
Washington University in St. Louis
Washington University Open Scholarship
Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Summer 8-15-2018

The Example Guru: Suggesting Examples to
Novice Programmers in an Artifact-Based Context
Michelle Ichinco
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has
been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open
Scholarship. For more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Ichinco, Michelle, "The Example Guru: Suggesting Examples to Novice Programmers in an Artifact-Based Context" (2018).
Engineering and Applied Science Theses & Dissertations. 366.
https://openscholarship.wustl.edu/eng_etds/366

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Feng_etds%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/366?utm_source=openscholarship.wustl.edu%2Feng_etds%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST.LOUIS

School of Engineering & Applied Science
Department of Computer Science and Engineering

Dissertation Examination Committee:
Caitlin Kelleher, Chair
Roger Chamberlain

Sanmay Das
Bjoern Hartmann
Alvitta Ottley

The Example Guru: Suggesting Examples to Novice Programmers in an Artifact-Based
Context

by
Michelle Ichinco

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

August 2018
St. Louis, Missouri

© 2018, Michelle Ichinco

Table of Contents

List of Figures... x

List of Tables .. xiii

Acknowledgments.. xv

Abstract ... xvii

Chapter 1: Introduction .. 1

1.1 Resources for novice programmers .. 2

1.2 Examples... 3

1.3 Approach... 4

1.3.1 The Example Guru system overview .. 6

1.3.2 Looking Glass ... 8

1.4 Hypotheses .. 10

1.4.1 Hypothesis 1... 10

1.4.2 Hypothesis 2... 11

1.4.3 Hypothesis 3... 11

1.5 Contributions ... 11

1.6 Summary... 12

1.6.1 Related work .. 12

1.6.2 Hypothesis 1: Studies of novices using examples............................. 12

1.6.3 Hypothesis 2: Suggesting example code to novices with the Example
Guru... 13

1.6.4 Hypothesis 3: Generating large-scale suggestion systems 13

1.6.5 Summary and future work ... 13

Chapter 2: Related Work .. 14

2.1 Examples and learning from a cognitive perspective 15

ii

2.1.1 Analogical problem solving .. 15

2.1.2 Worked examples for learning... 17

2.1.3 Takeaways.. 20

2.2 Comprehending and presenting example code in programming and software
engineering .. 20

2.2.1 Code comprehension... 21

2.2.2 Code example use .. 21

2.2.3 Quality of examples ... 22

2.2.4 Code summarization... 23

2.2.5 Code visualization ... 23

2.2.6 Takeaways.. 24

2.3 Supporting access of relevant examples .. 24

2.3.1 Recommendations for API or command usage 24

2.3.2 Recommendations to improve code quality 26

2.3.3 Recommendations to fix errors ... 28

2.3.4 Providing examples as a way of recommending examples.................. 30

2.3.5 Takeaways.. 32

Chapter 3: Understanding Novice Example Use .. 33

3.1 Introduction ... 33

3.2 Exploratory study ... 35

3.2.1 Materials ... 35

3.2.2 Study design... 37

3.2.3 Participants .. 39

3.2.4 Analysis and results ... 40

3.3 Hurdles and strategies .. 45

3.3.1 Content distraction hurdle ... 45

3.3.2 Example comprehension hurdle... 45

3.3.3 Programming environment hurdle ... 46

3.3.4 Code misconception hurdle .. 47

3.3.5 Code comprehension hurdle ... 47

iii

3.3.6 Idea generation strategy .. 48

3.3.7 Code-example comparison strategy .. 48

3.3.8 Example emphasis strategy .. 49

3.4 Task behavior groups ... 49

3.4.1 Long conclusion group .. 50

3.4.2 Slow start group .. 51

3.4.3 No realization group... 52

3.4.4 Quick group ... 53

3.5 Threats to validity... 56

3.6 Discussion.. 56

3.6.1 Implications of slow start behavior .. 57

3.6.2 Implications of long conclusion behavior 57

3.6.3 Implications for the design of the Example Guru 58

3.7 Conclusion ... 61

Chapter 4: Towards Better Code Snippets: Exploring How Code Snippet
Recall Differs with Programming Experience .. 62

4.1 Related work: novice and expert chunking in recall 64

4.2 Methods .. 65

4.2.1 Participants .. 65

4.2.2 Materials ... 66

4.2.3 Study setup .. 68

4.3 Analysis .. 70

4.3.1 Metrics .. 70

4.3.2 Comparing responses to correct code snippets................................ 73

4.4 Results.. 73

4.4.1 Overall .. 74

4.4.2 Which elements do programmers initially recall? 74

4.4.3 What did programmers fill in after the first attempt? 79

4.4.4 Errors ... 81

4.5 Threats to validity... 83

iv

4.6 Lessons learned: recommendations for improving code examples 83

4.6.1 Selecting or creating effective code for examples 84

4.6.2 Purposely position elements within example 84

4.6.3 General emphasis and deemphasis ... 85

4.6.4 Example-specific emphasis and deemphasis 86

4.6.5 Emphasize important arguments ... 86

4.6.6 Emphasize tokens that stray from the norm 87

4.6.7 Deemphasize unimportant early code elements............................... 87

4.7 Implications for the Design of the Example Guru 87

4.7.1 Selecting effective examples.. 88

4.7.2 Emphasizing elements... 88

4.8 Conclusion ... 89

Chapter 5: Exploring Suggestion and Rule Design through Expert Content
Creation ... 90

5.1 Methods .. 91

5.1.1 Materials ... 92

5.1.2 Study procedures ... 94

5.1.3 Participants .. 96

5.2 Analysis .. 96

5.2.1 Suggestions .. 97

5.2.2 Rule pseudocode.. 97

5.2.3 Rule implementation .. 98

5.3 Results.. 98

5.3.1 Suggestions .. 99

5.3.2 Rule pseudocode.. 102

5.3.3 Rule implementation .. 104

5.4 Threats to validity... 108

5.5 Discussion.. 108

5.5.1 Quality in expert created content .. 108

5.5.2 Relevance of content for novices .. 109

v

5.6 Implications for the design of the Example Guru 110

5.6.1 Suggestions .. 111

5.6.2 Rules .. 111

5.7 Conclusion ... 111

Chapter 6: Designing and Evaluating the Example Guru for Suggesting
API Methods.. 113

6.1 Introduction ... 113

6.2 The Example Guru design... 115

6.2.1 System design methods ... 115

6.3 Evaluation ... 121

6.3.1 Documentation condition .. 121

6.3.2 Participants .. 122

6.3.3 Methods .. 123

6.3.4 Study procedures ... 125

6.3.5 Data collection and analysis ... 127

6.4 Results.. 129

6.4.1 Access and use of suggestions and documentation 130

6.4.2 Do participants’ demographics affect how they used suggestions and
documentation? ... 136

6.4.3 Do participants take advantage of API information features? 139

6.4.4 Threats to validity ... 140

6.5 Discussion.. 141

6.5.1 Learning APIs... 142

6.5.2 Gender and the Example Guru ... 143

6.6 Conclusion ... 144

Chapter 7: Large-Scale Suggestions: Semi-Automatic Generation 145

7.1 Related work .. 147

7.2 Programming environment & suggestion system 148

7.2.1 Looking Glass programming environment 149

7.2.2 The Example Guru (final version) ... 149

7.3 Suggestion generation approach.. 151

vi

7.3.1 Input repository .. 151

7.3.2 Initial setup.. 152

7.3.3 Example extraction .. 153

7.3.4 Example grouping.. 153

7.3.5 Human moderation .. 155

7.3.6 Generate rules... 156

7.4 Comparison of semi-automatically generated to hand-authored suggestions ... 157

7.4.1 Comparison methods .. 158

7.4.2 Comparison results .. 158

7.5 User study: novices’ interaction with semi- automatically generated suggestions
vs. tutorials ... 161

7.5.1 Tutorial control condition .. 161

7.5.2 Study protocol .. 162

7.5.3 Participants .. 164

7.5.4 Data and analysis .. 165

7.5.5 Study results .. 167

7.6 Threats to validity... 173

7.7 Discussion.. 173

7.7.1 How our approach generalizes... 174

7.7.2 Potential of suggestions to increase use and learning 174

7.7.3 Effect of the code repository on suggestion generation 175

7.7.4 Personalization.. 176

7.8 Conclusion ... 176

Chapter 8: Summary and Future Work ... 178

8.1 Summary... 178

8.2 Future work ... 180

8.2.1 How can we apply large-scale in-context suggested content to help
people learn other topics? .. 181

8.2.2 How can we automatically generate context-relevant support at a large
scale? .. 183

vii

8.2.3 What types of user interaction can help users learn and improve sug-
gestion relevance? .. 184

References .. 186

Appendix A: Understanding How Novices Use Examples Study Materials . [208]
A.1 Computing history survey ... [208]

A.2 Intro instructions .. [209]

A.3 Task programs and solutions.. [211]

A.4 Interview questions .. [217]

Appendix B: Comparing Novices and Experts Study Materials [218]
B.1 Instructions.. [218]

B.2 Demographic survey... [219]

B.3 Tasks .. [220]

B.4 Post-task survey.. [225]

Appendix C: Exploring Types of Suggestions Study Materials [226]

C.1 Skill trees .. [226]

C.2 Programs and pre-made suggestions .. [231]

C.3 Template ... [236]

Appendix D: Example Guru for API Methods Study Materials [237]
D.1 Instruction sheets .. [237]

D.2 Templates .. [239]

D.3 Suggestions, rules, and examples .. [243]

D.4 Surveys ... [253]

D.4.1 Demographic history Survey .. [253]

D.4.2 Learning style survey.. [253]

D.4.3 In-task survey questions .. [254]

Appendix E: Semi-automatic Suggestion Generation Study Materials [255]

E.1 Surveys ... [255]

E.1.1 Demographic and computing history survey [255]

E.1.2 Post-study survey .. [255]

E.2 Training tasks... [256]

viii

E.3 Templates .. [257]

E.4 Tutorials ... [259]

E.4.1 Turn the character’s head. ... [259]

E.4.2 Increase the walk pace of a character ... [259]

E.4.3 Make the flash happen multiple times. ... [259]

E.4.4 Make actions happen together .. [259]

E.4.5 Make Alice wave three times .. [260]

E.4.6 Make a character jump multiple times.. [260]

E.4.7 Make the two objects move together .. [260]

E.4.8 Make the set of actions happen multiple times [260]

E.4.9 Make a character talk and walk at the same time. [261]

E.4.10 Make an object change size and color at the same time.................... [261]

E.4.11 Make a character turn and turn back multiple times [261]

E.4.12 Make the dolphins flip at the same time [262]

E.4.13 Make the jump more realistic ... [262]

E.5 Suggestions and examples ... [262]

E.6 Transfer tasks ... [267]

ix

List of Figures

Figure 1.1: (A) Looking Glass programming environment. (B) List of suggestions.
(C) An opened/accessed suggestion. (D) The two code examples with
the primary one selected. (E) The code for this suggestion, with the do
together parallel execution block emphasized. (F) Preview execution
of the code. ... 6

Figure 1.2: Looking Glass .. 9

Figure 3.1: The augmented Looking Glass with a task and an example. A)
Looking Glass programming environment. B) Task code designed by
the researcher. C) Example code and task instructions dialog box. 36

Figure 3.2: Study protocol ... 38

Figure 3.3: Time before realization point vs. time after realization point, with
correctness and behavior group annotated with color and shape........ 54

Figure 3.4: Important labels and the average count for each of the behavior groups.
The largest value is shown for each label. 55

Figure 4.1: An example of block and text versions for the same code snippet. 67

Figure 5.1: Skill group diagram... 93

Figure 5.2: Suggestion type category hierarchy. .. 100

Figure 5.3: Suggestion novelty category hierarchy.. 101

Figure 5.4: Example of a rule ... 102

Figure 5.5: Iteration style category hierarchy.. 103

Figure 5.6: Comparison style category hierarchy. .. 104

x

Figure 6.1: The Example Guru implemented within Looking Glass. (A) List of all
suggestions. (B) Code annotation button to open the most recently
added suggestion. (C) Contrasting examples such as ‘walk fast’ and
‘walk slow’. (D) ‘Show me’ button that users can click to see the
location of the suggested block. ... 117

Figure 6.2: In-application API Documentation condition. (A) Users can access
documentation using the ‘?’ button available beside APIs. (B) Exam-
ples with different values and the description. (C) The play button
can be used to execute the code. (D) Button to expand or collapse the
parameters information. (E) Users can navigate to other doc using
these buttons. .. 123

Figure 6.3: API information accessed and used grouped by frequency of API use
by novice programmers. .. 131

Figure 7.1: (A) Looking Glass programming environment. (B) List of suggestions.
(C) An opened/accessed suggestion. (D) The two code examples with
the primary one selected. (E) The code for this suggestion, with the do
together parallel execution block emphasized. (F) Preview execution
of the code. ... 148

Figure 7.2: (A) An accessed tutorial. (B) List of tutorials, which always has the
same set of 13 tutorials for everyone in the condition. (C) A short
video that shows how to complete the step. (D) Written instructions.
(E) Next button to go to the next step of the tutorial. 162

Figure 7.3: The number of suggestions and tutorials participants accessed. 169

Figure A.1: The intro task sheet. ... [210]

Figure A.2: Do together task... [211]

Figure A.3: For each loop task... [212]

Figure A.4: Function task... [213]

Figure A.5: API method task .. [214]

Figure A.6: While loop task .. [215]

Figure A.7: Repeat loop task .. [216]

Figure B.1: For each loop block code snippet.. [221]

Figure B.2: For each loop text code snippet ... [221]

Figure B.3: Repeat While loop block code snippet ... [222]

xi

Figure B.4: Repeat While loop text code snippet .. [222]

Figure B.5: Simple Repeat loop block code snippet.. [223]

Figure B.6: Simple Repeat loop text code snippet ... [223]

Figure B.7: Conditional block code snippet .. [224]

Figure B.8: Conditional text code snippet.. [224]

Figure B.9: Difficulty Scale ... [225]

Figure B.10: Mental Effort Scale ... [225]

Figure C.1: Skill tree for ‘Jane’.. [227]

Figure C.2: Skill tree for ‘Mike’ ... [228]

Figure C.3: Skill tree for ‘Molly’ .. [229]

Figure C.4: Skill tree for ‘Pete’ .. [230]

Figure C.5: One of the pre-made suggestions for ‘Jane’ [231]

Figure C.6: One of the pre-made suggestions for ‘Pete’ [232]

Figure C.7: One of the pre-made suggestions for ‘Mike’ [233]

Figure C.8: One of the pre-made suggestions for ‘Molly’, part 1 [234]

Figure C.9: One of the pre-made suggestions for ‘Molly’, part 2 [235]

Figure E.1: First Training Task ... [256]

Figure E.2: Second Training Task .. [257]

Figure E.3: Seaworld template... [257]

Figure E.4: Templates for open-ended programming....................................... [258]

Figure E.5: Transfer task 1 ... [268]

Figure E.6: Transfer task 2 ... [269]

Figure E.7: Transfer task 3 ... [270]

Figure E.8: Transfer task 4 ... [271]

xii

List of Tables

Table 3.1: Labels .. 44

Table 4.1: Participants’ programming experience ... 66

Table 4.2: Token Types .. 71

Table 4.3: Average % of tokens recalled by everyday programmers and differences
between groups for 1st and 3rd attempts. 72

Table 4.4: Comparing blocks and text ... 76

Table 4.5: % of errors for each token and total errors and attempts made by each
programmer group .. 77

Table 4.6: Correlation between token types and line number for first, second and
third, and total. * p < .05, *** p < .001 79

Table 4.7: Error Type .. 83

Table 5.1: Rules, rule issues, and percentages of programs receiving suggestions
for participant rules... 107

Table 6.1: Unsuccessful design attempts in formative testing 119

Table 6.2: Rules, suggestions and examples .. 121

Table 6.3: Time participants spent on the tasks ... 127

Table 6.4: Categories of responses from suggestion participants about why they
accessed and used, accessed and did not use or did not access sugges-
tions. ... 134

Table 6.5: Participant characteristics and information access and API usage. ... 136

Table 6.6: Participants accessed the API information all of the different ways in
both conditions .. 140

Table 7.1: Objects and actions used for binning snippets. 153

xiii

Table 7.2: Human moderation criteria ... 156

Table 7.3: Left: Hand-authored suggestions. Right: Semi-automatic suggestions
and the numbers of suggestions received and accessed by children in
our study. .. 160

Table 7.4: Transfer task scores... 172

Table 7.5: Participants responded to Likert scales from 1-7. ∧p = .1................ 172

Table E.1: The 7 suggestions and rules for repeat and the suggestions and rules
for do together with 10 or more examples in the cluster. [267]

xiv

Acknowledgments

I am most grateful to my advisor, Caitlin Kelleher. From encouraging me to pursue a PhD

during my summer REU through faculty job interviews, Caitlin taught me not only how

to do research, but how to believe that I am a researcher. She knew when to push me to

improve and when to tell me to take care of myself. I could not have asked for a better

mentor for this journey. I hope to someday be as good of a mentor to my students as Caitlin

has been for me.

Thank you to my committee members for their valuable feedback and support: Caitlin

Kelleher, Roger Chamberlain, Sanmay Das, Bjoern Hartmann, Alvitta Ottley, and Robert

Pless. This work was supported by NSF grants 1054587 and 1440996 and the Spencer T. and

Ann W. Olin Fellowship.

A huge thank you to my lab mates and collaborators, especially: Kyle Harms, Wint Hnin,

Dennis Cosgrove. To Kyle, for being a great friend, colleague, and best teacher of the tricks

to running a successful user study at WashU. To Wint, for saving the day with secret snacks

during long study sessions, for being an amazing editor, and for all of your hard work on our

papers. To Dennis, for the generous code, editing, and teaching knowledge and for being an

uplifting force throughout my PhD.

xv

Thank you to my WashU Computer Science, Olin Fellowship, and HCI conference friends. I

can’t imagine this journey without these communities. Special thanks to Jordyn Maglalang

for throwing things at the wall with me when times were tough, to Rebecca Gilson for all of

the coffee shop work sessions, yoga, and hugs, and to Austin Henley for the conference and

job-search camaraderie.

Thank you to Alana Lustenberger, Jessica Scolnic, Joanna Sebik, and Allie Wahrenberger for

the many trips, chats, and love from afar!

Thank you to my family for believing in me, making numerous trips to St. Louis, and for

making some of my most productive work sessions possible at the beach. My family has

taught me to love learning, put me in a position where I was prepared and able to go to

graduate school, and has been an amazing and endless source of encouragement.

Thank you to my partner, Randy. Randy has not only supported me through actions like

last minute copy-editing, dinner breaks, and lemon bars, but also in his unwavering belief in

me and his kind, yet firm encouragement to take care of myself over all else.

Michelle Ichinco

Washington University in Saint Louis

August 2018

xvi

ABSTRACT OF THE DISSERTATION

The Example Guru: Suggesting Examples to Novice Programmers in an Artifact-Based

Context

by

Michelle Ichinco

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2018

Professor Caitlin Kelleher, Chair

Programmers in artifact-based contexts could likely benefit from skills that they do not

realize exist. We define artifact-based contexts as contexts where programmers have a goal

project, like an application or game, which they must figure out how to accomplish and

can change along the way. Artifact-based contexts do not have quantifiable goal states,

like the solution to a puzzle or the resolution of a bug in task-based contexts. Currently,

programmers in artifact-based contexts have to seek out information, but may be unaware

of useful information or choose not to seek out new skills. This is especially problematic

for young novice programmers in blocks programming environments. Blocks programming

environments often lack even minimal in-context support, such as auto-complete or in-context

documentation. Novices programming independently in these blocks-based programming

environments often plateau in the programming skills and API methods they use. This

work aims to encourage novices in artifact-based programming contexts to explore new API

methods and skills. One way to support novices may be with examples, as examples are

effective for learning and highly available. In order to better understand how to use examples

for supporting novice programmers, I first ran two studies exploring novices’ use and focus

on example code. I used those results to design a system called the Example Guru. The

xvii

Example Guru suggests example snippets to novice programmers that contain previously

unused API methods or code concepts. Finally, I present an approach for semi-automatically

generating content for this type of suggestion system. This approach reduces the amount

of expert effort required to create suggestions. This work contains three contributions: 1)

a better understanding of difficulties novices have using example code, 2) a system that

encourages exploration and use of new programming skills, and 3) an approach for generating

content for a suggestion system with less expert effort.

xviii

Chapter 1

Introduction

Many novices who begin learning to program on their own in artifact-based contexts plateau

in skills. Artifact-based contexts refer to situations where a programmer defines their own

goals, without strict constraints, solutions, or pre-defined outputs. The artifacts learners

typically create in these contexts usually involve more code than assignments or puzzles.

While artifact-based contexts are often motivating, independent learners often fail to gain new

skills or do so very slowly. Researchers have demonstrated this issue in blocks environments

like App Inventor and Scratch [232, 234]. Plateauing in skills could lead to inappropriate

work-arounds or inability to create complex and motivating projects. One reason novices do

not seek out new skills may be their unawareness of the possibilities [112]. Because artifact-

based contexts do not have specified solutions, systems cannot give hints or suggestions based

on a task’s goal state or expected output. Instead, many children can only rely on existing

online resources, since they often use artifact-based programming environments informally.

The goal of this thesis is to encourage novice programmers to explore and use new code

in artifact-based contexts. To do this, we designed a system called the Example Guru.

1

The Example Guru suggests new code to novice programmers through example code in an

artifact-based blocks programming environment for creating 3D animations. This work fits

into a space that currently lacks significant research: in-context support and feedback for

independent novice programmers in artifact-based blocks programming environments. To

design a system to encourage new code exploration and use, we leverage the theoretical

research on examples and learning, the availability of code examples, and the popularity of

code example use in programming.

1.1 Resources for novice programmers

Many young novice programmers, especially in the US, who begin programming in artifact-

based contexts lack the support of a traditional learning environment [97]. If they had access

to an effective classroom context, instruction and feedback would likely foster new skills

through a specified curriculum. Classrooms also typically involve projects where teachers or

peers provide feedback. This personalized feedback on projects can point out misconceptions

or missing skills that assignments with specified solutions may not catch. If programming

environments could provide the type feedback typically provided in a classroom to novices as

they work on motivating projects, novices might gain relevant and timely skills.

In order to learn these skills, independent novices in artifact-based contexts must seek out

support that often requires them to leave their programming environment or current context.

Most novice programming environments provide resources like documentation [214], tutorials

[197, 218], or forums [113, 195]. They also often enable users to share programs so that

novices can learn from each other. Many novice programming environments have online

communities, such as Scratch, App Inventor, Looking Glass, Greenfoot, and Kodu [71, 114,

121, 196]. Novices can also seek out tasks to learn specific skills, like puzzles [6, 76] or online

2

courses [107]. All of these options require that the user seek out information outside of their

programming context, which many novices will choose to do infrequently or not at all [83].

Despite whether novices have access to or seek out learning resources, many of these methods

of learning inside and outside the classroom, including the one presented in this thesis, employ

examples in some form.

1.2 Examples

Our approach uses example code for three reasons: the effectiveness of examples in learning,

their large-scale availability, and their importance in the work-flow of programmers. Providing

feedback in the form of examples may be a productive and scalable method for supporting

novice programmers in artifact-based contexts. However, studies of less experienced program-

mers have indicated that reusing example code can be problematic [185]. This prompted our

work to better understand novices’ example use in order to employ examples in a support

system.

Research has shown that providing examples to learners, especially in the form of worked

examples, can be highly effective for learning [12, 35, 212]. Worked example theory and

design are informed by cognitive load theory, which indicates that learning materials should

limit the amount of cognitive load required [224]. Researchers have begun to explore how

worked examples can help novices learn coding using subgoal labels and self-explanation [131,

149, 150]. Subgoal labels can reduce cognitive load when solving problems with examples as

they segment the examples and describe the steps. Self-explanation is an effective strategy

for learning from examples, as novices work to understand the example using context and

reasoning [41]. The related work section provides an in-depth explanation of the theories and

studies of worked examples in educational psychology research.

3

In addition to being effective learning resources, examples for programming are commonly

available within online resources like code repositories, documentation, and forums. Code

repositories, like GitHub [29], have code submitted by millions of users. Not all of the code

within these repositories may be valuable as code examples, but many open-source projects

likely have well-designed code that programmers use. Documentation or other static content,

like written tutorials, often include code examples. Web forums for programmers, like Stack

Overflow [203], contain many code snippets within questions and answers. These questions

and answers often cover large portions of information, such as 87% of the Android API classes

[163], and provide valuable example code snippets [155]. The availability of code examples

makes them a common resource for current programmers and a potential resource for future

systems that involve example code.

Programmers of varying skill level use available example code resources on an everyday

basis. Experienced programmers often search for examples that they can find on the web or

within programming environments [23, 84]. Non-expert programmers also attempt to utilize

available example code to learn or fix errors. However, novices often have difficulties using

examples without support [89, 183]. In order to be able to leverage the large quantity of

available example code to support novices learning independently, this thesis first aims to

better understand the difficulties in using examples before using the findings to design a

system that suggests example code.

1.3 Approach

This dissertation aims to: 1) better understand the challenges novices have using examples

in order to design support for examples, and 2) reduce novices’ unawareness of relevant API

methods and programming concepts by suggesting example code. To do this, we ran two

4

studies to understand how novices struggle when using example code. We then used these

results, along with a study of experts making suggestions, to inform the design of a system

that suggests API methods and programming concepts to novice programmers as they work

on code projects. Finally, we designed an approach to generate content for this type of

suggestion system with less human effort.

The system we designed to suggest example code to novices during artifact-based programming

is called the Example Guru. The Example Guru contains a set of suggestions that introduce

new skills. Each suggestion has a rule that checks a novice program for the opportunity to

make the suggestion. The suggestions each have two example code snippets that demonstrate

the skill and have associated descriptions.

Imagine a novice programmer named Joanna coding an animation with a bunny walking a far

distance. The default speed for the bunny walking is very slow, which frustrates Joanna. She

does not realize that the walk method has a parameter to change the speed called walkPace.

The Example Guru analyzes her code and triggers a suggestion to change the speed of the

walk animation. Joanna notices the suggestion and chooses to explore it by clicking on it.

When she opens the suggestion, it has two examples: one that shows a character walking

faster and another that shows a character walking slower. Joanna views both of the examples,

which helps her figure out what speed she wants to use for the parameter. However, Joanna

does not know where to find the walkPace parameter to change it, so she clicks the ‘show

me how’ button. This button triggers the interface to provide instructions that demonstrate

where to modify the walkPace. Now Joanna is able to change her program to make her bunny

walk faster. She is happy that her animation looks better and has also learned about a feature

of the API. As users gain skills, the suggestions introduce more complex API methods and

programming skills, like joint movements to improve a simple turn, or parallel execution to

make an object move diagonally.

5

Figure 1.1: (A) Looking Glass programming environment. (B) List of suggestions. (C) An
opened/accessed suggestion. (D) The two code examples with the primary one selected. (E)
The code for this suggestion, with the do together parallel execution block emphasized. (F)
Preview execution of the code.

1.3.1 The Example Guru system overview

The Example Guru implements an approach for suggesting new code concepts to programmers

throughout the programming process. It has three main elements: rules, suggestions, and

examples.

6

Rules

Rules statically analyze novices’ programs for opportunities to make suggestions. Each

suggestion has an associated rule, which triggers the suggestion when it finds a pre-defined

combination of code. Rules statically analyze the abstract syntax tree of a program to find

combinations of code that indicate opportunities to suggest API methods or programming

skills.

Rules execute after a novice programmer executes their program. The point at which a

programmer executes their program is likely when they want to check whether their code

works correctly or when they have completed an idea. The rules execute at this point because

this is likely to be a time when novices are most open to receiving suggestions about their

programs.

Suggestions

The Example Guru makes suggestions to novice programmers as they program. Each

suggestion encourages users to improve their artifact in a particular way using a code block

that the user has not yet used. Users can choose to interact with suggestions, but are not

required to, as the suggestions use a negotiated interruption strategy. Negotiated interruptions

make information available, but allow the user to chose when and if they want to interact with

the content [140]. This has been an effective interruption strategy for end-user debugging

[179]. Novices can access the suggestions from a list of titles in a panel (see Figure 6.1-B) or

from an annotation on the code block related to the suggestion. Hovering over the annotation

shows the title of the suggestion. Once accessed, users can view two code examples and

execute the examples. Hovering over the code triggers a tool tip to appear that explains how

the code works and where users can find the new code block.

