Hoc, J.M. "Developmental stages in learning to program"
International Journal of Man-Machine Studies, 9, 87-105,
1977 .

Miller, M.A. "A Structured Planning and Debugging.
Environment for Elementary Programming", in Intelligent
Tutoring Systems, (edited by Sleeman, D. & Brown, J.S.),
Academic Press, 1982.

Bonar, J. & Soloway, E. "Pre-Programming Knowledge: A Majo
Source of Misconceptions in Novice Programmers",
Human-Computer Interaction, Fall, 1985.

Davidson, L. "Logo Syntax: Another Story", (unpublished
manuscript), 1986.

Smith, A. & Inhelder, B. "If You Want to Get Ahead, Get a
Theory", Cognition, 3, 195-212, 1975.

199

Table 10
Classification of Misconceptions From All Problems

Variable Misconceptions
A. Problems with the general concept of VARIABLE

1. "TEMPORAL" misconceptions
-M, Prob. A;

confusion between the items of an input-list
and the order of consecutive reads.

2. Questions about the permanance of a variable.
-M, during presentation of Logo

commands: after MAKE "C :C+1, PR :C
"will (another) PR :C still be same?"

-MAKE is not permanent unless it is inside a
procedure (M, Prob. F), (A, Prob. F)

3. Viewing variables created with MAKE as distinct from

variables created as input
-A, Prob. A-2

4. Confusing a variable with its value (in header)
-L, Prob. E-2 (attempts " :7 ")

5. Dificiencies in the concept of an explicit result
-(M, Prob. B-2) Fails to distinguish "operation"

from "procedure" with protracted discussion of OP
in different contexts (result-passing of primitive
procedures; OUTPUT used for PRINT)

-(L, Prob. B-2) Sees no possibility of a
procedure having an output

-Using MAKE for OUTPUT (R, Prob. A), (M, Prob B-2)

B. Difficulties in resolving ambiguous language
1. Natural Language confounds

a. Treating PRINT as synonomous w. OUTPUT ("Output"
interpreted as "outputting to the screen").

(M, Prob. A-2, (A, Prob. A-2), (A, Prob. B-2)
b. A, Prob. D, uses MAKE SETX :X to "make" a dot.

2. Using an explicit command as a natural language concept
-M, Prob. B2, considers "using OUTPUT" to use a
primitive operation that has an output

-A, Prob C, confusing the atribute of "heading"

w. the HEADING command.
. Errors attributable to "Pathfinding" problems

A. "Avoidance" theories
1. Blaming Logo after negative theory-responce during

debugging
-denial of Logo's ability to handle functions

and their parameters. (K & R, Prob A)
2. Reading a problem as simpler than it is

-M, Prob. B-2 seeing an operation as a simple

procedure
-(A, Prob. B-2), (E, Prob. B-2)-

3. (A's) Inventing false rules:
"RANDOM can't have a variable for input.";
"Can I have variables in a MAKE statement?";
"You can't have a variable after FD, right?"

B. Incomplete Idioms

200

201

1. Mentally clumping procedures by idiom during recall.
-M, Prob. A2 uses OP inappropriately, as if she

knows it "belongs" but not how to impliment it
2. Recognizable idioms in an incomplete form

-A, Prob. B (almost completes recursive factorial
, then abandons it for an iterative approach).

(and see 3, Mark & Larry, Prob. A)
3. two strategic plans interfering w. one another

-R, Prob. A, typing first MAKE var. value, then
OUTPUT (in what he stated was an operation)

-R & K, Prob. A, ending up with an inefficient
strategic plan (AVG as recursive procedure vs.
recursive operation)
CONFOUNDED by a PASCAL paradigm?

4. difficulties finding or selecting (once found)
appropriate facts

-Passing over information in SCRIPT
(L, Prob. F, reads but passes by THING)
-Tries, then deserts correct construct
-A, Prob. A-2, uses OP, then deserts it

Errors of mixed interpretation
A. Difficulties with syntax

1. Failure to supply "destination" procedure
2. Irregular direction of operational flow

-A, Prob. A-2, MAKE S*2 RQ for doubling the input
-A, Prob. B-2, RANDOM 100 - :S ("trying to get the

of the random pick"))
-0, Prob. A-2, (e.g., ...FIRST :S * :S FIRST

3. Difficulties w. quotation marks
-Quoting commands within brackets

(Larry- [:X :Y])
-K's inablity to explain QUOTES in MAKE "N (value)
-Quoting dots

M, Prob. A-2: MAKE ":X ...
A, Prob. A-2: PR ":S * 2
A, Prob. A-2: MAKE ":S RQ

B. Inconsistancies in use (of colons, OUTPUT, etc.)
-inconsistant use of OP in a recursive proc.
(K, Prob. B & Prob. B-2

-OP for simple case only)
-R's (Prob A), inconsist use of : with variables

C. difficulty COMPUTING WITH an internal model (as though "keeping

too many balls in the air")
-K, Prob. F, confusion about "direction of reference" of

co I on
-L, Prob. F, acknowledges parts of a solution

(:BiI I="Programmer, :Programmer = [$20 PER HR.]) but not how

to combine them.

D. simple slip
-R, variable names didn't agree (Prob. A, Prob. A-2)

CHAPTER 5

SUMMARY, IMPLICATIONS AND RECOMMENDATIONS

Summary of Results

As noted in Chapter 3 (see Limitations), the chosen

methodology of this study precludes any claim to objective

results in the sense of statistically proving or disproving

a particular hypothesis. Rather, the goal of a study such

as this must be to describe important aspects of subject

behavior and to generate hypotheses that plausibly address

the important and intriguing questions raised by such

behavior. The results reported in Chapter 4 are primarily

comprised of a set of observations of the behavior of

expert and nonexpert programmers accompanied by the

author's running commentary, which represents an attempt to

reasonably interpret these observations. It is important

now to shift from the specifics of microanalysis to a more

general summary of the results cited in Chapter 4:

1. The protocols of nonexpert subjects, especially of those

classified as "near-novice" (see Chapter 3) included many

cases in which the misconceptions displayed by the subjects

were local to the problem and inventive in nature. Very

few resembled the sort of strongly held, resilient and

high-level misconceptions described by Clement in his study

of the "Students and Professors problem" (Clement, 1980).

In fact, most of the observed errors seemed more

202

attributable to "missing conceptions" (the absence of

strong, guiding, high-level predictive assumptions) than

203

"misconceptions" (mistaken assumptions or wrong facts).

This lends support to the conclusions of Brown & VanLehn

(1979) and Bonar & Soloway (1985) that many observable

errors are "inventive" in the sense that they are

idiosyncratic and appear to be generated by the

problem-solver rather than learned.

The author confirms the observations of these

researchers that such errors can occur when a subject

encounters a knowledge gap and reasonably attempts to fill

that gap with knowledge drawn from general experience (what

Bonar refers to as "bug-patches"). This pattern seems to

reflect the problem solver's need for closure on a

problem. It also demonstrates that the task of integrating

descriptive knowledge into one's existing knowledge base is

a complex process.

The implication of "bug-patching" is that descriptive

knowledge must be forced into a packet of meaning in order

to be useful and retrievable during problem-solving. This,

presumably, is the what drives the need for closure. This

supports a major conclusion of this study: that neither a

procedural nor a descriptive model alone is sufficient to

explain the acquisition of a complex cognitive skill such

as programming; rather, descriptive knowledge and

procedural knowledge must interact in complex ways and over

204

an extended period of time, leading eventually to the

meta-programming knowledge seen in expert programmers (see

also #6, below).

2. Experts' solutions on Problem A-2 were fundamentally

similar to one another, and differed markedly from

nonexpert solutions to this problem. I would concur with

Adelson that novices seemed easily distracted by

superficial information — by any surface resemblance of

this problem to a familiar problem (Adelson, 1981). Their

most common difficulty seemed to be in integrating new

knowledge into their existing knowledge-structure. One

example was in A's solution to problem A-2, when A, failing

to see a similarity between a new technique for defining

variables (with a MAKE statement) and a familiar one (as a

parameter in the header line) ended up inventing a new

entity -- a "name" as distinct from a "variable".

Experts, on the other hand, have the ability to ignore

irrelevant similarities. They appear to have, embedded

within their image of a programming problem, heuristic

information or meta-programming knowledge that enables them

to focus only on certain branches of the tree of all

possible associations with the problem (Newell & Simon,

1972). The assumption made here is that this knowledge is

specific to the domain of programming rather than a general

cognitive skill, such as a general ability to recognize the

meaningful and ignore the trivial.

205

Furthermore, misconceptions interfered with the

problem solving of many nonexperts, especially during the

introduced of new material, and even after approximately 60

hours of formal instruction and hands-on experience. The

author assumes that this holds true in general, and that

misconceptions persist and can hamper programming ability

well into intermediate stages of programming. This seems

to favor the wide scope of time favored in a study such as

Hoc's (1977), which recognized an extended period of

intermediate programming ability, over the short time-frame

of Anderson's model (1984). If a student has been given a

clear introduction to new facts and has demonstrated

knowledge on a limited sample-problem or two, teachers and

researchers should not assume that the student is

performing at expert level, even in this limited domain.

Rather, it is the view of the author that programming

expertise (meta-programming knowledge) is a gestalt, a

wide-view of the whole that is more than the sum of its

parts. This develops gradually as procedural and
$

descriptive knowledge are reorganized and ultimately

assimilated into the programmer's existing knowledge

structure.

3. The most common variable misconceptions were related to

Logo punctuation and syntax. For example, a number of

subjects exhibited a misinterpretation of quotes in the

first input to a MAKE statement. Three subjects, M, A and

206

L, came up with the following configuration in their work

on Problem A-2:

MAKE ":N REQUEST

Similarly, A struggled over the question of whether or not

to use quotes before a colon-prefixed variable in a PRINT

statement, seriously considering the following

configuration:

PRINT ":N

Similarly, M tried putting the variable inside brackets in

the same problem:

PRINT [:N]

L seemed to confuse variable name and value as she

attempted to create an input parameter and generated the

following configuration:

TO FOO :7

M was unable to explain the meaning of the quotation marks

in a correctly configured make statement, nor was K (who

otherwise performed at close to expert level).

All of the above cases demonstrate a lack of

understanding of the specific function of each element of a

variable idiom. For example: the MAKE primitive, the

quotation marks before its first input, the variable name

that properly follows the quotes and the assigned value

(MAKE'S second input) all have distinct and particular

functions, as does a colon that precedes a variable. Such

punctuation errors related to variables occurred through a

broad range of student protocols.

207

This difficulty with punctuation differs from what has

been reported in studies of the learning of other computer

languages: the syntax of a language is internalized before

semantic features. For example. Soloway et al (1982) found

that implementation plans, including syntactical knowledge,

were in place before higher level tactical and strategic

plans. This suggests that there are aspects of Logo syntax

that cause unusual problems for new programmers. The

observation of such an apparently general difficulty

presents a challenge to Logo instructors, and challenges

the notion of Logo's "low threshold". Variable punctuation

may be the most awkward aspect of the Logo language; it is

regarded by some as a language design issue that has not

been satisfactorily resolved. One new version of Logo that

Papert has been closely associated with, LogoWriter, has

added a new command as an alternative to MAKE, with new

syntax:

NAME (value) (word)

It remains to be seen whether this new syntax will be more

easily assimilated, but since the quotation marks and colon

have been retained unchanged we see little reason for

optimism.

4. Some, but not all, near-novice subjects had difficulty

with aspects of the REQUEST command, not unexpectedly. The

issues of timing (programming vs. run time) and person

(programmer vs. user) were seen as contributing to such

208

errors, but punctuation difficulties were deeply

intermingled with these other occurrences and may have

contributed to such errors (see #3, above). For example,

one near-novice (A, Problem A-2) constructed the following

line:

MAKE S*2 RQ

Although dialog revealed that A intended S to be a variable

name, she used neither a colon to refer to its contents nor

quotation marks to use S as a literal input to MAKE.

However, deeper misunderstandings about variable assignment

were suggested by this line. From her comments, it was

clear that A meant to take input from the user, process

that input using multiplication and store the result in a

variable. By trying to multiply the first input to MAKE, A

shows a misunderstanding either of the way the inputs will

be interpreted when this line is parsed or a complete

misunderstanding of the timing aspects of interactive

variable assignment. The dialog and other programming

experiments associated with this protocol lent greater

support to the latter rather than the former explanation.

L and N's work on the same problem more strongly

indicated a confusion about the timing of this idiom. Both

of these individuals created procedures in which the

REQUEST line preceded a line that prompted the user for

input. However, both described their procedures as

executing in a normal manner. In both cases, the

programmer explained the order of execution of the switched

209

lines in terms of the natural language meaning of the

prompt, a phenomenon related to what Bonar & Soloway (1985)

labeled a "language confound" (see also #5, below) In other

words, both subjects ascribed computational power to

literal data, although such data is, in formal terms,

meaning free. Neither subject generated any example of

such data-driven order-of-execution in other problems, and

so the author interprets these errors as arising out of

"temporal" confusion related to the use of the REQUEST

command.

5. Several subjects (A & M) clearly demonstrated a language

confound, namely the confusion of the command, OUTPUT with

the idea of outputting a message to the screen. This

confirms Bonar & Soloway's observation that natural

language can interfere with learning to program in Pascal

(1985). This observation is especially interesting in that

the phenomenon seems to cross language boundaries. It also

contributes to a view that the concept of procedural OUTPUT

is a difficult one.

The OUTPUT command gave difficulty to the two

near-experts as well. Both near-experts initially

attempted to use OUTPUT to solve Problem A (average all

user input numbers until a "flag" value is entered) as a

recursive operation, but abandoned the strategy when they

encountered difficulties with this approach. Eventually,

both turned to turned to the use of global variables as an

210

alternative to OUTPUT, and both completed a solution of

Problem A (as a recursive procedure) using this strategy.

Similarly, Problem B (write a procedure that gives the

factorial of any number) suggested the use of the OUTPUT

command in a recursive operation (this was the approach

chosen by all three experts). Both of the near-experts

abandoned initial attempts to code the problem this way,

choosing an iterative model with global variables instead.

In both of these problems, both near-experts blamed their

difficulties on what they imagined to be Logo's inability

to specify either procedural output or to allow recursion,

although one of the two admitted difficulty with recursion

in Pascal as well. In these cases, both near-experts

demonstrated a rigidity in their approach and in their

ability to integrate new information from the instructional

script about OUTPUT.

Rigidity of this kind was not in evidence in the work

of these near-experts in most other areas, however.

Neither demonstrated any difficulty using or generating

local variables, global variables, interactive procedures

that poll the user for a value and store it in a variable

or punctuation such as colons or quotation marks. These

skills seem to have been directly transferred from their

own "meta-knowledge" developed as a result of their

experience programming with other languages. The one

exception seems to have been in utilizing explicit results

to compose recursive operations, as mentioned above.

6. Procedural knowledge acquisition is less

"matter-of-fact" than one would think after reading

Anderson's article (1984). Specifically, the following

observations may challenge the simplicity of Anderson'

model:

-A subject's plans are often directly reflected

as behavior. This makes procedural knowledge

(incorporated in the diagrams of this study as

"plans") much more obvious to the observer than

descriptive knowledge. So it is more noticeable

and measurable. However, these two types of

knowledge should not be thought of as isolated

from one another. The detailed probes of this

study have revealed a number of misconceptions

that appear to be a strong causative factor of

procedural errors. Some of these were explicitly

described by subjects but most were not.

-The claim of Adelson (1981) that expert

programmers are able to adapt to unique and

unfamiliar situations is supported by the

observations of experts in this study. In

particular, experts consistently demonstrated an

understanding of ambiguous solutions and

questions of program optimization and aesthetics;

but it is difficult to explain this solely with

Anderson's notion of pre-packaged clusters of

compiled procedural knowledge. Rather, the

experts in this study showed an expanded

awareness of the implications of various elements

of programming activity and of connections

between the parts of a programming problem. With

these observations, programming expertise seems

more closely related to an ability to form

analogies than to a rule-driven mapping of a

problem to a solution.