7

Code examples

Each suggestion shows two code examples. The user can execute each of the examples to see

how they work by clicking on the scene (see Figure 6.1-D). The code examples demonstrate the

code that enables novice programmers to implement the suggested idea. Each code example

has a description of the output of the code, rather a description of the code itself. The idea

is that the description should explain the effect of the example, rather than describe the

code. The Example Guru’s two code examples show contrasting information for API methods

or similar information to reinforce programming concepts. Ideally, the two code examples

will encourage the novice programmer to perform self-explanation [41]. By explaining to

themselves how the two examples are similar and different, the novice programmer will likely

better understand the concepts demonstrated.

1.3.2 Looking Glass

I implemented the Example Guru within a novice programming environment called Looking

Glass. Looking Glass is a blocks-based novice programming environment designed for middle

school children aged 10 to 15 to make 3D animations, as shown in Figure 1.2. Looking Glass

is based on the Storytelling Alice programming environment [105] and is available online for

free [121]. Looking Glass code is written in the Java programming language and uses the

object-oriented paradigm. Blocks-based programming environments have been designed to

reduce the complexity of the syntax for novice programmers and prevent novices from making

syntactic errors. Looking Glass enables users to create animation programs by dragging and

dropping blocks to animate objects rather than by typing code.

Each Looking Glass program, or ‘world’, has a 3D scene with a background, objects, and

camera. Scenes can contain a variety of different objects like animals, people, furniture,

8

Figure 1.2: Looking Glass

plants, and other props. For example, Figure 1.2 shows a scene with a pig on an island and a

helicopter. In general, Looking Glass programmers can choose a pre-created scene or can

create their own. In the context of this work, we provided users with pre-created scenes in

order to focus on programming rather than scene creation.

Children can create animations by dragging and dropping blocks of code that operate on

the objects in the scenes or they can change the order of the actions. The code blocks allow

users to make objects perform actions like move, turn, change size, and change appearance.

Scene objects can also speak with speech bubbles to advance the story line. Figure 1.2 shows

9

code blocks that make the pig speak and then turn its shoulders to make it wave. Many

code blocks require users to fill in argument values, like the direction to turn or the distance

to move. They also commonly have optional arguments, like the duration or speed of an

action. ‘Action ordering’ code blocks include basic programming concepts like simple parallel

execution (‘Do together’), a simple loop with a numerical iterator (‘Repeat loop’), variables,

conditional logic, and more complex loops. Once a programmer has added code blocks, they

can click ‘Play’ to execute their program, which allows them to watch the animation they

have created.

I chose to complete this work within Looking Glass because users primarily focus on creating

artifacts, or animations. They can select their preferred scene and use code to create a story

that they choose. This process is similar to many other artifact-based coding contexts where

users do not typically receive feedback when working outside of a classroom, such as Scratch

and App Inventor. Looking Glass is not as well known as other systems, making it easier

to recruit participants unfamiliar with the system and API. Looking Glass also already had

a built-in static code analysis system, making it more efficient to implement rules for the

Example Guru.

1.4 Hypotheses

This dissertation has three main hypotheses surrounding suggestions and examples.

1.4.1 Hypothesis 1

Studies of novices using examples will indicate the challenges novices have using example code

and will provide new directions for how to support example code use for novice programmers.

10

1.4.2 Hypothesis 2

Suggesting example code to novice programmers in artifact-based contexts will increase the

number of new API methods and programming concepts novice programmers add to their

programs compared to existing, static, forms of support.

1.4.3 Hypothesis 3

A support system for novice programmers can be created with less human effort than

hand-authoring. The support system content will be equivalent to the hand-authored content.

1.5 Contributions

• My study of children using examples to solve tasks suggests that one main reason

novices have trouble using examples is that they do not realize which element within

the example is important [91].

• My study comparing novices and experts recalling example code suggests that novices

focus on different elements than experts and cannot retain as much information [92].

• My study of adults making suggestions and authoring rules provides an understanding

of how experienced programmers might make suggestions to novices and indicates what

makes good suggestions and rules [94].

• I designed and built the Example Guru system, an example of how to implement the

approach within a novice programming environment for animation creation which can

be a model for systems in similar contexts [90]. This system could be easily translated

to other similar novice programming environments.

11

• My studies show that suggesting content during artifact-based programming is more

effective than static support for encouraging children to explore programming concepts.

This approach likely applies broadly to artifact-based programming [90, 93].

• I designed an approach for semi-automatically generating suggestions and rules, which

produced similar suggestions to a hand-authored set with less human effort [93].

1.6 Summary

The following chapters discuss related work, studies addressing my three hypotheses, and

future work.

1.6.1 Related work

Chapter 2 provides an overview of related work and background in example use in pro-

gramming and education. It also provides a summary of research on systems that suggest

information to learn and use in artifact-based contexts. This work is related to the general

idea of the Example Guru and also includes automatic and semi-automatic generation of

support for programmers.

1.6.2 Hypothesis 1: Studies of novices using examples

Chapters 3 and 4 evaluate the hypothesis that studies of novices using examples will clarify

the challenges of example use for novices. These chapters describe two studies exploring

novice example use: 1) a study where children attempted to solve programming problems

with example code available, and 2) a study comparing how novices and experts recalled

code snippets.

12

1.6.3 Hypothesis 2: Suggesting example code to novices with the

Example Guru

Chapter 5 describes an exploratory study of experts creating suggestions and rules that

informs the types of suggestions and rules implemented in the Example Guru. Chapter 6

evaluates the hypothesis that suggested examples will increase novices’ use of new program-

ming skills. It provides a detailed description of the design of the Example Guru, rationale

for design decisions, and a study comparing suggestions to documentation. The study showed

that novices chose to access suggestions about three times as often as documentation and

used new API methods from suggestions more often than from documentation.

1.6.4 Hypothesis 3: Generating large-scale suggestion systems

Chapter 7 describes a method for semi-automatic suggestion generation. The evaluation

of novice programmers using semi-automatically generated suggestions and comparison to

hand-authored suggestions support the potential of this semi-automatic generation approach.

1.6.5 Summary and future work

Chapters 8 discusses the potential impact of this work and the possibilities for future work.

The future work section discusses the following questions:

• How can we apply large-scale in-context suggested content to help people learn other

topics?

• How can we automatically generate context-relevant support at scale?

• How can learners contribute to and engage with the support model?

13

Chapter 2

Related Work

Existing work related to this thesis spans from theories of learning to systems that support

programmers. Educational psychologists have a long history of studying the cognitive

processes behind learning, especially learning using examples. This body of work supports

the benefits of incorporating examples into learning systems, provides a theoretical basis

for thinking about learning with examples, and models ways to explore how learners use

examples. As programming has become more popular, researchers have begun to focus on

the cognitive processes programmers use when understanding code or examples, as these

are critical and common activities for programmers. The existing research supports ways

to help programmers comprehend large software projects, but does not specifically address

comprehension of example code. Instead, much of the work surrounding examples for

programmers focuses on making the example code more accessible. Many systems support

programmers in accessing example code for more efficient software development, but none

suggest examples to novices in artifact-based contexts with the goal of encouraging exploration

of unused code. Research motivating and related to this thesis spans three major topics: 1)

the cognitive processes of using and learning from examples, 2) the best ways of representing

14

examples for programmers, and 3) systems for making useful examples available to learners

and programmers.

2.1 Examples and learning from a cognitive perspec-

tive

A significant body of research supports and studies the value of examples for problem solving

and learning. This work has been important in the ideation and design of our studies of

novices using examples and the Example Guru. In order to understand novice programmers’

difficulties using examples, we draw on the theoretical groundwork of: 1) analogical problem

solving, and 2) worked examples.

2.1.1 Analogical problem solving

In essence, analogical problem solving has the same properties as problem solving using an

example. Cognitive psychologists define analogical problem solving as using one provided

problem and solution (the base) to solve another problem (the target) [60, 62]. Although

the base problem is not often called an example in the literature, it essentially functions in

a similar way to an example. Novice programming with examples is most closely related

to the research on analogical reasoning in mathematics [175]. In mathematics, a student

might be asked to solve the problem 3x+ 2 = 11 using an example 2x− 4 = 6. The student

must first map the related elements of the problem and example. This problem and example

pair has three sets of related elements: the 3x and 2x, the +2 and −4, and the =11 and =5.

Understanding the relationships between these elements is critical to benefit from a provided

example. If a learner can understanding these mappings, it may help them to adapt the

steps in the example to their problem. Prior work is divided on whether an understanding

15

of the mappings between base and target problems is necessary or sufficient in solving the

task. Gentner describes the structure-mapping theory, arguing that the base problem and

the target have equivalent sets of relations between problem elements [60]. The analogy is

a mapping between the set of relations for the base and target problems. Gentner’s work

suggests that the primary difficulty associated with solving a problem using an analogy

comes from mapping the example and the target. If learners can correctly map the example

and target, they can likely solve the problem correctly. In contrast, Novick and Holyoak’s

research suggests that a learner must understand the mappings between the example and

target problems, but that the mappings may not be sufficient to enable a learner to solve a

task [158]. When learners need to adapt an example to fit their target problem, some learners

may succeed at mapping but struggle to construct a full solution [158]. One study looking

at analogical reasoning in novice programming supported Novick’s theories, finding a weak

correlation between a mapping task and programming task success [89]. This indicates that

mappings may be one element of the difficulties using examples.

Because understanding the mappings likely benefits learners to some extent, systems should

try to support learners in finding and understanding the mappings. One way to do this may

be to make the base and target problems have high surface similarity, which learners often

find easier to map [61]. Surface similarity means that the problem and example elements

that are correlated are also similar, such having the same location within the problem. As

a learner becomes more familiar with a concept, reducing the surface similarity could then

help them to gain a deeper understanding. Another related way to support learners in using

examples may be integrating cognitive load theory in the design of worked examples.

16

2.1.2 Worked examples for learning

The body of research surrounding worked examples supports the integration of examples into

a system for independent learning. We first provide an overview of cognitive load theory,

which is used in the design of worked examples.

Cognitive load theory

Cognitive load theory is a theory for reducing the information processing load typically

employed in educational research to support learning of cognitively complex information [211].

This type of content typically requires the understanding of many interacting elements, which

need to be understood individually and also together in order to gain a deep understanding.

However, the short-term memory, or working memory, that processes these components is

a highly limited, but critical resource for learning [13, 146]. Learners must use their short

term memory to process new information until they create schema, structures that organize

knowledge and are stored in long-term memory. In order to create schema, learners must be

able to accommodate the amount of cognitive load associated with the new information. In

addition to the cognitive load of the content being learned, cognitive load can also come from

the design of the instructional information, like if learners must spend extra effort connecting

important elements or figuring out directions. When creating instructional information, it is

critical to reduce the cognitive load imposed by the format of the presentation.

Cognitive load theory specifies three types of cognitive load that play into difficulty learning

complex information and the design of worked examples: intrinsic cognitive load, germane

cognitive load, and extraneous cognitive load. The intrinsic cognitive load of learning certain

content is determined by the element interactivity of the components [211]. In many cases,

the many interacting elements of complex information must be learned simultaneously, due

17

to the importance of how they interact. Modifying the instructional format cannot change

the intrinsic cognitive load of content. The only way to reduce intrinsic cognitive load is

to alter the type of information or problem presented. Germane and extraneous cognitive

load are controlled by the instructional designer. When the instructional design supports

schema formation, it imposes germane cognitive load. When it interferes and prevents schema

formation, the instructional design imposes extraneous cognitive load. One common case of

imposed extraneous load is when tasks require that the learner seek out information from

a different location in the content [161]. This interrupts learners’ focus on the information

they need to actually learn. One instructional method, worked examples, has been shown to

reduce the extraneous cognitive load imposed on learners.

Worked examples

Worked examples are problems with worked solutions designed based on cognitive load theory

[212]. Worked examples can be highly effective for learning topics like mathematics and science

[12, 212]. Learners often receive worked examples alongside problems to solve in order to aid

them in solving their problem. A mathematics or physics solution naturally breaks down into

steps, but the design of a worked example for programming is less clear. Their integration

into programming education contexts is becoming more common, as researchers build systems

to help educators create them more easily [122] and as systems provide interactive worked

examples, like the Problem Solving Tutor [120]. Researchers integrating worked examples into

programming contexts are also integrating cognitive science findings about worked examples,

like the benefits of: self-explanation, providing multiple worked examples, providing subgoal

labels, and faded worked examples.

Self-explanation: During effective self-explanation, learners generate explanations of learning

materials and relate those explanations to the relevant generalized principles, which deepens

18

their understanding [41, 171, 174]. Self-explanation is an example of an instructional practice

that increases germane cognitive load in order to further learning. Studies have found that

self-explanation questions helped students in learning programming [165], especially if they

included extra questions to help focus the self-explanation [222]. Recent work has applied self-

explanation to programming and combined it with subgoals by having novice programmers

author subgoal labels [130, 150]. Recent work has also shown that having novices write in

comments has been effective in helping them to solve programming problems [221]. This

research supports the idea of combining self-explanation with examples in systems for novice

programming.

Multiple Examples: Providing multiple worked examples for learners to study can help

them to grasp content [12, 63]. However, Catrambone and Holyoak showed that multiple

examples only support learners in solving problems when the learners are instructed to use the

similarities between the examples [37]. This prompts the learners to perform self-explanation.

Subgoal Labels: More recently, researchers have begun to focus on the design and effectiveness

of worked examples for programming using subgoal labels. Research on worked examples

overall indicates that subgoal labels can likely help learners better understand programming

examples [36]. Adding subgoal labels to instructional information as a way of simulating a

worked example has been effective for programming [128, 129, 149]. Researchers have also

designed a way to crowdsource subgoal labels for videos, engaging learners in self-explanation

[109].

Fading: Fading worked examples can also help learners. Faded worked examples are sequences

of worked examples in which stages of the worked examples are removed in order to fade from

a fully worked example to only a problem [172, 173, 193]. Fading reduces the extraneous

cognitive load of worked examples by reducing the amount of information learners need to

19

figure out on their own until they are ready for it. Researchers have shown that faded worked

examples can be effective for programming [70].

2.1.3 Takeaways

This body of work addressing how to best design instructional material and support problem

solving has inspired both our work on novices’ issues using example code, as well as the design

of the Example Guru. While existing work provides some insight into ways to help people

learn from examples, it does not address the problems novices may have when they do not

understand example code. Another body of work, rooted primarily in software engineering,

looks at how programmers comprehend code and ways to help programmers comprehend

code more efficiently.

2.2 Comprehending and presenting example code in

programming and software engineering

In order to be effective software engineers and for software to be robust, programmers need

to be able to quickly comprehend code. In order to be able to support code comprehension,

researchers have begun to look at how programmers comprehend and use code, as well as

beneficial ways of summarizing and visualizing code examples to better support programmers.

This research inspires both our studies of novices’ difficulties using example code, as well as

to the design of the Example Guru’s example presentation. This section discusses related

work in the areas of: code comprehension, code example use, the quality of examples, code

summarization, and code visualization.

20

2.2.1 Code comprehension

Code comprehension is a core element of using code examples, as well as programming in

general. Researchers have developed both theoretical and empirical bodies of work on code

comprehension.

Review papers cover the extensive body of work on code comprehension and emphasize two

main high-level theories: top-down and bottom-up [204, 223]. In top down theories, expert

programmers use beacons, programming plans, and rules to make sense of code [25]. In

bottom-up theories, programmers chunk related elements during comprehension based on

high-level schema in long-term memory [199].

Empirical work on code comprehension has used a variety of methods. Researchers have

evaluated code comprehension through eye tracking [32, 33], cerebral blood flow measurement

[154], answering questions [14, 229], code modification [115], and debugging [219]. Research in

computer science education has shown that code comprehension activities can effectively assess

programming knowledge, as well as help students learn [202, 208]. While code comprehension

at a high level likely affects the way people comprehend examples, the work often addresses

code at a much larger scale than a code snippet. Researchers have also looked at how

programmers try to use examples.

2.2.2 Code example use

Several studies seek to understand how programmers use example code naturally, though

some focus on experienced programmers as opposed to novices. One such study explores

experienced programmers reusing example code and, similar to this work, describes the

programmers’ behaviors during tasks using example code [185]. Rosson and Carroll find

21

that expert programmers ‘debugged into existence’ and only used examples as an initial

source of information. It is important to note that this study took place before example code

was widely available online. Another study looked at how programmers search the internet

throughout programming tasks and found that programmers used online code examples for

learning and reminding themselves of what they already know [23]. They also discovered

that programmers started to use code they found before fully understanding it and made

mistakes while adapting copied code. However, we do not know how these behaviors and

problems apply to novices.

Few studies focus on non-expert programmers and those that do only briefly discuss code

examples and reuse as a part of larger works. In analyzing the practices of informal web

development, Rosson, Ballin and Nash found that programmers often use example code as a

model when looking for general ideas of ways to design websites [183]. However, when they

try to use the code, the programmers cannot effectively integrate it into their projects. One

factor that may play into programmers’ abilities to effectively use example code is the quality

of the existing examples.

2.2.3 Quality of examples

Researchers have looked at the effective qualities of code examples to establish how to design

code examples for documentation. Studies have looked at how programmers rated examples

and what they wanted in code examples. They found that programmers preferred concise

code examples that highlight relevant code [213], are segmented and described [155], provide

placeholders to indicate where to insert new code, and have understandable names and

variables [31]. Another study found completeness and correctness to be important qualities

[213]. Several of these studies list ‘readability’ and ‘understandability’ as important features,

but do not clearly define what those qualities mean [31, 213]. Research has also suggested

22

providing natural language explanations to improve examples [38, 80]. However, this type of

work has focused mainly on more experienced programmers who are often adults using text

programming languages. Much of the work addressing how to help programmers comprehend

and quickly make sense of code has been in the areas of code summarization and visualization.

2.2.4 Code summarization

Code summarization is the process of creating or generating brief descriptions or shorter

code snippets, like summarizing English text. Code summary generators often use heuristics,

information retrieval techniques, or machine learning to automatically create the summaries

[74, 148, 235]. Researchers have explored what programmers think is important, using

eye-tracking [182], and by asking programmers to manually create code summarizations

[236]. They found that programmers spent more time looking at method signatures and

often included structural components and ‘easy to miss’ code, but did not focus on control

flow keywords, method invocations, or exception handlers. Many researchers motivate code

summarization work with the inefficiencies of code maintenance. They do not address code

summarization for novice programmers, which could explain more about which parts of code

novices think are important.

2.2.5 Code visualization

Beyond code summarization, another way to make it easier for programmers to use code or

code examples is to provide visualizations. Researchers have developed effective interactive

visualizations for helping novice programmers understand animation programs [238]. Others

have developed rich code visualization support for text programs, and found that code

visualization can reduce time needed to answer questions about code, compared to basic

23

syntax highlighting [11]. However, work on code visualization has focused more on large-scale

program understanding than code examples that demonstrate specific concepts.

2.2.6 Takeaways

Better understanding how programmers understand and use code, as well as using that

information to better present code, is critical in supporting programmers in maintaining large

software projects and learning new programming skills. The findings often align with cognitive

load theory, in terms of code comprehension theory and properties of effective examples. The

findings also support the need for a better understanding of novice programmers, who have

particular difficulties integrating and understanding example code.

2.3 Supporting access of relevant examples

In addition to presenting examples in ways that novices can understand, novices need to

receive example code relevant to their program at the correct time. Like the Example Guru,

many systems try to help programmers gain access to relevant examples. Existing systems

typically focus on supporting programmers in accomplishing programming tasks, rather than

learning new skills. These systems try to make examples accessible in order to: 1) help

programmers use correct API methods or commands, 2) fix code quality, or 3) fix errors.

2.3.1 Recommendations for API or command usage

APIs, as well as other complex software systems, commonly have many available methods

and commands. Many features remain unknown by users, due to users being unaware of the

possible capabilities or because of naming issues. Chapter 6 describes a study in which the

Example Guru suggests API methods to encourage exploration of unknown methods. To

24

help users better use the full capabilities, researchers have developed support systems for

APIs and complex software that provide recommendations to users. These systems typically

base the recommendations on community data or individual usage.

Recommendations from community data

Some existing systems leverage overall community usage and sets of community-created

artifacts to make suggestions for API methods and commands. The Example Guru also uses

a repository of programs as a basis for designing suggestions, but focuses more on introducing

previously unused API methods.

One way systems provide API and software support is by using community data to recommend

commonly used commands. Some of these systems provide rankings of commands by basic

counts of how often they are used, such as by: providing lists of API methods in a programming

environment [86], providing lists of commands within software [135], or by emphasizing more

commonly used API methods in documentation [206]. Other recommendation tools use

collaborative filtering algorithms, which classify a user’s behavior within community usage

data in order to recommend API methods [139] or software commands [119, 134].

Research has also leveraged communities of user examples, Q&A information, and code

completion methods for making recommendations. Rather than making recommendations

directly, these systems typically try to improve example code retrieval by recommending

examples using the programmer’s context. They do this by: comparing users’ code against

repositories [87], mining patterns of APIs often used together [239], matching related words

to find code examples for similar types of functionality [15], or using input and output types

[124, 215]. For more project-specific examples in open-source projects, recommendations

have been based on the program history and types of tasks [47, 123]. Other than examples,

25

systems also use community resources to inform relevant Q&A recommendation [46], code

completion [10, 26], and parameter completion [9, 237].

Recommending support based on individual usage

Rather than using community data, other systems provide recommendations for effective

programming, APIs, or software commands based on either the user’s behavior or the artifact

they are working on and pre-defined suggestion criteria.

Research has used current or past behavior to recommend support to users of complex

software and APIs. AmbientHelp recommends information based on the commands a user

is working with at any point in time [133]. Similarly, CoDis suggests unfamiliar commands

based on command patterns and the time elapsed since the user’s last activity [241]. Another

tool bases API recommendations on the user’s programming history [178].

Some systems only use the artifact a user is creating to recommend help for APIs, programming,

and commands in complex software. Tools for recommending APIs consider the structure

of code to recommend API methods, such as by looking for redundant code [104] or using

identifiers from a class’s abstract syntax tree [82]. Documentation recommendations can also

rely on artifacts, like by connecting method invocations to documentation [51], or by relating

software interface elements to documentation [108]. Systems also recommend commands to

users in sketching software based on the drawing artifacts that users create [58, 95, 152].

2.3.2 Recommendations to improve code quality

Like helping users learn complex APIs and software systems, existing systems support

programmers in improving their code quality through suggestions. Improving code quality is

most related to the Example Guru’s abstract programming concept suggestions in Chapter

26

7. In order for code projects to be maintainable, they need to follow best practices in code

style, like keeping methods short and using abstraction appropriately. Three types of systems

define and assess code quality more automatically: code smell detection methods, tools for

code style checkers, and a subset of automatic grading systems.

Code smells

Code smells are patterns of code, such as long methods or duplicated code, which may indicate

a problem in the maintainability of code and can be used to detect issues. These definitions

and the implementation of the definitions closely align with the Example Guru’s rules. Fowler

and Beck developed categorizations and definitions of “code smells” [57]. Based on these

definitions, a body of research has investigated humans and metrics as detectors of code

smells. Several studies explore human evaluations of code smells, finding low agreement for

detection of complex code smells [126, 127, 192]. Mantyla, Vanhanen and Lassenius developed

a taxonomy to enable better understanding of code smells for human detection [125]. They

found that their taxonomy aligns with correlations software developers noted between code

smells. DECOR and “detection strategies” [132, 147] enable humans to operationalize code

smells using software metrics, while another set of systems use metrics to automatically detect

code smells [57, 106, 116, 151]. Based on code smells, Cunha, Fernandes, Ribeiro and Saraiva

identified smells in spreadsheet code and created a tool to find these smells [48].

Code style checkers

Similar to code smells, a number of tools allow programmers to check the quality and style

of their code. PMD, Klokwork, SourceMonitor, QJ-Pro, and StyleCop are a few examples

of these types of tools [45, 111, 166, 201, 205]. These tools provide standard metrics and

27

allow customization of metrics, but are aimed at professional programmers and do not have

support for suggesting new programming concepts or skills.

Automatic grading

On a smaller scale than code smells and style checkers, a number of automatic grading systems

measure the quality of student code using standards and structural properties. Some systems

use standard metrics as code quality measures for student assignments, like the ISO/IEC

9126 standard [1, 24] or Berry and Meekings’ style metrics [20, 98]. Other automatic grading

systems consider the structure of code. For example, one framework employs cyclomatic

complexity [138, 217], while another study uses LOGISCOPE to find knots [143]. Cyclomatic

complexity and knots find problematic code by looking at the paths through a program.

These evaluation techniques focus on complex structural and style issues or aspects of code

such as whitespace, all of which novices can often ignore while learning basic programming

concepts.

Suggestions to help programmers learn APIs and improve their style of code most closely

relate to the Example Guru’s suggestions for artifact-based programming. The set of systems

that support programmers in fixing errors and incorrect solutions through suggestions use

relevant strategies for providing information, but do not need to consider the programmer’s

motivation.

2.3.3 Recommendations to fix errors

Researchers have made progress on suggested support to help programmers for: solving

programming assignments and resolving bugs.

28

Automatic grading and intelligent tutoring systems

Automated grading, similar to rules in the Example Guru, check code correctness in pro-

gramming assignments and can provide quick feedback to a large number of students. A

variety of automated grading systems allow teachers to specify assignments and tests that

evaluate the correctness of code output [7, 21, 55, 59, 88, 101, 187]. While these systems

require assignments with defined answers, independent learners using novice programming

systems often work on artifact-based programs that do not have right or wrong answers.

Researchers also use automated evaluation of code to provide programmers with hints along

the way [169]. However, these systems and tools focus on contexts where learners are working

toward a specific solution, making it possible to generate hints based on the differences

between the learner’s code and the correct solution. The Example Guru is designed to

support programmers in unbounded contexts, where there is no specific solution.

Finding bugs

Methods for evaluating source code to locate bugs and errors are also similar to Example

Guru rules, which often affect whether code executes correctly. PREfix and PREfast are

systems that successfully determine the density of defects by analyzing code [153]. Static

code analysis can also find issues in large-scale multi-threaded programs and detect security

vulnerabilities [8, 103, 225]. However, novice programmers, focused on learning programming

constructs, are mainly shielded from these complex bugs.

Studies have used crowd-sourcing to assist new programmers in understanding compilation

errors and bugs. HelpMeOut, BlueFix and Crowd::Debug utilize example code from a database

of users’ error fixes, in conjunction with expert explanations, to assist novice programmers in

understanding and fixing bugs [5, 79, 226].

29

Software systems and programming environments suggest information to users based on

errors. Tools for non-expert programmers recommend information to try to help users who

have hit a barrier in completing a code task [100] or who have errors in their code [79]. Two

specific scenarios where recommendations based on errors can be especially useful are: in

pasting and adapting code examples [54], and in complex software systems where commands

are easily mistaken for each other [117]. While these systems effectively suggest examples to

help resolve errors, they do not necessarily introduce new skills and require that the user has

hit a problem in order to know what to suggest.

2.3.4 Providing examples as a way of recommending examples

Another way of providing examples is to make it easier to access them through repositories

or search. Educational systems and systems for programmers provide specific examples

or support programmers searching for examples. While not specifically recommended, the

methods used to select and support these examples are often similar to the ways context-

sensitive suggestions are triggered.

Educational systems

Educational systems for programming often provide examples similar to the Example Guru,

where code is available along with the ability to run the code. Researchers have worked

on example selection [28], as well as presenting examples as learning material for learning

programming [27, 156, 227]. One of these tools, the ‘Explainer’, provides support for learning

from programming examples, by allowing programmers to view multiple forms of the example

as well as programming plans [170]. With Explainer, participants were more consistent and

direct in how they completed tasks. Yet, these studies focus primarily on the design of the

30

systems, as opposed to understanding how novice programmers use examples and what issues

they have.

Supporting code search and example integration

End-user programming systems focus on enabling correct selection of examples and supporting

the re-purposing of example code, but tell us little about what programmers are confused

about as they try to use the examples. Some tools, like Blueprint and Fishtail, integrate

example search into programming environments, improving programmers’ abilities to search

for examples without having to switch contexts [22, 188]. Other tools integrate with web

browsers. Mica and Codetrails augment searches to improve the results for programmers

looking for examples [68, 207]. In addition to improved example search, Snipmatch also

supports integration into code, similar to Codelets and Webcrystal [38, 159, 230]. On the

other hand, Looking Glass provides a way for novice programmers to select which part of a

larger program they want to reuse [72]. These studies often compare programmers’ success

with and without the tools, but do not address the behaviors of programmers using examples.