-Anderson gives several examples of novice

programmers, after being presented with factual

information about a language-feature and one or

two examples, '’compiling'’ this information into

an internalized cognitive skill ("procedural

knowledge"). In this study it was observed that

procedural knowledge sometimes develops with much

more difficulty, stretched out over the "learning

life" of a student, (i.e. more stretched out over

the learning curve), and that descriptive

knowledge appears to exert an important influence

on planning. For example, consider the

difficulties of several subjects internalizing

correct punctuation for a MAKE statement,

mentioned earlier. In none of the protocols

subjected to microanalysis was consistent mastery

of the use of colons and quotation marks

demonstrated without an accompanying high-level

213

conceptualization of a variable (e.g.,

variable-as-container). We hypothesize that

procedural knowledge as it might be observed by a

teacher or researcher is built upon a conceptual

framework; it requires the presence of an

existing body of conceptual knowledge into which

new knowledge must ultimately become

assimilated.

Implications

Implications for Education

1. Implications for Computer Literacy

There seems to be a growing interest in creating a

new, general, and mandatory "computer literacy" requirement

in schools, i.e. a policy requiring that all students be

exposed to certain aspects of computer technology. Some

educators believe that such a policy should be provided

primarily to counteract "computer anxiety." They believe

that the thrust should be to give students enough

familiarity with computer hardware and software to be

comfortable when they use computers in the future. This

seems a modest objective, although it does not clearly

suggest which computer applications should be emphasized.

214

However, others believe that this is too shallow a

goal, and that the mandate for the schools should be to

teach students those skills that are likely to be useful to

them in college or in the workplace. While there is no

clear consensus as to exactly what these skills should be,

some that have been proposed are: word processing, usage of

data bases and business software, and computer

programming.

The general performance of the nonexperts in this

study seemed to indicate that some computer skills

associated with computer programming are slow to develop.

The development of programming ability (and, probably of

other computer skills as well) requires not only the

learning of facts and the development of procedural

knowledge but also their incorporation into one's existing

framework, occurring over a significant period of time.

Such an investment of time and effort should not be taken

lightly. This suggests that a full-scale commitment to the

mandatory teaching of computer skills be approached with

caution, at least until it becomes clear exactly which

skills will truly become a requirement for informed

citizens of the future.

2. Implications for a theory of teaching

It has been almost 10 years since the introduction of

low cost microcomputers into the consumer market and.

215

subsequently, into many classrooms, but educational results

appear to be quite uneven. Why do some students learn to

master computers and others remain "computer illiterates",

"computer anxious" or "computer phobic"? Certainly,

affluent students have differential access to computers

over those less fortunate, both at home and in public

institutions such as schools in the more affluent

communities where they are likely to live. But economic

differences, while important to consider and to try to

counteract, do not tell the whole story. For example,

Turkle (1984) has expressed her concern that boys seem to

dominate girls in access to computer resources.

Personal interest and motivation may be an important

factor in explaining how some children attain computer

mastery. Two high school age subjects (the two

near-experts) each claimed hundreds of hours of programming

and other computer experience. The results of this study

suggest that an extended amount of hands-on experience such

as this is necessary for true skill-mastery. While all

educators recognize and support diversity in the interests

of their students, there is something disturbing about the

gap between computer "haves" and "have nots". What does

one say to the student who expresses a sincere wish to

learn how to program but is frustrated by the difficulties

she encounters in the process? (Some of the subjects in

this study fell into this category). The problem for the

teacher becomes how to help such a student accumulate

216

enough computer experience to elevate her skills. In large

part, this may mean focusing less on course content and

more on helping students to avert frustration and gain

access to those internal rewards of programming that have

motivated other students to invest the amount of time

necessary to become successful.

Another observation with implications for teachers in

general is that misconceptions are often adaptive. In

other words, they represent theories that often lead to

programming success, although they are basically

inappropriate and must ultimately fail. Yet, as a result

of their adaptive nature, they often work for the student,

i.e. produce correct code, and so may be elusive, veiled

from the ready view of the teacher. All of the

near-novices had used variables as parameters in most of

their (admittedly brief) programming experience, and in

most cases their teachers must have felt that they

understood variables, at least in this context. What may

not have been apparent was that their behavior was often

dogmatically linked to familiar examples, rather than being

based on a firm and accurate theory of variable use. With

new types of Logo variables their stereotypes were

challenged. Some of these misconceptions were exposed in

microanalysis, but it is extremely difficult for a working

teacher to interview individual students in this, kind of

detail. Rather, it is likely that, for students with deep

misconceptions, the weakness of their predictive theories

217

will eventually affect their behavior while the

misconceptions themselves may never be identified. Some

students will probably recognize their oversights and

eventually correct their own misconceptions, but some may

not, experiencing only frustration and a vague sense that

something is wrong.

All teachers are expected to evaluate the performance

of their students; most teachers would like to go beyond

this, to help students recognize misconceptions that cause

mistakes and correct them. This study suggests the

complexity of the latter task. Where time permits, a

methodology such as that utilized in this study could

provide teachers with a valuable insight into their

students thinking.

3. Implications for teaching Logo

An inordinate number of the variable misconceptions

observed in this study were related to problems with Logo

syntax and punctuation. In the light of these results, it

is difficult to imagine any student becoming proficient in

the Logo language until they overcome these difficulties.

This suggests a link between the understanding of syntax

Qnd the concept of a variable in programming. If teachers

are aware of this problem, they may be able to* help

mitigate it. This research supports the recommendation of

Davidson (1985) that teachers of Logo include an explicit

218

treatment of syntax, that they emphasize its importance and

strive to reveal to their students its implications.

Rather than teaching syntax as a single unit, Logo teachers

should help their students to focus upon syntax at all

levels of instruction. For example. Friendly, in a new

book on Logo, (1987) uses the metaphor of a "Genie" for the

Logo parser (to accompany the better known metaphor of the

"turtle" for Logo's graphic cursor) as a means of teaching

aspects of Logo syntax. The adoption of such a metaphor

and the teaching of syntax in general would also present an

opportunity for Logo instructors to give a clear exposition

to the concept of a data structure as they teach about

brackets and quotation marks, and a careful discussion of

variables as they discuss the meaning of the colon.

Another observation relevant to the Logo instructor is

that variable misconceptions persist far beyond the novice

programmer stage, and so Logo instructors need to extend

the scope of time in which they view variable learning. in

particular, it seems important to attach greater importance

to the question of what their students learn about

variables after they have been taught the basic facts. As

a means to this end, the author believes that teachers

should emphasize an extensive period in which students

carry out programming projects. In a programming course

utilizing this design, as much as fifty percent of class

time would be devoted to writing original computer

Programs. During this extended utilization period, the

219

teacher would play a supporting role and would only present

new material as it was needed by individual students.

One clear advantage of this approach is that it would

give the Logo instructor a better opportunity to observe

errors, discuss with students their thinking related to

those errors and through such probing uncover elusive

underlying misconceptions. The teacher's role is thus

transformed; rather than providing information, he now

plays a coaching role, providing help and inspiration.

Dwyer (1980) uses the analogy of a flight instructor to

characterize such an arrangement.

Another advantage is to strengthen students' concept

of variables through experiential learning. While the

question of how expert knowledge is developed is beyond the

scope of this study, experience seems to play a vital

role. All experts and near-experts in this study evidenced

extended independent programming experience. If any

received formal programming beyond their introduction to

Logo, they also had extensive hands-on programming

experience. While the concept of a variable seems simple

and straightforward, this study demonstrates the degree to

which near-novice programmers do not utilize information at

their disposal. Extended programming experience may be the

only way that some students come to terms with the

subtleties of variable use.

220

The author also believes that Logo instructors should

recognize the importance of the meta-programming knowledge

of expert programmers. Their ultimate goal should be the

development in the students of an ability to readily

integrate and use new knowledge. This is an ambitious

goal, as emphasized by the present study; but the author

would argue that students would be better off to come away

from any programming instruction with real programming

facility, even if they had only been exposed to a limited

subset of the language, than with broad factual knowledge

but little demonstrated ability to solve programming

problems. In any case, teachers must consider the

long-term view of their discipline, and the observation of

experts in this study shows that an ability to deal with

ambiguous approaches to a problem, optimize programming

effort and to appreciate the aesthetics of programming best

characterize expert performance.

Implications for Language Designers

Recognizing that the concept of variable is a problem

for many students, designers of future implementations of

Logo should consider how the language could support the

development of a correct concept of a variable. For

example, at the University of Edinburgh,*duBoulay et al

(1981) have developed an experimental version of Logo

called ELOGO that provides the programmer feedback on

variables, program control and other factors to provide a

221

feature they call "visibility" for the programmer. In

regards to variables, a "visible" environment might

represent every assignment of a value to a variable name in

some sort of iconic fashion. For example, whenever a

variable is globally assigned, a box might appear in the

corner of the computer monitor, labeled with the variable

name and holding the assigned value. If the value changed,

then the contents of the box would be replaced by the new

value. Local variables could be similarly represented.

For example, when a procedure with parameter inputs was

executed, the local variables would "pop up" on the screen,

next to existing global variables, when the procedure was

concluded, the local variables would either disappear

(certainly they would cease to have defined values) or

change in some way that suggested that they were only

names, awaiting the assignment of values passed as

parameters when the procedure is called again.

Implications for Designers of Intelligent Tutoring Systems

Recent attention has been paid to the development of

intelligent tutoring systems (ITS). Such systems grew out

of an interest in the development of an active, discovery

approach to automated tutoring. ITSs are based upon

sophisticated models of student behavior, but in that

field, according to Sleeman, "Much remains to be discovered

and made explicit", and he calls for "...more precise

theories of teaching and learning" (Sleeman & Brown,

222

1982). One generally accepted teaching technique is the

Socratic method. With Sleeman & Brown's belief in the need

for an ITS to incorporate discovery learning, it may be

worth considering how one might model Socrates' teaching

style.

At the heart of the Socratic method is the teacher's

ability to pose relevant counter-examples that lead the

student to question weaknesses and contradictions in his

own theories. Another feature of a Socratic

teaching-discourse is that students must generalize from

their own working theories. An ITS utilizing the Socratic

method would need the ability to diagnose student

misconceptions in order to determine which

counter-questions to pose, elucidate responses from the

user and be able to evaluate these responses. The system

would require the ability to analyze misconceptions from

student solutions using general as well as domain-specific

knowledge and an algorithm for generating

counter-questions.

The present study attempts to shed light on the nature

of conceptions and misconceptions, but in the process

raises further questions for the ITS designer. Some

misconceptions observed in this study appear to be more

resilient than others. Difficulties with OUTPUT, for

example, occurred even in near-expert protocols. How would

an ITS recognize and handle such a resilient

223

misconception? Similarly, in this analysis, some

programming errors were considered to be related to

underlying misconceptions. Using this approach, an ITS

would need to distinguish between a fundamental

misconception and a superficial one. This might be a

behavioral distinction — misconceptions that showed

resilience to instruction (that persist or often recur

during the course of instruction), might be identified as

deep misconceptions, requiring special treatment. On the

other hand, the list of misconceptions in Chapter 4 of this

study (see Table 9), compiled from analysis of student

solutions, included several misconceptions that were

observed in more than one subject. A detailed study such

as this, but with a much larger number of subjects, could

result in more complete map of the possible

misinterpretations of a given problem.

Recommendations for Further Research

Some of the variable misconceptions observed in this

study appeared to be quite widespread and somewhat

resilient to instruction. For example, misconceptions as

to the use and meaning of punctuation, specifically of

colons and quotation marks, appeared in most near-novice

solutions to Problem A-2. A controlled study-of this

particular phenomenon is suggested. Specifically,

comparative studies to determine effective ways to correct

224

punctuation misconceptions (or alternatively, to teach

correct concepts of punctuation) would seem to be in

order. Elusive misconceptions, such as those inferred in

microanalysis, need to be exposed to be corrected.

Students may do this themselves, responding to

contradictions between their internal model of the world

and observed behavior by bringing into question assumptions

that may be faulty. In order to further our knowledge of

effective instruction, researchers need to find which

approaches are effective in exposing such misconceptions

either to the view of the student or the teacher.

Specifically, the author would recommend an

examination of the role of independent programming as a

means to uncover hidden student misconceptions and to

increase a focus on the utilization of descriptive and

procedural knowledge. One study might be a comparison of

an introductory Logo course with an emphasis on independent

programming, using an extended "utilization period" as

described above to reinforce variable concepts with a

fact-oriented course in which reinforcement is done with

more traditional methods (quizzes, sample programs). The

two groups could them be compared by determining the

success or failure of students in each on a programming

task involving variable use.

Another recommendation would be to further the

time-scope of learning through a detailed study of

*

225

programmers with over 120 hours of combined instruction and

programming time. Anderson studied the first 60 hours of

LISP programming and uncovered some basic mechanisms to

explain the initial performance of his subjects. This

research was of subjects with over 50 but less than 120

hours of Logo experience, roughly the equivalent of a

one-semester, introductory course, and revealed the

difficulties in integrating individual units of knowledge

in a problem-solving situation. It also included as

subjects expert programmers, with hundreds of combined

hours of formal instruction and programming experience, and

revealed a striking contrast between experts'

meta-programming—knowledge and the inflexibility of

near—novices. A detailed study of the period of learning

bracketed by the near-novices and the experts, such as a

detailed study of students in a second semester Logo

programming course, would follow the development of

students from approximately 120 hours of instruction and

experience to about 240 hours. The two near-experts in

this study, for example, reported about 200 hours of

programming experience (albeit in languages other than

Logo), and demonstrated much of the meta-programming

knowledge typical of experts. Such a study would have a

good chance of catching the development of

meta-programming-knowledge, and of uncovering the ways that

near-novice knowledge is refined into the more easy and

natural thinking of expert programmers. Such information

226

might help us to find ways to facilitate the transition in

other students.

The possibility of a transfer of knowledge from other

languages seems worthy of further examination as well.

This might take the form of a quantitative study of

pure-novices vs. those with other programming language

experience. If differences can be found, further study to

isolate the specific areas in which other-language

knowledge aids in Logo-learning (and where it does not)

would help to reveal more about the anatomy of learning in

general and learning to program in particular.

Another area worthy of further study is the idea of

meta-programming-knowledge put forth in this study. The

use of certain terms in a particular context, for example

the use of prepositions in reference to procedures or of

pronouns in reference to interactive processes may be

correlated to important knowledge about programming. A

linguistic analysis of expert programmers vs. programmers

at other levels might reveal this.

Conclusion

As discussed in Chapter 1, the concept of a variable

in Logo programming is a complex but an interesting

knowledge construct, that can provide insight into the

nature of programming-skill acquisition. While the

227

particular distinctions of Logo variable-use, cited in that

chapter, did not necessarily transfer to other intellectual

domains such as science or mathematics, the general concept

of a variable is important to these and other disciplines.

While the literature reviewed in Chapter 2 examined the

general nature of programming knowledge, of the concept of

variable in mathematics, and of other programming

constructs (such as control structures), the paucity of

work focused on programming variables called for an

exploratory approach.

What were seen in Chapter 2 were a number of general

themes, reflected in the literature on programming skill

development, that acted as filters, providing alternative

ways to view the results of the current study. At the

highest level, these either depicted programming knowledge

as a concept (e.g., as a "runnable mental model",

internalized in the expert programmer), or as a production,

built up from programming experience and stored as

procedural knowledge (e.g., Anderson et al, 1984). The

descriptive approach of this study, specified in Chapter 3,

was chosen to allow a wide view of the complex concepts and

skills associated with programming in general and

variable-use in particular. Diagramming techniques were

taken from other studies and combined to allow the

representation of both conceptual knowledge and procedural

knowledge and the interaction between them after careful

niicroanalysis.

L

228

In Chapter 4, the results of microanalysis revolved

around the diagrams of six student and expert protocols on

a selected problem. Concepts and misconceptions, inferred

in microanalysis, were collected from these diagrams and

summarized in a Table 9. Highlights of all subjects on all

nine problems (which represented diverse examples of

variable use) were discussed in that chapter and summarized

in Table 10. In general, the results emphasized the

qualitative difference between expert and novice behavior.

This was primarily categorized in Chapter 5 as a difference

in the way these two groups integrated new programming

knowledge and experience with high-level, general

knowledge, and was termed "meta-programming knowledge".

Meta-programming knowledge was hypothesized to be a

secondary reorganization of both descriptive and procedural

knowledge into integrated, general knowledge structures.