In this work, we seek to describe how novices utilize examples when programming.

Processes for selecting relevant code use varying levels and types of extra context. Some

take short queries to find related code [40, 142, 186, 216]. Others utilize broader code

structures [16, 85, 157] or add in more information, like the frequency of terms [167, 207],

the programming language and framework [22], or timing [240]. Very closely related to our

method, some systems determine the behavior of code using information retrieval techniques

on the text of the code and text about code [190, 209].

31

2.3.5 Takeaways

An extensive set of research and systems aims to make example code more available to pro-

grammers of all levels and contexts. These systems support the effectiveness of recommending

examples to programmers as they work for both concrete information like API methods,

as well as more abstract information, like code smells and hints toward task solutions in

intelligent tutoring systems. There are two key features of the Example Guru that set it apart

from other systems: 1) the Example Guru suggests new code in order to reduce plateaus in

coding skills, and 2) the Example Guru aims to motivate programmers by suggesting new

code that also improves the programmers’ artifacts.

32

Chapter 3

Understanding Novice Example Use

Note: Parts of this chapter were published in Visual Languages and Human-Centric Computing

2015 [91].

3.1 Introduction

Prior work found that novices struggle to make effective use of programming examples,

but researchers have not yet delved into the specific reasons why this happens. A better

understanding of these difficulties is critical to the design of the Example Guru and other

systems that suggest examples to novices. This chapter addresses hypothesis 1: that studying

novice use of examples will reveal challenges and inspire support. To explore this hypothesis,

we ran a study in which novice programmers attempted to use examples to solve specified

problems. We focus specifically on how middle school children use examples to inform support

for young novice programmers.

33

This study was inspired by the design and analyses of previous research on the challenges and

strategies of non-expert programmers. At a high level, researchers have studied the general

behaviors exhibited during programming, such as debugging [110] and barriers in learning

programming [112]. These studies typically record participants talking out loud to get a

better understanding of participants’ thought processes throughout the tasks. More specific

to code reuse, research has also investigated the behaviors of non-expert programmers during

mashup programming [34] and when attempting to locate functionality in unfamiliar code

[73]. However, the body of research on novice and end-user programming behavior lacks

focused explorations of example use.

To work towards this deeper understanding of novices’ example use, we ran an exploratory

study of young novice programmers using example code to solve programming tasks. The

children worked in pairs editing code using examples. We recorded their conversations to

capture their natural discussion about the tasks, what they were confused about, and what

plans they had to solve the tasks. This study answers two questions: 1) what hurdles do

novice programmers encounter, and 2) what strategies do novices use while attempting to

use examples?

To find hurdles and strategies, we analyzed the transcripts of participant conversations using

a grounded-theory-like approach. The transcripts show that in most tasks, participants have

a ‘realization point’, in which they talk about now understanding what they need to do to

solve the task. The existence or lack of a realization point reveals which participants had the

most difficulties and indicates which parts of the task they struggled with the most. Based

on this analysis, we present the strategies novice programmers used and the challenges they

encountered. Finally, we suggest how systems can support novice programmers in overcoming

hurdles.

34

3.2 Exploratory study

We ran an exploratory study to understand the hurdles encountered and strategies used by

novice programmers working with examples.

3.2.1 Materials

To design the materials for this study, we had 9 pilot study participants, who completed

tasks with examples. We augmented Looking Glass with the examples, so that they would be

within the programming environment. We iterated on the design of the tasks and examples

in order to make them challenging in order for participants to need to discuss the tasks to

figure them out.

Looking Glass augmentation

In this study, we augmented Looking Glass with example code in an un-closable dialog box,

as shown in Figure 3.1. This dialog box provides instructions for the task at the top. It also

instructs the programmer to try to use the following example code to solve the task. Each

task had a different example related to each specific task. Finally, a button below the code

example allows users to execute the code. If a user clicks this button, they can watch the

animation to see how the code works.

The example always showed a red outline around the important concept for emphasis, such as

the ‘Do together’ code block in Figure 3.1. We chose to provide this emphasis because previous

work indicated that this red highlighting could assist novice programmers in identifying the

important part of example code [89]. We did not provide textual explanations because we

wanted novices to focus on the example code and try to figure out how it worked to solve the

35

task. Furthermore, most examples that programmers find online are often not annotated.

The emphasis merely gave direction without explanation and is something that a system

could add automatically.

Figure 3.1: The augmented Looking Glass with a task and an example. A) Looking Glass
programming environment. B) Task code designed by the researcher. C) Example code and
task instructions dialog box.

Task programs

We created six task programs based on six concepts of varying difficulty. Each task required

the pair of participants to correctly add a unique programming concept: simple parallel

execution, a for loop, an unfamiliar API method, a function as a parameter, a while loop

condition, or a for each loop iterator. The instructions for each task ask participants to add

to or modify the given program to create a specific animation. The completion program

was always a very simple program, only including basic programming statements similar to

those participants had seen in the training task. The solution for each task required adding

36

the complex concept in the example code, such as simple parallel execution, as shown in

Figure 3.1. The solution to the task in Figure 3.1 requires that the participants insert two

parallel execution blocks: one to make both shoulders turn backward, and one to make both

shoulders turn forward. The complete set of task programs and solutions is in section A.3

Examples

We created a code example for each program completion task to simulate a well-selected

example found online. Each example contained the concept necessary to complete the

associated task. The examples for each task are shown in section A.3. To prevent the tasks

from being obvious, we used formative testing to ensure that the example did not directly

map to the solution. For example, in Figure 3.1, participants needed to add two Do together

blocks and rearrange the statements, while the example only shows one block. The example

Do together also has one character doing multiple actions, while the solution requires the

user to make two arms move. Formative testing showed that novices think about these ideas

differently, which made the task more challenging.

3.2.2 Study design

Participants completed a demographic and computing history survey (see section A.1),

a training task, and six program completion tasks, as shown in Figure 3.2. We allowed

participants to ask questions at any point during the study. If users asked questions during

the program completion tasks, we directed them to try to use the example. This study took

a total of 90 minutes. If participants finished early, they were allowed to work on optional

extra tasks which we did not analyze, or create their own program.

37

Figure 3.2: Study protocol

Training task

Pairs first completed a training task that was designed to familiarize them with the Looking

Glass programming environment and the task format. They received an instruction sheet

with directions and images that showed where to find essential elements in the interface (see

section A.2). Pairs then started the program completion tasks.

Program completion tasks

Participants all worked on each of the six program completion tasks. Pairs saw the tasks in

one of six orders that were balanced across participants to balance the effects of the tasks on

each other.

In these tasks, participants worked on completing a program, given instructions and an

example (Figure 3.1). For each task, participants had a total of eight minutes to work on the

task, split into two four-minute halves. We chose the number of tasks and task times based

on formative and pilot studies.

After the first 4 minutes of the task, a researcher asked the participants questions as part of

a mid-task interview. In this interview, the researcher asked the participants questions about

what they had tried so far, what they planned to do next, and why they had or had not

used the example. The purpose of this interview was to: 1) prompt participants to discuss

38

their thought process, and 2) to encourage participants to use the example, if they had not

yet used it. Because this study aimed to understand difficulties using examples, we wanted

participants to try to use the example at the halfway point if they had ignored it previously.

At the end of the mid-task interview, pairs had another 4 minutes to complete the task. We

encouraged participants to keep trying if they told us they completed the task but it was

not correct. This likely increased success rates, but gave us more valuable information about

their process trying to solve the tasks.

Once the task was complete or the eight minutes had passed, the researcher performed a final

interview for that task. The goal of this interview was to ask questions to elicit any processes

that the participants had not talked about yet and to gauge how well they understood the

concepts in the example. This interview asked questions about: 1) how they figured it out,

2) what they would have done next if they had not figured it out, and 3) how the example

worked.

3.2.3 Participants

We recruited 21 children aged 10-15 with minimal programming experience from the St.

Louis Academy of Science mailing list. We screened participants to ensure that they had

three or fewer hours of programming experience. Three children had programmed for more

than three hours, so they participated in another concurrently running study instead. Our

18 participants had an average age of 11.4 (SD = 1.4). We had ten female participants and

eight male participants.

For each session, we randomly assigned participants to pairs, such that in the end, we had

nine pairs of participants. Participants worked in pairs because formative work showed that

children were not actively ‘thinking out loud’ on their own, even when instructed to do so.

39

Working in pairs prompted most participants to have natural and continuous conversations

about the tasks. Having the participants work in pairs did change the dynamics of the

situation and likely improved overall performance. Both the difficulties and the strategies

participants used help us to understand more about novice example use.

3.2.4 Analysis and results

We collected demographic and computing history survey data, logs from the programming

environment during the sessions, audio logs, and task programs. In order to better understand

how novices used examples, we analyzed the correctness of the programs and the statements

novices made throughout the tasks.

Program correctness

We scored each task as either correct or incorrect based on the instruction criteria given to

participants. In four cases, tasks did not fit one of the criteria, but they used the correct

concept fully and correctly, so we also marked those as correct. For example, one criteria was

to not add extra code blocks into a loop task to ensure that they used the loop instead of

repeated code blocks. If the resulting code used the loop correctly but they had extra code

statements added elsewhere, we still counted solutions as correct. Some participants added

extra code at the end of programs for fun before notifying the researcher they had completed

the task.

Out of 54 total tasks, participants correctly completed 37 tasks (69%) and failed to complete

17 tasks (31%). On average, it took participants 5.27 minutes (SD = 2.24 min.) to complete

a task. This average includes those who spent the whole 8 minutes and did not finish the

task. Task times ranged from 1.63 to 8 minutes. In one of the 54 tasks, the timer did not

40

stop the participants at the 8 minute mark, but from the logs we can determine what they

accomplished within the 8 minutes and only analyzed that period of the task.

Transcription labeling

To analyze the audio recordings, we transcribed them, created two sets of labels to categorize

the focus area and processes, and determined the ‘realization point’ for each task.

We transcribed a total of 7.6 hours of audio from the program completion tasks in order

to analyze what participants talked about as they completed the tasks. We then broke

the transcriptions up into segments in which participants focused on a single topic, such

as a question and an answer. We then grouped 4% of the statements based on qualitative

similarities and labeled those groups. We iterated on these labels four times to clarify the

labels. To verify the quality of the labels, an independent researcher labeled 20% of the

statements. The researchers achieved >80% agreement on the 20% of statements when

labeling the transcripts independently. I labeled the remaining transcriptions.

We created two high-level sets of labels to categorize how participants spent their time during

programming tasks with examples. We wanted to know 1) which part of the interface or task

the participants were focusing on, the ‘focus area’, and 2) what they were doing or talking

about within that context, the ‘process’. Table 3.1 shows these sets of labels, which we used

to label the statements from the transcriptions.

We chose to categorize statements by their focus area in order to gain insight into the typical

places novices had difficulties in these types of tasks. Participants’ statements roughly cover

all of the elements of the task, as shown in the top section of Table 3.4.

41

Our process labels aim to explain the types of statements novices made while trying to solve

the tasks with examples. Our labels describe participants as making three main types of

statements: descriptions, ideas, and evaluations. In descriptions, the participants are either

reading something off of the screen or summarizing something they are looking at. When

participants make idea statements, they are describing something they think they should

do or are planning to do. Finally, evaluation statements tell us whether the participants

believe that their code is working. A small number of statements did not clearly fit into these

categories or were off-topic.

Realization point

We define the ‘realization point’ as the point in the transcription when one of the participants

first mentions the necessary concept in the example. For each task, we either find one

statement as the realization point, or find no realization point. One possible limitation of the

realization point is that participants may have thought about the concept before they said it

out loud. The natural flow of conversation between most pairs of participants makes it likely

that that participants talked about their realization right away.

Through our analysis of the audio transcriptions, we discovered that all but two tasks had a

definitive point when the participants first noticed which part of the example to use. We

believe this is a valuable feature of example use, and call the point when a participant

first talks about the critical element of the example the ‘realization point’. We believe that

identifying realization points and looking at behavior before and after the realization points is

a new way of analyzing the behavior of programmers working with examples. The realization

point separates the task into two parts: 1) the time before participants know what concept to

use, and 2) the time the participants spend trying to figure out how to apply that information

to the task code.

42

Across all tasks, pairs spent an average of 1.9 minutes (SD = 1.5 min.) before the realization

point, ranging from 0.2 minutes to 7 minutes. For only 2 of the 54 tasks, participants never

reached a realization point, so we exclude these task times from the averages for both before

and after realization times. After the realization point, pairs spent 3.4 minutes on average

(SD = 1.9 min.), with times ranging between 0.3 and 7.5 minutes. Notice that participants

spent longer after the realization point than before (3.4 vs. 1.9 min.), which suggests that

using the concepts from the example was more challenging than identifying them.

43

Table 3.1: Labels

Focus Area La-
bels

Description % of state-
ments

Instructions Talking about or reference the task instructions. 15%
Programming
Environment

Talking about a part of the programming environment
without mention of the task or example code.

9%

Example Code Reading or talking about the example code, specifically
referring to objects or parameters used in the example.

27%

Example or Task
Execution

Focusing on executing either the task program or the
example code, as differentiated by task logs.

10%

Task Code Reading or talking about the task code, specifically re-
ferring to objects or parameters used in the task.

26%

Off-topic Not talking about the task. 5%
Unknown/Other 8%
Process Labels Description % of state-

ments
Description Reading, paraphrasing or explaining part of the focus

area.
28%

Description-
realization

Describing something when they make a realization or
describing their realization. This is often signaled by an
“Oh!”- like statement.

2%

Description-
don’t under-
stand

Describing something and making an explicit statement
about not understanding how something works.

7%

Idea Talking about an idea for something to complete the
task. It may be abstract, concrete, or not even explicitly
stated. Ideas can also be negative, such as telling their
partner not to do a certain thing.(*This does not include
actions like “play the example.”)

32%

Idea- realization Talking about an idea about what to do next in which
they seem to suddenly understand what needs to happen.
This is often signaled by an “Oh!”-like statement.

2%

Idea- don’t know
how

Talking about an idea about something to do next to
solve the task, but they do not know how to carry out
the idea.

3%

Evaluation-
working

Declaring that their program is correct. 4%

Evaluation- pos-
sibly working

Declaring that that their program might be working. 1%

Evaluation- not
working

Declaring that their program does not work. 6%

Unknown/other 15%

44

3.3 Hurdles and strategies

Because behavior before and after the realization point differs, we first describe two hurdles

that occur before the realization point, followed by those after the realization point. Then, we

describe three strategies. We call these ‘hurdles’ because many pairs overcame the challenges

on their own.

3.3.1 Content distraction hurdle

Often, participants spent time at the beginning of a task exploring the task code and

programming environment or generating ideas from those contexts. For instance, in a few

tasks, participants wanted to move a UFO to the ground. Even though the instructions told

them they could not use numerical values to accomplish this, a few pairs wanted to explore

the different numerical values to see how they worked. In another task, a participant wanted

to explore a parameter called as seen by after the pair talked about not having any ideas

about how to complete the task. In this task, the participants needed to insert a function.

Participants first wanted to explore what as seen by does: “Wait, can you, wait click as

seen by, just out of curiosity, a little more. Just try one of those things: begin gently, begin

gently and… do you know?” We can also see this hurdle through the transcription labels,

where tasks have multiple task code-idea and programming environment-idea labels before

participants looked at the example.

3.3.2 Example comprehension hurdle

In some cases, participants’ confusion about the example prevented them from using it or

being able to generate ideas based on it. After having the researcher suggest that they use

45

the example during the mid-task interview, one pair had the following conversation: “Play

example. I don’t get how that’s supposed to help us. Yeah, I have no idea.” In this case, the

participants did not understand how the example was related to their task, so they did not

even consider using it to prompt ideas. In other cases, participants did not understand what

was happening in the example. One participant who described an example where a ghost

moves toward a treasure chest until the two objects overlap. In this quote, the participant

was reading part of the example code: “Ghost move toward treasure chest. Huh. That’s

weird. Hmmm.” However, he did not read the next part of the code, which was the critical

component. In these cases, the transcripts often have example code or example execution

labels early in the task with a much later realization point.

3.3.3 Programming environment hurdle

After participants discovered which programming concept to use, they sometimes could

not find it in the programming environment. For example, a pair of participants has this

conversation about using the repeat loop: “then you do repeat two times. How? But it says

that you can repeat. Where is the times thing? I don’t see that. Stop. Oh here, jump. We

got that. I was just trying to find the…” At that point, the participants have been talking

about the repeat loop for two minutes and it is time for the mid-task interview, so they tell

the researcher about their problem finding the repeat: “so I was kind of confused because we

can’t find the. […] We can’t find how to do the repeat.”

In other cases, participants found what they wanted to use, but could not figure out how to

select or move it to accomplish their goal. One such participant had a clear idea of what they

wanted to do, but did not know how to accomplish it: “Well we take the collection and put

it where the girl was so that it moves them all up at once. Okay, so how are we supposed to

46

do this?” These types of issues are commonly labeled programming environment: don’t know

how and programming environment: description-don’t understand.

3.3.4 Code misconception hurdle

Sometimes participants had misconceptions about how their programs worked. In these cases,

participants thought they knew what to do to complete the task, but that idea was actually

incorrect. One participant incorrectly thought that changing the ordering of their code would

make two things happen at the same time: “Maybe you put the right shoulder, maybe you

switch those around. So put this one right there and that one right there. Why would

we do that? Cause then it would go in sync.” However, their real problem was that they

needed multiple parallel execution blocks. Sometimes, these misconceptions led participants

to generate new ideas that helped them to succeed. However, misconceptions added to task

time, as they required participants to debug the problem. In other cases, code misconception

hurdles were followed by code comprehension hurdles, in which participants expected their

code to do one thing, but it did another.

3.3.5 Code comprehension hurdle

Participants sometimes talked about not understanding how their code worked: “Why is he

not on the ground,” “Let’s see how this works out. Why didn’t the rabbit move,” “What the

heck happened with this jump,” and “What did we do? I thought he’d jump again.” In these

questions, participants had an expectation of what would occur when they executed their

code, but that expectation was not met. Responding to these questions lead to other hurdles,

like context distraction, but also spurred strategies like idea generation and code-example

comparison. Common labels for these types of problems are task execution: description-don’t

understand.

47

3.3.6 Idea generation strategy

After the realization point, if participants did not have a plan for how to actually use the

programming concept to solve the task, many still generated ideas based on the task code.

We classify behaviors as part of this strategy if they are not based on the example code

nor on a previous failed attempt. One participant asked their partner a slew of questions

about what to do next “Do we have to put that up there or what? Do we move them in

there or something? For it to work? Do we move this?” These questions refer to multiple

different possible next actions, none of which the participant seems to base on any specific

rationale. Another participant stated “Huh. I have no idea what you’re supposed to do, but

I’ll try something.” While this process can be haphazard, the willingness to keep trying often

resulted in success. The task code: idea and execution labels often accompany this strategy.

3.3.7 Code-example comparison strategy

Revisiting the example after the realization point while trying out ideas helped participants

to complete the task. For example, a pair of participants were working on a task where they

need to get a girl to walk a certain distance and then have a rabbit run away. Solving the

task depended on them figuring out to use the expression ‘not overlapping’, but the not

operator had to be added separately. They first get the ‘overlapping part’ and then return to

the example and eventually figure out that they are missing the ‘not’: “Okay. Now, when

I play it, she walks up, but the rabbit doesn’t run. Overlapping. Overlapping with… Play.

It doesn’t do it. That’s weird. Not is true. But here it’s just is true … That looks like the

example. Yeah, but it’s got this whole red line around it, but it’s got this not thing.” After

participants have worked with the task code for a little while, they are better able to identify

meaningful differences between the example and task programs.

48

3.3.8 Example emphasis strategy

Some participants stated that the red outline helped them find the important part of the

example, even though we did not provide any explanation of the outline (see Figure 3.1).

When asked how they decided to use a certain concept, one participant stated, “we just

saw the outline.” Another participant asked the researcher “where is the repeat? We saw it

outlined.” We provided visual emphasis because we wanted participants to have a cue to help

them move through the task, but we did not want to provide hints as to how the example

actually worked.

3.4 Task behavior groups

Overall, this data contains a variety of task behavior profiles. Figure 3.3 shows a graph of the

54 tasks where the x-axis is the time before the realization point and the y-axis is the time

after the realization point. We noticed that there are tasks that spent much more time than

the average before and after the realization point, as well as tasks that were overall completed

much more quickly than most. In this section, we wanted to explore what happened in

these extreme cases. To do this, we selected 5 tasks (approximately 10% of the data) that

performed best and worst before and after the realization point:

• Long conclusion: the 10 tasks where pairs spent the longest time after the realization

point (5 correct, 5 incorrect)

• Slow start: the 10 tasks where pairs spent the longest time before the realization point

(5 correct, 5 incorrect)

• Quick: the 5 tasks correctly completed the quickest

49

• No realization: the 2 tasks where participants never reached a realization point

For each of the groups, we describe their behaviors, hurdles, and strategies based on the

transcriptions. Figure 3.4 shows a set of relevant transcription labels for this discussion and

the average count of each label.

3.4.1 Long conclusion group

Since participants, on average, spent more of their task time after the realization point, we

wanted to know what caused long conclusions, shown in the top grouping of Figure 3.3.

Correct long conclusion

Tasks in this group were slowed down by the number of ideas participants had, as well as

participants’ incorrect expectations of the code. Likely, participants successfully completed

these tasks because they continued to generate ideas, and because they revisited the example.

While participants in other groups spent time talking about not understanding why the task

code executed a certain way, participants in this group revisited the example to try to figure

out how their code and the example differed. Figure 3.1 also shows that this group had the

most programming environment ideas, but not many statements where the participants talked

about not understanding or not knowing how to find a code block. This likely means that they

just needed to try a few ideas before finding what they needed. Behaviors after the realization

point included two main hurdles: code misconception and programming environment, but

participants used the code-example comparison strategy and the idea generation strategy.

50

Incorrect long conclusion

The tasks in the incorrect long conclusion group seem to have been the most slowed down

by the programming environment (see Figure 3.1). This means that after the realization

point, participants spent time trying to find code blocks or struggling with system mechanics.

However, participants still used the idea generation and code-example comparison strategies,

during which they thought of ideas from the task code and executed the code to see if the

ideas worked. Unfortunately, participants in this group were the most confused about how

their code worked, which likely meant that they generated many incorrect ideas. Overall,

these tasks had similar hurdles and strategies to tasks completed correctly: programming

environment and misconception hurdles and the idea generation strategy. These tasks, though,

also suffered from the code comprehension hurdle.

3.4.2 Slow start group

In this section, we discuss both the correct and incorrect tasks during which participants

spent the most time before the realization point (the middle group in Figure 3.3).

Correct slow start

Participants spent a long time before the realization point on these tasks primarily due to

the distraction hurdle and because they did not always fully understand the task instructions.

In these tasks, participants did not appear to look at the example before they created a plan

based on the task code or programming environment. Accordingly, the first time participants

have an example code focus label is not until near the realization point. The study context

may have also contributed to the extended time before realization for some correct slow start

tasks. In order to control what programs participants worked on for the study, we had to

51

provide participants with tasks and instructions, which not all participants may have been

motivated by or understood immediately. Transcriptions for these tasks show that correct

slow start tasks had on average one instruction-description don’t understand label in their

transcripts, which was the highest of all of the groups (see Figure 3.4).

Incorrect slow start

Interestingly, as shown in Figure 3.3, the incorrect slow start tasks have similar times before

the realization point to the correct tasks. This means that both groups of tasks had similar

amounts of time after the realization point to complete the task, so lack of time did not

contribute to the incorrect end state. On incorrect slow start tasks, participants had the

context distraction hurdle, but these tasks seem to have a different pattern than those

completed correctly. Task transcriptions in this group contain the example code or example

execution labels near the beginning of the task, but participants do not return to it again

until the researcher reminds them during the mid-task interview, possibly caused by example

comprehension hurdles.

3.4.3 No realization group

Participants working on tasks in the ‘no realization group’, shown on the bottom right of

Figure 3.3, do not reach a realization likely because they do not discuss the example code

even though they execute the example (see Figure 3.1). This likely means that they do

not know how it would be useful. Consequently, the example comprehension hurdle will

be especially important to resolve, as it can prevent participants from even realizing what

concept to use. Unexpectedly, however, participants working on these tasks do not use the

idea generation strategy, shown by the small number of task code: idea labels. Most likely,

52

participants during these tasks were overwhelmed, which is supported by the fact that both

of these tasks were first in the series of six for the two pairs of participants.

3.4.4 Quick group

Participants who completed a task extremely quickly primarily described the instructions

and task and generated ideas from the example early, rather than getting distracted. After

the realization point, transcripts from these tasks have zero or one programming environment

labels, which means that the participants did not have many conversations or questions about

where to find code blocks. However, some participants in the quick group did use the idea

generation strategy: “at first we tried putting them all in the do together box and then we

tried putting two out and then one out and then put another box and put them in it.” Since

these were often simple tasks, participants could guess about different configurations and

still complete the tasks quickly.

Participants in this group also used the outline and code-example comparison strategies.

They discover the correct concept to use almost immediately, mainly by finding it in the

example. However, participants may have also noticed these concepts in previous tasks. In

the quick group, on average, the tasks had 1.6 example code labels and one example execution

label. Two of the five tasks in this group contained the code-example comparison strategy

when the participants did not necessarily grasp the concept well enough to complete the task

directly. In the other three tasks, participants did not need more information to correctly

complete the tasks, or quickly generated several ideas, which happened to work.

53

Figure 3.3: Time before realization point vs. time after realization point, with correctness
and behavior group annotated with color and shape.

54

Figure 3.4: Important labels and the average count for each of the behavior groups. The
largest value is shown for each label.

55

3.5 Threats to validity

Our threats to validity for this study primarily revolve around the number and types of

participants. In this study, pairs of children worked on tasks using examples. Having pairs of

children complete the tasks may have changed the participants’ work-flow or concentration.

We also had a relatively small sample size: nine pairs of children. We recruited participants

through a science-focused local mailing list. The children who chose to attend our study may

be more interested in programming than the typical child. Their parents also may be more

invested in their education than the typical child.

3.6 Discussion

In this study, we explored how novice programmers use examples to complete programming

tasks. Specifically, we looked at the case where a novice programmer is highly unfamiliar

with their own code, as well as the example. The combination of many new concepts can

create an overwhelming experience. Yet, this situation likely encompasses the experiences of

many end-user and novice programmers when they begin and look to examples as a way to

try to accomplish their goals.

A key result of this work is that the time spent before or after the realization point can

indicate the types of problems participants likely experienced. In slow start tasks, participants’

focus on the task and programming environment before addressing the example. In the long

conclusion group, participants noticed the key to the example early, but still struggled to

solve the task. These groupings suggest ways to design support for novice programmers using

examples in general. We also used them in the design of the Example Guru.

56

3.6.1 Implications of slow start behavior

When participants had slow starts, it was often because of the example comprehension and

context distraction hurdles.

Participants sometimes took a long time to reach the realization point because they were

executing the example code more than reading the example code. The majority of the support

provided for understanding examples accompanies the example code, but this might indicate

that we should consider ways to augment the example execution. For example, this type of

support could be more along the lines of a debugger than a textual annotation. Furthermore,

some participants did not understand how the example related to their own code, which

prevented them from trying harder to understand it.

Since participants were new to both the programming environment and task, spending time

becoming familiar with those aspects of the task can be valuable. Thus, we do not always

want to force novices past the context distraction hurdle. However, especially in educational

contexts, we may want to nudge novice programmers to return to the example once they feel

comfortable with the code and environment.

3.6.2 Implications of long conclusion behavior

Interestingly, many participants had quite a bit of trouble completing tasks even after the

realization point. Our analysis of participant behavior starts to explain why participants still

struggled after the realization point: programming environment, code misconception and

comprehension hurdles.

The programming environment hurdle is specific to visual programming environments, where

programmers may not be able to find a code block. However, this issue it is not necessarily

57

specific to the first 90 minutes of programming. Even if a novice programmer has become

familiar with the programming environment, they still might not know where to find a code

block that they have not used before. One way to improve examples to help novices would

be to augment examples with assistance to find code blocks in the interface.