It was recommended that meta-programming knowledge be

emphasized in teaching programming and examined in greater

detail in further studies.

FOOTNOTES
Chapter 5

Clement, J., Lochhead, J. Sc Soloway, E. "Positive effects
of computer programming on the students understanding of
variables and equations". Proceedings of the Association
for Computing Machinery, National Conference, 1980.

Brown, J.S. & VanLehn, K. "Towards a Generative Theory of
'Bugs'", Cognitive and Instructional Series # 2, Xerox Palo
Alto Research Center, 1979.

Bonar, J. Sc Soloway, E., "Pre-Programming Knowledge: A
Major Source of Misconceptions in Novice Programmers",
Human-Computer Interaction, Fall, 1985.

Adelson, B. "Problem solving and the develpment of abstract
categories in programming languages". Memory and Cognition
9, 422-433, 1981.

Newell Sc Simon, Human Problem Solving, Prentice Hall,
1972.

Anderson, J., Farrell, R., Sauers, R. "Learning to Program
in Lisp", Cognitive Science, 8:87-129, 1984.

Adelson, B. "Problem solving and the develpment of abstract
categories in programming languages". Memory and Cognition
9, 422-433, 1981.

Hoc, J.M. "Developmental stages in learning to program"
International Journal of Man-Machine Studies, 9, 87-105,
1977.

Soloway, E., Ehrlich, K., Bonar, J. Sc Greenspan, J. "What
do novices know about programming?". Technical Report, Yale
University, 1982.

Turkle, S. The Second Self Simon Sc Schuster, 1984.

Davidson, L. "Logo Syntax: Another Story", (unpublished
manuscript), 1986 .

Friendly, M. Logo: A Language for Learnng, Earlbaum
Associates, 1987.

229

230

Dwyer, T. "Significance of Solo-mode Computing for
Curriculum Design", in Computers in the Schools, Tutor,
Tool, Tutee, (R. Taylor, Ed.), Teachers College Press,

1980.

duBoulay, B., O'shea, T. & Monk, J. "The black box inside
the glass box: presenting computing concepts to novices",
international Journal of Man-Machine Studies, 14, 237-249,

'1981 7

Appendix A
Instructional Script

Here Is a summary of some important features of the Logo computer
language.

Every line of Logo is composed of procedures and inputs to
procedures.

Print is a built-in or "primitive" procedure that prints its Input on
the screen. For example;

PRINT 5

puts the number 5 on the screen. The number 5 here is an input to the
print procedure, i.e. it is an argument or parameter that alters the
behavior of the command.

Print can take as Input a number, a word or a list. For example,

PRINT "ONEWORD

pr ints out a word,

ONEWORD

and

PRINT [HERE IS A LIST]

pr ints out a list.

HERE IS A LIST

An input can also be an expression, i.e. a set of one or more
operations the whole set having an explicit result, so you can print
the result of numeric expressions, such as 4+5.

4+5
RESULT: 9

When used as an input to PRINT...

PRINT 4+5
9

the expression is, in effect, replaced by its result. The plus sign
Is a special procedure known as a numeric operator.

Here are some other numeric operators;

PRINT 3/2 ...division

231

232

1 .5
PRINT 2-10 ...subtraction

-8
PRINT 3*4 ...multiplication

12

You can also print the result of certain procedures that operate on
words or lists. We say that such a procedure has an OUTPUT. FIRST
outputs the first item of of its input. If the input is a list, FIRST
will output its first Item, usually a word.

FIRST [RED GREEN BLUE]

RESULT: RED

the first of a word is always a word with one letter.

FIRST "CATAPULT

RESULT: C

Since FIRST has an explicit result, its output can act as the input
for another procedure, such as PRINT

PRINT FIRST "CATAPULT

In other words, procedures with explicit results can act as
expressions for other procedures. Such a procedure Is sometimes called
an "operation".

RANDOM is a procedure that outputs a random positive integer, from 0
to one less than its input. RANDOM 3, for example, might output 0, 1
or 2

RANDOM 3

You can also print something that has previously been stored as a
variable. A variable can be created with a MAKE statement, such as

MAKE "N 6

Once created, you can use a variable by typing a colon immediately
before its name.

: N

RESULT: 6

The colon here literally means "the value of the thing named 'n'".
another way to say this in Logo is with the procedure THING.

233

THING "N Notice that :n RESULT: 6 and THING "N are
identical operations.

:N is shorter, but THING can be useful, for example, sometimes
programmers store one name inside another:

MAKE "VARNAME "N

In this example, you could use either the colon or THING to get the

value one of the variables

•.VARNAME
RESULT: N (the value of

VARNAME)

THING "N
RESULT: 6

but you would need THING to get the 6 directly out of VARNAME.

THING :VARNAME
RESULT: 6

(: VARNAME Is "N ... this is the value of the thing named by "n)

THING THING "VARNAME
RESULT: 6

,(Identical to the previous line), but not;

::VARNAME

Make Is sometimes a useful way to count things, if you start by
making 1 the value of C

MAKE "C 1

, you can increment C by one by MAKE-ing C its present value plus 1

MAKE "C :C+1
: C

RESULT: 2

This can be done repeatedly;

MAKE "C :C+1
: C

RESULT: 3

234

Several commands are useful for doing graphics.

DRAW

All drawing is done with a triangular object known as "the turtle".
FORWARD moves the turtle in the direction that it is presently facing;

FD 30

(The back of the turtle Is indicated by the unshaded bar). The turtle
is conceived of as having a pen, that can be picked up to prevent it
from tracing its path

PU FD 10

and put down again

PD FD 15

LEFT and RIGHT turn the turtle a given number of degrees.

RT 45

LT 90

The turtle has certain properties that you can inquire about at any
time, it has an absolute heading, like a compass heading of West
North-west

HEADING
RESULT: 315

It has Cartesian coordinate, including an x-coordinate

XCOR
RESULT: 0

And a y-coordinate

YCOR
RESULT: 55

Other procedures can change the turtle state.

The heading can be changed with the SETHEADING command

SETH 180

(...to point due South).

SETX can be used to position the turtle at a specific x-coordinate

235

SETX -50

SETY specifies a y-coordinate

SETY 5

SETXY can be used to move directly to a position identified by an x,y
pair.

SETXY 100 45

Any of these commands can be used as part of a programmer-defined
procedure. To define a procedure, type the word "TO", followed by a
procedure title.

TO LINETURN

You will immediately go into the Logo editor. Type in commands in the
order in which you want them executed;

FD 10
RT 30

When you are done, type END, and then "CTRL"-"c", (typing both keys at
once).

LINETURN DEFINED

To execute the procedure, type its title.

LINETURN

(Draws a line and turns)

Your procedure can have an output.

TO PI
OUTPUT 3.14
END

PI DEFINED

Running the procedure...

PI
RESULT: 3.14

...causes It to output Its specified value.

It should be noted here that as soon as a procedure outputs something,
It immediately stops. In this case, that didn't have much effect,
since Pi had nothing left to do after it outputted, but latter it will

236

matter.

One programmer-defined procedure can use other programmer-defined
procedures;

TO PARA
LINETURN
FD 50 RT 150
LINETURN
FD 50 RT 150
END

PARA DEFINED

PARA

(Draws a parallelogram)

If you provide one or more variable names on the top line when you
define it. Your procedure can take inputs:

TO C.SQUARED :A :B
PRINT [C SQUARED IS]
PRINT :A * :A + :B * :B
END

C.SQUARED DEFINED

C.SQUARED 5 10
C SQUARED IS
125 Here, A becomes 5 and B becomes 10.

Each of the Input names in the top line is given a value when the
procedure is used. Unlike variables created with MAKE, these
variables only exist while the procedure is running.

: A
A HAS NO VALUE

Another way to take in a value is with
REQUEST is abreviated, is usually used
statement to assign a variable "on the
wanted to ask a person for their name,

I ike this.

the REQUEST command. RQ, as
in conjunction with a MAKE
fly". For example, if you
you might write a procedure

TO INQUIRE
PRINT [WHAT IS YOUR NAME, ANYWAY?]
MAKE "PLAYER1 RQ
PRINT :PLAYER1
PRINT [THAT'S A NICE NAME!]
END

inquire DEFINED

237

INQUIRE
WHAT IS YOUR NAME, ANYWAY?

Here the computer pauses for the REQUEST; I'll type In my name.
RICK

(The computer types...)
RICK
THAT'S A NICE NAME!

Any variables created with MAKE, either Inside or outside of a
procedure, are permanent. Logo remembers the value of PLAYER1

:PLAYER1
RICK

, even though the INQUIRE procedure has finished running.

Sometimes you want a procedure to behave differently in different
situations. For example, you might want a procedure to stop running
when your friend types in her name. This can be accomplished with an
IF statement.

(
TO INQUIRE
PRINT [WHAT IS YOUR NAME, ANYWAY?]
MAKE "PLAYER1 RQ

Its form Is IF, followed by a condition, THEN, and an action or set of
actions to be carried out if and only if the condition is true.

IF :PLAYER1-"LISA THEN STOP

PRINT :PLAYER1
PRINT [THAT'S A NICE NAME!]
END

STOP Is the command that makes a procedure stop running.

INQUIRE
WHAT IS YOUR NAME, ANYWAY?
LISA

INQUIRE
WHAT IS YOUR NAME, ANYWAY?

RICK
RICK
THAT'S A NICE NAME!

238

A procedure can be written that uses itself. This is a technique
known as recursion. I'll change LINETURN into a recursive procedure.

TO LINETURN

(Change procedure to read:

TO LINETURN :L
(I'll change LINETURN to take an input)

IF :L < 3 THEN STOP
(This if statement will stop the procedure if :L gets too smaI I I)

FD : L
RT 30
LINETURN :L-3

(Here I add the recursion)
END

)

LINETURN DEFINED

DRAW
LINETURN 300

(Draws a spiral-like figure)

This new version stops if its input is very small. Otherwise it moves
and turns, as before, but it then does another LINETURN with a 5
smaller input. That LINETURN does the same thing, including a call of
another LINETURN. This continues until some LINETURN has an input of
less than 3. When that procedure stops, its parent procedure is
finished, and then its grandparent, and so on until all LINETURNS can
end.

Logo also allows you to create recursive operations. For example, the
operation of exponentiation (i.e., raising to a power) is sometimes
defined recursively as follows:

TO EXP :BASE :P0W

If you are raising the base to the 0 power, then the answer is 1,
because anything raised to 0th power is 1.

IF :P0W - 0 THEN OUTPUT 1

Otherwise, the result Is defined as the base times the base raised to
one-1 ess power.

OP :BASE * EXP :BASE :P0W-1
END

EXP DEFINED

EXP 2 4

239

RESULT: 16

This concludes the summary of Logo.

Appendix B
Problem Set

The follow problem set is ordered from the simplest and most
interesting problem (as determined by a pre-analysis) to the least.
The first four problems are meant to establish a baseline measure for
the four variable classes established earlier, global variable
(Problem E-2), explicitly-read variables (Problem A-2), procedural
inputs (Problem D) and operations (Problem B-2). The remaining
problems involve the use of one or more of these same variable classes
but differ in their greater complexity due to several different
factors, (see comments for each problem).

240

Problem E-2

Create a variable called NUMBER, such that

PRINT :NUMBER

prints out the number 7.

Problem E-2; Comments

A problem In global variable assignment, probably the simplest
example of a variable. Besides requiring an understanding of the
basic syntax of the MAKE statement, subjects should appreciate such
limitations as the "lifespan" of a variable and the distinction
between its name and value. In a mature concept, one would understand
the function of both the quotes in the MAKE statement and the colon
("dots") used to retrieve the value.

241

Alternate Problem A-2

Write a procedure that first prints the message,

GIVE ME A NUMBER

, and then prInts

THE NUMBER SQUARED IS...

, foI lowed by the square of the number supplled by the person using
the program. As an example, after the program Is used once, the
screen might look like this;

GIVE ME A NUMBER
2
THE NUMBER SQUARED IS...
4

Problem A-2; Comments

This problem requires that the use of varivble, and that the
variable name and value be defined at different times (a "temporal
offset"). The wording was intentionally left ambiguous as too exactly
how and when the procedure would collect the value, although the
author expected most subjects to use the RQ command (Terrapin dialect
only) or the RW command (LCSI dialect only). Both commands have a
complex syntax; they take no input, but pause for a user-input and
output a something as soon as the user hits the return key. RQ
outputs the entire user-input as a list, RW outputs the everything the
user had typed, up to the first space or carriage return, as a word.

Original the problem was given to subjects using an LCSI
dialect. This version of the problem statement was retained for those
subjects who used an LCSI dialect (the minority). For the majority,
who needed to use RQ, the interviewer utilized a "teaching probe" to
aid them in overcoming any difficulties they had extracting the first
word of user-Input.

242

Problem D

Write a procedure called MOVE that takes two numbers as Inputs, an X
and a Y coordinate. The procedure should move the turtle to that
point on the screen. For example;

MOVE 100 -5

should move the turtle to that point on the screen with an
x-coordinate of 100 and a y-coordinate of negative 5.

Problem D; Comments

Involves use of a local variable and requires correlation between
variable defined In the header line (as a variable name), in the
program body (as a parameter) and the value provided at the time of
the proceduraI call.

In the pre-instruction I wiI I show an example of definition of a
procedure with INPUT IN THE HEADER LINE and Demonstrate SETPOS.
During the session, I wi I I verify that the subject understands the
Cartesian coordinate system for both positive and negative numbers and
and answer any questions about SETPOS or Cartesian coordinates.

243

Problem B-2

Write a procedure called R100 that outputs a random number from 0 to
99, such that if you then type FD R100 the turtle will draw a line
segement, but PRINT R100 prints a random number from 0 to 99.

Prob. B-2; Comments

RANDOM and OUTPUT will be explained, with examples, during
pre-instruction. Any questions about RANDOM will be answered
immediately. Some of likely difficulties include confusing PRINT
("screen output") with OP.

244

Problem E

Write a procedure called COUNTER that takes no Inputs, and that prints
out how many times it has been used. For example, the first time you
type COUNTER, it will print "I", the second time "2", etc.

Problem E; Comments

Before presenting, demonstrate the MAKE statement. Answer any
questions about the longevity of global and/or local variables.
Subject should understand the term "inputs" as it is used in the
problem. This problem requires that subjects have or develop a
variable-counter plan. To be successful, the programmer must
understand that global variables are accessable within a procedure as
well as outs Ide.

245

Problem F

Type In the following commands;

MAKE "BILL "TEACHER
MAKE "GEORGE "PROGRAMMER
MAKE "SALLY "PROGRAMMER
MAKE "PROGRAMMER [$20 PER HOUR]
MAKE "TEACHER [$15 PER HOUR]

Now write a procedure called WAGE, that takes one Input. If the input
is a person's name (e.g. SALLY), the procedure should print out that
person's salary. For example,

WAGE "SALLY

should print

$20 PER HOUR

, (Sally being a Programmer).

Prob. F; Notes

Like E-2 & E, this problem requires a distinction between name
and value, but has a much greater complexity, requiring several levels
of indirection. Subjects may have difficult keeping track of this
many levels. Using an object alternately as both value AND variable
name probably requires greater ability to deal of abstraction.

As In E, the programmer must understand that global variables are
accessable within a procedure as well as outside.

Notes: Explain, with example, MAKE and PRINT .-NAME, and answer
questions about same.

246

►

Problem A

Write a procedure or procedures that repeatedly read In integers until
it reads the integer 99999. After seeing 99999, it should print out
the correct average. That is, it should not count the final 99999.

Problem A; Comments

This problem was originally used to study conceptualization of
flow of control In Pascal. Without convenient looping constructs in
Logo (Logo does have a REPEAT function, but the repetition cannot be
conditioned), the easiest solution is probably a recursive procedure
with an IF/THEN/ELSE conditional.

247

Problem B

Write a procedure or procedures that compute(s) the factorial of a
number. Try to put it In as brief a form as possible.

Prob. B; Comments

Notes: Solutions may be either iterative or recursive. I start by
providing a comprehensive definition of factorial, including an
example. During the recursive definition, I wiI I use the word
"recursive".

Beside using input and output, subjects must be able to utilize
or develop plans for either a recursive operation or a looping product
in order to solve this problem.

Problem C

Write a procedure that, when run, finds the turtle's present
compass-heading and points the turtle to a new heading, one-half of
the starting heading. The procedure should operate correctly, no
matter what was the starting position or heading of the turtle.

Prob. C; Comments

Notes: This problem tests use of machine state variables, specifically
the subjects understanding of the SETH and HEADING commands, and of
the concept of absolute heading. Start the turtle at heading 0.
Interviewer should verify that the subject understands the term
"heading", and define it if she does not. Subjects for this problem
should previously have been exposed to the the SETH command, but it
should NOT be explicitly mentioned during presentation of the problem,
unless the subject specifically asks for a tool to set the turtles
absolute heading. (The same is true for the HEADING command).

When the subject says that she has finished, have her test at
least twice, first with at a start heading 0 and a second time after
the interviewer has turned the turtle with the command, "SETHEADING
270", (NOT the command LT or RT something)! This state-change should
be explained to the subject as it is done, and she should be allowed
to alter his procedure If she wishes, but if the solution is not
heading specific, the turtle heading should be secretly reset, for a
third test.

This problem requires an appreciation for certain
"state-variables". To do it, a subject must recognize that for each
compass heading Is a distinct SETH input and a particular value for
HEADING.

249

Appendix C
H; Problem A-2

00:00:00 H: (takes written prob. from I. and begins to read)
"Write a procedure that prints the message...ok...

COMMENT: From 00:05 on, H's overall approach shows an unexpected
pattern. He does not begin by classifying the task as a prototype and
then actualize the plan, completing one step at a time, as Anderson
claims is typical. Rather, his approach is to carefully read through
the problem from start to finish, stopping to code each problem
element as he recognizes it, and carefully proofreading each block of
code before moving on to the next problem element. We treat this as
general plan, MAPPING THE PROBLEM AS A SEQUENCE OF STEPS. This plan
contains four, sequential steps, I. READ A PROBLEM ELEMENT, II. CODE
THE PROBLEM ELEMENT III. PROOFREAD THAT CODE, IV. ONCE THE LAST
PROBLEM ELEMENT IS CODED, TEST THE ENTIRE PROCEDURE. Our assumption
is that H's selection of this approach indicates a piece of pragmatic
knowledge. We assume that, in his rapid, initial reading, H has
determined that this plan is appropriate for this problem, i.e., that
problem steps are sufficiently independently to be coded
individually. Such a plan may serve to optimize programmer efficiency
by minimizing errors In the mapping aspect of the task. His emphasis
seems to be on insuring the accuracy of each step before going on to
the next.

00:05 well, we'll do this,...
(types ED)

(a recently written proc. appears in the Logo editor))
...I like procedures; my favorite; oh jeepers;...
(types (ctrI.)-C)
(types: ED [GLUB])

(TO GLUB
END ...appears in the Ed. screen)

...my favorite procedure is...

I: This is A 2.

00:14 H: ...:A 2, I'm sorry; my favorite name for procedures that don't.,
(moves cursor to r. of top line)
...do anything that makes any sense is "glub", so...

00:18 (looks at problem)
...it prints, urn, give me a number, and then prints, the number
squared is;

00:27 (looks up at screen)
Ahhh, "TO GLUB",...
(types: (ret.))
...so we'll say, "PR I NT GIVE..."
(types: PR [GIVE ...)
"...GIVE ME A NUMBER"...
(types: ...ME A NUMBER])
Ahh...

00:37 (looks at problem)

250

'n' it prints "THE NUMBER SQUARE IS"...
(turns toward screen)

00:40 OK, make
(types: (ret.))
(types: MAE...)
(hits DEL key to erase last letter)

00:44 (turns to problem)
(reads, rapidly and Inaudlbly)

00:47 Ok, "MAKE...", ahh. . .
(types: ...KE)
(2 sec. pause)

00:51 ...Oh well; "MAKE...NUM..."
(types: ... HNUM RL ...)

00:54 RL"; So I want to pick It off the keyboard.
(types: ... (ret.))
And then It says "PRINT, urn,...
(looks at problem for 1.5 sec.)

/

01:04 ...sentence of "THE NUMBER SQUARED IS,..."
(types: PR SE [THE NUMBER SQUARED IS] ...)

01:12 Ah; now...
(looks down at prob. for 1 sec.)
(looks up at screen)
(Immediately types*. ••• :N^M)
I'm saying square dots number...

I: "SQ"

H: SQ...!'m gonna write that,...

I: "Dots NUM", Ok.

01:24 H: (looks down at problem)
Urn; number squared Is that number supplied, blah, might look
like the number squared, OK,...

01:29 ..."THE NUMBER SQUARED IS";...
(looks up; reading off screen)
"PRINT SENTENCE of; THE NUMBER SQUARED IS square dots number"; ok
(moves cursor down 2 lines, (below END))

COMMENT: The above seems to be an attempt by H to verify the coding of this
line.
01:36 ...and we will write, "TO SQUARE dots N, output dots N times dots N,

END"...
(types: TO SQ :N

OP :N * :N
END)

01:47 (looks up at screen, reading)
...urn, OK, "GLUB PRINT GIVE ME A NUMBER", it'll print give me a number
, make number (unintelligible) pick a number,... OK.
The number squared Is..., but I've made a mistake.

COMMENT: In proofreading this line, H recognizes an error and shifts his
attention to the correction of this error.
01:56 (moves cursor up to GLUB, line 3, Just I. of the last word on that

251

Iine (:NUM))
I need to say the number squared is the square of, I used RL, and I
have to get, ah, f i rst...

02:06 (types : ...FIRST)
...of the list that I caught, so it'll make number squared, is square
to the first of the list; TO SQUARE the list, blah, blah blah blah,
(still looking at screen)

02:15 (types: (ctrl)-C)
Ok, that ought to work, we'll try it out.
Urn, "GLUB...
(types: GLUB

GIVE ME A NUMBER)
GIVE ME A NUMBER". I'll give the number, ah... let me give a number I
recognize, 3.

02:25 (types: 3 (ret.)
THE NUMBER SQUARED IS 9)

The number squared Is 9. "GLUB,...
02:31 (types: GLUB (ret.)

GIVE ME A NUMBER)
GIVE ME A NUMBER"...Minus 2...
(types: -2)
THE NUMBER SQUARED IS 4". So far it's right, I think it's right.

02:38 (turns to I.)

I: Ok

252

Appendix D
P; Problem A-2

0:00:00 P: (reading) "Alternate problem A-2. Write a procedure that prints
the message, 'Give me a number,' then prints 'The number squared is'
followed by the square of the number supplied by the person using the
program. As an example, after this program is used once the screen
might look like this: GIVE ME A NUMBER, 2, THE NUMBER SQUARED IS
4."

00:19 (places hands on keyboard, looking from problem to screen to prob. to
screen)

00:20 OK. Well it says write a procedure, so I'm gonna...wrIte a procedure
let's caI I it "Square".

00:27 (crans neck to bring head closer to problem)
(speaking slowly)
You don't...ask...me;
(2 sec. pause, looking at problem)

00:30 (returns head to normal position, looking at keyboard)
...OK, you don't specify a title for me...
(gestures w. I. hand to I. of k.b., fingers fully extended, palm up,
and looks to screen)

00:34 ...so I'm going to type "To Square",...
(types*. TO SQUARE ...)

00:38 (turns to problem)
.. .and...uh...11's going to ask for the number...

00:42 (turns to screen, pointing w. I. i. finger to r. side of top line)
...so I'm not going to put any input; I'm not going to give it any
Input hopper here;

00:45 (types (ret.))
...it's "To Square".
(1 sec. pause, looking at problem)

00:48 And, urn, the first thing it's supposed to do is print the message, so
we're going to say "Print"...

00:53 (types: PRINT [.. .)
...and the message I'm going to put in a list; "Give me
a number."
(types: GIVE ME A NUMBER]...
(2 sec. pause, looking at problem)
(types: ... (ret.))

01:03 And...then it is supposed to...urn...
(5 sec. pause, (before and after "...urn...", still looking at problem)
(removes hands from keyboard, looking at problem)

01:11 ...Do you want me to use exactly this format? That is, urn, a four
Iine format,...

01:17 (slicing gesture w. r. hand, makes 4 parallel lines in air to r. of
screen)

...Just the way this is printed?
(points to several lines of problem w. I.J. finger)

01:18 You say, as an example, after the
program is used once, the screen might look like this.

I: You could give an alternative if you think it would be better.

253

01:32 P: Ok, well, let me do exactly this one first, and then I'll tell
you what I was thinking of.

I: Okay.

01:38 P: (hands to keyboard, looking at screen)
Print "Give me a number." So, ah, now I want to do, what is it,
request in this; RQ; In this dialect?

I: Yea.

01:48 P: SO, um...
(2 sec. pause, looking at problem)

01:52 ...since I want to get the number here,...
(on "since", P slides I. i. finger I. to r., below line 2)

01:56 ...and...then I want to print something else,...
(on "then", uses same sliding gesture. Just below previous one)

01:59 ...and then I want to use it,...
(on "then", uses same gesture, 1 line lower still)

02:01 (begins tapping gesture w. I. i. finger in the 1st (unwritten) "line
below line 2)
...I'm inclined either to do a "Make" here, you know to grab hold of

that number...
(grabbing gesture w. cupped I. hand, palm up, to I. of screen)

02:08 ...'cause I'm going to have to defer the use of it later on,...
(holding I. hand, palm down, in front of his body, P slides r. hand

, palm down, from I. palm down 6 inches. Repeats gesture.)
...maybe I'll use a subprocedure or something like that.

02:12 Um; Why...
(6 sec. pause, w. fixed gaze to the r. of the screen)

02:20 ...I'll use a subprocedure.
(2 sec. pause)

02:23 The problem is, to find; no...I'm gonna...yes, I'll use a
subprocedure...
(the above is punctuated w. a pair of gestures done twice, in quick
succession. P first points to the problem w. r. i. finger (on
"The problem..." and "...I'm gonna...") followed by a gesture of
dismissal, literally throwing up his hands, on "...no..." and
".. .yes...")

...'cause I'm going to keep to exact format that you've got here and
then I'll show what difference I might have done.
(slaps the problem w. all fingers of r. hand "...keep...")'

02-32 Um; (2 sec. pause, looking at screen) Print answer...
(types: PRINTANSWER(space) ...)

... request.
(types: ...RQ (ret.)

END (ret.)
(ret.))

COMMENT: The second return indicates that at this poing P had it in mind to
follow up with a sub procedure.
02:39 (points w. I. I. finger to line 3)

I'm using a subprocedure called "Printanswer"...

254

I: Um huh.

02:43 P: (points to RQ, on r. of 3rd line)
...and I'm giving it the input of, um, a request, which is going to
ask for the number here.
(on "...ask...", P turns to point at problem w. r. i. finger)

1: Okay

02:49 P: So-we-say, "TO PRINTANSWER",...
(types:

TO PRINTANSWER(space).. .)
...and, you know, some number in list...
(types:

...:NUMBERINLIST(ret.))

I: Number in list?

03:00 P: Number in list...
(points at line 0 of PRINTANSWER w. 1. i. finger)
...To "Print answer, colon, number in list, um...

1 : Uh huh

03:06

03:10

03:17

03:21

03:29

03:39

03:44

03:47

P: (2 sec. pause, looking down at problem)
...print,...
(types: PR 1 NT(space)...)
...because you want a separate line.
(points to prob. w. r. 1. finger)
(types: ...[...)
Print a message "The number squared is"...
(types: ... THE NUMBER SQUARED IS...]

(points w. I. 1
...times itself
(1.5 sec. pause
if 1 don't care

(ret.)
...and then "Print",...
(types: PR 1 NT(space)...
(2 sec. pause, looking at screen)
...and now 1; 1 need to multiply the number

, finger to :NUMBERINL1ST on
Ah. . .

, looking down at keyboard)
about robustness in

taking the first of that request,..
(points to "RQ" in line 2 of SQUARE
(3 sec. pause, looking at screen)
...so, ah...but let's; let's do it...
(moves cursor up to line 2 of SQUARE
So, I'm going to go back up the first
(points to line 2 of SQUARE
... so...
(moves cursor r., to the "R" of
...the second line of the first
(types: FIRST

(line now reads:

)

that's in this list...
top line of PRINTANSWER)

this program 1 could simply try

f inger) w. 1 . i

)

)
program,

RQ)
program is going to be "Printanswer...

)

255

PRINTANSWER FIRST RQ)
...first of the request."
(points w. I. I. finger to line 2 of SQUARE)

I: Uh huh.

03:56 P: So that "To square, print give me an answer",...
(pointing at line 1 of SQUARE)
"Prlntanswer first of request."...
(pointing to IIne 2 of SQUARE)

04:00 ...and then "Prlntanswer"...
(points w. I. I. finger to rNUMBERINLI ST on line 0 of PRINTANSWER)
...is not going to be a number in a list anymore but;
(moves cursor down to r. side of line 0 of PRINTANSWER)
(Child crying in background),
Poor child...
(deletes 6 chars, on write of that line)

(line now reads:
TO PRINTANSWER :NUMBER)

04:12 "Number". And then it says, "Print the number squared
is"...
(points w. I. I. finger at line 1 of PRINTANSWER)

04:18 "...number...times...number."
(types (at the end of line 2):

...rNUMBER * rNUMBER
END (ret.))

(proc. now reads:
TO PRINTANSWER rNUMBER
PRINT [THE NUMBER SQUARED IS...]
PRINT rNUMBER * NUMBER
END)

I think ! believe this.
(2 sec. pause, looking at screen)
(types: (ctrl)-C)

04:28 So, let's see; "Square",...
(types: SQUARE(ret.)

GIVE ME A NUMBER)
..."Give me a number", 2,...

04:33 (types: 2
THE NUMBER SQUARED IS ...4)

"The number squared is; 4."
(nods his head in the affirmative)

I: Okay

04:39 p: Okay, well, urn,...
(types: ED (ret.))
..."Ed", what I had wanted to do, I mean this
sort of forced me to go;...
(points up and down screen w. I. I. finger)
(makes 4 slicing motions in front of the screen & turns to problem)

4:46 ...getting that extra line in there, making it a four line program
made it actually slightly harder for me to write than if I had

256

allowed myself a three line program.
(turns toward screen)

04:57 What I really wanted to do;
(4 sec. pause, looking at screen)

05:03 ...well I still have to use that number twice, don't I; I still have
to use that number twice....
(moves cursor down to line 1 of PRINTANSWER)

05:08 Well, what I had wanted to to was put "The number squared is" and
the answer all on the same line,...
(points w. I. i. finger to line 1 of PRINTANSWER on "the number..."
and to line 2 on "...the answer...")

...but actually it doesn't save me any room...
(points w. I. i. finger to RQ in line 2 of SQUARE)
...'cause I still have to hold on to that number...
("holding gesture" w. I. hand to I. of screen, as before, on
"...hold...", then points to RQ again)

...to use it twice, so that's about as good as...

I: You were thinking you could write It in fewer lines?

05:27 P: Well, what I didn't want to have to do is name this request,
(pointing w. I. i. finger to line 2 of SQUARE)

I: How do you mean?

05:34 P: Urn, well, as It stands, I get a request, so the number is
typed in from the keyboard,...
(still pointing at 2nd line of SQUARE)

05:40 ...urn, and I either have to name it so that I can type this line
In between the "the number squared is",...
(pointing to line 1 of PRINTANSWER)

05:48 ...or, and I could have done that with the local, or just with the
make up here or something, but I chose to use a subprocedure.
(points w. I. I. finger to 2nd line of SQUARE, then to Oth line
Of PRINTANSWER)

05:55 But that also names it, it's naming it "Number".
(pointing w. I. i. finger to ":ANSWER" in line 0 of PRINTANSWER)

05:58 And I guess in my head I was thinking I could get away without that,
and I can't get away without that.
(turns to look at I. for 2 sec. pause)
I ... I ... I ..

06:08 ...it Just felt like It was extra baggage to have to give it a
name, but obviously I have to multiply it times itself so it has
to be somewhere for me to use.

06:18 |'m using it twice, at least,...
(pointing to 2nd line of PRINTANSWER)
...and in this case only twice, urn, so I don't save very much by
avoiding this Intervening step,...
(pointing to line 1 of PRINTANSWER)

06:27 ...that's what I was hoping to do, to you know, print "The number
squared Is," and I was thinking maybe I could put that all on one
line but it doesn't really save me anything at all.