For the code misconception and code comprehension hurdles, we may be able to help novices

by encouraging more revisiting of the example and by helping them to make a plan from the

example. While some participants revisited the example while they were working on using

the programming concept to complete the task, this was rare, yet helpful. Instead, many

participants either used the idea generation strategy or ‘debugged into existence’, based on

their misconceptions and code comprehension hurdles [184]. The participants who tried a

few ideas and then returned to the example to see how their code was different seemed to be

more effective in generating ideas that succeeded. However, the long conclusion pattern likely

occurs because at the realization point, participants are not familiar enough with the task to

generate a complete plan to solve the task. This means that just augmenting an example

with a lot more information would probably cause novices to be even more overwhelmed

when they first look at it. Instead, we would want to encourage participants to return to the

example and provide support that they can request when they need it.

3.6.3 Implications for the design of the Example Guru

Ideally, the Example Guru’s design should help programmers overcome as many critical

hurdles as possible. In application of these findings, we focused on the two hurdles and

two strategies that directly relate to issues with example use: the example comprehension

hurdle, the programming environment hurdle, the code-example comparison strategy, and

the example emphasis strategy. We do not focus on the content distraction hurdle, code

58

misconception hurdle, code comprehension hurdle, or idea generation strategy because they

were either related to these specific tasks or programming in general, rather than the example.

Example comprehension hurdle

Because the example comprehension hurdle can prevent novices from reaching the realization

point or paying attention to the example, we wanted the design of the Example Guru

to address it. The Example Guru has three features that attempt to help novices better

comprehend the examples: 1) the titles of the suggestions and examples describe the code

output rather than the code, 2) two examples demonstrate the concept or contrasting code,

and 3) rules that match suggestions to novice code based on the types of objects (in the

semi-automatic version). The examples have titles describing the code output because this

explains to the programmer what the code will do if they add it to their program. This

can help them to evaluate whether a suggestion is useful to them and seems more accessible

than a description of how the code works abstractly. To demonstrate the meaning of the

abstract concepts, each suggestion has two examples. The examples show different ways of

using the code or contrasting examples. These two examples encourage novices to explain

to themselves how they are similar or different. Finally, in the final version of the Example

Guru, the suggestions match examples to novice code that uses similar types of objects. By

connecting the suggestions to the code’s objects, the suggestions contain examples with much

more surface similarity to the novice code. This should reduce some of the cognitive load

associated with new content.

Programming environment hurdle

After novices reach the realization point, they can still get stuck attempting to solve the

problem if they cannot find the critical code blocks in the programming environment. This

59

could happen frequently for examples in blocks programming environments, as examples

are typically images rather than editable or copyable code. If a novice cannot find it, they

sometimes give up and try other incorrect strategies. To resolve this issue in the design of

the Example Guru, we had two different support methods: a button called show me how that

provides an overlay showing where to find the code block, or a tool tip revealed by hovering

over the code. The tool tip provides instructions on where to find the code block. Ideally,

the tool tip will encourage novices to learn where the blocks are, rather than relying on a

button that will give them the answer.

Code-example comparison strategy

Because novices benefited so much from comparing their code to the example, we wanted the

Example Guru to encourage this strategy. For this reason, suggestions appear in two locations:

as annotations to the code and in a list. The annotations provide a direct connection between

the novice’s code and the relevant suggestion, hopefully helping novices to make that link.

Only the most recent suggestion appears as an annotation to reduce overwhelming the

interface. Suggestions are always available in the list, which enables novices to return to

them easily for further comparison later.

Example emphasis strategy

In this study, examples had red outlines around the critical code elements. Since novices found

these helpful in solving the tasks, we wanted the Example Guru to also support emphasizing

code. For API method suggestions, the Example Guru emphasizes the code by having the

example only have one code block. API methods in Looking Glass do not typically require

multiple lines of code to demonstrate, so having only one line of code ensures that extra

irrelevant code does not distract novices. For complex and abstract code examples, the

60

critical code block is emphasized with a 3D shadow. This shadow reduces any confusion

about whether the red outline will actually appear on the code itself.

3.7 Conclusion

This study begins to show the challenges novices have using examples and provide directions

for supporting novices in using examples generally and specifically for the Example Guru.

One major remaining issue is that when novice programmers look at an example, they do

not realize which elements relate to their task. This prevents them from spending more

time trying to understand the example. Without an understanding of why the example

could help them, novices spend time trying to figure out how the code works on their own,

often with little success. While emphasis and code comprehension support can begin to

help programmers with this issue, this study raises a question about what misconceptions

participants had in finding the important elements of examples. This question prompted the

next chapter, which explores the differences in how novices and experts study and recall code

snippets.

61

Chapter 4

Towards Better Code Snippets:

Exploring How Code Snippet Recall

Differs with Programming Experience

Note: Portions of this chapter were published in Visual Languages and Human-Centric

Computing 2017 [92].

Our exploratory study of novices using examples indicated that not realizing the important

part of an example can prevent novices from being able to use an example to solve a task.

This chapter explores the ways novices and experts pay attention to aspects of code by

exploring how they recall code snippets. Like the previous chapter, this study supports

hypothesis 1, looking at how novices interact with examples in order to better support

novices in using examples. Systems should especially support novices in identifying important

elements because otherwise, novices will likely not return to the example for help or spend

time trying to better understand it. Current systems instead commonly focus on supporting

62

access and integration of examples, rather than supporting example perception [22, 38, 159,

188]. A better understanding of how novices focus on examples could enable us to engineer

the presentation of examples such that novices notice critical elements of examples more

often and more quickly.

Novices may have trouble identifying important elements of code snippets because their lack of

knowledge forces them to process each element of the code individually [67]. This likely makes

it difficult to determine the weight of each element. In contrast, experts can automatically

chunk multiple elements and remember them as one unit. This enables experts to process

and recall more elements using the same working memory limitations as novices. Experts can

chunk because they have schema, which are long-term memory knowledge structures that

help them to organize new information [39, 50, 67]. Schema likely also help experts identify

essential elements of content because they can quickly identify structures that align with

their knowledge.

Research has confirmed that expert programmers can remember and organize code better

than novices [2, 141, 176]. However, work has not addressed how the specific types and order

of elements that novices and experts recall can inform code example design. Furthermore, the

majority of these studies occurred before blocks programming languages became popular and

thus do not consider how syntax affects recall. Research has compared how students perceive

text and blocks-based programming languages [228]. We are unaware of work comparing

what novices and experts focus on when recalling blocks compared to text. Understanding

the differences in how experts and novices recall code snippets could provide insight into how

to help novices focus their attention more effectively on critical elements of code snippets, in

both text and block contexts.

63

We ran an exploratory study comparing how everyday, occasional, and non-programmers

recall snippets of code. To explore differences between text and block code, participants

studied and recalled two text and two block snippets. To investigate the order of element

recall, participants had three attempts to study and recall each snippet. This work seeks to

answer two questions:

- RQ1: Which code snippet elements do different levels of programmers initially recall?

- RQ2: What do different levels of programmers fill in after the first attempt?

This chapter has two main contributions: 1) the key similarities and differences in recall

between everyday, occasional and non-programmers, and 2) recommendations for beginning

to improve code snippet presentations. Everyday programmers focused primarily on structure

and meaning, especially in the first attempt, and struggled the most with domain-specific

code elements. Those with less experience had the most success recalling concrete and

natural-language tokens close to the beginning of the code snippets.

4.1 Related work: novice and expert chunking in recall

This study has been inspired by past work in novice-expert recall and code comprehension.

Research has explored chunking through comparisons of novice and expert recall in a variety

of fields. Early work on chunking began comparing novice and expert recall in chess. One

famous study found that expert chess players could recall many more chess pieces than

novices within a valid game configuration, supporting the theory that the experts can chunk

common chess configurations using schema [39, 50]. Accordingly, experts and novices did not

differ in their abilities to recall random configurations of chess pieces. Researchers have also

64

investigated the differences between novices and experts in other fields, such as categorizing

physics problems [42], and programming [43, 64, 118, 191, 200].

Studies looking at schema and chunking in programming have often involved novice and expert

programmers recalling code. Some of these studies essentially replicate the chess study for

programming, finding that experts can recall more correctly structured code than random code

[2, 141, 176, 198, 200]. Studies have also looked at how recall correlated with other skills, like

comprehension and debugging [198, 220]. In addition to snippets and programs, researchers

have explored how different levels of programmers attempted to recall reserved words. They

found that novices recalled based on common memorization mnemonics, like natural language

and story mnemonics. Novices also focused more on objects, while intermediates and experts

used their programming knowledge, focusing on functionality [49, 141]. While prior work

considered the differences between novices and experts in terms of knowledge and processing,

our study design and analysis enable us to recommend improvements for example code.

4.2 Methods

We ran an exploratory study to answer two primary questions: 1) which code snippet

elements do different levels of programmers initially recall, and 2) what do different levels of

programmers fill in after the first attempt? We also wanted to know if participants recalled

text and block code differently and whether having a problem to solve along with the code

snippets would affect what participants recalled.

4.2.1 Participants

We recruited participants through Amazon’s Mechanical Turk (MTurk), an online crowd-

sourcing platform [4]. We sought a diverse population of participants with a variety of

65

Table 4.1: Participants’ programming experience

Group How often HS Col-
lege

On-
line

Infor-
mally

Top 5 Languages

Everyday Everyday 11% 22% 6% 61% c:13, java:10, javascript:11, python:8,
sql:8,

Occasional Sometimes
and Past

14% 10% 0% 76% c:11, java:10, javascript:7, python:4,
sql:4, html:2

programming experience levels. To increase the chances of receiving reliable results, we

required that participants live in English-speaking countries and have completed 100 tasks.

After receiving three incorrectly completed tasks, which we excluded, we increased the

requirement to 1000 tasks.

We recruited three populations based on self-reporting: 1) 21 participants with no program-

ming experience (non-programmers), 2) 21 participants who program once in a while or used

to program in the past (occasional programmers), and 3) 18 participants who program on

an everyday basis (everyday programmers). The majority of both everyday and occasional

programmers learned programming informally (61% and 76% respectively), while others

learned online, in college or in high school. We had 24 female, 35 male, and 1 unspecified

gender participants. Participants ranged in age from 22 to 50 (M = 33.3, SD = 7.3).

4.2.2 Materials

We wanted to explore what participants would recall from block and text code snippets

across multiple attempts. We iteratively created four snippets of code through pilot testing.

Figure 4.1 shows block and text versions of the for each loop code snippet (see section B.3

for all tasks). In the design of the code snippets, we had 3 priorities: 1) make the snippets

challenging for all programmers to recall, 2) have distinct control flow programming constructs

to reduce, and 3) make the blocks and text as comparable as possible.

66

In order to understand the order of participants’ focus, the snippets needed to be complex

enough that even experts would require multiple attempts to recall the code. In total, each

snippet had between 8 and 11 lines of code. Each code snippet contained one control flow

construct, like a loop, surrounded by API method calls. We designed the snippets to limit

learning effects for specific constructs that novices may not initially know. Each code snippet

included one of four distinct programming control flow constructs: 1) a while loop, 2) an

if-else block, 3) a for loop iterating three times, and 4) a for loop iterating through a list of

objects.

Because we wanted to compare recall for blocks and text, we created each of the examples in

Java and in blocks. To reduce the differences between the text and blocks other than the

presentation, we created code snippets in Looking Glass, which is written in Java.

Figure 4.1: An example of block and text versions for the same code snippet.

67

4.2.3 Study setup

Our study had: 1) an introduction phase, and 2) a study and recall phase, in which participants

had three chances to memorize and recall four code snippets.

Introduction and surveys

The first part of the study included an introduction, sample tasks, and a demographic survey

that asked participants about their age, gender, and programming experience. To introduce

participants to the mechanics of the study, participants first stepped through instructions

and completed two sample recall tasks: one for text and one for blocks (see section B.1).

In order to determine participants’ programming experience level, participants filled out

a survey that asked how often they program, how they learned to program, and which

programming languages they know (see section B.2). We used how often participants program

as our measure of expertise, assuming that those who program every day will have more

developed schema for programming. We grouped participants who program once in a while

and in the past because prior work has suggested that past programmers often forget many

details [94]. General programming experience does not indicate how familiar participants

were with specific programming constructs. After each task, we asked participants to report

their familiarity with the construct in the code snippet.

Study and recall

Participants completed four study and recall tasks. In each of these tasks, participants saw a

snippet of code (like one of the two shown in Figure 4.1) and then attempted to recall it.

Participants had three chances to memorize and recall each code snippet. Participants had

68

90 seconds in their first attempt and 30 seconds in the second and third attempts to study

each code snippet. We did not want to limit participants’ recall by their typing speed, so

participants did not have time limits for recalling the snippets. We based the time limits on

pilot testing in order to make the tasks difficult so that participants would not be able to

recall the entire code snippet.

In order to explore the differences in recall for text and blocks code, two of the consecutive

tasks showed code in Java, while the other two tasks showed code in blocks. We randomized

and balanced whether participants saw the two blocks tasks first or the two Java tasks first.

During the block tasks, participants’ typed text appeared on a canvas that they could draw

blocks on to represent the structure of the code. We designed this canvas for block recall

through pilot testing. After each pair of block and text code snippets, participants answered

questions about their cognitive load for those tasks, using the validated difficulty and mental

effort scales [160].

Participants also received problems along with two tasks and answered growth mindset survey

questions (see section B.4). Due to concerns of validity, we do not analyze these factors. We

hypothesized that having problems to solve along with code snippets would focus experienced

participants on recalling the constructs in the problems. To explore this, participants saw

a related problem for two tasks. Unfortunately, participants’ feedback indicated that the

problems added too much work to the tasks, so we believe they may not have consistently

paid attention to the problems. Based on participants’ feedback during pilot testing, we also

hypothesized that novices may have different perceptions of their ability to gain programming

skills for block and text snippets [194]. To measure this, participants answered the growth

mindset survey after each pair of blocks or text tasks. The survey was unreliable in this case

(Cronbach’s α = 0.5) due to one question that inversely correlated with related questions.

Because these elements of the study were unreliable, we do not report these results.

69

4.3 Analysis

In order to interpret the data, we needed to compare the participants’ responses with the

ground truth code snippets. This section first describes how we matched response lines to

code snippet lines and found the differences. It then discusses the metrics used to analyze

the data.

4.3.1 Metrics

In analyzing participants’ responses, we wanted to explore patterns in the differences between

what programmer groups recalled. To do this, we initially created visualizations of the code

snippets, with size representing differences between the groups and color representing attempt

number. This process revealed three patterns that we wanted to test quantitatively: 1) the

first attempt seemed distinct from the second and third attempts, 2) some token types had

much larger differences than others, 3) there were trends based on the line number. The

incorrectly recalled tokens also seemed to provide insight into participants’ thought processes.

To explore these patterns, we analyzed differences in: 1) attempt number, 2) correct and

incorrect token types, 3) position of tokens recalled, and 4) survey data.

Attempt number

We allowed participants three chances to recall each of four snippets. Participants recalled

very few tokens in the second and third attempts individually, so we combine the last two

attempts to answer what participants filled in after the first attempt. We discuss what

occurred in the second and third attempts together,

70

Table 4.2: Token Types

Group Token Type Example of token type

con-
trol
flow

constructs if, for, while
keywords new, final
variable types & identifiers Integer, index
conditionals isCollidingWith, true
operators !, not, ++

objects scope this
subject blueChicken,

purpleChicken
accessors getRightHip, getLeftHip

separators separators ;, (,) {, }
actions action identifiers move, turn, say
arguments numerical literals 5, 0

string literals `Uh oh'
enum literals ABOVE, FORWARD
function literals getDistanceTo
unit literals (only in blocks) meters, rotations

Correct and incorrect token types

To explore whether participants focused on and recalled different elements of the code snippets,

we analyzed the token types shown in Table 4.2 for the attempts, blocks and text, and errors.

We based the token types on compiler types, but split and grouped them based on the

meanings of the tokens and their structure within the code snippets for this study.

Since the tokens and amounts of tokens differed between blocks and text snippets, we

compared how participant groups recalled the token types across blocks and text. Due to

issues participants had drawing the block structures on the canvas, we only analyze the text

participants typed. To explore the amounts of errors participants made for each token type,

we manually labeled the token types for each error. We labeled errors based on why the

tokens were incorrect, as shown in Table 4.7.

71

Table 4.3: Average % of tokens recalled by everyday programmers and differences between
groups for 1st and 3rd attempts.

Token
Type

Every-
day
1st at-
tempt

%Every1−
%Occas.1

%Every1−
%Non1

%Occas.1−
%Non1

Every
2/3 at-
tempt

Every
3rd at-
tempt

%Every3−
%Occas.3

%Every3−
%Non3

%Occas.3 −
%Non3

All 64% 12% 26% 14% 15% 79% 8% 24% 16%
String 74% 16% 25% 9% 15% 89% 12% 13% 1%

St
ru

ct
ur

al

Key-
words

71% 12% 30% 12% 15% 89% 9% 12% 4%

Con-
struct

61% 5% 34% 29% 27% 88% 11% 37% 26%

Scope 61% 16% 24% 9% 21% 82% 14% 22% 7%
Object 52% 15% 23% 8% 24% 78% 18% 26% 8%
Separa-
tors

52% 21% 28% 7% 25% 77% 22% 31% 9%

Actions 46% 13% 22% 9% 29% 75% 15% 27% 12%

M
ea

ni
ng

Vari-
ables

50% 15% 23% 8% 23% 73% 25% 30% 15%

Opera-
tors

56% 30% 35% 5% 20% 76% 28% 33% 5%

Condi-
tional

36% 19% 23% 4% 26% 62% 14% 19% 6%

Enum 39% 18% 15% −4% 27% 66% 11% 18% 8%
Numeric 34% 21% 21% 0% 31% 65% 24% 30% 6%
Unit 21% 16% 16% 0% 24% 46% 17% 27% 13%

A
P

I Acces-
sors

24% 2% 5% 3% 42% 66% 13% 24% 11%

Func-
tions

13% 8% 9% 1% 40% 53% 31% 37% 6%

Position

Based on exploration of the data, we noticed that participants recalled more tokens at the

beginning of the code snippets. We wanted to quantify this trend and compare it across

groups. We analyzed the correlation between the line number and the percentages of tokens

recalled in that line, using Spearman’s R. If participants focused on the beginning of an

example, they have a negative correlation. If they focused on the end of the example, they

have a positive correlation.

72

4.3.2 Comparing responses to correct code snippets

In order to compare what programmers recalled, we needed to know which lines of participants’

responses matched up correctly with the code snippets in the tasks. We tried a variety of

text and code comparison techniques (e.g. Google’s ‘diff-match-patch’ [53]), but they did not

work due to many missing, swapped, and out of order tokens. We designed an algorithm that

matched lines based on the alpha-numeric tokens in the lines and only minimally factored

in missing tokens. This worked better than metrics based on edit distance because those

metrics overestimate the error for incomplete lines, while ours does not. If less than 50% of

the response line did not match a code snippet line, we did not match or analyze it. We

also hand-coded erroneous tokens and found that a small number were due to mismatched

lines. Of the 4495 total lines of code recalled, our algorithm did not match 3% of lines and

incorrectly matched 1% of lines, which we did not analyze. For the correctly matched lines,

we used Python’s Difflib library [52] to compare the response lines to the code snippet lines,

resulting in the identification of correct and incorrect tokens for each line.

4.4 Results

Programmers focused on recalling different token types and positions initially and after the

first attempt. The elements of code snippets that programmers recalled first indicate what

they thought was the easiest to remember and what they deemed most important, likely

based on their schema. The elements programmers filled in later indicate what they thought

was secondarily important and/or harder to recall. This section reports: A) the overall

differences in recall, difficulty, and mental effort, B) participants’ recall in the first attempt,

and C) participants’ recall after the first attempt.

73

4.4.1 Overall

As expected, everyday programmers recalled larger overall percentages of the code snippets

and found the tasks easier. Everyday programmers recalled higher percentages of overall

tokens than occasional and non-programmers, and occasional programmers also recalled

more tokens than non-programmers (see Table 4.3). Participants recalled the majority of

these tokens in the first attempt. We report the percent of token types added by everyday

programmers in the second and third attempts alone, as well as in the end, in Table 4.3, to

provide a flavor for the second and third attempts.

Everyday programmers found the tasks significantly less difficult (p < .05) and everyday

programmers required less effort than programmers with less experience (p < .05). Occasional

programmers also found the tasks significantly less difficult than non-programmers (p < .05),

but they did not need significantly less mental effort than non-programmers. Occasional

programmers may have also slightly improved over the four tasks, as their recall percentages

had a marginally significant correlation with the task number (r = 0.21, p = 0.06).

4.4.2 Which elements do programmers initially recall?

Programming experience aided in early recall of: 1) tokens that make up the structure, and

2) tokens that fill in the meaning. All programmers initially recalled: 3) natural language

tokens and 4) tokens near the beginning of the code snippet.

Structural tokens

Everyday and occasional programmers primarily focused on core structural tokens in the

first recall attempt (see Table 4.3-Structural). These tokens set up the overarching control

74

flow, objects, and the actions objects complete, but do not include the specifics of the control

flow or actions. Core structural tokens include: construct tokens (e.g., for each in), related

keywords (e.g., collection), separators (e.g., {, }, ;), objects (e.g., this.bluechicken)

and actions (e.g., turn). For the most part, both everyday and occasional programmers

recalled the highest percentages of core tokens. Occasional programmers also recalled higher

percentages of them than non-programmers. This suggests that that both everyday and

occasional programmers likely use schema to chunk critical structural components, but that

occasional programmers do so somewhat less successfully. Specifically, occasional programmers

may need more assistance with separator tokens. Non-programmers do not have knowledge

to support recall of structural tokens and fall furthest behind in recalling construct tokens.

Occasional programmers differed from everyday programmers in correctly recalling separator

tokens more than any other core structural token. Occasional programmers had almost twice

as many separator errors as everyday and non-programmers (Table 4.5). The large number of

errors resulted from issues such as recalling extra separators for block snippets and swapping

separators such as { and (. Having fewer separators may help less experienced programmers

remember them. Both occasional and non-programmers recalled higher percentages of correct

separator tokens for block snippets than text snippets (see Table 4.4). Separators can be

critical for indicating structure and scope, so it may be especially important to consider the

role of separators in code snippets.

Occasional programmers recalled only 5% fewer construct tokens, such as for and while,

than everyday programmers, while non-programmers recalled 34% fewer construct tokens

than everyday programmers (Table 4.3). Occasional programmers were often familiar with

these tokens, reporting prior familiarity with the constructs in 56% of tasks. Knowledge of

constructs likely helped the most when the construct names aligned with familiar languages,

such as the text versions: for(int i=0...). Both everyday and occasional programmers

75

Table 4.4: Comparing blocks and text

Token Everyday Occasional Non
Text Blocks Text Blocks Text Blocks

Separators ns ns 42% 63% 35% 52%
Construct 93% 82% 85% 67% ns ns
Conditional ns ns 30% 53%, p = .1 17% 54%
† Unit tokens were only present in block snippets
† All other tokens were non-significant p > .1

recalled more correct construct tokens for text than block code (see Table 4.4). For block

code, some constructs have been modified to clarify meaning, such as repeat 3 times. Non-

programmers seemed to find constructs especially difficult to focus on or recall for both types

of code snippets. While many informal occasional programmers likely have some exposure to

constructs, non-programmers who do not know how the constructs work will not realize their

importance to the code snippets.

Meaning detail tokens

Everyday programmers recalled many of the specific details that completed the construct

and action statements in their first recall attempt. However, occasional programmers often

recalled similar percentages as non-programmers (see Table 4.3-Meaning). The variables, oper-

ators, and conditionals specify details, such as the iteration in a loop like Integer index = 0;

index<3; index++ or the condition for a while loop ! this.woodenBoat.isCollidingWith(

this.iceberg). The enums, numbers, and units specify the details of actions, such as

in move(FORWARD, 5.0 meters), in which FORWARD is the enum. These tokens require a

deeper understanding of the code snippet functionality in order to be memorable. Many of

these tokens are similar, making them somewhat difficult to recall correctly through direct

memorization. Everyday programmers can likely recall these more easily using schema,

76

enabling them to reconstruct the snippet based on the meaning, rather than recall the tokens

individually.

Errors and syntax provide more information about occasional and non-programmer recall

patterns for these tokens. Occasional and non-programmers had high error rates on token

types in this group, such as operators and units (Table 4.5). They often recalled meaning

tokens in the wrong line or order, likely caused by memorization of specific tokens rather than

understanding of the overall animation. Non-programmers also recalled more conditional

tokens for block snippets than for text, possibly due to the natural language conditionals in

block snippets. For example, text snippets use isCollidingWith, while the block snippet

uses is near. This aligns with the recall rates for string tokens, as discussed next.

Table 4.5: % of errors for each token and total errors and attempts made by each programmer
group

% Erroneous attempts, Total attempts
Group Token Everyday Occasional Non

String 4%, 354 5%, 359 4 %, 273

St
ru

ct
ur

al

Keyword 4%, 130 7%, 134 3 %, 110
Construct 6%, 365 5%, 391 10 %, 249
Scope 2%, 1383 1%, 1352 0 %, 1087
Object 14%, 1597 24%, 1687 22 %, 1282
Separators 4%, 5726 7%, 4554 4 %, 3259
Action 9%, 968 16%, 975 18 %, 735

M
ea

ni
ng

Variable 9%, 509 7%, 440 9 %, 327
Operator 15%, 453 23%, 295 13 %, 216
Conditional 6%, 489 7%, 441 9 %, 329
Enum 16%, 544 16%, 516 12 %, 402
Number 7%, 1155 7%, 805 7 %, 631
Unit 31%, 180 26%, 160 50 %, 114

A
P

I Accessor 20%, 327 16%, 343 15 %, 270
Function 40%, 110 55%, 77 59 %, 46

77

Natural language tokens

All of the programmer groups recalled surprisingly high percentages of string tokens. In

this context, string tokens are the natural language arguments for say and think actions,

like a penguin that says ``uh oh'' before crashing. We might expect occasional and

non-programmers to recall these with ease, due to their simplicity, natural language, and

uniqueness amongst the other code tokens. However, we did not expect everyday programmers

to focus on string tokens, as strings are often even less critical to the overall animation

than meaning details like FORWARD 5.0 meters. Due to the storytelling nature of these

code snippets, string tokens provide contextual information related to the overall animation,

possibly making them easier to recall for everyday programmers as well. The position of

string tokens may have also been a factor.

Beginning of the code snippet

In the first attempt, participants recalled tokens closer to the beginning of the code snippet

more than lines further down, with a few exceptions. All participants had significant negative

correlations between the line number and the percentage of token types recalled (see 1st

attempt columns in Table 4.6). This indicates a relationship between the line number and

recall. Everyday programmers often had weak correlations (< .3), while occasional and

non-programmers had more moderate correlations (.3 < r < .5). Thus, occasional and

non-programmers had stronger relationships between the position of tokens and recall.

Some token types had no correlations, either due to occurring only at the beginning, like

keywords, or low recall rates. Only occasional programmers had more numbers and accessors,

such as getRightHip, in the first attempt. This may indicate that occasional programmers

focused on less important tokens in the first attempt due to their location.

78

4.4.3 What did programmers fill in after the first attempt?

Programmers filled in two main token groups after the first recall attempt: 1) obscure API

methods, and 2) objects, and 3) did so in a variety of positions.

Obscure API methods

Everyday programmers recalled 42% of accessors, such as getRightHip and 40% of functions,

such as getDistanceTo after the first attempt. Everyday programmers recalled more function

tokens than occasional and non-programmers in the second and third attempts. By the end

of the third attempt, everyday programmers recalled more accessors and functions than other

groups (see Table 4.3-API). This is an increase from the first attempt, in which everyday

programmers only recalled 24% of accessors and 13% of functions. Everyday programmers

Table 4.6: Correlation between token types and line number for first, second and third, and
total. * p < .05, *** p < .001

Everyday Occasional Non-programmer
Token 1st 2+3 End 1st 2+3 End 1st 2+3 End
All − .26*** .12* ns − .37*** ns − .20*** − .37*** − .11 − .32***
Strings − .55*** .41*** − .25* − .67*** ns − .55* − .57*** ns − .61***
Constants − .19* ns ns − .42*** ns − .32*** − .32 ns − .26***
Separators − .25*** .15*** ns − .33*** ns − .19*** − .32*** − .10* − .30***
Actions − .21*** .21*** ns − .28*** ns − .23*** − .32*** ns − .27***
Scope − .25*** .18*** ns − .27* .09* − .19*** − .29*** ns − .29***
Subjects − .24*** .14* − .11* − .25*** .09*** − .17*** − .25*** ns − .23***
Variables − .32*** .21* ns − .42*** ns − .25*** − .30*** − .19* − .38***
Operators − .26* .19* ns − .33*** ns − .30*** − .29*** ns − .32***
Condition-
als

− .37* ns ns − .48* − .51*** − .68*** − .44* − .36* − .57***

Numbers ns ns ns − .13 .10* ns ns ns ns
Unit − .23* ns − .32*** ns − .18* − .26* ns − .31*** − .30***
Accessors ns ns ns − .19* ns ns ns ns ns

†Keywords,Enum, and Function had no significant correlations.