6:35 Here's another version, but It's (unintelligible).

257

(Inserts SE In front of “[THE NUMBER ..." on IIne 1 of PRINTANSWER)

(line now reads:
PRINT SE [THE NUMBER SOARED IS...])

COMMENT: Apparently suggesting merging line 2 with line 1, though he does not

remove the carriage return separating the two lines.

I: Put a sentence in front of that and have "Print"; have 'NUMBER

COLON NUMBER"?

06:43 P: Yeah. At the end.

I: Okay. Let me just ask you quickly, you changed NUMBER INLIST

to NUMBER...

P: Yes

06:52 I: ...In "Print answer" and you also changed the second line
of "Square" from "Print answer request" to "Print answer first
request."

P: Yes

I: ...and If you could maybe just explain that quickly.

07:06 P: Okay, well, originally, when I said "Print answer request,"...
(points w. I. I. finger to that line of SQUARE)
...what I was thinking to myself is, urn, I was thinking of robust
programming.
(turns toward I.)

07:15 Ah, when I take a request, the person could type
anything, including nothing, he could give an empty line.

07:23 Urn, with an empty line, and this thing Is asking for a number,...
(points w. I. I. finger to line 2 of SQUARE)
...clearly in a good robust program it ought to be able to, you
know, do the right thing if you don't give it a number, you give
it nothing, or you give it a word.

I: Urn hm.

P: And, ah; ah;
(4 sec pause, looking at screen)

07:42 So my sort of standard thing to do when I hit a line like that is
just to go ahead and take it, and let "Print answer" worry about
filtering out...figuring out whether it got the right stuff.

07:53 Well, I decided I wasn't going to build in ail of these bells and
whistles, to try to figure it out. Urn, and realized that, in here;

07:59 the point Is the first of request Is going to be bad news if somebody
Just hits an empty line.

I: Uh huh.

08:05 P; Okay. And I figured I'd take care of that in here,...
(scratches fingers of I. hand In front of PRINTANSWER procedure)

258

...but then when I realized In here I would,
(points w. I. I. finger to :NUMBER * :NUMBER In SQUARE)

08:12 ...If I wasn't going to do that building, then by the time I got down
to "Print number times number," It would be "Print first of number In
list times first of number in list," and that's repeating a
computation here,...

08:25 ...there's no point to repeating that computation
unless I were planning on doing something clever with it, and
since I'd already given up on that Idea, I Just decided to put the
first out here, give "Print answer" only the number,...
(pointing w. I. I. finger to line 2 of SQUARE)

08:38 ...and then I changed the name here because I always like
my names to refer to what I've actually got. Before it was going to
be a number in a list, because that's what "Request" does.

08:47 So there you are.

259

00:00

00:16

00:17

00:22

00:39

00:50

00:57

COMMENT

01 :05

01:11

01 :22

Appendix E
B, Problem A-2

B: Write a procedure that first prints the message "Give me a
number" and then prints "The number squared is" followed by the
square of the number supplied by the person using the program.
So, I've gotta write the program. ...The screen might look like this
"Give me a number, 2, the number...square... is".

I: Yea.

B: Okay. So now do you want me to just do it or do you want me to
tell you what I'm doing?

I: Right, I should make it clear, I do want you to talk about urn,
you know alot of things so I'd like you to talk about,..uh... the
process as you go through it as much as possible, and urn, yeah, I mean
that's a good enough answer for you because you're familiar with loud
thinking.

B: Okay, urn...

I: And I'll be a I i stener

B: Bright, okay. Urn...

I: By the way, that's a problem for the camera, that's in part for me
too.

B: So, I would write a procedure called, probably, "Square" or
something...
Urn, and it's going to be interactive with the user
because I want to, basically request them to give me input, which
will be the number two.

: Note the use of "them" to denote the user, "it" and "me" for
the procedure.
Urn, actually if..., there are a couple ways I
would do this problem. I'll show you one way. Urn...

I: Okay.

B: It would be nice if, urn, if I had a little procedure called
"Square" that just squares a number and; outputs a square of a number.
Okay, so I can say to "Square dots num",...
(types:

TO SQUARE :NUM(ret.))
•..where Num is my variable, and I'll just output, you want me to
write that out? Output...
(types: OUTPUT...)
••."dots num times dots num"...
(types: ...;NUM * :NUM(ret.)

END(ret.))

260

...and there's my little square procedure.

«

I: Okay.

B: (types (ctrI.)-C)
01:44 Okay. So now when I type "Square four",...

(types: SQUARE 4(ret.)
RESULT: 16)

...um. I'll get the result "sixteen", okay?

I: Okay.

01:51 B: So I'm going to use that In my, um, procedure, FOO, I don't know
what I'll call It, um, you want me to...
(types: TO ...)
...give It a real name?

I: Anything you want. Anything you like.

02:00

02:05

02:13

02:22

02:28

02:32

B: To do "SQ dot Num"...
(types ...SQ.NUM(ret.))
...Okay? Um, so the first thing I want to do
is have it ask the person, um, a question, so I'm going to say
"Print, uh..."
(types: PRINT ...)
"Print, uh, give me a number",...
(types: ...[GIVE ME A NUMBER].. .)
...um and I always like things to look exactly the way they will on
the screen,...
(types: ...(ret.))
...um,...
(3 sec. pause)
...I suppose you want me to have it print the number two there, right?

02:39 I: Um, well let's see...

B: Bright.

I: Why do you say that?

02:46 B: Well, just because of the way it's printed there as a "2"

I: Oh the...

B: And that will...

I: I meant that to be, um, that's a, that's a...

02:56 B: Will that be something that the person types...

I: Just what the person types in, you know.

B: Okay, that makes it easier.

261

03:00 I: This should probably have a question mark, "Give me a number"
should probably have a question mark before it.

03:04 B: Bright, I'll put in a question mark. Urn, or a colon, how about
that since it's a statement and all that...
(moves cursor to r. end of line 1 and inserts a colon before "]")

I: Okay, right.

03:11 B: Urn, and then what I'll do Is I'll "Print" urn;...
(types: PRINT ...
(4 sec. pause)

03:19 ...this Is interesting, this is interesting, 'cause I always; what's
nice about these problems Is as I'm doing them I can think of, like,
three different branches or something about how I would, sort of,
solve it, and then I try and think of the most concise way to do it;

03:35 ...urn, really, what I would do is I'd say "Print a sentence...
(types: ...SENTENCE ...

03:43 ...made up of "The number squared" urn, "is",...
(as she types:

...[THE NUMBER SQUARED IS]...)
03:55 ...and then, urn, "SQ first request".

(types: ...SQ FIRST REQUEST(ret.)
END)

I : Uh huh.

04:08 B: Now, that's not necessarily the; if I were doing this for, urn,
kids to use or something like that, I wouldn't necessarily do this
because I don't think it's necessarily clear what's going on.

I: You mean the Internals of that program are not as clear as a
demonstration?

04:29 B: Right, right, it's not as, sort of linear; sequential, urn, if;
(1 sec. pause)

04:36 ...you know, another way I could have done it was to create a variable
called "Number" but since I learned LOGO from Brian Harvey, I always
learned that you never use MAKE, so I try to avoid it whenever
possible when it wasn't...the right thing to do.

I: So, let me see if I understand the advantage of using a variable
would be what? For someone, you said, as a sort of exemplary program
if you're using It to teach with, uh...

05:02 B: Well, like here,...
(points w. r. I. finger procedure on the screen with a single, quick
stroke going from header to last line)

5:04 ...urn, if kids are trying to figure out what's going on
here,...
(turns r. hand, now holding It palm up in front of screen)
••.it's not clear where the person has really typed in the number

262

that the... .
(rotates r. hand clockwise at wrist, w pinching gesture of fingers)

...programmer's asked them for.
COMMENT: The distinction between "the programmer" and the user ("them") is

made concisely.
05:14 In other words, I haven't specified a real container for that

number,...
(r. hand palm up, as before, then pinches her fingers on "container)

I : Uh huh.

05:19 B:...and it's sort of magically included in this last, ah, line

here,...
(points w. r. i. finger to 3rd line)
...urn, so that it's actually doing the requesting,...
(circles the word "REQUEST" on the screen w. r. i. finger)
...getting the number...
(clenches r. hand Into a fist in a "grabbing" gesture)
... and then automatically passing it down to that, uh, Square
procedure that I have as a tool hanging around.
(on "...automatically passing it down..." B. pulls fist away from
screen and down, retaining clenched hand)

I : Yes.

05:38 B: Urn, now of course if I have a problem, if really what I wanted
to say Instead of Just the "Number squared is"...
(slides her pointing r. I. finger along 2nd line)
.. .such and such,...
(bounces r. hand, held w. palm up, three times, moving from before
screen to r. of screen)

05:47 ...urn, if i wanted to say "The number, (whatever the number is)
squared is",...
(slides pointing r. I. finger to same line, pausing between "NUMBER"
and "SQUARED" during the phrase "...(whatever the number is)...")

...then I would have to reorganize my thinking because I haven't...
(circles REQUEST on line 2 w. r. I. finger)
...given that number sort of a label; or a name.

06:00 I: Uh huh, uh huh. How would you do that; you might want to test
this....

06:04 B: (laughs)
I'd better test this and make sure the thing works.
(1 sec. pause)

06:09 Urn, so "SQ dot num"...
(types: SQ.NUM...)
I doubt it, ah ,.. .
(types: ...(ret.)

GIVE ME A NUMBER:
THERE IS NO PROCEDURE SQ IN LINE
PRINT [THE NUMBER SQUARED IS] SQ REQUEST
AT LEVEL 1 OF SQ.NUM)

263

...there's no procedure named "SQ".
nfi-14 What did I call It? Square?

(types: ED(ret.) >
I guess I called It square.

I: Um...

B: Yes, I did.
(moves cursor to IIne 2 of SQ.NUM and changes SQ to SQUARE)
(types: (ctrI.)-C

POTS(ret.)
TO SQUARE :NUM
TO SQ.NUM

B: There. Yeah I called It "Square". So "SQ dot one",...
(types: SQ.NUM)

GIVE ME A NUMBER: ...
)

..."Give me a number", I don't know, twelve,...
(types: ...12(ret.)

THE NUMBER SQUARED IS 144)
..."The number squared Is 144".

I: Okay.

06:39 B: Okay?

I: Let me, some, there's a lot of...(LAUGHS), I'd love to have
branching videotapes so we could pursue some of these branches
you're talking about, um...

06:43 B: Oh, I know...

I: You got an error message there, I think the error message was
something like "There Is no procedure SQ In line something of SQ
dot NUM, and you...

06:56 B: Do you want me to go, I can go make the error again, if you
want.

I: Well, I think,...
07:00 ...does that sound right to you?

07:04 B: (types: ED(ret.))

I: Um, or maybe, or Just as you "Make" it If you talk about, I mean
you quickly...

B: (moves cursor to 2nd line and changes SQUARE to SQ)
07:ii (types: (ctrI.)-C)

I: It looked like that, ok.

06:18

06:25

06:30

06:33

264

07:12 B: Right, so I give "SQ dot num"...
(types: SQ.NUM(ret.)

(duplicates earlier error message))
...and It said "Give me a number there is no procedure named "SQ in
line print" it tells me what line the error is In...
(pointing to the middle of the error message)

I: Uh huh,

07:20 B: And at what level that's in case I made a recursive procedure
that's in some other level down there or whether It's called a
subprocedure...
(pointing to the following line of the error message)

I: You know this version of LOGO very well.

B: (laughs)

07:33 I: Urn, but if you could, you then asked about what you called
another procedure you'd written and you did a "POTS", what was, urn;
do you remember anything of the thought processes that very quickly
led you to fix something that made everything work?

07:50 B: Oh, I mean at this point this is sort of, urn, rote, I know it
says "There is no procedure named Square", it,...
(points to first line of error message)

08:00 ...I know that, I'm trying to call a procedure by a name, and I don't
have a procedure by that name. So by saying "Print out titles",...
(types: POTS(ret.))

08:11 ...I get the titles of the names of the procedures I have, and so I
can look at that and I can say, oh yeah, I don't have one called "SQ"
I remember what I did was I called it "Square".

I: Uh huh. And you recognized right away that the, well the line is
printed out there for you...

08:22 B: Right, right,. . .

I: Print sentence...

°8:25 B: ...but, I mean, I didn't even look at the rest of the line, I
just said when it said "There is no procedure named SQ" I knew
automatically that I made, that I could call it "Square" instead of
"SQ".

I: Yeah, yeah.

08:37 B: 'Course there's not a lot of stuff In my workspace, so, that was
easy.

I: Okay. Well thanks, that's helpful to have you talk about; urn,...
what about any of these other branches, any of them that are worth;
uh, noteworthy...

265

08:49 B: Well, so, for example, suppose, urn. Instead of It saying um,
"The number squared Is such and such" that I wanted it to say, um

09:00 "The number twelve squared Is 144"?
COMMENT: Had this line in the problem been worded this way, B. would
apparently have selected this alternative. While this seems a subtle
distinction in execution, B. recognizes this final declarative sentence
would strongly favor one approach to coding over another.

I: Um hum...

09:04 B:
(types: ED)
Then, probably what I would do since I like having a little
procedure "Square" around as a tool, um, is I'd probably do someth
like, um, "Make quote number first request",...
(moves cursor just r. of SQ in Iine 2 of SQ.NUM)
(deletes SQ and inserts: MAKE "NUMBER FIRST (ret.)

In front of REQUEST on that line;)
(Procedure now reads:

TO SQ.NUM
PRINT [GIVE ME A NUMBER:]
MAKE "NUMBER FIRST REQUEST
PRINT SENTENCE (etc.))

...first because request; you really want to know all this?

ng

I: Yes, yeah.

09:25 B: "Request" um, will output a list and I, a list of one, ah, it
output a list, since what I'm doing is typing in number, that's a
element list. I need to get that number out of the list so I say
"First of request" and that will, the first of course in a one
element list is that element. So I want this...
(circles "NUMBER w. r. I. finger)
...to be, ah, a number. Of course I don't need to do that here
because it's not going to know that anyway*,...
(points to [THE NUMBER SQUARED IS] w. r. I. finger)

09:58 ...when I put it; but I put It in; its just interesting but, um..

I I
one

I: When you print It.

B: Yeah. So...

I: It won't matter if it's a list or a number?

10:08 B: Right. I have to put a parenthesis here,...
(inserts "(" before SENTENCE in IIne 3 of SQ.NUM)
...because I'm now going to have more than two Inputs to sentence,
sentence Is going to take, ah, well, other than two inputs, it's
going to take three in this case.

I: Um hum.

266

10:20 B: So I'm going to print a sentence out of the number sq... "The
number"...
(moves cursor to r. of "[THE NUMBER" and Inserts "] ")
...dots number",...
(Inserts: ...:NUMBER)
...okay, because my number will be in that variable...
(pointing w. vague waving motion of r. I. finger, approx. 18 in.

in front of screen)

I: Urn hum.

10:32 B: Urn, then I guess I'm having four inputs to sentence,...
(types: "[" between NUMBER(space) and SQUARED on line 3 of

SQ.NUM)
..."SQUARED IS",...
(moves cursor r. to SQ on that line)
...and now here,...
(points w. r. I. finger to FIRST REQUEST in line 3)
...if I leave this here "Request" is going to ask me,... it's
going to wait for me to type in something again, I already have, have
my something...
(adds "ARE" to r. of SQ)
(deletes FIRST REQUEST)
...and it's "dots number".
(inserts: :NUMBER))
So that would be my new version and...

11:00 ...of course up here, just to make things nice, I'd say someting
I ike cleartext.
(inserts: CLEARTEXT
as new Iine 1)

(proc. now reads:
TO SQ.NUM
CLEARTEXT
PRINT [GIVE ME A NUMBER:]
MAKE "NUMBER FIRST REQUEST
PRINT (SENTENCE [THE NUMBER] :NUMBER [S!
QUARED IS SQUARE :NUMBER)
END

I: Urn hum.

B: You want to see it?

I: Yeah.

B: (types: (ctrl.)-C
Alright, "SQ NUM",...
(types: SQ.NUM(ret.)

GIVE ME A NUMBER:
"Give me a number", twelve,.,
(types: 12(ret.)

THE NUMBER 12 SQUARED
"The number twelve squared Is

IS 144
144".

)

)

)

267

I: I see, I see. Do you use the term "GREEDY" for procedures that
use parentheses, the ACORN manual uses the term, calls those "GREEDY"
procedures...

11:25 B: Well, I wouldn't call them "GREEDY" because, urn. In actuality,
urn, prImItIves(?) that take parentheses mean that you use
parentheses any time the number of Inputs Is anything other than the
default number. So for example, I could use sentence with one Input,
and In that case I would still need parentheses. I can use It with
no Inputs.

I: Urn hum.

B: I don t know why you'd want to but, very often times when you'Id
12:00 only use it with one input, and so that isn't really being 'greedy'

that s kind of the other side of greediness...

I: Urn hum, yeah, that's true, that's true, urn, but not all
procedures can be so parenthesized so, to operate that flexibly.

B: Right, right.

I: Okay. Urn, anything else?

B: Nope. You have another problem?

I: (guffaws)

B:
or

Alright, I'm going to say goodbye, you want me to
do you want me to leave all my stuff here?

say goodbye.

I: Urn, whatever you like.

B: Going to lend my my "SQ" procedure again?

I: No, none of these should use each other, urn, well thank
course you might find a way to use that “Square" procedure

you,
again.

268

Appendix F
R, Problem A-2

00:00 R: Problem A-2, alternate Problem A-2. Write a procedure that
first prints the message "Give me a number" and then prints "The
number squared is" followed by the square of the number supplied
by the person using the program. As an example, after the program
is used once, the screen might look like this: "Give me a number...
...2...The number squared Is...4".

00:32 I: Okay, I should mention and probably should specify in this sheet,
or should have specified on this sheet that "Give me a number" Is
printed by the computer. The "2" would be printed by the user;
would appear, you know, ah...

R: Uh huh.

I:...as a result of what the user did. The
computer would print the next two lines, "the number squared is"...

00:48 R: (nods his head up and down)
Okay.

I: ...and "4".

00:50 R: Okay. So first we'll;
00:52 (types: TO SQUARE)

I: You say "TO SQUARE", can I stop you for just a second?

01:01 R: Yeah?

I: I'm Interested in something, you read the problem, I would say
going over It carefully, I think, urn, and very quickly, in all cases,

I believe, moved into typing something, urn, can you tell me about
that, was there any gap in time at all, was there an instantaneous...

01:24 R: Yeah, yeah, I thought about the crucial several lines that would
do what the program use...was...

I: What was that thought process like? Was it like, urn, let me see
where the few crucial lines... Or was it like, obviously the crucial

I ines are...

01:42 R: Yeah, like I sort of dismissed the print and input parts
because those weren't very hard to do. And then I focused on like
what would actually acccomplish what the procedure is supposed to
accomplish.

I: Uh huh, and what were the, maybe, you haven't written it
yet, but what were the crucial, what did you decide were the
crucial...

269

02:03 R: Okay, the crucial line would be what...the one that printed the
square of the number, because all the other lines were just "PRINT"
or Input.., or inputting the...that number...

I: Could you perhaps, and I'll stop disturbing you from, from doing
the solution, could you perhaps talk about the crucial;., it's a
wonderful Idea, I'm really glad I asked. And if you could maybe
point to it when you hit the crucial part of the problem.

02:27 R: Okay.

I: Very interesting; urn, well. I'll shut up for, but, you know, that
idea of, there, locating a crucial part of the problem is a
fascinating idea.

02:36

02:43

02:45

R: Airight.

I: Hum...'cause, you know, well I should shut up...

R: (laughs)
Okay.
(briefly looks down at the problem).

I: I'd love to talk to you a little bit about this after

R: (types:

Sure.
PRINT ...

we're done.

I: By the way, I should have mentioned earlier that I'm,...

02:48 R: (looks down at written problem for 1.5 sec.)
(types:

...[GIVE ME A NUMBER] (ret.))

I: ...while I'm, you know, particularly trying to avoid certain
sorts of questions of discussions, urn...

02:51

02:54

R:
(types:

MAKE...
(looks down at written problem for 1.5 seconds)

..."NUM RW...

I: ...I don't know whether that's come up with us or not...

R: (types:

... (ret.))
(turns to look at I for 17 secs.)

03:04 I'm very happy to talk and would love and very much enjoy by
the way, talking with you about any of this, Including your own you
know, personal reaction to it if...

270

03:13 R: Okay.

I: ...ah...I would find that very, I would just be very interested in
that and your're welcome, you know, please keep that in mind, urn.

03:23 R: Okay.
(turns toward screen; 3 second pause, looking at screen)
So...

03:26 (types:
PRINT [THE NUMBER SQUARED IS...] (ret.))

I: Allright, you typed "To square print give me a number" then "Make
quotes NUM RW" then "Print the number squared is", dots and a bracket,
then "PRINT...

03:43 R: (types: PRINT...)
Okay, now this Is the crucial part.
(types: ... :A*:A ...)

I: "Print colon A times colon A". Okay.

03:50 R: Which, um, each "colon A"...
(points with right thumb to first :A, then second)
(turns toward I)
...tells the computer to use the value of
the number which would be, in effect, that number times itself.

03:59 I: I see.

04:05 R: (types:

END (ret.)
SQUARE DEFINED

(ret.)

)

I: And you type "End", okay.

04:07 R: (types:

SQUARE (ret.)
GIVE ME A NUMBER)

I: "SQUARE DEFINED, you type "Square",
number"...

the program says "Give me a

04:10 R: (types:

Hmm.

(ret.)
THE NUMBER SQUARED IS...
1521)

I- You type "4", and It says "The number squared is 1521".

R: Which is because I was careless...
(points with right thumb to line 4, then line 2; back and forth

271

several times)

...and changed the name of my variable In between without thinklnq
about it.

i Okay, pointing at "MAKE NUM READWORD" and "PRINT DOTS A TIMES
DOTS A"?

04:26 R: (types: ED [SQUARE]
Yeah, l should have used either "NUM" or "A", but not both.

I: Hmm. Okay.

04:34 R: (moves cursor down to line 4)
I was Just thinking about what you said,
(changes Iine 4 to read:

PRINT :NUM * :NUM

I: I should keep my mouth shut probably (laughs).

04:42 R: (types:

(Ctrl.)C
SQUARE

GIVE ME A NUMBER

I: I'm sure. It's a lot easier
listen to me babble on about th

to program than it is to program and
Is, eh?

04:47 R: (types: 7(ret.)

THE NUMBER SQUARED IS...
49

)

I •• You say "Square give me a number 7"
squared is 49". it says "The number

04:55 R: (types:

SQUARE
GIVE ME A NUMBER

14

THE NUMBER SQUARED IS.
196

l: Square> 9|ve me a number, 14, the number squared is is6».

05-'01 R: one more.
(types:

I :

SQUARE
GIVE ME A NUMBER

25

THE NUMBER SQUARED IS..
625

)

"Square, give me a number.
25, the number squared is 625".

272

05:08 R: Okay.

1 : Why the three tests?

05:10 R•* Oh, just checking, urn, | was sure it
Just, like, playing around with things 1

worked
didn't

before,
know.

1 : Um hum. Do you usually check?...

05:19 R: Yes...

1 : As you go through a process?

R: ...to make sure, like, it would work in any case.

1 : Okay.

273

Appendix G
M, Problem A-2

0:00:00 I: (Reads the written problem)
00:35 Ok? So is it clear which parts the person types in and which parts

the person types In here? The computer types...

00:44 M: Ah, you type in the name of the procedure and then the computer
takes over.

I: Uh-huh. And then the computer types, "Give me a number", ok, and
you have to type...

00:56 M: The number.

i ...the person there has to type, the number, and then the
square of it is four.

01:02 M: Um-hmm...Ok.
(4 sec. pause, looking at screen)

01:07 (types: TO)

I: Ah, one thing you should do, there,
screen; ...ah, clear the procedures.

01:15 M: (erases TO and types GOODBY(ret.))

Is type "GOODBYE", to clear the

(M corrects this misspelling to GOODBYE to restart Logo).

01:44 Ah, we'll call this, "To num"...
(types:

01 :56

02:02

TO NUM(ret.)
(looks down to written problem)
Ok;

(4 sec. pause, looking at problem)
Well first we want to give it a print
(types: PR...
(turns to I.)
Now If you want it to print
brackets, I mean?

a list you put it in parentheses? Ah,

I: Brackets, right.

02:12 M: (types:

(turns to keyboard) ^
(4 sec. pause, eyes wandering over keyboard)
Hmm..."G"

I: You don't have to type the whole thing
Just type "Give number"... if you don't want. You can

274

M: Thank you.
(types:

...GIVE NUMBER?](ret.))
02:39 O.K.(7 sec. pause, looking at the screen, then down at the written

problem)
02:46 Now to take this number and to reprint It would you put "Output

dots x"; ah... output...ah...how did you do that, again? I forgot."
(laughs)

COMMENT: This Is an example of the same "language confound" for OUTPUT
observed In other protocols, (OUTPUT may mean "screen-output"). In other
words, M Is using the term "output" to mean "screen output", and uses this
association as an (incorrect) formal interpretation of Logo's OUTPUT
command.

03:05 I: Tell me more specifically. . .

(I tells M that she may ask questions freely)

03:21 ...So you're asking now?

03:23 M: Ah, I'm going to be given a number here;
(points to screen, line 1 of procedure).
I want to put that number in a variable, so I can use it whenever I
want it, and the first way I want to use that variable Is to reprint
it back on the screen"

I: OK. OK. Urn.

03:41 M: So do you use a MAKE statement?"

i: You can use a MAKE statement to create a variable, yeah.

03:47 M: But I wanna output it. So the first thing I want to do is output
it back to the person. So if they type in a 2
(points above top I. of keyboard, then sweeps finger in big arc,
to point to her right side, keyboard high)

I type back; give them back the 2. I guess if they do a 2
(points to top, left keyboard, then top, computer screen)
it will go anyway, won't it?"

I: It will go where?

^4:03 M: If they type in 2,
(points to top left of keyboard)
it will be on the screen anyway.
(points to top left screen)

I: I will be on the screen yea. You don't have to echo the 2 back.

04:13 M: Ok. So I Just want to make this...
(points to screen)
...a variable. So I can use a MAKE statement?

275

I: Yea.

04:22 M: (begins typing)
Now I've probably forgotten how to use It correctly at this point,
(types:

MAKE ...)
Make...now let's see.
(types: ..."X)

04:42 (3 sec. pause, looking at the screen)
Now how do I make make dots x that number,...
(points to screen w. I. I. finger)
...that they Just typed in?

I: Which number.

04:47 M: You say give number, ...
(points to screen with left index finger)
...they give you a number,...
(points to mid-air, 12 inches in front of screen)
...how do you make dots x...
(points to screen w. I. i. finger and slides finger to r.)
...the number which they give you?

COMMENT: M. seems here to show an excellent understanding of the function of
a line that assigns user-input to a variable, (including the notion of a
variable as an "alias", standing for a value), even though she does not at
this point remember the last part of it, the REQUEST statement, nor does she
yet demonstrate a full understanding of the concepts related to it.

I: Ok, you remember; (sighs) thats...if you ask me...

04:57 M: They give you inputs....
COMMENT: This comparison to parameter input, a construct more familiar to M.,
•s the first indication that she has some understanding of the function of
her missing word". At the heart of the comparison between parameter input and
the REQUEST statement is the fact that both techniques allow a programmer to
bring into his program information from the outside.

I:...a more specific question about something we
talked about before... They give you inputs. So would it
be something that you define in the top line as inputs?

05:09 M: (5 sec. pause, looking at screen)
Urn...I guess so.

I: Ok. So maybe...what's...tel I me; tell me what it is you're looking
for in a little more detail...I know you're looking for something to
Just get that number, but if you could explain to me*,... I think I know
something of what you're looking; you're looking for something to tyDe
r Ight now, r ight?

05:38 M: Urn hm.

I: Should It be one thing you type, or a long' line of things?

276

05:44 M: Its probably 2 or 3 words.

I : Two or three words?

05:50 M: You write give number and they give you a number, I want to know
how to transfer the number that they give you, such that that number,
whatever It may be, the computer knows that number Is now x.

I: Right. Ok, there was a command I showed you at the beginning,
when I talked about this thing, do you remember what that was?
That you could use to have someone specifically type in a number?

06:22 M: Well MAKE makes the variable ...

I: That's right.

06:25 M: ...in the middle, and that's what I'm doing. An interactive
variable, yea?

I: Uh-huh. Well, if I'd asked you, "MAKE"... I f I'd asked you to type
to the person, give me a number, and then have the program print the
number 10, no matter what number they gave you print the number 10,
you could say make x what?

06:49 M: Um...(8 sec. pause, looking at the screen)
MAKE X PRINT, or MAKE X NUMBER? I don't know. I forgot. I've
forgotten what you did, you did this exact same thing as an example,
you said make, urn, PRINT, urn, WRITE YOUR NAME, and then, you know,
name, MAKE NAME the variable, or whatever; I mean you did the same
thing. If I had written it down, I would have it now. (laughs)

COMMENT: In an apparent reference to the line she had seen in the introductory
presentation, (MAKE "PLAYER1 REQUEST), M. correctly uses the term "interactive
variable" (at 6:25) and is searching for that idiom, has at this point shown
no clear understanding of the functional role of the part of the idiom that
she cannot recall (REQUEST). Notice that the use of quotes as punctuation
within the Idiom poses no apparent problem at this time (although see 11:12).

I: There was a command to read something from outside of the program
back into it...

07:32 M: Right.

I: ...and that was request, R, Q.

07:35 M: OK. That was the only one that I didn't really know at the time,
(types ...RQ)

(M. makes several procedural suggestions, Including a suggestion to
provide subjects with a reference of Logo commands, with examples).

NOTE: During M's Interview, subjects were given an oral review of Logo,
ar>d there was neither an instructional videotape nor a written script for
hQr to refer to.

277

08:25 I: You hadn't seen REQUEST before, right?

08:27 M: I hadn't seen request before.
COMMENT: M. must mean that she has not seen and used REQUEST before this
interview (she has already acknowledged that REQUEST was part of the
instructional example given at the start of this session).

I: That's a good suggestion, that's an issue I'm gonna have to think
about, because I don't want to make this a quiz of memory. But let
me think about that.

08:42 M: Because I Just learned MAKE. I mean, I wouldn't have known that
one either.

I: You just learned that when you sat down?

08:49 M: No, urn, i learned that just the other day in making my final
project.

I: What were you doing?

08:58 M: What did I do?

I: Yea, what were you doing when you used MAKE?

09:02 M: I used it several times. I was using the law of sins and the law
of cosines. And I needed to take my answer from the law of cosines and
put it In the law of sines, and I needed it for a variable later on.
But I never would have remembered from what you did at the beginning
to use make here, except if I had used it before.
(pointing quickly to the center of the screen)

COMMENT: The experience to which M refers helps to explain her clear under¬
standing of the concepts of variable-as-container and variable-as-aIias.
This raises some important questions about the role of rehearsal in the
development of predictive theories.
09:26

(Discussion of methodology, including the idea of using an instruc¬
tional videotape)

09:52 Ok. Now, what this will do; now tell me, what this will do is the
REQUEST...
(points with left index finger to line 2, then slides left index
fInger up to line 1)
•..will, urn, take that number?"

(POlnting t0 l,ne 2 with ,eft ,ndex fln9er)
E: By pointing first at the REQUEST line and the PR [NUMBER?] line, and
ernating between those two lines several times, M seems to be refering to

e number that will eventually be input by the user. It is not clear why

att ihS n0t point t0 the x ,n the same ,lne as th© REQUEST; she may be
"Niiurcd^109 mean 1 n9 to the data being printed, (l.e., assuming the use of

uMbtR? as an argument to PRINT will be semantically Interpreted by Logo
p enomenon was that was observed later In M's work In a follow-up problem

278

probIem A).

I: Why don't you try it and find out, I don't want to give you too
much...(unIntel Iigible)...