79

likely left functions and accessors for the later attempts because these tokens often contribute

less to the core structure and meaning of the code than other tokens. Based on high error

rates, these token types may have been especially challenging to remember (see Table 4.5-API).

Everyday programmers likely have schema for how these tokens work, but without API

familiarity, trying to recall API methods with at least three words was likely difficult.

Object tokens

Occasional programmers particularly focused on object tokens, such as bluechicken, at-

tempting to recall nearly 100 more object tokens than everyday programmers, as shown in

Table 4.5. Occasional programmers also had positive correlations between recall and line

number for scope and object in the second and third attempt (see Table 4.6). This implies

that occasional programmers began to focus on these tokens throughout the example more

after the first attempt. However, occasional programmers also had a high error rate for

subjects, with 24% of attempts incorrect.

Some possible explanations for the attention to objects are: 1) the storytelling nature of the

code snippets, 2) the natural language and concreteness of objects, and 3) the repetition

of object token names on multiple lines. We have anecdotally noticed in studies of novices

coding animations that novices often focus on the objects. This is likely in part due to

the focus in this type of code on the story, which revolves around the objects. The objects

complete the visible actions and are easily associable with the real world. These tokens also

often reoccurred through the code, making their names easier to focus on and remember.

However, without a strong schema for the meaning of the code, easily recalled tokens can

often end up in the wrong location, causing errors.

80

Focus and lack of focus on beginning of snippet

In the second and third attempts, everyday programmers often had positive correlations

between the line number and the percentage of tokens recalled, indicating that they filled in

the end of the snippet. By the end of the third attempt, everyday programmers no longer

had correlations between the line numbers and percents recalled for most tokens. Occasional

and non-programmers often maintained the significant moderate negative correlations, as

shown in Table 4.6.

Occasional, and especially non-programmers, sometimes continued to focus their attention at

the beginning of the snippet even after the first attempt. The lack of difference for keyword

tokens after the third attempt demonstrates this continued focus on the first few lines of code.

Keyword tokens encompass abstract programming terms such as constant, collection, and

final, which we might expect to have similar recall patterns to constructs. However, keyword

tokens were only located in the first few lines of code. Occasional and non-programmers’

focus on the beginning of the snippets enabled them to recall similar percentages of keywords

as everyday programmers. This demonstrates how strong of an impact the position of tokens

can have on less experienced programmers’ focus and recall.

4.4.4 Errors

For all of the rest of the prior results, we focused on only the tokens in participants’ responses

that were exactly correct when compared to the code snippets provided. However, the

frequency, token type, and type of errors can also tell us about the differences in what

programmers are noticing and focusing on in examples. Table 4.5 shows the token types,

the percentage of the total errors that the token types account for, and the percentages of

each token type error that were committed by the different levels of programming experience.

81

For the most part, everyday programmer errors were primarily for argument token types,

but with also some for variables, accessors and scope. However, for the most part, everyday

programmers had errors with the types of tokens they recalled last, like accessors and

functions, as well as other token types that occur at the ends of lines of code and that are

more specific to the animation code snippets in this study. Because everyday programmers

mostly have solid schema for things like order, spacing and separators, their main errors were

in misplacing tokens, having extra tokens and having similar but not quite right tokens, as

shown in Table 4.7.

The places where occasional programmers had the most errors, however, were primarily for

objects and separators, but also had many errors relating to the core structure of the code,

including many control flow token types and actions. Interestingly, if the erroneous objects

were added to the correct numbers of object tokens recalled, occasional programmers actually

attempted to recall more operator tokens than everyday or non-programmers. This is the

only token type where occasional programmers at least attempted to recall more tokens

than everyday programmers. In terms of their error types, they had high rates of extra and

missing separators, which is likely connected to the combination of blocks and text code

snippets that had differing types of separators. They also likely have only weak schema for

these, so they make assumptions about what they should be, but don’t know it as well as

everyday programmers. Occasional programmers as had many similar/partial tokens, extra,

and misplaced.

Interestingly, the only token type where non-programmers had the highest percentage of

tokens was for construct control flow tokens, like ‘repeat’ and ‘while’. In terms of error type,

non-programmers had high percentages of extra and missing spaces, as well as spelling errors.

The extra and missing space issues may be related to the mix of block and text programming

82

Table 4.7: Error Type

Group Type Everyday Occasional Non

Semantic:
misplaced 32% 19.9% 21.1%
order 4.9% 5.4% 4.6%
wrong 6.0% 7.7% 6.4%
extra 17% 16.1% 9.3%

Syntactic:

extra/missing space 5% 6.2% 16.6%
extra/missing separa-
tors

2.2% 11.1% 6.6%

spelling 12.5% 10.9% 22.7%
similar & partial 18.4% 20% 9.3%
placeholder .6% 1.5% 0%

languages and their different spacing, while the high rate of misspelling may be because

non-programmers do not realize how critical spelling is in codding.

4.5 Threats to validity

Since we wanted to derive possible directions for further exploration and design, we chose

to risk a possible higher false positive rate, rather than a higher false negative rate in our

statistical analysis. While we did not correct for multiple comparisons, the small number of

comparisons and the fact that we chose the comparisons in advance does reduce our risk of a

high false positive rate.

4.6 Lessons learned: recommendations for improving

code examples

This study explored how different experience levels affected how programmers studied and

recalled code. Based on the results, presentation of snippets should consider three aspects:

83

1) the code in the example itself, 2) general features to emphasize and deemphasize, and 3)

specific features of the example to emphasize or deemphasize.

4.6.1 Selecting or creating effective code for examples

When creating or selecting example code, our results suggest that three strategies might help

programmers to focus on important elements: 1) Purposely position elements within the

example, 2) minimize similar identifier names, and 3) use natural language appropriately.

4.6.2 Purposely position elements within example

All levels of programmers often focused, at least to some extent, on the beginning of the

example more than the rest. There were often significant negative correlations between the

percent of tokens recalled for a line and the line number. While many of the correlations

disappeared for everyday programmers by the end of the third attempt, this still seems to

indicate that regardless of programming experience, having critical elements of code snippets

at the beginning is important. This will likely have an even bigger effect on occasional

and non-programmers, who maintain moderate correlations throughout. There are a few

possible ways to possibly address this: 1) place critical elements of code near the beginning

of the example or emphasize them if they are elsewhere, 2) deemphasize less important, but

necessary lines of code near the beginning of the example to focus the programmer’s attention

at the critical element, and 3) keep code example snippets short.

Minimize similar identifier names

For the token types that had repeated identifiers and similar identifiers (objects and actions),

such as bluechicken and greenchicken, participants often recalled them in the wrong

84

locations. While these errors likely indicate that the programmers do not fully understand

the code, similar identifier names add extra difficulty. When specifically designing code

examples in educational resources or documentation, reducing similarities between identifiers

will likely make the snippet easier to parse. For code snippets in the wild, systems can likely

automatically rename tokens more uniquely. For example, if two identifiers contain common

substrings, they could be renamed to reduce overlap.

Use natural language appropriately

Novices recalled natural language tokens similarly to more experienced programmers. Natural

language within code snippets can be very powerful, as novices will be able to use it most

effectively for understanding. However, the attention natural language draws can also be

detrimental, causing programmers to focus on unimportant elements.

4.6.3 General emphasis and deemphasis

The results indicate that we may be able to apply some emphasis and deemphasis strategies

generally to help programmers focus their attention: emphasizing structure and meaning,

and deemphasizing non-critical syntax.

Emphasize structure and meaning

While everyday and occasional programmers recalled more structural tokens than non-

programmers, non-programmers recalled especially low percentages of construct tokens, which

are especially critical to the structure. Occasional programmers had similar difficulty to

non-programmers recalling tokens that fill in the meaning of the snippet, likely due to lack

of schema. Helping less experienced programmers discover, focus on, and understand these

85

critical elements of code snippets will be essential in enabling non-experts to effectively use

example code.

Deemphasize non-critical syntax

Separators were a problematic token, especially for less experienced programmers. Program-

mers often had trouble remembering the correct separators or their correct location. However,

occasional and non-programmers recalled higher percentages of separators for block snippets.

Reducing the focus on separators unrelated to the critical elements of the example might

help everyday and non-programmers notice and remember the important separators.

4.6.4 Example-specific emphasis and deemphasis

Depending on the specific example, example code may benefit from specific decisions to

emphasize certain important elements or tokens that stray from the norm, and deemphasize

unimportant early elements that may be distracting.

4.6.5 Emphasize important arguments

Everyday programmers generally paid less attention to tokens like argument values and

accessors in the first recall attempt, as these were not part of the core structure. The control

flow structure is typically critical in code snippets, but cases will exist where the code snippet

actually aims to highlight one of these token types that does not fit into a typical schema. In

these cases, everyday programmers will likely pay less attention to those components, so the

code snippet would need to draw extra attention to them.

86

4.6.6 Emphasize tokens that stray from the norm

Programmers with experience had more difficulty recalling block construct tokens, like repeat

3 times that replace typical loop syntax. The programmers likely still understood the mean-

ing of those tokens due to their schema. Yet, the slight difference from familiar programming

languages made the exact syntax challenging. In code snippets where the programming

language or API differs from typical practices, snippets should help the programmer to notice

and remember the difference.

4.6.7 Deemphasize unimportant early code elements

Occasional and non-programmers often recalled unimportant argument values in the first few

lines of code, rather than paying attention to structural elements of the rest of the example.

Some critical elements of code will have a long list of arguments or tokens that are not all

as important as the method name or construct name. Clearly showing which elements of

the first few lines of code are important and not important will likely reduce the amount of

information novice programmers need to try to comprehend at first glance.

4.7 Implications for the Design of the Example Guru

The lessons learned make generalized recommendations for systems using examples. As an

example of how to apply these, we used these recommendations to inform the design of

the final version of the Example Guru in two main ways: 1) defining the example selection

process, 2) emphasizing code with multiple examples and 3D shadows.

87

4.7.1 Selecting effective examples

The results of this study suggest heuristics for selecting examples, either by hand or auto-

matically. Our heuristics for the Example Guru, based on this study, include optimizing the:

position of the important element, size of the example, number of unimportant elements,

and names of objects. In the Example Guru, we only selected code examples where the

critical code element was the first code block and the only abstract concept. This makes

the important part of the example first, which was one of the most important predictors

of recall in this study. We only included examples with one of these abstract concepts, to

prevent examples from becoming long and overwhelming. We also discouraged selection of

examples that had many unimportant parameters. Early novices often use fewer of these

extra parameters, so having them in the examples often draws attention away from the

critical element. Finally, objects in the examples should be as clearly labeled as possible.

This makes it easier to identify the objects when watching the animation, reducing extra

cognitive load to figure out how the code relates to the animation. These four heuristics

resulted in examples that were, for the most part, simple and clear examples of concepts.

4.7.2 Emphasizing elements

Programmers’ focus on early and unimportant elements indicates the need for more support

to help programmers find the critical element in an example. The Example Guru uses two

methods to emphasize the critical element: showing multiple examples with the same concept

and 3D shadows.

For programming concepts, the Example Guru suggestions each have two examples. Both

of the examples show the programming concept being suggested. We aimed to show two

examples where the code accomplishes similar goals using the suggested programming concept,

88

but in two different contexts. This ideally will help novices to notice the use of the same

programming concept.

The Example Guru also places 3D shadows around the critical code element for multi-block

examples to make it appear closer to the user. Due to the visual nature of Looking Glass

code, emphasizing code blocks by changing the appearance of the code block, like with color,

could confuse novice programmers or users unfamiliar with Looking Glass. The 3D shadow

provides emphasis and prevents the code block from blending in with the background without

changing the appearance of the code block itself.

4.8 Conclusion

This study explored what everyday, occasional, and non-programmers focused on and recalled

for code snippets. Experienced programmers initially focused on structure and meaning,

filling in other details later. Less experienced programmers lacked attention to key structural

components, focused on natural language and object tokens, and skewed their recall toward the

beginning of the example. Programmers ranging from experts to complete novices rely on code

snippets to learn new programming skills and to attempt to accomplish programming tasks

outside of formal education contexts. The findings from this study led to recommendations

for selection and presentation of examples generally as well as specifically for the Example

Guru. The recommendations from this and the previous chapter likely will help to make

examples more effective in a suggestion system like the Example Guru. One question remains

for the design of the Example Guru: what should the suggestions and rules look like?

89

Chapter 5

Exploring Suggestion and Rule Design

through Expert Content Creation

Note: Portions of this chapter were published in Visual Languages and Human-Centric

Computing 2013 [94].

The goal of this chapter was to explore how expert programmers would create suggestions and

rules in order to guide the types of suggestions and rules the Example Guru would include.

Many systems provide feedback to programmers working on specific tasks. We are not aware

of existing systems that suggest new skills during artifact-based programming. In order to

design these types of suggestions and determine when they should be triggered, we wanted to

explore the types of suggestions and rules experts would create.

We had experienced programmers create the suggestions and rules because experienced

programmers commonly provide feedback to programmers. They provide feedback individually

and also create most of the resources available for learning new skills and technologies. In

face-to-face interactions, teachers or mentors can give feedback to novices and experts peer

90

review each others’ code. Experts or professionals also typically hand-author resources online

like documentation and tutorials. Experienced programmers also on occasion formalize when

to make certain types of suggestions to other programmers. For example, opportunities

exist for programmers to author rules in other contexts, such as for style checking [166]. We

believed these experiences would help us to explore the types of suggestions and rules a

system should provide.

We ran an exploratory study of expert suggestion and rule authoring. We asked participants

to suggest an improvement for a novice program and author a rule to identify more general

patterns in code that indicate that their suggestion would be appropriate. This paper

addresses the following questions:

• Do participants make suggestions that have the potential to teach a novice how to

improve their program?

• What types of suggestions do experts make?

• What does the rule pseudocode tell us about ways to author rules?

• How well do rules generalize whether a program should receive the suggestion?

5.1 Methods

We designed a study to explore the suggestions expert programmers would make to novice

programmers, how expert programmers would rule pseudocode, and whether the rules would

find appropriate target programs.

91

5.1.1 Materials

We created example novice programs, pre-made suggestions, skill set diagrams, and the

rule-authoring template used in this study to simulate the experience of an expert in a

crowdsourced suggestion creation system.

Example novice programs

To gather a set of novice programs for experts to work with, we created “example novice

programs.” To make these programs, we recreated Alice programs [3] and Looking Glass

programs from a 2010 study in the current version of Looking Glass. We recreated the

novice programs due to a lack of student programs compatible with the current system. The

example novice programs also remove information that might identify the original authors.

The example programs maintain the same structure and content as student programs, with

changes mainly in the characters and props.

We selected the programs to represent a variety of skill levels and ensured that we could point

to at least one potential suggestion for each program. Alice is a sister project of Looking

Glass that has college-aged users with more advanced skills. In the 2010 Looking Glass study,

participants had never programmed before.

Skill group diagrams

To help participants make skill-appropriate suggestions, we provided them with a skill group

diagram like Figure 5.1. We based our hierarchy on groupings used by the Computer Science

Teachers Association [56]. The diagrams indicated which skills the novice programmer likely

92

Figure 5.1: Skill group diagram

already knows, which might be appropriate to present next, and which might be too advanced.

All of the diagrams are shown in section C.1.

Pre-made suggestions

In order to allow more time for experts to author rules, we created a pre-made suggestion

for each novice program. Suggestions were one of two types: code-based or animation-based.

An example pre-made suggestion for an animation change is “A more complex animation

with body movements was added where Tami previously danced. She now moves her left leg

and arms to be in a dancing position before she turns, instead of just spinning in a standing

pose.” An example pre-made suggestion for a code change is “A list of characters all doing

the same action was replaced with a ForEach loop with the array of characters.” To show a

93

participant a pre-made suggestion, we provided them with a sheet of paper that contained

screenshots of the original program and the pre-made suggestion. The English descriptions

of the suggestions were printed above the screenshots.

Rule-authoring template

We chose to use a Word document for pseudocode rule authoring to minimize the influence

of the IDE on the participants’ coding style choices. The document contained instructions

asking participants to write the rule in a sentence and then in pseudocode (see section C.3).

Each rule needs to return ‘True’ if the rule has found a target program and otherwise returns

‘False.’

5.1.2 Study procedures

The study had three parts: an introduction to Looking Glass, one suggestion creation task,

and four rule authoring tasks.

Looking Glass introduction

To enable participants to make a suggestion by editing a program, we introduced participants

to the components of the Looking Glass IDE. First, we showed and executed a completed

program created by a researcher as an example. We then asked participants to create a

simple program to familiarize themselves with Looking Glass.

Suggestion creation

To investigate the types of suggestions domain experts would make for novice programs,

we asked participants to create a suggestion for a novice program. To help experts make

94

suggestions at an appropriate level, we showed each participant an example program and a

skill group diagram (Figure 5.1).

We then asked participants to make a suggestion by editing the program. We randomly

assigned each participant a novice program to make a suggestion for. We instructed partic-

ipants to edit the program to make an improvement, but left the type of improvement to

their discretion.

We had each participant create only one suggestion due to the time consuming nature of

thinking of and creating a code suggestion. Furthermore, the commonality of peer review

suggests that expert programmers often give feedback, so this study emphasizes exploring

the ability of experts to author rules.

Rule authoring

The rule authoring task explored whether experts could code scripts to check for when a

novice program should generally receive a certain suggestion. We had participants author the

rules in pseudocode to focus on the ideas of the suggestions, rather than the correctness of the

code. We provided participants with a rule-authoring template, which is a Word document

with instructions for the task and space for typing the rule. We asked participants to describe

the rule in English by explaining what pattern of code should trigger the suggestion. We then

asked participants to write the rule as a program in pseudocode that, when run on any novice

program, would determine whether the novice program would benefit from the suggestion

they created. Similar to the natural programming approach [162], we asked participants to

use their own vocabulary. We did not provide any information about terms or structure that

they should use.

95

We asked participants to author four rules: one rule for the suggestion they created and three

rules based on pre-made suggestions designed by the experimenters. For the three pre-made

suggestions, we showed the participant a novice program beside a pre-made suggestion

and asked them to author a rule that finds target programs for the provided suggestion.

Participants received the three rule authoring tasks for pre-made suggestions in a randomized

order. We randomly assigned each participant an example program for each task such that

each participant saw one example program from each of four skill groups in Figure 5.1. Due

to a lack of student programs in the advanced skill group, we did not include advanced

example programs in this study.

5.1.3 Participants

We had 21 participants, five of whom were female, ranging in age from 19 to 68. We

recruited participants through the Academy of Science of St. Louis mailing list. Participants’

programming backgrounds range from being self-taught to having a Ph.D in Computer

Science. Most participants listed their occupation as software developer, software engineer

or programmer. Fifteen participants described themselves as an expert in at least one

programming language and all had experience programming.

5.2 Analysis

We analyzed the suggestions and rules in order to answer three questions: 1) what types

of suggestions do programmers make, 2) what does the pseudocode tell us about designing

support for rule authoring, and 3) what do the target programs tell us about the rules?

96

5.2.1 Suggestions

To explore the types of suggestions participants made, we used a grounded theory approach

[65], which is an iterative process of labeling possibly important features of the data to develop

categories and theories. We labeled suggestions based on the suggestion as a whole. This

process resulted in hierarchies of categories for Suggestion Type and Suggestion Novelty, based

on common labels and relationships between labels. The Suggestion Types group suggestions

by the concept or idea the improvement presents. The Suggestion Novelty categories consider

whether the suggestion utilizes new concepts. For categorization purposes, new concepts are

programming constructs, structures, or methods that the example program does not contain.

This process resulted in hierarchies of categories for suggestion type and novelty, based

on common labels and relationships between labels. After developing the categories using

grounded theory, two researchers then individually selected categories for the 21 suggestions

participants created. The categorization process had inter-rater reliabilities of 95% for

Suggestion Types and 86% for Suggestion Novelty categories.

5.2.2 Rule pseudocode

We analyzed the rule pseudocode to understand whether experts could author rules and what

support might help them to do so. If crowdsourcing is a viable way to produce rules at a

large scale, researchers would likely need to develop support for making the rule-authoring

process easier. The ways that experts author these rules tells us what kinds of support might

help them.

The 21 participants wrote 72 rules, averaging 3.5 of 4 completed tasks, due to time. We

analyzed pseudocode with a similar grounded theory approach as used for the suggestions.

97

For pseudocode, we labeled each line of code and categorized them individually. The rules

contained 287 total lines, not counting lines that were braces or the required return statements.

On average, rules contain four lines of code, with a standard deviation of 1.8. Consistent

with the method for categorizing suggestions, two researchers independently categorized

pseudocode lines, with a 94% inter-rater agreement rate. We will not discuss the 6% of

disputed lines, as they fit into multiple categories or were ambiguous. The remaining 94% of

lines fall into three overarching categories: iteration, comparison, and other.

5.2.3 Rule implementation

To evaluate whether rules are likely to work in practice, we implemented each of the rules

participants authored for their own suggestion. We chose to implement these rules because

they are based on suggestions participants made, rather than pre-made suggestions. Two

pairs had identical implementations, so we tested the remaining 19 rules.

We tested each rule on 165 programs uploaded to the Looking Glass Community and a set of

novice programs. We will refer to the Looking Glass Community programs as the ‘mixed

group,’ since Looking Glass Lab members, ranging from college sophomores to a professor,

contributed 92 of these programs. We also tested the rules on 55 programs created by middle

school children, the ‘novice group,’ in an unrelated 2013 study. The novice group did not

receive instruction on how to program.

5.3 Results

Our results answer our three questions: 1) what types of suggestions do programmers make,

2) what does the pseudocode tell us about designing support for rule authoring, and 3) what

do the target programs tell us about the rules?

98

5.3.1 Suggestions

Our analysis of suggestions led to two high-level results about the types and novelty of

expert-made suggestions.

Suggestion type

The data labeling and categorization process resulted in two major types of suggestions: code

changes and animation changes, as shown in Figure 5.2. In a code change, the participant

modified the style of the program’s code, like adding a variable when a value is used multiple

times for the same purpose. In animation changes, participants modified the animation

output of the program, like creating a new method fallDown where the character flails and

falls realistically to replace a method that makes a character turn backward without bending

any joints. Of 21 participants, 16 improved the code, 4 modified the animation, and 1 changed

both the code and the animation. At the most detailed level, our analysis resulted in eight

suggestion types with no more than 20% of suggestions in any one category.

Two common code change types are creating a new method and restructuring repeated code,

as shown in Figure 5.2. One new method suggestion was for a program where a man pushes

another man into the ocean. The suggestion extracted the animation to a custom method,

which made the action more easily reusable. In another example program, a set of kids each

turned to face the camera sequentially. The suggestion, which restructured repeated code,

replaced the list of repeated statements with a ForEach loop, improving the code style and

introducing or reinforcing ForEach loops. These suggestions are likely similar to ones experts

would make in code review, as they make code more maintainable and easier to understand.

However, in the context of children learning to program through animations, these suggestion

seem unlikely to motivate novices.

99

Figure 5.2: Suggestion type category hierarchy.

Six participants improved the usability of code by generalizing a method or returning the

animation to a default state. Participants generalized a method by adding parameters or

making a method accessible to a class of objects, rather than a single character. Returning

code to a default state involved bringing a character to a position where the animation could

continue or was more easily reusable. For instance, one example program had a dancer jump

into the air and the suggestion returned the dancer to the ground.

Although we encouraged both code and animation changes, most participants made code

changes likely for several reasons: lack of familiarity with Looking Glass, fear of changing a

child’s creation, and difficulty generalizing animation changes. Since participants only had a

short introduction to Looking Glass, changing programming constructs or restructuring code

was easier than creating more complex animations. Several participants commented that they

did not want to change the animation because they were unsure of the original intentions.

100

Figure 5.3: Suggestion novelty category hierarchy.

Other participants considered changing the animations in a program, but stated that they

did not believe it would apply to other programs. These results suggest that experts will be

more likely to improve novice code than animations.

Suggestion novelty

Thirteen of the 21 suggestions utilized explicitly new concepts or constructs, while 10 reinforced

constructs or concepts already present in the example program. The majority of suggestions

are either: “Method creation or abstraction” or “Added method calls”. In the suggestion

novelty classification in Figure 5.3, a method call refers to a provided method, like walk or

move. Programming constructs refer to loops and conditional logic. Method creation involves

restructuring a sequence of methods into a custom method. Data storage refers to variables

and parameters.

Both new concepts and reinforcement can be valuable feedback for novice programmers, as

using a concept once does not imply mastery. However, the intended use of the Example

101

Guru is to suggest previously unused concepts. A crowdsourced system would thus need

to instruct and remind the expert to make suggestions that introduce new skills or API

methods. Especially for the API methods, this would likely be challenging because most

expert programmers will not have expertise in novice systems or many full APIs.

5.3.2 Rule pseudocode

Seventy percent of pseudocode lines were labeled as either iteration or comparison. Figure 5.4

shows an example of a rule that has the typical pseudocode structure: line 1 iterates through

each of the methods and line 2 compares the name of the current method call to the name of

the next method called.

Most of the 24% of pseudocode lines identified as neither iteration nor comparison were

either matching functions, attempts to access dynamic information, or count functions. A few

participants created template matching functions that defined a set of constraints and then

checked whether any lines met those constraints. Other participants checked information

only available at runtime, such as the location of characters. However, rules with access only

to the static code cannot check runtime information. Several participants used functions

to count the number of times a line occurs. Because participants rarely used these types of

functions, we focus on iteration and comparison.

Figure 5.4: Example of a rule

102

Figure 5.5: Iteration style category hierarchy.

Iteration

The iteration pseudocode lines fall into six categories: three ways of iterating through lines

of code, and iterating through parameters, sets of objects, and programming constructs. The

number of pseudocode lines for each of the categories is shown in Figure 5.5. When iterating

through lines of code, some participants assumed access to a set of lines, in a ForEach(line)

style, for the whole program or within a certain scope. Surprisingly, a number of participants

parsed the program as strings in a While!(EndofDocument) style. By far, the most used

iteration style was through each line in the program, but providing support for checking

conditions in a certain construct or in a custom method is also likely to be useful to experts

authoring rules.

Comparison

Participants often used comparison to determine whether a line or group of lines contain a

certain issue. Comparisons fell into three high-level groups: comparison of multiple lines of

code, whole lines or methods, and part of a line or method, as shown in Figure 5.6. The

103

Figure 5.6: Comparison style category hierarchy.

differences result from participants either envisioning the code as a string or as a structure.

Eight participants treated programs as strings, parsing and pattern matching with functions

like line.contains(“methodName”). The other 13 participants assumed that programs have a

structure that they could query for information, such as accessing the method name with a

function like line.getName().

5.3.3 Rule implementation

We ran each rule to determine whether it would find programs that could benefit from the

associated suggestion. Table 6.2 summarizes the rules, grouped by quality, and reports the

percentages of programs in the mixed and novice groups that fit the rules. We initially

hypothesized that these percentages might indicate whether a rule is too general or too

specific. In practice, other, unrelated factors such as skill level of the user affect the percentage,

making percentage only a weak indicator of rule quality. Our analysis suggests that rules

range in quality from unfixable to immediately applicable. Our quality labeling resulted in

four groups of rules: Good Code(GC), Fixable Code (FC), Bad Code (BC), and Unfixable

(UF).

104

Good code (8 rules)

Eight of the rules found appropriate sets of programs for their associated suggestions with no

improvement necessary. Some of the rules with good code are straightforward programming

concepts. For example, GC2 looks for unnecessary DoTogether code blocks that contain fewer

than two statements. GC3 replaces repeated actions by a set of characters with a ForEach

loop.

Other rules in this category were less straightforward. GC1 looks for a sequence of color

changes. Initially, we were skeptical that this would be generally useful. However, programs

that repeatedly change colors are often implementing a flash behavior. While this suggestion

may not be offered with great frequency (only 2% of programs matched), it is likely to be a

valuable and relevant suggestion when it is offered. This is the type of suggestion that we

predict to be the most motivating, as it helps the novice to learn something new while also

improving the output of their program.