10:08 M: Ok.
(types: ENDCret.) (ctrl.-C)

NUM DEFINED)

I: ...Because remember, our goal here isn't just, I mean you're trying
to solve the problem but to find out what's hard or easy about these
things.

10:21 M: Ok. (looks down at problem statement for 2 seconds)
(turns to look at I)

10:23 Well it's hard if you've never seen the word REQUEST, so you don't
know, exactly, its definition.

I: I understand.

10:29 M: (types:
NUM(ret.)

GIVE NUMBER
2(ret.)

?)
COMMENT: The-procedure exits, returning to command level.

10:37 Now it may not know what to do with the number.
See I can't tell from what I've done so far, so I'd better
Just go on with the program.
(types: ED [NUM])
(inserts blank before END)

10:58 Ummmm; let's see...
(14 second pause, looking at screen, down at the written problem for 1
second, then back to the screen)

11:12 Maybe I should have it "MAKE dots X".
(pointing to line 2 w. I. I. finger)
(7 second pause, looking at screen)
That's usually what we're doing for a variable. Let me try that.
(moves cursor to over the " in MAKE "X RQ)
(abruptly stops moving cursor and looks up from the keyboard to the
screen)

11:32 No! For a make statement, you need that,...
(points to line 2 w. I. i. finger)
...don't you?

I: You usually use a...(1 second pause); before I describe anything,
you know, I think your idea is very good. And I think I'm gonna make
my videotape, and I think I'm gonna write the entire script down, for
people to refer to. And what it would say there, what I used as an
example was MAKE quotes x, and that was because quotes was just, x
was Just a word. And when you use it, the dots means the thing
known as...the thing named by the variable name used. So that line

279

Is...very similar to what you just had.

12:12 M: (moves cursor back to next, blank line)
Ok. Dots x.

(M spends some time searching the keyboard, first for then for
times ("*") (with questions for I.)).

(types:
: X * : X)

12:48 OK. (5 second pause, looking at screen) So MAKE x*, does this have to
be MAKE...
(pointing to screen with left index finger)
...dots x? I mean make quotes dots X? Or Is it just x?

13:01 I: No, thats just fine.

13:04 M: Just fine. Ok. Urn,...
(2 second pause, looking at the screen)
...and then I get an answer for that, and then I
need to output that answer.
(2 second pause, looking at the screen)
Urn...
(7 second pause, looking at the screen)

13:21 ...so first I have to do this
(pointing down to the written problem)
(2 second pause, looking at problem)

13:26 I wanna go up...
(with some difficulty, M. puts blank line between lines 2 and 3)

13:46 Ok. Now I wanna do, "Print", P, R.
(types: PR...)

I: You can Just type NUMBER, if you want.
COMMENT: There appears to be established here a clear agreement that "NUMBER"
will stand as a abbreviation for "THE NUMBER SQUARED IS..." (see 17:45)

M: (types:
. ..[NUMBER]

14:14 ..well, then I don't really need this bracket.

I: We I I...that's ok. It won't hurt.

)
because its not a list.

14:21 M: Urn; and then ; urn...
(moves cursor down to next line)

14:32 Now; I want to output the answer, so...
14:43 (types OP before :X * :X)

If I put OUTPUT that, will it output this,...
(pointing to the screen)
...or will It output dot x times dot x?

280

I: Wi I I It output 4 or wlI I it output dot x times dot x, or wi I I it
output?

15:01 M: If the number was two,...
(points to the screen)
...would it output 4?
(points down and towards center of screen)

COMMENT: The first alternative is that the procedure would print, literally,
:X * :X (see 15:38).

I: Well I don't want to run it for you.

15:09 M: Try it.

I: Well, yeah, why don't you just try it.

15:13 M: (types: (Ctrl.-C)
NUM DEFINED

NUM...)

I: Your question was, would it output 2 or would it output 4?

15:23 M: (types: ...(ret.)
GIVE NUMBER

2(ret.)
* DOESN'T LIKE [2] AS INPUT IN LINE
OP :X * :X
AT LEVEL 1 OF NUM)

I: Hang on a second. Your question, before, you thought it might
output 4 but what was the other thing It might have output if you
gave It a 2?

15:38 M: Um...well, actually It wouldn't have, it might have outputted dot x
times dot x.

I: You mean just put those letters on the screen?

15:53 M: Right. But I realized it wouldn't 'cause it's not quotes.

(I. explains that RQ "always puts brackets around" what it takes in;
suggests, as a fix to this problem with multiplication, putting
FIRST just before RQ on line 2. M. makes that correction)

COMMENT: In the Logo dialect used during the design phase of this study (and
used in several of these Interviews), Input could be taken in as a word
with the READWORD command whereas the dialect used here permits only

1 Ist—input. To adapt to this unavoidable complication, the
Researcher adapted the Instructional presentation depending on the dialect
being used and determined to avoid the issue of "preparing" number input in

281

this problem by immediately suggesting the "fix" suggested above.

17:33 M: Now let's try.
(types:

NUM(ret.)
GIVE NUMBER

2
NUMBER
RESULT: 4)

17:45 I: "Number", "THE NUMBER IS" and it says, "RESULT: 4". OK? You happy
with that?

17:50 M: Sure.
COMMENT: The last line is technically not correct since "RESULT: 4"
being in reality a gently worded error message. Had the procedure
contained additional lines they would not have been executed, making
this more obvious. Unfortunately, M's missing this point probably
only reinforces her misconception that OUTPUT-means-"screen-output".

I: Fine.

282

Appendix H
A, Problem A-2

(I. shows Andrea the Instruction Script, not available during the
her previous session).

00:00 I: Reads the problem ("Write a procedure that first prints the message,
, 'Give me a number'...)

00:37 I: All right so what do you think?

A: So what do I think...um
00:45 (types: TO A (ret.)

...ok...
(types: PRINT...)

00:55 A: Um...Your saying print; I don't know what punctuation to use.

1: Ok, if you looked back on the sheet you'Id see brackets...

A: Brackets.

I: ...print uses brackets as punctuation.

01:07 A: So, (looks at u.r. keyboard) they're up here, right?

I: Unshifted, yea.

01:10 A: (types [GIVE ME A NUMBER...)
01:23 Can I put please? (smiles) Just make it a polite computer.

(types ...PLEASE] (ret.))
01:31 (4 sec. pause, looking at screen)

01:35 A: Can you; is there such a thing, you know, like how you have output
(waves with hand at center of screen)
...in a program, so you can have input?

I : Um-hm

01:46 A: ...I don't know if that would do it.

I: Have the word input?

A: Yea

I: Well there certainly is a word output, urn; there's not really a
word Input; urn...so that doesn't; where does the word input come from;
why did think of the word Input?

°2:07 A: Just because I remember that there's an output before...

I: Uh-huh.

283

02:11 A: ...saying that like if an if, IN...AN...IF statement or whatever
saying if Its built on an output, saying that...I was Just wondering
If you could have an Input that's just the opposite.

02:25 I: Uh-huh, uh-huh; You know there's another computer language that
has an input statement, uh, that's BASIC that has an input statement.
You ever done BASIC?

A: Yea.
Comment: The idea for a primitive INPUT command may come from any of a number
of sources, or from a combination thereof. The word "input" in the problem
statement Is the probably the most direct influence, probably interacting with
A.'s experience with an INPUT statement in BASIC (see the following inter¬
action) .

I: You ever do an input statement in BASIC?

02:40 A: Yea, and also I've done Logo on Atari.

I: Did that have anything like an input statement

02:51 A: Yea, I think so...I think so. (Said while staring at the screen).

I: Well, how would you write it if you had an input statement? Or,
you know, alternatively if you know another way.

03:00 A: Well ,cause I Just wanna say that Its gonna get a variable. That's
what I want to teI I it.

Comment: "It (the computer) Is gonna get a variable", (what it actually gets
from the user a value to be stored in the variable) shows that A. does not
make a clear distinction between variable name and value. On the other hand,
A. seems to understand very well the roles of the computer, prompting for
input and using a variable to hold same, and the user ("the person") as the
supplier of this input (see the following).

03:11

03:17

03:25

I: What's the it that's gonna get a variable?

A: The computer's gonna get a variable

I: The computer's gonna get a variable? From where?

A: From the person typing it in.

I: Ok. The computer's gonna get a variable from the person
it in.

A: Um-hm

I: Now you're inside procedure A

A: Um-hm

typing

I: What, uh.. you know what...why are you in procedure a, I mean why

not, uh... is there a reason why you're in procedure A?

03:43

03:50

04:00

04:03

04:10

04:19

04:30

04:50

04:58

05:10

05:55

05:59
Comment
cat ion

* as an

A: What, you mean, like, the name?

I: Yea, or why did you write a procedure, you know.

A: Just because, so, like, you could have a procedure and you could
do with all types of different numbers.

I: So this has to take place inside a procedure, huh?

A: Well yea, also this says "write a procedure".

I: Yea, thats...and...that's a good clue.

A: Yea (laughs).

I: Alright, well, what about this Input statement? There's no input
statement. In fact I don't think Atari Logo's got an input; do you
remember how to use an input in BASIC?

A: I don't know. I don't want to think about it (laughs) but, urn...
(looks at screen for 5 secs.).

I: Would it help to look at these things?

A: Yea, it would, (takes a copy of the Script)
(Looking at page 1 of Script)
Print...ok...
(turns to page 2 of Script)
A: What...ok...One thing that I could try to do is, urn... it
probably won't work ...
(types: PRINT :S (ret.))
but I can't think of any way other to do it, because, urn...we I I I
could probably tell you what the computer's gonna say to me, but I
don't care. (Smiles, briefly)
(types: PRINT [THE NUMBER SQUARED IS]

PRINT :S*2)
(Procedure now reads:

TO A
PRINT [GIVE ME A NUMBER PLEASE]
PRINT :S
PRINT [THE NUMBER SQUARED IS]
PRINT :S*2

1:0k, well what is...Just tell me what the S star 2 means.

A: It means to, like, times it by 2.
: "It" must describe the value input by the user. Her use of multipli
rather than expotentI at ion Is a conceptual error, not a mistaking of
sign for expotentI at Ion.

I: Ok. Good, yea, that's right

285

06:08 A: (types:
(types: A

(types: 2

(ctrI)—C

GIVE ME A NUMBER PLEASE

THERE IS NO NAME S IN LINE
PRINT :S AT LEVEL 1 OF A

)

)

I: It says, "give me a number please...There is no name S in Print S

at level one of A". Why does It say that?

06-21 A: Because; I KNEW it was gonna say this, because I don't have, like
in the definition, I don't have dots s, so it doesn't know, you kno

It ... doesn't know.
-omment: Here begins a notable SHIFT from the Immediate goal of exhaustive y
estlng keywords to fill the role that she has so eloquently described to

development of heuristics to aid her search through a review of descriptive

knowledge about this aspect of the problem.

I: Doesn't know what? Fill in the "you know".

06:41 A: (Smiles) It doesn't know what that dots s is, because I haven t

told it the right thing.

06:56 I: So what do you need in your program? What would fix that?

07:04 A: Um...
(4 sec. pause)
(Types: ED (ret.))

07:11 I need something right there (points to center of screen),
instead of "print", I Just need, I don't know...I mean...

Comment: A here demonstrates a functional understanding of a line to accept
user input, at the location where one would expect to fInd 11. Th i s i s
probably based on her experience with an INPUT statement in BASIC, notable in
that it indicates some TRANSFER of a concept of variable from one computer

language to another.

I: I mean, what...well, what would that thing do, that you put there
Instead; so you mean the line instead of print s, you'd put something

there Instead of print s?

07:27 A: Yea, It probably, It might still have an s, but, like, it would
get It*so the computer would take the number, and so yuou wouldn't
have to; It was like, if you had a variable (points to top r. of

screen)

I : Uh-huh

A: ...an' you could say; I could say "to A dots s", but then;
when It says "a defined" and you had to type In a, you had to type
in a number as well, and thats not what it wants... ,

Comment: Again, A. seems honed In on the problem, (here explaining why adding
a Parameter to A would not be appropriate), but neither the instructional

286

presentation nor the Script are apparently sufficient for her to refine an

imp| imentatIon plan.

I: Uh-huh, uh-huh

07:50 A: ...It wants it to print out give me a number please, and then have
you be able to, like, type in a number,...so, urn...(8 sec. pause)

08:03 I: Ok, so you need something to let you get a number; Is that what you

sa I d?

A: Yea.

I: And it would have an s in It somewhere, in the line it would have
an s in it somewhere; and it would remember; what; what would; lets
say the person typed in 2, what would that be, you know, what would
that have to do with the rest of the program. Lets say the person

typed In 2.

08:27 A: OK, It said, gIve me a number please and it typed in 2?

I :Yea

A: Then it'd print, (points to screen) "the number squared is" and

It would take the 2 times 2...

I: Uh-huh

A: ...whIch is four.

I : Right.

08:41 A: (Looks at Script). This is to type lines and stuff.
(10 sec. pause, reading Script).

08:55 Does It, I ike...does it understand when you say like... does it
understand words like exponent and stuff like that?

Comment: We discount this question of a primitive as a distraction, possible
due to something A. saw during her examination of the Script.

09:06 I :No. You have to type that in.

A: Ok, so it doesn't...ok.

I: Those are procedures you'd have to type in.

09:11 A: Ok (looks at Script for 7 secs.)

09:16 I; Urn...a IrIght; welI...there's a section here, (takes Script from A.)
that, you know I think you've described at least a lot of the behavior
of the command that you need. (Sorting Script, then hands it back
to A). Allrlght, Just; why don't you look at the section from here
down.

287

og-48 A: (Reading Script)
10-12 Oh, ok! Ok I remember. Ok (smiles), you see t s

because I had never seen this before.

I: Yea, I know.

10:23 A: (deletes PRINT :S)
Ok. Then I can say, like...

(types, in its place:
MAKE ...)

make; do I have to use? (looks down at Script); yea.

(types:)
Comment: The quotes are seen as part of a frame for accepting
user. The form of this frame is:

MAKE "(variable name) REQUEST

input from the

10:45 (stares at screen; blows hair out of eyes)
(2 sec pause) So, urn...(3 sec. pause) Its still
right? So why don't l...do this, if not I can

(types: ...:S RQ)
Comment: A. sees DOTS (:) as part of the variable name,
abbreviation of 'THING "'. This generates a bug. (":S
hinders A.'s efforts for the remainder of this session.

a variabIe, though ;
Just...(unintelIigab

rather than as an
rather than "S) that

e)

I: Ok, what have you just typed, there?

A: Ok, I'm saying, alright, to make dots s, which is a variable, urn,
a request.

I: Ok, but you've got quotes in front of the colon, right?

A: Yeah.

I: ...which Is fine, you say make quotes dots s; rq Is request,
now what does request do?

A: Its, like, its; its asking the computer to the; or, you know, its;
its an input kind of thing.

11:34

17:44

I : Ok.

A: ...Indefinite its says, like, playerl; but you could; but
I mean; put anything.

I: Yeah. So that's what a name is?

A: Yeah.

I: So, for; in a name you can use any word you want to.

A: Yeah.

I: And In a variable; how does that work.

288

A: Then you usually say, dots. Or you could have a colon, and Its,

I Ike a letter.

17:55

18:09

18:21

18:32

18:45

18:56

19:06

I: Uh huh.

A: (looks at screen; pause)
...Um.*•

I: Does a name start with any punctuation or end with any
punctuation?

A: No (looks down at script)

I: Ok, like, for examp'; is there a name in here, in INQUIRE?

A: Yeah.

I: What's; what is it?

A: Its, um, in the make statement...

I: Yeah

A: ...it...it Just says...
(short pause, looking at script)
, well It has a quote around it, one, but, like...

I: Which, which; read it to me. MAKE...

A: Quote PIayerl.

I: Ok, so; which is the name

A: Playerl

I: Playerl. Ok. So, playerl is a name, and its got quotes in front
of it. And is there a variable in there?

A: No. There isn't
(moves cursor to line 2)
So I'm gonna eat this.
(changes line 2 to read, MAKE "S RQ)

I: You take out the colon from the make statement.

A: (moves to line 4, removes : so that line reads: MAKE S * 2)
...take out that.

(types: ctrl-C
A

GIVE ME A NUMBER, PLEASE
I: All right, and you took the; now you've got the bottom so that the
...the make statement in there says, "make quotes s something"...