Fixable code (6 rules)

Fixable code rules are very close to finding appropriate programs for their suggestions, but

the code neglects to check one or more conditions that could improve their results. To get a

sense for how these rules might perform if corrected, we also created fixed versions of them.

For example, FC1 suggested creating a new method if a character performs three actions in

a row. A sequence of actions by the same character is often a reasonable place to suggest

creating a new method. We modified this rule to check for at least six actions instead of

three and to ensure that those actions are not already in a custom method. This dramatically

reduced the number of programs matching the rule, reducing the amount of potential false

105

positives. Table 6.2 reports the original matching percentage followed by the fixed matching

percentage for the mixed and novice groups.

Bad code (2 rules)

Based on their English descriptions, the two rules in this category are inspired by valid

observations. However, the pseudocode rules do not match these descriptions. BC1 intended

to look for programs in which a character performed two actions that can be condensed into

a single action. For example, a new user might not realize that parameter values can be

modified and use a string of move statements to position a character, rather than changing

the distance moved. In practice, the rule searches for a sequence of two identical lines. While

two move forward statements can be easily combined, not all actions have that characteristic.

Unfixable code (3 rules)

Unfixable rules have major issues such as presenting suggestions that are a poor example or

irrelevant to the user’s program. For example, UF2 looks for sequences of say statements and

creates a new method. It then passes the text strings in as parameters. In an object-based

context, this is an unrepresentative example of using a new method. In most cases, Looking

Glass programmers use new methods to create and name a cohesive set of actions for a

character.

106

Rule
Qual-
ity

Short Description of Rule Intent Fig.2 Category Rule Qual-
ity Issue

Mixed
%

Novice
%

Good
Code

GC1. Sequence of color changes New Method N/A 2 2
GC2. DoTogether with < 2 state-
ments

Remove Unneces-
sary N/A 7 4

GC3. Characters perform same state-
ment in a row Remove Rep. N/A 16 15

GC4. Custom method called more
than once contains move Default Position N/A 14 0

GC5. A character turns backward
1/4 Improve Action N/A 0 0

GC6. Program contains moveTo Improve Action N/A 21 40
GC7. Something moves up, never
moves down Default Position N/A 26 6

GC8. Repeated use of a value Generalize N/A 41 0

Fix-
able
Code

FC1 Character performs 3 actions
in a row New Method

Too Aggres-
sive/ Incom-
plete

68→8 70→0

FC2. My First Method has
DoInOrder child

Remove Unneces-
sary Incomplete 8→13 0→0

FC3. Object moves more than once
in a row Remove Rep Incomplete 27→2 7→2

FC4. Say statement contains > 8
words Dialog Incomplete 46→39 56→9

FC5. Custom method for a specific
character Generalize Incomplete 36→33 5 →7

FC6. Repeated use of same duration
value in a method Local Variable Incomplete 64→64 18→15

Bad
Code

BC1. 2 consecutive identical lines Remove Rep. Idea-Code
Mismatch 11 0

BC1. Single character performs ac-
tion multiple times Improve Action Idea-Code

Mismatch 82 95

Un-
fixable
Code

UF1. Reversible action Default Pos. Too Aggres-
sive 83 71

UF2. Sequence of single character
say statements New Method Poor Exam-

ple 26 36

UF3. DoTogether contains several
items New Method Poor Exam-

ple 63 9

Table 5.1: Rules, rule issues, and percentages of programs receiving suggestions for participant
rules

107

5.4 Threats to validity

We had a relatively small sample size of 21 participants with highly varying programming

experience, all of whom had signed up for a science-focused mailing list. This likely biased

our results in several ways: 1) their skills may not be representative of the typical experienced

programmer population, and 2) their motivation to participate may be stronger than the

typical programmer population.

5.5 Discussion

We discuss the quality of the content participants created and whether the content participants

created is likely to be relevant to novice programmers.

5.5.1 Quality in expert created content

Nearly three quarters of the rules experts wrote were either strong or readily fixable, which

provides some support for the approach of crowdsourcing suggestion-based help for novice

programmers. In fact, our study may underestimate the percentage of good and readily

fixable rules. Issues in quality likely arose from two factors: coding rules in a word document,

and variance in experience.

Participants wrote rules in a Word document to prevent any influence of the IDE on their

pseudocode. However, this also prevented participants from receiving the feedback they

normally would receive when programming. The ability to test rules prior to submission

would likely substantially improve their quality.

108

A large variance in programming experience could also explain some of the variety in rule

quality. Our study attracted an enthusiastic pool of participants from people who self-

identify as programmers. Participants included software engineers with decades of experience,

students, self-taught web developers, and people who programmed on a regular basis decades

ago. However, there appeared to be little relationship between rule quality and participant

programming experience. This suggests that there will always be variance in rule quality.

We will need to design crowdsourcing approaches with the high quality variance in mind. For

example, to reduce the number of poor quality rules, a system could require vetting before

use in a live system. The system would not recommend suggestions to novices until at least

two other experts verify its quality. Experts could either edit inappropriate rules or vote

them Unfixable, in which case they would eventually disappear from the system. This is

likely necessary regardless in systems designed for children, where a crowdsourced technique

without vetting could risk providing inappropriate content to children.

5.5.2 Relevance of content for novices

There are two potential issues with the types of suggestions experts made to novice programs:

1) whether the suggestions will always be relevant to novices, and 2) whether the suggestions

will be motivating.

The nature of the rules participants created indicates that a system would need to use care

when offering suggestions to novice programmers. While some rules identify matches with

100% certainty, others do not. DoTogethers with fewer than two statements (i.e. GC2) can

always be simplified. In contrast, GC4 is inspired by the observation that methods called

repeatedly should be free of side effects, such as ending in a location different from the

start position. This rule finds methods called multiple times that contain move animations.

While this may be appropriate for certain programs, some methods appropriately need the

109

ending position to differ from the starting position. Additionally, this rule looks only for a

move method, which is not a perfect signal that a method has side effects. Consequently,

systems that offer crowd-sourced suggestions will need to be designed such that suggestions

are unobtrusive and are not offered endlessly. The development of this suggestion system will

also enable evaluation of whether rules and suggestions actually teach novice programmers

new programming concepts.

While we found that experts can find and make beneficial changes to programmers’ code,

they often focus on improving the style of the code, rather than the output of the code.

Suggestions that fix the style of code may be motivating in a task with a specific solution,

where improving the style might be important in order for the task to be marked as correct.

However, the code quality suggestions often do not change the output of the code. This

means that if they receive a code quality suggestion and modify their code to match, the

output animation will remain unchanged. For participants in artifact-based contexts, this

type of suggestion will likely be less exciting to a novice programmer than one that also

improves their animation. For example, improving a novices’ fall down animation while

also introducing a new skill through the example would likely be more motivating than a

suggestion that only makes their code cleaner or more maintainable.

5.6 Implications for the design of the Example Guru

The results of this study provide insight into the types of suggestions and rules a system can

and should provide to novice programmers working in an artifact-based context.

110

5.6.1 Suggestions

Because the the Example Guru aims to encourage novice programmers to explore new code

and skills, we based the Example Guru suggestions off of the animation suggestions in this

study. The animation suggestions make novices’ animations better and can also be suggested

specifically when a programmer has not yet used a certain skill. We hypothesize that this

type of suggestion will encourage novices to explore new code.

5.6.2 Rules

Based on this study, it seems like the rules in artifact-based contexts may not apply to novice

programs 100% of the time. In contexts where learners are working toward a specific goal or

programmers need to fix a specific error, hints provided by the system likely need to correctly

lead the programmer toward the solution. When a system suggests an idea to a programmer

whose task has a vague goal and no specific solution, the hint may not always need to apply

to exactly what the programmer is working on. Instead, a hint may give the programmer a

better idea to improve their program, or provide tangential information that could be useful

at a later time. Thus, the rules in the Example Guru follow a similar pattern to many of

the rules in this study, using heuristics to determine when to trigger suggestions. Further

evaluation is needed to determine whether irrelevant suggestions annoy novices or discourage

them from exploring further suggestions.

5.7 Conclusion

This chapter describes a study exploring experienced programmers’ ideas for suggestions

and rules. Experienced programmers often made suggestions that improved novices’ code

111

quality, but on occasion made suggestions that improved the animation. Participants also

wrote pseudocode scripts that would often find valuable opportunities to provide suggestions,

but may not trigger suggestions perfectly. Since experienced programmers often provide

feedback to peers and less experienced programmers, their suggestions and rules provide

intuition about the kinds of feedback a suggestion system can provide. The Example Guru

will initially provide animation-type suggestions, but including code-based suggestions as

programmers become more experienced would likely be valuable.

112

Chapter 6

Designing and Evaluating the

Example Guru for Suggesting API

Methods

Note: Portions of this chapter were published in the Proceedings of the 2017 CHI Conference

on Human Factors in Computing Systems [90].

6.1 Introduction

This thesis hypothesizes that novice programmers would benefit from suggested examples

because they do not know which skills they lack. This chapter describes the design of the

Example Guru suggestion tool and an implementation of the suggestions for API methods. It

then evaluates whether young novice programmers in artifact-based contexts choose to access

Example Guru suggestions more than static documentation when programming on their own.

This chapter addresses hypothesis 2: that suggesting example code to novice programmers in

113

artifact-based contexts will increase the number of new API methods novice programmers

explore and use in their programs more than traditional forms of support.

I chose to evaluate Example Guru suggestions initially for API methods in order to focus

the evaluation on whether suggestions can be beneficial. The example code required for API

methods is often one code block and is concrete, which minimizes potential problems novices

could have using abstract examples. API methods have concrete, visible effects in the output

animations, like making an object move, change size, or change color. This reduces any

possible confusion that could result from the examples, enabling us to evaluate the efficacy of

suggestions.

In addition to reducing the complexity of presented examples, learning APIs is a common

challenge for all levels of programmers. Research has shown that programmers often struggle

to learn and use Application Programming Interfaces (APIs) [181]. These issues learning

APIs stem from a variety of causes, including insufficient resources, confusing API structure,

lack of programming experience, and unawareness of API methods [180]. The Example Guru

aims to reduce API method unawareness. While unawareness of API methods affects all

programmers, those with less programming experience, such as children learning programming

or end-user programmers, often find barriers to learning APIs insurmountable [112].

To illustrate why using a large and unfamiliar API can be especially challenging for non-expert

programmers, imagine an end-user programmer, Julie, who needs to analyze data from a

biology study quickly. She decides to use Ruby to write a CSV file of results, but does not

realize that an API method exists to automatically format an array correctly with commas.

Instead, she loops through her data, adding commas where they seem appropriate. Existing

commas within her data make this task even more complex. Imagine instead that while Julie

114

writes her array output code, her IDE offers a tip that introduces Julie to the method used

for array formatting along with examples that illustrate its use.

We are unaware of existing research in API support or computer science education that has

fully addressed the awareness problem in learning APIs. Instead, researchers have created

systems for helping experienced programmers use APIs that improve: code completion [10],

search [215], and available documentation [206]. These support systems require users to query

a method of interest, so they do not help programmers identify new applicable API methods

or incorrect usages of API methods.

6.2 The Example Guru design

I first designed the Example Guru to suggest API usages to novice programmers based on

their code in Looking Glass [121]. This chapter describes the initial design of the Example

Guru for API suggestions, which we modified and improved for code concept suggestions in

the next chapter. As a reminder, the Example Guru has three main features: 1) rules, which

parse code, looking for opportunities to suggest API methods, and 2) suggestions, and 3) the

selected code for the examples. This section describes the rationale for the interface design

and the content for each of these three elements.

6.2.1 System design methods

We used two methods to design the Example Guru: 1) formative studies, and 2) program

analysis. We used an iterative design process in a formative study with 48 participants aged

10-15 for the Example Guru suggestion interface. To design the rules and suggested concepts

and examples, we used two sets of programs not created for this study. One set contained

115

107 programs created by Looking Glass API experts. The second set contained 600 programs

shared to the Looking Glass website by non-experts [121].

Suggestion interface

We will first describe how a user would interact with the suggestion interface, followed by the

rationale for the design. When a user is programming in Looking Glass and executes their

code, the system uses the rules to analyze their code and determine if any suggestions should

trigger. Only one suggestion triggers at a time and appears in two locations: as an annotation

on the code and in a list near the code block menu. If they want to know more about the

suggestion without opening it, they can hover over the suggestion to read a description or

watch a video of the example code animation. When a user chooses to access a suggestion,

they click on it, which opens a window showing the example code. The suggestions do not

require that a user accesses them and enable the user to reference them at a later time.

We designed the suggestions through an iterative process with one-on-one study sessions

with the following goals: 1) to not interrupt or overwhelm the user, 2) to be easily accessible,

and 3) to demonstrate the relevance of the suggestion to the code. Formative user testing

indicated that programmers were most open to new ideas and improvements around the

time they decide to test their code, so the Example Guru presents new suggestions after

code execution. A list of suggestions allows the user to return to a suggestion at any point

(see Figure 6.1-A). Code annotations connect suggestions to the relevant code (see Figure

6.1-B). Hovering over a suggestion in the suggestion list provides a preview of the example

and hovering over an annotation in the code shows a text description of the suggestion. These

previews provide a hint of what the suggestion would show if opened, similar to surprise,

explain, reward [231].

116

Figure 6.1: The Example Guru implemented within Looking Glass. (A) List of all suggestions.
(B) Code annotation button to open the most recently added suggestion. (C) Contrasting
examples such as ‘walk fast’ and ‘walk slow’. (D) ‘Show me’ button that users can click to
see the location of the suggested block.

The examples presented within suggestions differ from those in other systems [79, 100, 159]

in two critical ways: 1) they emphasize how the API method works using two contrasting

examples and one-line code examples (see Figure 6.1-C), and 2) they provide support for

finding the relevant code block in the interface (see Figure 6.1-D).

We developed the idea for contrasting examples through formative testing, where participants

often did not know which argument values to use in blocks of code. The two contrasting

examples either show different values or two API methods that work similarly in order to

117

highlight the differences. The goal of the contrasting examples was to encourage novices

to perform self-explanation, which has been shown to be effective for learning [41]. The

single-line code examples also support understanding of the examples not including extraneous

information that could confuse novices. This version of the Example Guru slightly differs

from the final version, in which the two examples always both include the abstract concept.

For concrete API methods where the output is clearly visible, contrasting examples can be

effective. For abstract concepts, contrasting examples are hard to tell apart and confuse

novices.

Within a blocks environment, understanding how a block works does not necessarily mean a

novice can use it. Formative and related work indicated that novices sometimes have trouble

finding a code block from an example [91]. One study [75] found that providing a ‘show

me’ button that, when clicked, highlighted the location of the block in the programming

environment, helped programmers find necessary blocks (see Figure 6.1-D). This is slightly

different from the final version, which includes a tool tip description of where to find code

blocks, rather than a button. We changed this for the final version for two main reasons: 1)

as the examples get larger, saving space in the suggestion window is important, and 2) as the

concepts get more challenging, we wanted novices to have to think about which code block

they needed, rather than having the ‘show me‘ button as a way to cheat.

In the results, we answer whether participants used the features provided in our design. Table

6.1 details designs we tested and found to be ineffective.

Rule, suggestion, and example content design

For API suggestions, we designed and implemented the rules by hand. In Chapter 7, we

address how a system could automate this process. Our manual process had three main steps:

118

Design Issue

Suggestions appeared alongside the execution
view.

Users did not focus on suggestions while ex-
ecuting their code, but instead returned to
the code before considering what to do next.

Suggestions only appeared as buttons next to
the code.

Users did not always want to access sugges-
tions immediately, but displaying many sug-
gestions crowded the editor.

Suggestions only contained one example. Users did not understand the impact of argu-
ment values relative to their code.

Examples had text along with the code to
explain how the example worked.

The text made the example view crowded and
made it hard for users to focus on the critical
elements. Users rarely read the text.

Table 6.1: Unsuccessful design attempts in formative testing

1) compare novice and expert API use to select the API methods to suggest and the priority

order, 2) consider the types of animations experts created with specific API methods and

find simpler or related animations novices make where new API methods could be useful,

and 3) author the rules within the system.

In order to select which API methods to suggest and the priority with which to suggest

them, we compared our sets of novice and expert programs. We wanted to suggest API

methods that novices were likely to be unfamiliar with, but also that they were likely to

find useful. The set of API methods the Example Guru suggests contains API methods that

experts used more often than novices and that experts used more than 5% of the time. These

API methods are likely unfamiliar, but also used frequently enough by experts to be useful.

Selecting the API methods to suggest based on expert usage helps to prevent the suggestions

from over-fitting to the first hour of programming. Since the Example Guru only presents

one suggestion at a time, we designed a priority ordering for selecting one of the triggered

rules to suggest. Rules suggesting ways to correct API usages have the highest priority. The

119

Example Guru then suggests API methods with the largest difference in expert and novice

use and that experts used more often. The lowest priority suggestions are for API methods

that experts and novices used with similar frequencies or that experts rarely used.

The design of rules is similar to code smells [57] and anti-patterns [100], but instead of

focusing on checking for poorly composed code, most of the rules in the Example Guru

look for opportunities to introduce new concepts. Essentially, rules recommend ways to

improve animations through the use of previously unused API methods. Our formative

work showed that it is important for the rules to find opportunities to improve novices’

animations because suggestions that only improved the code quality were less exciting to

novices creating animations. This is because novices in Looking Glass are focusing primarily

on their animations, rather than on trying to learn new programming concepts. In order

to decide when to recommend a particular unused API method, we manually checked how

experts used API methods for complex animations. In many cases, novices create similar,

more basic animations with more commonly used API methods. For instance, one rule checks

programs for characters turning multiple rotations, as the programmer may be attempting to

make characters dance. The rule has a suggestion that demonstrates how to animate joints

to make a more realistic dancing animation. Each rule has an associated suggestion that

introduces the API usage to the programmer.

Finally, we implemented the rules within the Example Guru. Rules contain a specification of

how to parse code for opportunities to improve. Specifications use an internal API designed

to simplify querying the abstract syntax tree.

120

API call Type Rule Checks For
Walk speed New Walking far, no speed
Joint animation New Dancing, no joint animation
Straighten out joints Incorrect Straighten joints method, no

joint movements

Table 6.2: Rules, suggestions and examples

6.3 Evaluation

We ran a study to evaluate the effectiveness of the Example Guru’s suggestions in encouraging

new API method use by comparing them to an in-application documentation control condition.

We will call the two conditions the ‘suggestions’ condition and the ‘documentation’ condition.

In working towards reducing the unawareness problem for novice programmers learning new

APIs, we tested the following two hypotheses:

H1: Novice programmers will access suggestions more frequently than documentation. We

hypothesize that the suggestions will expose novice programmers to API methods that they

likely would not have realized existed.

H2: Novice programmers using suggestions will improve their API usage more as a result

of suggestions than novice programmers will from API documentation. Here, we want to

compare the number and type of API methods participants add to their code after accessing

suggestions or documentation.

6.3.1 Documentation condition

Currently, the best practice for supporting use of unfamiliar API methods is providing

easy-to-access documentation containing example code. A few systems use suggestions within

121

a programming context, but focus on violations of proper programming. Errors provide

natural motivation to use suggestions, but in the case of API use, we cannot assume that

novices will be motivated to apply a nonessential suggestion. We believe comparing to the

best practice, documentation, is an appropriate first step toward evaluating the Example

Guru.

We designed the documentation based on two common forms of API support: online API

documentation and code completion. We wanted the documentation to have full information

like online documentation, while making it easily accessible like code completion. Thus, the

user can access a doc (documentation for a specific API method) by clicking a ‘?’ button

beside the code block the user is interested in (see Figure 6.2-A). Having the documentation

available in the palette with the code blocks and in the parameter menu on code blocks aims

to mimic the availability of information through code completion. Upon opening a doc, the

user can view descriptions and examples of how the API method works, along with all of the

available parameters for that API method (see Figure 6.2). Docs first show only examples of

the API method and an option to show more information to view the parameters (see Figure

6.2-D).

6.3.2 Participants

We recruited participants who had never used Looking Glass because this study investigates

novice programmers exploration and use of the Looking Glass API. We recruited 81 partic-

ipants aged 10 to 15 from a local STEM mailing list. Two participants had used Looking

Glass in the past and a third skipped the first phase of the study, so we analyzed the data

from the remaining 78 participants. The 78 participants had an average age of 11.8 (SD=

1.6), were 46.2% female, 52.6% male, and 1.2% unspecified gender. We compensated each

participant with a $10 gift card to Amazon.com.

122

Figure 6.2: In-application API Documentation condition. (A) Users can access documentation
using the ‘?’ button available beside APIs. (B) Examples with different values and the
description. (C) The play button can be used to execute the code. (D) Button to expand or
collapse the parameters information. (E) Users can navigate to other doc using these buttons.

6.3.3 Methods

We created materials in order to measure API information access, API usage, and participant

features that could influence how participants use API information.

API information access and usage

In order to evaluate whether participants accessed suggestions more than documentation,

we needed to ensure two things: 1) that participants were equally familiar with the API

information formats, and 2) that participants actually received suggestions while working

123

on artifact-based programs. In order to familiarize participants with the API information,

we created two training tasks. For the first training task, participants had to make a bunny

walk faster by adding an optional argument value to a ‘walk’ action. For the second, they

had to make a shark swim around an island by adding an optional argument value to a ‘turn’

code block. We provided instructions on a sheet of paper that directed participants to use

the API information provided.

In order to improve the odds that participants would receive suggestions during artifact-based

programming, we created and tested scenes with props and characters for participants to

use in creating their animations. For instance, complex movements and rotations trigger

suggestions, so one scene was designed for a ‘Seaworld’ show animation. This type of scene

enabled novice programmers to try to create complex animations with dolphins. We selected

five scenes for this study based on popular scenes from formative work because children

were most excited to create animations with those scenes. During the study, novices had

the choice to create whatever animation they wanted with any of the scenes, so they could

always choose whether or not they wanted to create complex animations or use suggestions.

Participant features

In designing the Example Guru, we wanted novice programmers to benefit from suggestions

regardless of their age, gender, or programming experience. Because the suggestions are

context-relevant, we hypothesized that the suggestions would interest users with very little

programming experience, as well as novices with more exposure. In order to capture informa-

tion about programming experience, participants filled out a demographic and computing

history survey.

124

We also thought that the way participants like to learn might affect how they use API

documentation and explore new API methods. In order to capture this, participants also

filled out an exploring and learning technology survey on paper before the study (see

section D.4.2), modeled after the survey about trying new technology in [30]. Additionally, to

better understand participants’ motivations in using new API methods, we created dynamic

surveys for participants to fill out on-screen after completing artifact-based programs during

the study. The surveys asked questions about why participants used new API methods for

the first time and why they used or did not use API information during the just-completed

program.

6.3.4 Study procedures

There were three phases of this study: 1) baseline project, 2) training, and 3) supported

project. The study was between subjects with two conditions: suggestions and documentation.

Because work has demonstrated that gender plays into exploration and learning in software

[30], we randomly assigned participants to either use suggestions or documentation keeping

gender balanced. Participants worked individually on all tasks and were allowed to move

onto the next task if they felt they had completed the current one.

Baseline project phase

We wanted to know how participants would use the API without any support, so participants

first created an animation without API support for up to 15 minutes. Because some partici-

pants had no programming experience, the instructions for the first phase gave information

about how to drag blocks into animations and execute the animations (see section D.1).

This phase involved artifact-based programming, which means that there was no correct or

incorrect answer and that participants were allowed to freely create their animations. We

125

assigned participants a specific scene for this task and balanced the assignments of scenes

across participants to limit any effect of specific scenes on API usage. In order to find out

more about why participants added new API methods, participants completed an on-screen

survey at the end of this task that asked about: 1) one new API method participants added

and executed, and 2) one that they added, executed and deleted, if these existed.

Training phase

Due to time constraints for a controlled study, we wanted participants to become quickly

comfortable with using either suggestions or documentation. To do this, we had all participants

complete two training tasks. In both cases, the instructions showed how to access the

suggestion or documentation that would help them complete the task. The researchers

checked the participants’ code to make sure they successfully completed the task and helped

participants if needed. If participants completed a task without a suggestion or documentation,

the researcher demonstrated how they could have used it to ensure that all participants were

exposed to suggestions or documentation.

Supported project phase

Finally, we wanted to evaluate how participants used the API information and API methods

when working on their own projects. During the supported project phase, participants created

animation projects with either suggestions or documentation available to them. We first

asked participants to create a program based on the idea of a Seaworld show. The purpose of

providing an idea was to give participants a goal to work towards, but not to constrain what

code they should use. Next, participants were assigned a scene in which they could create

any animation or use a provided story prompt if they did not have an idea. Participants had

up to fifteen minutes to work on each of the two animations. If participants finished early,

126

they could select a scene they had not yet used and create another animation. The template

scenes are all available in section D.2. At the end of each of these animations, participants

also typed answers to questions onscreen about why they added or removed certain API

methods and why they accessed or did not access API information (see section D.4.3).

6.3.5 Data collection and analysis

We logged all actions participants took and survey answers to analyze suggestion, documen-

tation, and API usage.

Time on task

We did not require participants to spend the full amount of time provided on each task, so

some participants spent less than the standard amount of time. Most participants (76%)

spent the full amount of time on the baseline (15 min.) and supported project (30 min.)

phases. We stopped analyzing participants’ data after 30 minutes in supported project. We

will report the results for the set of participants who spent the full amount of time (59

participants), as well as the results for all participants.

of participants who
spent:

Sugges-
tions

Doc. Total

<15 min. (baseline open) 1/39 2/39 3/78
<30 min. (supported open) 6/39 7/39 13/78
<15 and <30 1/39 2/39 3/78
full time 31/39 28/39 59/78

Table 6.3: Time participants spent on the tasks

127

Accessing API information and API usage

We analyzed logs in order to measure which suggestions and documentation items participants

accessed, meaning that they clicked to open the API information. To determine whether

participants used new methods from the API information in their programs, we measured

which API methods participants inserted into their programs for the first time after accessing

related API information. When comparing the number of accesses and API usage, we used

t-tests to compare the aggregate numbers because participants received different numbers of

suggestions. Additionally, participants in the API documentation condition could access docs

many more times than the number of suggestions available. We use Cohen’s d to measure

effect size (small: .3, medium: .5, large: .8). We also report the percentages of participants

who accessed API information and used API methods and compare this using Chi-squared

tests. We use the odds ratio to measure effect size (small: 1.5, medium: 3.5, large: 9).

For both API information access and API usage, we describe the kinds of API methods

participants were accessing information for and inserting into their programs. We believe the

best way to do this is to group the API methods based on how much novice programmers

generally use them. We base the frequency of novice use on the set of 600 non-expert programs

described earlier. We will discuss the API methods in terms of 4 groups: those that the

Example Guru did not suggest, APIs suggested that were used least frequently by novices

(the bottom third of usage frequency), those suggested that were sometimes used (the middle

third), and those suggested that were most often used by novices (the top third of API

method usage frequency).

128

Participant qualities

We analyzed participant qualities to try to understand the types of novice programmers

who will benefit from suggestions or documentation. We collected gender, age, programming

experience, and learning style data from the surveys. We captured programming experience

using two survey questions: ‘Have you programmed before?’ and ‘Have you programmed for

more than 3 hours in your whole life?’ Those who had less than 3 hours of programming

experience likely only programmed once or twice without much instruction or practice. Nine

participants in the suggestion condition (23%) and eight participants in the documentation

condition (21%) had 0-3 hours of programming experience. We also intended to capture

personal preferences about using API documentation using the on-screen end-of-task surveys

for both conditions. Due to a technical error, the survey questions asking participants about

why they did or did not access documentation did not appear for the study participants, so

we report quotes from pilot users who completed the same study and received these questions.

6.4 Results

We hypothesized that participants who received suggestions would: 1) access suggestions,

and 2) use API methods from the suggestions more frequently than participants would access

and use in-application documentation. In this section, we first explore these two hypotheses

and then delve into how different participants used the API information and the features

they used.

129

6.4.1 Access and use of suggestions and documentation

Ideally, suggestions should encourage API exploration when novice programmers are pursuing

their own projects. We evaluated this through the number of times participants accessed API

information and how many new API methods they used after accessing API information.

Accessing suggestions and documentation

We found that more participants accessed suggestions than accessed documentation: 82% of

suggestion participants and 41% of documentation participants accessed at least one entry.

The difference in the number of participants who accessed suggestions verses documentation

was significant with a medium effect size (χ2(1) = 12.19, p < 0.001, odds ratio = 6.4).

Participants in both conditions described using suggestions and documentation to gain

additional information about API methods that seemed potentially relevant. A participant

in the documentation condition described opening an API method that changed a character’s

appearance because: “... I wondered what it was. It turned out to change Alice.” One

participant in the suggestion condition sought additional information about a new method

based on the tip offered as part of the suggestion: “I opened the tip for ‘setTransparency’

because I thought it was a good way to make an object disappear”.

We found that participants accessed more total suggestions, on average, than documentation.

For all 78 participants, participants accessed significantly more suggestions (M=3.3, SD=2.7)

than documentation (M=1.4, SD=2.7), t(76) = 31, p < 0.01, d = 0.69. Since some partici-

pants spent less than the full task time, we also confirmed that this difference existed for the

set of participants who used the whole task time. The results were very similar: participants

accessed suggestions (M=3.0, SD= 2.7) significantly more than documentation (M= 1.1,

SD = 1.7) with a large effect size (t(50) = 3.3, p < 0.01, d = 0.85). Simply accessing more

130

Figure 6.3: API information accessed and used grouped by frequency of API use by novice
programmers.

suggestions is a potential benefit to novice programmers because the suggestions expose them

to broader range of API methods that may be useful either immediately or in the future. In

this study, we could not measure whether a participant used a suggestion based on reading

the tip without opening it, but survey responses indicate that some participants did this:

Participant S33 did not need to access a suggestion because reading it was enough: “I did not

131

open the tip for Turn to Face because I read the outline for the Tip and used it in my code.”

Similarly, participant S70 said: “I did not open the tip because I saw it from the outside and

felt like I could figure it out and I think I did.”

Our goal was to encourage novice programmers to use API methods they would not necessarily

use on their own. To evaluate this, we analyzed the information access and API use based on

how often novice programmers in our sample set of programs used API methods. We split

the API use based on one group of API methods that the Example Guru did not suggest

and three groups that the Example Guru did suggest: the top third of methods that novices

generally use most frequently, the middle third, the bottom third. The set that was not

suggested includes API methods that novices use more than experts or that experts use in less

than 5% of programs. In all three groups of API methods, the API information was accessed

and used more frequently by participants in the suggestion condition (see Figure 6.3). While

the largest use of suggestions was for API methods novices generally use the most, increasing

use is beneficial because the average percentage of novices using those API methods is less

than 50%. Furthermore, only participants with suggestions accessed information for the least

used API methods.

The survey results provide additional insight into the reasons participants chose to access

or not access API content. Due to a technical failure, participants in the documentation

condition did not receive questions about their documentation access or use. Since questions

about usage might encourage some users to increase their API usage, we looked for an

increase in suggestion access and usage following the survey, which was administered after the

first supported animation project. However, we see little evidence of this. Ten participants

used suggestions only during the first animation project, an additional seventeen accessed

suggestions throughout, and only five participants accessed zero suggestions during the first

132

project task, but one or more in the following animations. Thus, we do not believe that the

survey questions influenced suggestion use.

Overall, participants described accessing suggestions to gain additional information about

API methods that seemed potentially relevant (see the top section of Table 6.4). Often,

this was because participants thought the suggestion could improve their animation (50%

of statements), like one participant who received a suggestion about setting the color of

the sky. They said: “The dark sky was sooo boring, so I looked at the tip and used it.”

Other participants wanted to learn about the information for their general knowledge (21%

of statements), like one participant who stated “... I did not have a need for it in my current

animation, but wanted to know how to use it in the future.”

Participants often accessed suggestions but did not use the API methods or did not access

suggestions at all because the suggestions did not fit with their vision of their animation (see

the third section of Table 6.4). This was the largest reason for not using API methods from

suggestions, explaining 53% of statements about not using API methods. This was also a

major reason why participants did not access suggestions in the first place- they read the

description and already knew that the API method would not fit in their animation (29%

of statements about not accessing suggestions). The other major reason participants did

not access suggestions was that they claimed that they already knew how to do what was

suggested (23% of statements about not accessing suggestions). Since the Example Guru only

suggested new API methods, this may indicate that the titles did not effectively communicate

the features of the API methods. In other cases, participants wanted to access all of the

suggestions, but ran out of time, like one participant: “I didn’t open all of the tips yet.”

Finally, some participants were focused on other suggestions and missed ones that would

have been of interest. One participant described missing a suggestion “because I was looking

at other tips and didn’t realize there was a tip [to] make only [the] alien’s head turn.”

133

Label: description or example Accessed,
used

Accessed,
did not
use

Did not
access

Wanted to learn: they wanted to learn or that they wanted to see
what it would do 7 (21%) 5 (16%) 0

It improved the animation: description of how they used it to
improve their animation 17 (50%) 0 0

As a reminder: explicit statements of using it as a reminder or
talking about having forgotten how to do something 3 (9%) 0 0

Experimenting: experimenting, testing, or trying things out 1 (3%) 1 (3%) 1 (2%)
Could figure it out from the suggestion title: ‘... I read the
outline for the Tip and used it in my code.’ 0 0 1(2%)

Wanted to figure it out on their own: wanted to or did figure
out how to do it by themselves 0 0 4 (6%)

Did not fit with animation: why the suggestion did not improve
their animation 0 17 (53%) 19 (29%)

Already knew how: participants already knew that API method 0 0 15 (23%)
Animation already had it: their animation already used that type
of animation 0 1(3%) 0

Could not figure it out: ‘I couldn’t figure it out.’ 0 0 1 (2%)
Accidentally opened: ‘because i acidentally opened it’ 0 1 (3%) 0
Meant to: planned to open tip or use code 0 1(3%) 1 (2%)
Ran out of time: they would have accessed or used if there had
been more time 0 3 (9%) 1 (2%)

Did not notice it: did not notice it or pay attention to hints 0 0 8 (12%)
No reason: did not give a reason or the reason did not answer the
question 6 (18%) 3 (9%) 14 (22%)

Table 6.4: Categories of responses from suggestion participants about why they accessed and
used, accessed and did not use or did not access suggestions.

Participants in the documentation condition similarly described a desire for additional

information as a motivation for opening documentation: “I wanted to know what it was

and I used it because I thought it would be pretty cool to begin and end abruptly.” We

unfortunately cannot report on their decisions around documentation they did not access.

Using suggestions and documentation

Since increased access to API information may help to support the use of a new API method,

we also wanted to explore the use of new API methods after information access. We found

that more participants used new API methods after accessing suggestions than after accessing

134

documentation. About three times as many participants in the suggestions condition used

an API method after accessing the API information as in the documentation condition,

38% vs. 12.8% (χ2(1) = 5.4466, p < 0.05, odds ratio = 4.17). Additionally, participants

added more new API methods after accessing the suggestions (M= .59, SD=.82) than after

accessing the documentation (M= 0.15, SD = 0.43). This was significant for all 78 participants

(t(57.6) = 2.94p < 0.01, d = 0.67) and for the 59 participants who used the full task time

(t(49.3) = 2.2, p < 0.05, d = 0.55).

In addition to frequency of use, it is interesting to explore the diversity of methods participants

choose to use. In particular, we designed our rules and suggestions with the goal of introducing

API methods that experts use more frequently than novices. Participants in both conditions

used more new API methods from the group of API methods that are most commonly used

by novices than the other groups. However, we note that participants using suggestions

used more new methods from the middle and low use categories combined (see Figure 6.3).

Finally, we looked at API methods for which we did not create suggestions. While some

participants in the documentation group accessed information about these methods, only two

were actually added. This provides some support for our method of selecting API methods

for suggestions.

Our survey results suggest that participants in the suggestions condition decided to use an

API method based on its potential to improve their animation. One participant explained “I

just thought that changing the posture of the dolphins created a more natural feel than just

moving its entire body.” In contrast, participants in the documentation condition more often

cited goals of understanding. For example, one participant using documentation stated, “I

opened it and chose to use it so I could see what it looked like.” We see a similar dichotomy

around participants’ explanations for non-use. A participant in the suggestions condition

chose not to use an accessed suggestion because it did not mesh with her vision for her story:

135

“I wanted to have the dolphin to go different distances showing they each do a little more

than the last dolphin.” A participant in the documentation condition explained accessing but

not using documentation for a duration parameter because “...I wanted to see how it worked.”

Con-
di-
tion

Action <3 hours prog. 3+ hours prog. p Male Female p

Suggestions
Accessed 100% 77% 86% 78%

M=3.8 SD=2.3 M=3.2 SD=2.9 M=4.3 SD=3.0 M=2.2 SD=1.8 <.05

Added API call 44% 40% 48% 33 %
M=.56 SD=.72 M=.6 SD=.86 M=.67 SD=.86 M=.5 SD=.79

Documentation
Accessed 75% 32% .07 30% 56%

M=3.4 SD=4.0 M=.94 SD
=2.0

M=1.05
SD=2.8 M=1.9 SD=2.7

Added API call 38% 6.5% .08 10% 17%
M=.5 SD=.76 M=.06 SD=.25 M=0.1 SD=.31 M=0.22 SD=.5

Table 6.5: Participant characteristics and information access and API usage.

6.4.2 Do participants’ demographics affect how they used sugges-

tions and documentation?

In the design of the Example Guru, we hoped to support participants regardless of age,

programming experience, and gender. By having suggestions relate to the context of the

program and API methods that the programmer had not yet used, we hypothesized that

the suggestions should continue to be relevant to programmers as they become familiar with

more of the API. Previous studies have found a correlation between age and programming

success with the same age range of children [78]. These differences in performance could result

from the developmental changes that impact children’s abilities to understand abstraction

around the ages of 11-12 [164]. We hoped that the context-relevant approach would support

novice programmers of differing ages. We also hypothesized that suggestions might better

support participants who liked to learn by accessing information, rather than by tinkering,

136

since suggestions do not require the user to seek out new API methods and documentation.

Since females have been shown to be less likely to learn through exploration in some cases

[18], it seemed as though the suggestions might provide better support for female novice

programmers. Overall, we found no difference in suggestions usage by age. However, while

females accessed suggestions more frequently than documentation, they did so significantly

less frequently than males.

Age and programming experience

Our results did not show a relationship between age and accessing and using either suggestions

or documentation. Specifically, we found no significant correlation between age and suggestion

access(t(37) = −0.5, p = 0.62, r = −0.08) nor between age and documentation access

(t(37) = 0.37, p = 0.71, r = 0.06). Similarly, we found no significant correlation between age

and the number of API methods used after accessing suggestions (t(37) = −0.92, p = 0.36, r =

−0.15), nor between age and the number of API methods used after accessing documentation

(t(37) = −0.22, p = 0.83, r = −0.04). These results suggest that both documentation and

suggestions are used similarly by children ranging in age from ten to fifteen.

Programming experience played a larger role in how much participants accessed and used

API information. Those with less than three hours of programming experience were the most

likely to access both suggestions (100%) and documentation (75%). Participants with little

programming in both conditions added new API methods after accessing them at similar rates:

44% of those in the suggestions condition and 38% of those in the documentation condition

added API methods. However, among those with more than three hours of programming

experience, we see a trend towards more use of suggestions. Of the participants in the

suggestions condition, 77% accessed a suggestion and 40% added a new API method after

accessing its suggestion. For participants in the documentation condition, only 32% accessed

137

API information and 6.5% used a new API method after accessing its documentation. This

trend suggests significant promise in the use of context-relevant API suggestions to help

programmers continue to explore new API methods.

Gender and learning style

When considering how gender might relate to participants’ use of API information, we

explored use by reported gender, as well as learning style based on a survey.

We found that both males and females accessed and used the suggestions at higher rates than

the documentation. However, male participants accessed suggestions more often than female

participants: males accessed an average of 4.3 suggestions as compared to 2.2 suggestions

for females (t(33.5) = −2.7, p < 0.05, d = .83). Male participants also accessed a larger

percentage of the suggestions they received, so the larger number of suggestions accessed by

males was not due to a larger number of suggestions received (t(34.3) = −2.7, p < 0.05, d =

0.84). While not significant, we note that female participants accessed documentation more

often than male participants, averaging 1.9 documentation accesses as compared to 1.05 for

males, as shown in Table 6.5. Overall, male participants opened more suggestions, but both

genders accessed suggestions. The significant difference in terms of the number of suggestions

accessed represents an important avenue for additional research. While suggestions performed

better than documentation for both male and female participants, the lower usage by female

participants has the potential to create an educational inequity.

One of the main personality traits that often correlates with gender differences in programming

is the programmer’s learning style: whether they like to learn by tinkering and exploring or

using a step-by-step approach, so we also wanted to compare the way participants desired

to learn and their behaviors. We created a survey based on the survey in [30] in order to

138

try to determine whether participants were more likely to explore and tinker as a way of

exploring the API or whether they were more reliant on information like tutorials or books.

Unfortunately, the survey only had a reliability of α = 0.65 for the questions about learning

through exploring, and α = 0.5 for the questions about learning using process-oriented

information, both of which are less than the accepted reliability for surveys (0.7), so we will

not report results for the survey.

6.4.3 Do participants take advantage of API information features?

This section presents results on how participants used features in the suggestions and

documentation. Due to the structure of this study, we cannot evaluate the impact of specific

features, so instead we explore three questions about feature use to provide insight into the

value of the system design: 1) how did participants access information, 2) how much did they

execute examples, and 3) how much do they use contrasting examples and the ‘show me’

button?

We expected participants to access the suggestions and documentation using all of the

mechanisms provided, which we found to be true, as shown in Table 6.6. For the most part,

participants accessed suggestions from the suggestion list (see Figure 6.1-A) and ‘?’ buttons

(see Figure 6.2-A), which were both in or near the palette where users drag code blocks

from. The list of suggestions was designed to help participants return to suggestions, which

participants did: “I opened the tip [suggestion] because I had forgotten how to do it.”

We found that the majority of participants who accessed API information also executed

examples in both conditions, but did so more with suggestions: 81.3% of participants who

accessed suggestions executed an example at least once, while 68.8 % of participants who

accessed documentation executed at least one example. Executing examples may suggest

139

that participants wanted to engage more deeply with the information in order to find out

more about it. Participants who executed examples from suggestions executed on average

4.7 examples (SD = 3.5), while participants executed examples an average of 9.7 times from

documentation (SD= 9). This may be because suggestions only provided two examples, while

documentation often showed eight examples.

Because we designed suggestions specifically to provide contrasting examples and a button

to help novices find code blocks, we measured how much they used those features. 44% of

participants who accessed suggestions used contrasting examples and accessed the contrasting

example for 1.8 suggestions on average (SD= 1.2). 38% of participants who accessed

suggestions used the ‘show me’ button, and on average, clicked it 3.2 times (SD= 2.5). Since

participants likely will not need these features for every suggestion, having over 30% usage

and having participants return to use these features multiple times seems to indicate that

participants found the features useful.

6.4.4 Threats to validity

There are two limitations to this study: the population we picked and the length of the study.

Condition Way of accessing % of accesses

Suggestions
Suggestion Panel 86.5%
Code Annotation 11.1%
Preview from Panel 2.4%

Documentation

‘?’ Button 45.1%
Expanding Parameters 29.4%
‘More Examples’ 17.6%
Next/Previous Buttons 7.8%

Table 6.6: Participants accessed the API information all of the different ways in both
conditions

140

We recruited participants from a mailing list focused on STEM which draws from a sample

of more interested and self-motivated learners than the general population. This may have

meant that participants were more interested in technology and excited to explore the API

than the norm. Furthermore, 94% of participants had programming experience of some form,

including 82% who had been taught programming, which is above the norm for middle school

children in the US.

While the results from this initial study are exciting, it is important to note that this

study focused on a relatively short period of time and on API use, rather than learning.

While the patterns of use suggest the potential for improved longer term learning, it will be

important to explore how novice programmers engage with the Example Guru over a longer

period. We need further studies to understand whether the Example Guru improves novices’

comprehension of the API methods.

6.5 Discussion

Given that programmers across a broad range of skill sets describe learning or attempting

to learn using ‘just-in-time’ strategies, effective situated support for API learning has the

potential to improve programmer success and efficiency, particularly for novices. The results

of our study suggest that the Example Guru approach has the potential to better support

learning of APIs during artifact-based programming. Yet, there are places where further work

is needed. First, our results found that females used fewer suggestions than males, leading to

a potential learning inequity. Second, we hand-coded our rules for this study.

141

6.5.1 Learning APIs

To achieve mastery of a new API, novice programmers must continue to develop their skills

over time. Yet, existing research suggests that novices reach a plateau in which they quickly

learn to use a subset of the available capabilities within the system and then stop learning

new skills [189, 233]. One recent paper [137] found an increase in the number of API methods

used with experience. However, the increase was small after the initial period. Although

measures of API method use cannot tell us whether the novice programmers actually have a

full understanding of how the API methods work, programmers must first gain exposure and

experience with the API methods. Thus, this work begins to address issues in API learning

by improving the number of API methods that novice programmers explore and use.

We believe that some of the plateau effect may be due to a lack of appropriate learning

mechanisms. While users may spend time focused on trying to learn a new system or API,

programmers typically spend more time in artifact-based programming and ‘just-in-time’

learning [23]. In just-in-time learning, programmers seek out information that they know

they need. The Example Guru approach shows promise in introducing novice programmers

to API methods that they may not know exist. Rather than requiring that they know what

methods to search for, the Example Guru observes their code and offers potentially relevant

information. Participants accessed suggestions and used API methods from suggestions

more frequently than documentation, creating more potential learning opportunities. It is

important to note that participants accessed suggestions for API methods novices rarely

use in common practice, but experts typically do include in their programs. Users in the

documentation condition chose to explore API methods more often used by novices. Over a

longer period, the increased exposure to and use of API information could lead to substantial

learning gains.

142

Finally, our results suggest the potential for continued usage by those with varying skill levels.

In both the documentation and suggestion conditions, participants with fewer than three

hours of programming experience accessed and used API information more frequently than

those with more than three hours of experience. The difference is much more dramatic in the

documentation condition where only 32% of participants with more programming experience

accessed the API information at all. In contrast, 77% of those with more than three hours of

programming experience accessed the suggestions. Yet, there is still room for improvement.

While 40% of the more experienced novices in our sample engaged with API methods from

suggestions, 60% did not.

6.5.2 Gender and the Example Guru

Our results showed different usage patterns among male and female participants. Specifically,

male participants accessed more suggestions than female participants, averaging 4.3 versus

2.2 suggestions accessed. This is a potentially troubling difference, as over time this can lead

to an educational inequity. Based on the results of this study, we have little information

about the reasons for this difference. Previous work suggests that females may prefer learning

using step-by-step instructions, rather than through tinkering and exploring [102] and that

females have a tendency toward comprehensive information processing versus males’ tendency

toward selective information processing [144, 145]. However, we note that this difference

occurs based solely on the tip describing the suggestion and before users are in a position to

do much information processing. This is an area where future work is needed in order to

understand and address this difference.

143

6.6 Conclusion

This chapter describes the first design and evaluation of the Example Guru. The Example

Guru leverages the previous exploratory studies of suggestions, rules and examples in order

to address the main goal of this thesis: to encourage novice programmers to explore and

use new programming skills during artifact-based programming through suggested examples.

Specifically, this chapter addresses hypothesis 2, that suggesting example code will increase

the number of new API methods novice programmers add, compared to existing static forms

of support. In this case, novice programmers with suggestions explored and used significantly

more new API methods than novice programmers with documentation. The contribution of

this chapter is a type of system that can encourage novices to explore new API methods. We

implemented the system within an animation context in order to evaluate it, but this system

design is not specific to an animation context. This model of suggesting context-relevant

unused code blocks can apply in other blocks-based artifact-based programming environments.

It could likely also transfer to end-user programming contexts like web development or data

analysis. Investigation of adults’ perceptions of suggestions would likely be necessary to

ensure that adults would prefer suggestions the same way. This chapter however, leaves two

open questions that we will address in the following chapter: whether suggested examples can

help novices to explore abstract programming concepts, and whether we can create content

for this type of system semi-automatically.

144

Chapter 7

Large-Scale Suggestions:

Semi-Automatic Generation

Note: Parts of this chapter will be published in Interaction Design and Children 2018 [93].

This chapter describes an approach for semi-automatically generating content for a suggestion-

based help system. Chapter 6 showed that context-sensitive suggestions can encourage novices

to explore more new API methods than static documentation. If we could create this type

of suggestion with minimal human effort and for abstract concepts, we could generate

suggestions for many systems and large systems without requiring significant expert time.

This chapter addresses hypotheses 2 and 3: that a suggestion system can encourage exploration

or programming concepts, and that we can generate the content for this type of system with

less human effort than hand-creation.

The core idea behind the semi-automatic approach is that a system can generate candidate

suggestions by grouping code examples. For instance, one group of examples might have

several camera movements that happen simultaneously, leading to a suggestion about making

145

the camera zoom out. Another group of examples could include living creatures moving in

multiple directions at the same time, leading to a suggestion about making a character jump

diagonally. For animation code, we group code examples using two main metrics: 1) types of

objects, like characters or props, and 2) types of actions the objects take, such as changing

position or changing size.

To semi-automatically generate suggestions, an expert must first define the types of objects

and types of methods for the programming context. Once they have defined the types, the

system can then generate any number of suggestions through the following steps: 1) system

extracts code example snippets from a code repository, 2) system groups code examples using

heuristics, 3) human moderates, 4) system generates a script that checks whether novice code

should receive the suggestion. This chapter describes each step in detail.

To evaluate our approach for semi-automatically generating suggestions, we perform two

preliminary evaluations: 1) we compare the semi-automatically generated content to a hand-

authored set created previously for a separate study, and 2) we ran a study in which we

compare children who had access to suggestions and children who had access to tutorials for 30

minutes in an artifact-based context. The semi-automatically generated suggestions cover all

but two of the hand-authored set and also generated an original set of suggestions. Children,

on average, received 9 semi-automatically generated suggestions, accessed 2.6 suggestions,

and used 0.8 suggestions in just 30 minutes. They accessed 3.7 times more suggestions than

tutorials.

The contribution of this chapter is a semi-automatic suggestion generation approach that

creates textual suggestions describing a potential change to improve a child’s program,

examples that demonstrate how to implement the suggested change, and rules that determine

when to offer each suggestion. We describe this system within the context of an animation

146

programming environment, but the potential to extend this for other programming tools or

creative contexts has far reaching implications for children. Our evaluation demonstrates

promising access and usage of semi-automatically generated suggestions.

7.1 Related work

The overarching ideas in this chapter relate most closely to existing support for learning at

scale.

A variety of researchers have designed ways to help learners of content and software at a large

scale, both in task-based and artifact-based contexts. There has recently been a significant

push for learning at scale, such as using intelligent tutors and online courses that have specific

tasks and solutions. In order to make these useful for large populations of learners and a

large number of topics, researchers have worked to develop content, hints [177, 210], and

feedback [81, 96] for users in automated and semi-automated ways. Automatically generated

tutorials can help novices learn programming [75], as well as similar types of technical skills

like photo-manipulation [44, 69] with less effort from an expert. However, these systems

require a known solution that they can support learners in working towards.

Our system is most closely related to support for artifact-based contexts, like reuse and

recommendations. Some systems provide support for reusing others’ programs, like remixing

in Scratch [196], or Looking Glass [72]. There are also some systems that recommend

commands based on how communities often use them [119, 136]. Our approach is unique in

semi-automatically generating motivating suggested examples for programming concepts in

an artifact-based context.

147

Figure 7.1: (A) Looking Glass programming environment. (B) List of suggestions. (C) An
opened/accessed suggestion. (D) The two code examples with the primary one selected. (E)
The code for this suggestion, with the do together parallel execution block emphasized. (F)
Preview execution of the code.

7.2 Programming environment & suggestion system

We implemented the semi-automatic suggestion generation approach for the Example Guru

within the Looking Glass programming environment.

148

7.2.1 Looking Glass programming environment

Looking Glass provides objects to create scenes and blocks that control the objects. A

scene contains characters (i.e. people and animals), props (i.e. trees, couches, volleyballs,

snowboards), and the scene objects (i.e. the ground, the camera). To create animations, users

can drag and drop blocks of code that are either actions (i.e. move, say, resize, disappear), or

programming constructs (i.e. simple parallel execution Do together, or a loop).

7.2.2 The Example Guru (final version)

To make suggestions to novice programmers, the Example Guru has three components: 1)

rules, which are scripts that analyze novice programs, 2) a suggestion for each rule that

introduces a new concept, and 3) a pair of examples that demonstrates the concept. This

chapter aims to automate the process for generating suggestion ideas and the rules that check

programs for the opportunity to make suggestions. Experts still performed the selection of

the concepts to suggest (Do together and Repeat loop), the specific examples to show, the

descriptions of the examples and suggestions.

The version of the Example Guru described in Chapter 5 suggested API methods. For

this chapter, we wanted to generate suggestions for two programming concepts: parallel

execution (Do together) and simple loop (Repeat loop). In order to support use of examples

for these abstract programming concepts, we iterated on the design of the Example Guru

suggestions and examples. We made one minor change to the suggestions: instead of having

two contrasting examples to show differences, the suggestions for abstract concepts show two

examples with the same concept. We found that this helped users to reinforce how the concepts

worked. Contrasting examples for these concepts actually confused users because they had

149

trouble noticing the differences. We also made a set of minor changes to the suggestion list

and suggestions, based on formative one-on-one testing with 33 novice programmers [92].

Based on observation and informal interview, we made two main changes to the suggestion

panel: the suggestions are numbered and they do not have a hover preview. When participants

access suggestions from the panel, they often want to return to one they saw previously. In

the past iteration, the suggestions in the list were colored differently to distinguish them, but

that still might make it difficult to find a specific one. Instead, this iteration of the Example

Guru has numbers for the suggestions to make it somewhat easier to find them again. This

version also removed the hover preview, which enabled users to watch the example preview

by hovering over the suggestions. In practice, participants often hovered their mouse over

the suggestions but almost never wanted to view the example video at that point. The text

descriptions already provide enough information for users to determine if they want to view

the suggestions.

We also made several modifications to the opened suggestion: 1) the example code is at the

top of the example, 2) the suggested code block has a shadow, and 3) extra information about

the code and where to find it appears as a tooltip when hovering over the code example. We

moved the code example to the top of the suggestion box because we found that participants

were more likely to pay attention to the code snippet at the top. We also explored a variety

of code emphasis methods to encourage novices to pay attention to the suggested code block,

such as colors, annotations, outlines, and shadows [92]. Participants were often confused if

the emphasis method made the code look different than it looked within the programming

environment. Adding a drop shadow makes the code block pop out without modifying

its appearance. Finally, some novices seemed to benefit from having more formal, written

information about the suggested code. However, having it visible initially makes the content

overwhelming and makes it less clear where novices should focus. To support this type of

150

user without adding potentially overwhelming content, we added this information as a tool

tip. The tool tip also describes where to find the suggested code block if they cannot find it.

While this helped, having an easier way to discover this capability would likely be useful in

future iterations of this type of system.

7.3 Suggestion generation approach

The goal of this approach was to generate suggestions and rules for a system like the Example

Guru with minimal human effort per suggestion. Our approach requires initial setup by an

expert to define the ways the system will group code. After that, the approach can generate

any number of suggestions and rules with four phases: 1) example extraction, 2) example

grouping for candidate suggestions, 3) human moderation (example selection + labeling),

and 4) rule generation. The approach takes a repository of programs as input and outputs

suggestions and rules.

7.3.1 Input repository

We used a repository of 1751 blocks programs containing: 1) 780 programs created by expert

researchers, and 2) 971 programs created by non-experts. Researchers in our lab created the

expert programs previous to this work for other purposes. The non-expert set of programs

set contains programs created in past user studies and programs shared to the Looking Glass

online community by non-lab members [121].

We split our repository into a design and prototype set in order to be able to avoid over-fitting

our approach to a specific set of programs. To design and iterate on our approach we used

25% of each of the novice and expert program sets. We used a small portion of the repository

for development of the approach in order to save the majority of the repository for evaluation.

151

We used the remaining 75% of program sets to generate the 80 suggestions we evaluate in this

work. Due to the types of code constructs in our repository, we chose to generate suggestions

for: parallel execution, loop, and nested combinations of parallel execution and loop.

7.3.2 Initial setup

This approach requires initial setup by an expert in order to select: 1) which code concepts

to suggest, and 2) how the system should group code snippets and generate rules. The expert

needs to select which code blocks the system will suggest to the novice programmer. Many

systems may benefit from generating suggestions for all types of code. We wanted to generate

suggestions for young novice programmers, so we chose to generate suggestions for the parallel

execution block known as the Do together and the loop block called Repeat. These will be

used in the Example Extraction phase, which selects the example code snippets.