289

A: (Types: 2
THERE IS NO PROCEDURE NAMED S IN LINE
MAKE S * 2

I: ...and then the bottom line says "make no-quotes s dots s time 2',

I think?

19:23 A: Urn; well, I took out the dots.

I : Oh, Just s; MAKE S tImes 2

A: (Smiling); Yeah (under her breath)

1: All right, so It says give me a number please, and you type 2, it
says, "the number squared is", and "there is no procedure s in line

make s times 2.

19:40 A: (types: ED) Its just this stupid (unintelligible)

I: (unintelIiglble)

A: (moves cursor to 4th line)
(unintelligible) Uh...(looks at script)...urn (looks at screen; moves
Iips).

20:05 I: What should that line do? I mean 's...

A: (Moves cursor r. 4 spaces)
It should; ah...
(looks down; adds ' "' after MAKE)

20:26 It should...this line (points to upper 1/3 of screen) should take the
number you put in up there and times it by two.
(moves cursor to right side of line 4)
But Its not because It doesn't like me.

I : Uh huh

A: (unintelIigible)
(adds RQ to end of line, to read:

MAKE "S * 2 RQ)
(types: ctrl-C
A

GIVE ME A NUMBER, PLEASE)
(quietly) A; Give me a number please.
(types: 6

THE NUMBER SQUARE IS
* DOESN'T LIKE S AS INPUT IN LINE
MAKE "S * 2 RQ)

20:54 I: ok, it says give me a number please, type 6, it says the number
square is, and It says "star doesn't like s as input In line
MAKE "S * 2 RQ".

290

A: (types ED)
Ummm...
(moves down to 4th line; deletes S)

21:19 Oops! I really didn't mean to do that. I wanted to get urn closer,
(replaces the S)
I don't know what to do.
(deletes the spaces on either side of the *)

(line 4 now reads:
MAKE "S*2 RQ)

(types: ctrl-C
A

GIVE ME A NUMBER PLEASE
3

THE NUMBER SQUARED IS
(pause in program)

(2 sec. pause, lips move; laughs)

I: Allright, it says "Give me a number please", you type 3, It types
"the number square is",
What's going on here?

21:44 A: Because Its Just like the other one, I mean. Its Just like
(points to top 1/3 of screen)
...wait a mi'
(types: ED

?)
Ohps. Excuse me.

I: What?

A: (types: ED)
21:57 No! because this is just; this (points to top 1/3 screen) line is

Just like that line (points up 1-2 inches), its waiting for...

I: Its just like the make s request

A: Yes

I: Its waiting for what?

A: Its waiting for somebody to type in a number
(moves cursor down to 4th Iine)
, and that's not what its supposed to do.

I: Urn hm.

22:14 A: But It; It doesn't know what its s'posed to do.
(Begins looking at script)
And I don't know what its s'posed to do. Or I do, but...
(stI I I reading scrIpt)

I: What's, what's; or, you know what Its supposed to do but you don't
know what you're; how to do it in Logo, is that the...?

291

A: Yeah.

I: What's it supposed to do once you; something about the role of

that line?

A: What, this line? (pointing to top 1/3 of screen) This line...

I:Yeah; the bottom line, Just before the END, yeah.

22-37 A: This line is supposed to take the input up here (moves finger up,
1 to 2 in.), of the first make statement, and times it ... multiply
It by 2, and print out the answer.

I: Ok.

22:52 A: (looks at screen)
22:57 And obviously,

(moves to end of line 4)
I knew this before, it wouldn't be request,
(deletes RQ).
because, ...urn (stares at screen for 3 sec.)

23:07 (looks down at script for 3 sec.; up at screen for 4 sec.)
(yawns) ...urn (looks down at script for 8 sec.)...

23:28 i don't know.

I: Do you want to, you know, work on it some more, or do you want to
go on to the next one?

23:34 A: I don't know. I; I'd like to work on it but I; I don't know...
(staring at screen)

23:39 I don't know what to do...
23:45 (Looks at script)

Urn; because...
23:57 (looks up at screen) Ok.

(changes line 4 to:
OP S*2
ctrl-C

(laughs) I don't know, I just put that there, 's (shrugs)

24:19 I: Ok, OP?

A: (types: A
GIVE ME A NUMBER, PLEASE

I: So that's; that line says OP...

A: (types 3 ;
THE NUMBER SQUARE IS
THERE IS NO PROCEDURE S IN LINE
OP S*2
AT LEVEL 1 OF A)

I: ...» no colon s times 2 right?

292

A: 2...yea.

24:27

24:36

24:44

24:56

24:58

25:01

25:18

25:24

I: Alright, you type A, It says "give me a number please", 't sez 3,
“the number squared Is", and then is says "there is no procedure S...

A: S . . .

I: ... in Iine op s times 2".

A: (types ED)

I: Why does it think s is a procedure?

A: Urn; because;it just does.
(moves cursor to 4th line, deletes OP)
No, I don't know.

I: Urn hm

A: (blows hair out of eyes)
so...(3 sec. pause, looking at screen)
(changes Iine to RQ*2)
(laughs; shakes head I. to r.)
(unlntelIIgible)
(types ctrl-C)

I: All right, now you change that line to RQ * 2

A: (types A
GIVE ME A NUMBER, PLEASE)

Yeah. It won't work either, but I Just...
(types: 5

THE NUMBER SQUARE IS ...)

I: Give me a number, 5, you say, the number square is...

A: (4 sec. pause, looking at screen)
(types: 5)

I: You type 5, it says, "star doesn't like BRACKET 5 as input
in line, request times 2 at level 1 of a.

A: (types: ED)

I: Do you understand that? You know, that's something...

A: Yea.
I: ...that I don't know if l...0k.

A: (moves cursor to line 4, deletes RQ)
I do, but, I mean, I Just don't know what to do to...to make it
better; or to; you know; to make it correct

293

25:32 I: Ok. Do you want to Just pass on this one? Let It; let It lie?
And If something comes to you, you can come back to it.

A: Yeah, I might as well. I mean, I don't want to, but.

25:43 I: Ok. Well its no; we'I I be able to over these later, too.

294

BIBLIOGRAPHY

Adelson, B. "Problem solving and the develpment of abstract
categories in programming languages". Memory and Cognition,

9, 422-433, 1981.

Allen, J. & Davis, R. "In praise of fingertips",
unpublished paper, 1984.

Anderson, J. "Acquisition of Cognitive Skill",
Psychological Review 89, 4:369-406, 1982.

Anderson, J., Farrell, R., Sauers, R. "Learning to Program
in Lisp", Cognitive Science, 8, 87-129, 1984.

Bonar, J. & Soloway, E. "The Bridge From Non-Programmer to
Programmer", Technical Report, University of Massachusetts,
Amherst, 1983.

Bonar, J. & Soloway, E. "Pre-Programming Knowledge: A Major
Source of Misconceptions in Novice Programmers",
Human-Computer Interaction, Fall, 1985.

Brown, J.S. & VanLehn, K. "Towards a Generative Theory of
'Bugs’", Cognitive and Instructional Series # 2, Xerox Palo
Alto Research Center, 1979.

Clement, J. "Quantitative Problem Solving Processes in
Children", Doctoral Dissertation, University of
Massachusetts, 1977.

Clement, J. "Cognitive Microanalysis: An Approach to
Analyzing Intuitive Mathematical Reasoning Processes",
Cognitive Process Research Group, 1980.

Clement, J., Lochhead, J. & Soloway, E. "Positive effects
of computer programming on the students understanding of
variables and equations". Proceedings of the Association
for Computing Machinery, National Conference, 1980.

Clements, D., Gullo, F. "Effects of Computer Programming on
Young Children's Cognition", Journal of Educational
Psychology, 76, 6:1051-1058, 1984.

Confrey, j. "An Examination of the Conceptions of
Mathematics of Young Women in High School", unpublished
paper, 1984.

Davidson, L. "Logo Syntax: Another Story", (unpublished
manuscript), 1986 .

295

296

Diikstra E.W. "Goto statement considered harmful".
Communications of the Association for Computing Machinery,

1968, 11/ 3:147-148.

Driver, R., The Pupil as Scientist?, Open University Press,

1983 .

duBoulay, B., O'shea, T. & Monk, J. "The black box inside
the glass box: presenting computing concepts to novices".
International Journal of Man-Machine Studies, 14, 237-249,

1981.

Duckworth, E. "The Having of Wonderful Ideas", in Piaget in
the Classroom, (Schwebel, M. & Raph, J., Editors), Basic
Bookie 1973.

Dwyer, T. "Significance of Solo-mode Computing for
Curriculum Design", in Computers in the Schools, Tutor,
Tool, Tutee, (R. Taylor, Ed.)/ Teachers College Press,
1980 .

Easley, J.A. "The Structured Paradigm in Protocol Analysis"
Cognitive Process Instruction: Research on Teaching
Thinking Skills, (Lochhead, J. & Clement, J., Editors),
Franklin Institute Press, 1979.

Eisenberg, M. & Peelle, H.A. "APL learning bugs", APL Quote
Quad, 13, (3):11—16, 1983.

Elliott, P. "Computer 'glass-boxes' as advance organizers
in mathematics instruction", International Journal of
Mathematics in Science and Technology, 9, 1:79-87, 1978.

Floyd, R. "The Paradigms of Programming" Communications of
the Association for Computing Machinery, 455-460, 1979.

Gardner, M. aha! Insight Scientific American Inc., 1978.

Gruber, H.E., "Courage and Cognitive Growth in Children and
Scientists", in Piaget in the Classroom, (Schwebel, M. &
Raph, J., Editors), Basic Books, 1973.

Harvey, B. Computer Science Logo Style: Intermediate
Programming, MIT Press, 1985. ~~

Hoc, J.M. "Developmental stages in learning to program"
International Journal of Man-Machine Studies, 9, 87-105,
1977 .

Inhelder, B. & Piaget, J. Logical Thinking from Childhood
to Adolescence, Basic Books, 1958.

297

Kamii C. "Pedagogical Principles Derived from Piaget s
Theory: Relevance for Educational Practice", in Piaget.in
the Classroom, (Schwebel, M. & Raph, J., Editors), Basic

Books, 1973.

Smith, A. Karmiloff & Inhelder, B., "If You Want to Get
Ahead, Get a Theory", Cognition, 3, 195-212, 1975.

Kuchemann, D. "Children's Understanding of Numerical
Variables", Math in School, September, 1978.

Kurland, M. & Pea, R. "Children's Mental Model of their
Own Recursive LOGO Programs", Technical Report, Bank Street
College, 1983.

Lin, H., "Approaches to Clinical Research in Cognitive
Process Instruction", in Cognitive Process Instruction:
Research on Teaching Thinking Skills, (Lochhead, J. &
Clement," J., Editors), Franklin Institute Press, 1979 .

Lemos, R. "An Implementation of Structured Walk-throughs in
Teaching COBOL Programming", Communications of the
Association for Computing Machinery, 22, 6, 1979.

Louie, S. "A Report of a Pilot Study", Tucson Learning
Center, Tucson, Arizona, 1985.

Luehrmann, A. "Should the Computer Teach the Student or
Vice-versa?", in Computers in the Schools, Tutor, Tool,
Tutee, (R. Taylor, Ed.), Teachers College Press, 1980.

Mawbry, R., Clement, C. , Pea, R. & Hawkins, J. "Structured
Interviews on Children's Conceptions of Computers",
Technical Report, Bank Street College, 1983.

Mayer, R.E. "A Psychology of Learning BASIC" Communications
of the Association for Computing Machinery, 22, 589-594,
1979 .

Mayer, R.E. "The Psychology of How Novices Learn Computer
Programming" Computing Surveys, 13, (1), 1981.

Miller, L.A. "Programming by Non-programmers International
Journal of Man-Machine Studies, 6, 237-260, 1974.

Miller, M.L. "A Structured Planning and Debugging
Environment for Elementary Programming", in Intelligent
Tutoring Systems, (Sleeman, D. & Brown, J.S., Editors),
Academic Press, 1982.

Minsky, M. "Form and Content in Computer Science",
Communications of the Association for Computing Machinery,
17, 2:197-215, 1970.

298

Murray, T. & Clement, J. "Progress Report: Evidence for
Building Blocks Contributing to a Robust Concept of
Variation and Covariation in Two-Variable Algebra Word
Problems", Technical Report, Cognitive Process Research
Group, 1986.

Newell & Simon, Human Problem Solving Prentice Hall, 1972.

Papert, S. "Teaching Children to be Mathematicians vs.
Teaching Children About Mathematics", International Journal
of Mathematics Education in Science & Technology, 1972.

Papert, S. Mindstorms Basic Books, 1980.

Pea, R. "LOGO Programming and Problem Solving", Technical
Report, Bank Street College, 1983.

Pea, R. & Kurland, M. "On the Cognitive and Educational
Benefits of Teaching Children Programming: a Critical
Look", Technical Report, Bank Street College, 1984.

Peelle, H.A. "Learning Mathematics with Recursive Computer
Programs", Journal of Computer-Based Instruction, 3,
3:97-102, 1977.

Peelle, H.A. "Alternative Algorithms in APL: Implications
for Education", Proceedings, APL* 80, 1980.

Polya, G., How to Solve It: A New Aspect of Mathematical
Method, Princeton University Press, 1957.

Rodgers, J. "Teaching Beginners to Program: Some Cognitive
Considerations", unpublished paper. University of Oregon.

Rosnick, P. & Clement, J. "Learning Without Understanding:
The Effect of Tutoring Strategies on Algebra
Misconceptions", Journal of Mathematical Behavior, 3
1:3-27, 1980. '

Rosnick, P. "Some Misconceptions Concerning the Concept of
Variable", The Mathematics Teacher, September, 1981.

Schoenfeld, A. "Can Heuristics be Taught?", in Cognitive
Process Instruction: Research on Teaching Thinking Skills,
(Lochhead, J. & Clement, J., Editors), Franklin Institute"
Press, 1979.

Schon, D., The Reflective Practitioner: How Professionals
Think in Action, Basic Books, 1983. --

Sheil, B.A. "Coping with Complexity" in Coginitive and
instructional Sciences Series, Xerox Palo Alto ReseaTFh
Center, 1981.

299

Silver, E., Branca, N., Adams, V. "Metacognition: The
Missing Link in Problem Solving?", Preceedings of the 4th
International Conference for the Psychology of Mathematics
Education, T980.

Sime, M.E., Green, T.R. & Guest, D.J. "Scope Marking in
Computer Conditionals- A Psychological Evaluation",
International Journal of Man-Machine Studies, 5, 105-113,
1977 .

Soloway, E., Bonar, J. & Ehrlich, K. "Cognitive Strategies
and Looping Constructs: An Empirical Study", Technical
Paper, Yale University, 1981.

Soloway, E., Ehrlich, K., Bonar, J. & Greenspan, J. "What
do novices know about programming?". Technical Paper, Yale
University, 1982.

Stake & Easley, Case Studies in Science Education, Center
for Instructional Research and Curriculum Education,
University of Illinois, 1978.

Tate, M., Stanier, B., Harootunian, B., "Differences
Between Good and Poor Problem Solvers", School of
Education, University of Pennsylvania, 1959.

Temple, M., Goldenberg, E.P., Lewis, P. & Horlick, R.
"Logo: A Laboratory For Intellectual Investigation" in
Microcomputers Go To School, (Leggett, S, Editor), Teach'em
Press, 1984.

Turkle, S. The Second Self Simon & Schuster, 1984.

Winograd, T. "Beyond Programming Languages" Communications
of the Association for Computing Machinery, 22, 391-401,
1979.

Wertime, R. "Students, Problems and 'Courage Spans'", in
Cognitive Process Instruction: Research on Teaching
Thinking Skills, (Lochhead, J. & Clement, J., Editors),
Franklin Institute Press, 1979.

Whimby, A. & Lochhead, J., Problem Solving and
Comprehension: A Short Course in Analytical Reasoning,
Franklin Institute Press, 1981.

Youngs, E.A. "Human Errors in Programming", International
Journal of Man-Machine Studies, 6, 361-376, 1974.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1-1-1988

	A study of high school students' learning Logo : microanalysis of uses of variables.
	Richard J. Horlick
	Recommended Citation

	A study of high school students' learning Logo : microanalysis of uses of variables