In order to group code snippets and generate rules, the system needs heuristics for determining

whether code snippets will have similar animations. An expert defines the similarity heuristics.

Groups of snippets with similar animations, like snippets that all make the camera zoom,

can become suggestions. Rules are generated by finding similar animations that lack the

suggested concept, like the Do together.

For Looking Glass, we defined types of objects and methods that would have similar animations.

Objects have three types: sentient characters, sentient character’s joints, and props, as

shown in Table 7.1. Actions have eight groups: communicate, sound, position, orientation,

appearance, size, timing, and vehicle. The Example Grouping and Rule Generation

sections below will cover in more detail how those phases use the object and action types.

152

Set Type Specific Examples

Objects
sentient person, dog
(sentient’s) joint wing, arm, neck
prop sofa, camera

Actions

communicate say, think
sound playsound
position move, walk
orientation turn, roll
appearance setcolor, appear
size resize, setwidth
timing delay
vehicle setVehicle

Table 7.1: Objects and actions used for binning snippets.

7.3.3 Example extraction

First, a system needs to extract snippets from a repository of code. The code examples must

contain the code that will be suggested. We generated suggestions for the Do together and

the Repeat code blocks, so our approach extracted only snippets including one of these blocks.

We chose to select a snippet containing only the concept, like the Do together and the code

within the Do together, and not any surrounding code. In other contexts, more surrounding

code might be useful. The extracted snippets feed into the Example Grouping phase.

7.3.4 Example grouping

The Example Grouping phase takes all of the code snippets for a concept and sorts them into

groups of code with similar output. These groups are candidate suggestions. The grouping

algorithm uses the object and action types defined by an expert in the Initial Setup, shown

in Table 7.1. The grouping algorithm also uses the number of each type of object and action.

The algorithm determines if two code snippets should be in the same group based on the

following criteria:

153

• All code snippets in a group have the ‘same’ number of objects of each type: 0, 1, or

2+. If snippets have two or more objects of the same type, the approach considers

them the same. The suggestion in Figure 7.1 has one sentient object, which is a dog

in one example and a person in another. A group of examples could also contain an

example with three dogs and an example with two people.

• All code snippets in a group have objects of the same type performing either 1 action of

the same type, or two or more actions of the same type. The suggestion in Figure 7.1 has

one sentient object performing two position actions. The code group for this example

could also contain examples with one sentient object performing more than two position

actions.

Taking these two criteria together, the system will result in groups of examples where the

object types and action types align to create similar animations. In Figure 7.1, the example

group contains many examples that have one sentient object moving in multiple directions

within a Do together, which makes the movements happen at the same time. This is a valuable

suggestion because novices who have a character moving in multiple directions sequentially

would often rather have the actions happen together.

Other researchers have also worked on finding clones or near-clones of snippets of code, either

to detect cheating or maintainability issues [17], or to scalably grade assignments [66]. This

is a very specific type of related code search, in which the structure typically needs to be

highly similar, with the possibility of certain types of modifications. For maintainability,

clone detection is typically based on strings, abstract syntax trees, or metrics [19].

Depending on the number of programs available in the repository and the number of concepts

the system is going to suggest, this grouping method may return a large number of groups.

The size of the groups gives some indication of how often programmers use concepts in specific

154

ways. This frequency can be used to prioritize the order in which humans moderate groups

or to determine the set that advance to the moderate phase. In our system, this grouping

process resulted in 158 groups of examples with more than two code snippets for the loop,

parallel execution and nested combinations. We chose to only use groups with more than two

example snippets because many of those with only two had two of almost exactly the same

animation.

7.3.5 Human moderation

The main objectives of the human moderation step are to select the two examples that

the suggestion will show, label them, and give the overall suggestion a title. In order to

select examples with similar outputs and provide motivating descriptions, we need a human

to complete these steps. While groups of examples may be large, the moderator does not

necessarily need to look through all examples in a group if they quickly find two appropriate

examples. We created and iterated on criteria for how an expert should moderate groups of

examples, which are listed in Table 7.2.

1. Select primary and secondary examples. This approach benefits from having a human

select the examples for two main reasons: 1) humans can select examples with the best

and most visible animations, and 2) humans can filter out inappropriate animations.

2. Write titles. It is important that a human authors the suggestion title and example

descriptions because the title should motivate the novice programmer to look at the

suggestion. It needs to describe the output animation and how it could improve a

program, rather than describing the code itself. For animation, a suggestion title could

ideally be something like “Make your character jump multiple times,” rather than a

description of the move up and move down code blocks.

155

Required

Actions visible in execution preview
Correct use of construct
No sexual, vulgar, or violent content
No errors

Ideally

Code should use minimal extra arguments
Two examples should use constructs differently
Objects should have intuitive names
Two example should have different scenes

Exclude

Examples that do not fit in suggestion
Identical examples
Group if it does not have two examples

Table 7.2: Human moderation criteria

In our implementation of this approach, we had a non-author researcher perform the human

moderation phase. However, we note that the moderator primarily evaluates the output of

the code rather than the code itself. A system be able to leverage a crowd or a community of

novice programmers to further reduce expert effort for suggestion generation.

Example groups advanced to the generate rules phase if the moderator was able to select a

primary and secondary example and give a title to the suggestion. At the end of our human

moderation phase, 80 of the 158 groups moved on to rule generation. The excluded groups

did not have at least two examples that fit all of the required criteria in Table 7.2. Many of

these were due to version issues that caused errors, which systems should check automatically

in the future. Our human moderation phase ended with 7 suggestions for the loop and 73

suggestions for the parallel execution blocks. The difference in the number of suggestions is a

result of much more frequent usage of parallel execution in the code repository.

7.3.6 Generate rules

Our semi-automatic approach generates rules using the object and action types in Table 7.1,

as initially defined by an expert. The approach generates rules that, at a high level, find

156

novice code with the same object and action types as an example group, but that lacks the

suggested concept. For the ‘Make characters move diagonally suggestion’, the rule looks for

code that has a sentient object moving in multiple directions that does not use a Do together.

In order to generate a rule, the system needs to extract the following information from a

suggestion and examples:

• the concept being suggested, so that the rule can look for code that does not contain it

• the number and types of objects to look for

• the number and types of actions for each of the objects

In our implementation, the rule generation process used the full set of examples from the

group for each suggestion. It then generated code in Java to fill in the concept, number and

types of objects, and number and types of actions that the rule should look for. We used

the JavaPoet API to generate Java code for the rules programmatically [99]. The system

generated a rule for each of the 80 suggestions.

We next answer two questions about the set of semi-automatically generated suggestions and

rules: 1) how do they compare to a hand-authored set of suggestions, and 2) how do young

novice programmers interact with them in an artifact-based context?

7.4 Comparison of semi-automatically generated to hand-

authored suggestions

We wanted to know how the semi-automatically generated suggestions compared to a set

authored by an expert. As a preliminary analysis, we compared the suggestions generated

157

by our approach to a set of existing hand-authored suggestions for the Example Guru. We

focused on comparing the output of the approaches rather than the time and effort of the

approaches to get a sense for whether the algorithms will provide reasonable results. Further

work should likely use these results to fine tune the semi-automatic approach and then

evaluate the savings in expert time.

7.4.1 Comparison methods

To compare our generated suggestions to a hand-authored system, we used a set of manually

authored suggestions from another study that suggested programming concepts [83]. The

hand-authored set of suggestions included 5 suggestions for loop and 6 suggestions for parallel

execution, as shown in the left side of Table 7.3.

We consider two suggestions to be equivalent if they either 1) involve the same types of

objects and actions, or 2) the types of objects or actions in one suggestion are a more specific

version of those in the other suggestion. We use this method of comparison because the

hand-authored suggestions were designed to be more general, encompassing all objects or a

broader set of actions.

7.4.2 Comparison results

Our semi-automated approach generated matching suggestions for all but two of the hand-

authored suggestions, and an original set of suggestions beyond the hand-authored set.

Table 7.3 shows the the generated suggestions in the right column aligned with their equivalent

hand-authored suggestions in the left column.

For the equivalent suggestions, the generated approach often either generated one suggestion

for characters, or multiple suggestions with the different object types. For instance, for the

158

hand-authored ‘make objects turn back and forth multiple times’, the system generated a

similar ‘make a character turn back and forth multiple times’. For the hand-authored ‘make

objects move in two directions at the same time’, the semi-automatic approach generated

three suggestions for a character, a prop, and the camera.

Our semi-automatic approach also generated a new set of suggestions that were not in the

hand-authored set. This set contained suggestions about the appearance of characters, props

and scenes, and complex joint actions, as shown in the bottom of Table 7.3. The expert

likely did not create suggestions about complex joint animations due to the low level of

experience of children participating in Looking Glass user studies. However, suggestions

about simultaneous turning and moving, as well as simultaneous appearance changes are

applicable to young novices and did end up being relevant to novices in a user study, as

discussed in the next section.

159

Hand-authored sugges-
tion: “Make....”

Semi-Automatically Generated: “Make....” # ac-
cessed/
re-
ceived

objects move in two
directions at the same time

a character move diagonally. 8/18
a prop move diagonally. 1/3
camera move diagonally. 1/2

an object bounce multiple
times

a prop move back and forth mult. times! 1/3
a character jump multiple times. 4/18

objects turn back & forth
mult. times

a character turn back and forth mult. times. 5/11

characters talk & walk at
the same time

characters move and say at the same time. 0/3
a character move and talk at the same time. 1/6

objects move together!

mult. things move at the same time. 0/1
mult. characters move at the same time. 7/18
mult. characters move away from something at the
same time.

0/1

3 more similar suggestions 0/0
something else happen at
the same time as resize

a character get bigger or smaller while moving. 0/0

objects flash ... mult. times N/A N/A
joint actions happen mult.
times

prop’s joints turn back & forth mult. times. 0/0
a character’s joint turn back and forth many times. 0/0

an object disappear at the
same time as something else

Change multiple things’ visibility at the same time. 0/0

objects do the same thing at
the same time!

mult. characters act at the same time. 0/0

simultaneous actions hap-
pen mult. times!

N/A N/A

NA 8 simultaneous turning and moving suggestions:
6/18, 2/8, 2/9, 4/10, 0/3, 0/1, 1/7, 0/0

NA 7 speaking while moving suggestions: 4/7, 0/1, 1/7,
1/4, 1/7, 0/0, 0/0

NA 6 appearance suggestions: 0/3, 0/1, 0/2, 1/3, 1/2,
1/2

NA 15 Simultaneous joint movements suggestions 0/0
NA 9 Jumping and joint movements suggestions 0/0
NA 7 joints turn while a character moves suggestions 0/0
NA 5 movements while talking suggestions 0/0
NA 4 other misc. suggestions 0/0

Table 7.3: Left: Hand-authored suggestions. Right: Semi-automatic suggestions and the
numbers of suggestions received and accessed by children in our study.

160

7.5 User study: novices’ interaction with semi- auto-

matically generated suggestions vs. tutorials

We wanted to compare semi-automatic generated suggestions with tutorials through this

study. Our comparison with tutorials aimed to understand how novices accessed and used

suggestions and tutorials. Over time, we expect that novices who access and use suggestions

or tutorials will also gain new understanding. Despite our short study, we also chose to

evaluate learning through transfer tasks because our suggested concepts were relatively simple.

Specifically, this study aims to answer five questions: 1) how many and which suggestions

did participants receive? 2) how did tutorial and suggestion participants differ in the content

they accessed, 3) how did tutorial and suggestion participants differ in new usage of concepts

after access, and 4) did tutorial and/or suggestion participants show evidence of learning,

and 5) did participants have different perceptions of programming?

7.5.1 Tutorial control condition

Many existing programming environments provide tutorials that show the steps to create

programs and have text descriptions of how the demonstrated code works, either externally

or within the programming environment. We created tutorials based on Scratch [196], which

provides a list of 13 tutorials in a collapsible side panel within the programming environment.

Figure 7.2 shows our tutorials, which are designed the same way as a study that compared

Scratch-like tutorials to code puzzles [77]. Like typical tutorials, ours have screen-captured

videos that show where to find code blocks, how to add them, and the execution of the

code (see Figure 7.2-C). Written instructions explain how the code in the tutorial works (see

161

Figure 7.2: (A) An accessed tutorial. (B) List of tutorials, which always has the same set of
13 tutorials for everyone in the condition. (C) A short video that shows how to complete the
step. (D) Written instructions. (E) Next button to go to the next step of the tutorial.

Figure 7.2-D). We used content for the tutorials from hand-authored suggestions for parallel

execution, loop, and those concepts nested, from a previous study[83], as listed in Table 7.3.

7.5.2 Study protocol

In this paper we analyze data from: 1) baseline project, 2) system familiarization tasks, 3)

supported project, 4) transfer tasks, and 5) surveys.

162

Baseline project

To measure what novices would explore without support, all participants worked on an

animation project for the first 15 minutes of the study. Participants could select one of nine

pre-made scenes to code their own animation. Participants did not have access to suggestions

or tutorials during this phase. For those with no programming experience, a researcher briefly

demonstrated the mechanics of drag and drop programming.

System familiarization tasks

To ensure that participants knew how to access suggestions or tutorials, participants completed

two familiarization tasks. Each task lasted 5 minutes and asked the user to modify an API

method call using a suggestion or tutorial, depending on the participants’ condition. A

researcher confirmed that each participant accessed at least one suggestion or tutorial before

participants moved on. If participants got stuck, a researcher guided them to the support or

helped them complete the task, as the goal of these tasks was system familiarization, not

evaluation.

Supported project

To investigate how participants would receive, access, and use suggestions or tutorials during

artifact-based programming, participants had 30 minutes to code with access to suggestions.

A researcher told participants that they were not required to use suggestions in this phase.

Participants first created a performance animation and then could select other scenes to make

animations with. This was the main part of the study that tells us where novices access and

use the suggestions or tutorials.

163

Concept transfer tasks

To investigate whether suggestions could be used as support for learning in addition to

exploration, participants completed 4 transfer tasks. The tasks tested parallel execution, loop,

parallel execution nested within loop, and loop nested within parallel execution understanding.

Participants received these tasks in a balanced order using Latin squares and had 3 minutes

to complete each task. Participants could not access suggestions or tutorials during this

phase.

The tasks were closely based on those from another study evaluating these concepts [78].

Each transfer task included code and instructions for how the programmer needed to change

the animation. For each of the tasks, the solution was for the participants to use one or two

of the concepts from the suggestions in particular locations. For instance, one transfer task

asked the participants to make an iceberg shake and a yeti fall at the same time. The user

had to find the parallel execution block, add it to the program, and drag the appropriate

blocks inside of it.

Surveys

Participants rated their coding experience and experience with suggestions on 6 Likert scales

shown in Table 7.5.

7.5.3 Participants

We recruited 44 participants from a local science-focused mailing list. Participants filled out

a demographic survey at the beginning of the study that asked about their age, gender, and

previous programming experience. We excluded four participants: three because they had

164

participated in similar studies with our lab and one due to technical issues that prevented

them from receiving suggestions. We analyzed the data for the remaining 40 participants:

24 males and 16 females who ranged in age from 8 to 15 (M = 11.2, SD = 1.6). Although

we recruited participants with less than three hours of programming experience, the surveys

revealed that many had more than three hours. We randomly assigned participants to

conditions balancing for gender, age, and programming experience, as these factors have

in past studies affected early learning in coding [78]. We also use age and programming

experience as covariates throughout our analysis.

7.5.4 Data and analysis

To better understand whether the semi-automatically generated suggestions were relevant

and useful to young novice programmers, we evaluated the number and type of suggestions

participants received, accessed, and used, and how participants performed on the transfer

tasks.

Suggestions received

The number and type of suggestions each participant received and the number of generated

suggestions novices received tells us whether the generated suggestions applied to novice

programs. Participants received suggestions based on the context of their code and whether

they had used a concept yet. During the 30 minutes of artifact-based programming, each time

a novice programmer executed their code, rules checked novice programs for opportunities to

make suggestions.

165

Suggestion access

To evaluate whether participants wanted to explore suggestions, we measured how many

suggestions novices clicked on to open. We count an access as the participant clicking to

open a suggestion. We do not count repeat accesses of the same content. While exposure

to new content can be beneficial, we also wanted to know if participants used the new code

blocks in the suggestions.

New usage of concepts after access

We define ‘use’ of a suggestion as inserting the programming concept from that suggestion for

the first time after accessing it. Because participants may have accessed multiple suggestions

for a certain concept, we report whether participants added a Do together or a Repeat loop

for the first time after accessing any of the suggestions for that code block.

Evidence of learning

To determine whether participants likely understood constructs they accessed or used in the

supported project phase, we measured participants’ success on the concept transfer tasks.

We selected our scoring metric to reflect whether participants realized which programming

construct they needed to use. Each transfer task received a score of 0% if it did not have

any of the correct programming constructs added and 100% if they were exactly correct. For

the two tasks where participants only needed to insert one type of concept (either loop or

parallel execution), they received a score of 50% if they inserted that construct but did not

fully complete the task. For the other two tasks which required inserting both the loop and

the parallel execution blocks, participants received 33% if they inserted one and 66% if they

inserted both but did not complete the task fully correctly.

166

7.5.5 Study results

Our results address our five questions about the types of suggestions participants received,

which suggestions and tutorials participants accessed and used, evidence of learning, and

participant perceptions.

How many and which suggestions did participants receive?

Because novices likely will not find all suggestions relevant, in a thirty minute session

of artifact-based programming, we would hope that novice programmers would at least

receive several suggestions. On average, participants received 9 suggestions (SD =4.5). All

participants received at least one suggestion and 80% of participants received at least 5

suggestions. The most suggestions participants received was 17.

Participants received 29 of the 80 available suggestions, as shown in Table 7.3. Participants

received 11/19 of the suggestions that aligned with hand-authored suggestions. Almost all

(18/20) participants received three of the suggestions: make a character move diagonally,

make a character jump multiple times, and make multiple characters move at the same time.

Interestingly, these often focused on positional actions. Of the 61 suggestions generated that

did not align with the hand-authored set, 18 were suggested to at least one participant. Six

of the eighteen were about changing the appearance, seven were about speech or speech while

turning or moving, and the remaining eight were about combinations of turning and moving.

The types of suggestions participants did not receive primarily focused on characters moving

their joints. Of the 51 suggestions that no participants received, 34 focused on complex

joint animations. While many programs in our repository included complex joint movement

167

animations, most novice programmers in our study did not reach this skill during the short

lab session.

How did tutorial and suggestion participants differ in the content they accessed?

Participants accessed significantly more unique suggestions than tutorials with a large effect

(F (1, 35) = 9.5, p < 0.01, partial η2=.21). Suggestion participants on average accessed

2.6 suggestions (SD = 2.6), while tutorial participants on average accessed 0.7 tutorials

(SD = 1). There was no significant effect of age or programming experience. More suggestion

participants accessed at least one suggestion: fifteen suggestion participants (75%) accessed

at least one suggestion, while only 9 tutorial participants (45%) accessed at least one tutorial,

though this differece was not significant (χ2(1, N = 40) = 2.6, p = .11). Taking into

account only those who accessed at least one suggestion or tutorial, suggestion accessors still

accessed significantly more unique suggestions than tutorial accessors with a large effect size

(F (1, 19) = 4.9, p < 0.05, partial η2 = .2).

We looked at how often participants accessed support for the two concepts: parallel execution

and loop. Of tutorial participants who accessed tutorials, 7/9 accessed parallel execution

tutorials and 3/9 accessed loop tutorials. Of suggestion participants who accessed suggestions,

14/15 accessed parallel execution suggestions and 12/15 accessed loop suggestions. This

indicates that participants accessing suggestions seem to have accessed information for more

concepts than tutorial users. This may be because most of those who accessed tutorials only

accessed one tutorial, as shown in Figure 7.3, while most suggestion accessors accessed at

least two suggestions.

To provide more in-depth information about users’ behavior, we compared which of the

available tutorials and suggestions participants accessed. Table 7.3 shows the number of

168

Figure 7.3: The number of suggestions and tutorials participants accessed.

participants who accessed tutorials and generated suggestions. It also shows the hand-

authored suggestions, which we will discuss later. Tutorial participants received the 11

hand-authored suggestion ideas statically as a set of tutorials they could access throughout

the project phase. Of those 11 tutorials that they could access, 7 (64%) of them were

accessed by at least one participant. 30 suggestions were suggested to participants. 21 (70%)

were accessed by at least one participant (5 loop and 16 parallel execution). The types of

suggestions and tutorials accessed did not always align. Further exploration is needed to

understand more about why participants accessed these specific types of information.

169

How did tutorial and suggestion participants differ in new usage of concepts after

access?

Suggestion participants generally added more new programming concepts than those in the

tutorial condition. Overall, suggestion participants used more new constructs for the first time

after accessing suggestions (M = .8, SD = .9) than tutorial participants (M = .25, SD = .4).

This difference was significant with a large effect size (F(1,35)=6.1, p < 0.05, partial η2=.15).

There were no significant effects of age or programming experience.

There was not a significant difference in the number of participants who used new concepts

after accessing suggestions and tutorials: five of nine tutorial participants and ten of fifteen

suggestion participants inserted a programming concept into their program for the first time

after accessing a suggestion or tutorial for it (χ2(1, N = 40) = .01, p > .1). Participants

also inserted new programming constructs into their programs after accessing suggestions or

tutorials at similar rates. Suggestion participants inserted 60% of new concepts they accessed

suggestions for (SD = 50%), while tutorial users inserted 50% of concepts they accessed

tutorials for for the first time (SD = 50%) (F (1, 19) = .15, p > .1, partial η2 = .01). Since

the rates of new usage after accessing are similar, the larger number of overall new concepts

inserted is likely related to participants’ accessing more suggestions than tutorials.

We looked at participants usage of each of the concepts for the first time after access. Of the

14 participants who accessed suggestions for parallel execution, 10 of them subsequently used

a parallel execution block for the first time (71%). Of the 7 participants who accessed parallel

execution tutorials, 5 then added them for the first time (71%). Suggestion participants

on average added 3.4 parallel execution blocks after accessing (SD=2), while tutorial users

inserted on average 8 parallel execution blocks (SD = 6.3). Of the 12 suggestion participants

who accessed loop suggestions, 6 added loops for the first time afterward (50%). None of the

170

3 tutorial users who accessed loop tutorials inserted loops for the first time. Suggestion users

on average added 1.8 new loop blocks (SD=1).

Did tutorial or suggestion participants show evidence of learning?

We wanted to know if there was an overall effect of having access to tutorials or suggestions

on ability to solve the transfer tasks. Participants did not significantly differ on transfer tasks

scores with condition (Θ = .15, F (1, 35) = 1.2, p > .1). There was a marginally significant

effect of age on performance (Θ = .34, F (1, 35) = 2.7, p = .05). There was also no difference

for the subset of participants who accessed suggestions or tutorials (Θ = .13, F (1, 19) =

.52, p > .1). There was a no effect of age in this case. Table 7.4 shows the average scores for

the transfer tasks. Because the overall MANCOVA was not significant, we did not do follow-up

tests for the individual transfer tasks. We also repeated this comparison for participants with

not more than three hours of programming (our original intended participant pool) and found

a similar result (Θ = .11, F (1, 26) = .66, p > .1). The biggest differences are for the loop task,

which is the construct where few users accessed tutorials and no tutorial participants used

loop blocks for the first time after accessing tutorials.

As post-hoc follow-up tests, we explored whether accessing or using suggestions or tutorials

may have had a relationship with success on transfer tasks. There was a significant moderate

correlation with using new programming concepts after accessing suggestions or tutorials

and average transfer task score (r = .5, p < .01). Using a MANCOVA with Pillai’s trace and

with whether participants added parallel execution or added loop blocks to their programs as

independent variables, we found that both were significant with relationship to score (V=.47,

F (1, 33) = 6.7, p < .001 and V=.27 F (1, 33) = 2.8, p < .05 respectively). We did not find a

significant correlation between accessing suggestions or tutorials and the average transfer

task score (r = .3, p = .12).

171

Task All Tutorial Accessed Tuto-
rial

All Suggestion Accessed Sug-
gestion

Parallel 50% 61% 58% 67%
Loop 18% 22% 33% 40%
Parallel{loop} 32% 37% 42% 49%
Loop{parallel} 26% 37% 43% 51%

Table 7.4: Transfer task scores

Did participants have different perceptions of programming?

We surveyed participants about two main things: 1) how they perceived programming in

the study, and 2) their perceptions of suggestions and tutorials (see Table 7.5). Participants

gave high ratings for all questions, with averages ranging from 4.9 to 6.5 on a scale from

1-7. Participants did not significantly differ in their responses to these questions based

on condition. The covariates of age and programming experience were also not significant.

Suggestion participants did find the study marginally more exciting on the dull→exciting

scale than tutorial participants with a medium effect size (F (1, 36) = 2.89, p = .1, partial

η2=.08).

Question Tutorials Suggestions
disgusting→enjoyable M=6.1, SD=1.3 M=6.5, SD=.8
dull→ exciting M=5.3, SD=1.8 M=6.1, SD=1∧
unpleasant→pleasant M=5.9, SD=.9 M=6.3, SD=1
boring→interesting M=6, SD=1.5 M=6.4, SD=1.1
not→very useful† M=5.6, SD=1.5 M=4.9, SD=2
very confusing→ very understandable † M=4.9,SD=2.3 M=5.5, SD=1.6
†Participants who did not use them were not included

Table 7.5: Participants responded to Likert scales from 1-7. ∧p = .1

172

7.6 Threats to validity

Our population population contained primarily children whose parents have invested in their

education by signing them up for a STEM-focused mailing list. The participant population

also had more programming experience than expected, though they were still novices. Because

we recruited participants with extremely limited programming experience, we expected to

be able to assume that they had not mastered the programming concepts suggested. While

some participants reported more extensive programming experience, their behavior did not

always support this. Most participants still did not use parallel execution or loop blocks

before accessing suggestions or tutorials. The majority of our participants likely still fit

into our target group: novices who would not explore and use new programming concepts

on their own. However, we cannot be certain that our participants had not been exposed

to the suggested concepts prior to this study. Though our participants had a larger range

of programming experience than anticipated, the range of skills was still small relative to

the general programming audience. This study may not generalize to adult or experienced

programmers.

7.7 Discussion

We discuss: 1) how our approach generalizes, 2) the potential of suggestions to increase

use and learning, 3) the effect of the code repository on suggestion generation, and 3) the

potential of this approach to support personalization.

173

7.7.1 How our approach generalizes

We believe this approach can apply to a variety of programming contexts. The two main

criteria for this type of approach are that the user is motivated by the outcome of their code

and that it is possible to group code by output. We can imagine many programming contexts

where both conditions apply, such as web programming, phone App development, and game

development. In order to be able to find and group the snippets, an expert programmer has

to define the types of objects and methods used to group snippets. However, defining the

types of objects and methods is much less open-ended than trying to imagine suggestions and

create examples. Furthermore, once these are defined, they likely will not need to change

and can be used to continually find new suggestions and examples as programmers’ usages

change over time. When thinking about a context as large as web programming and the

frequency that new contexts and APIs for web programming arise, the amount of setup effort

required will be minimal in relation to the amount of work it would require to design and

create suggestions for full coverage.

7.7.2 Potential of suggestions to increase use and learning

Overall, participants accessed almost three suggestions in a thirty minute session. This implies

that our semi-automated approach to generating suggestions created relevant suggestions

that participants received at appropriate points in programming. Although past studies

[89, 183] have found that novices have trouble re-appropriating information from examples,

this study showed that novice children were often able to use the new concepts they saw

in the suggestions. Over a longer period of time and with more programming constructs,

semi-automatic generated suggestions would likely encourage more use of the programming

174

concepts. This could lead to more learning in artifact-based contexts with less human effort

required.

7.7.3 Effect of the code repository on suggestion generation

There are two interesting challenges of using code repositories for suggestion generation: the

generated content is limited by the code in the repository, and we may not always know

the expertise of the snippet creator. From fewer than 2,000 code examples, our approach

generated an impressive number and quality of suggestions and examples. Many programs in

the repository contained parallel execution code snippets, but many fewer included loop or

nesting block snippets. This approach relies on at least some subset of users to be effectively

using programming constructs. Because there are often at least a subset of programmers

who do explore and seek out ways to learn new programming concepts on their own, we

believe it is reasonable to assume that there will be at least a small number of usages of most

programming concepts or API methods, though this would be interesting to evaluate.

We decided to include both novice and expert programs in our repository for generating

suggestions because novices might create programs more similar to those that the novices

would create in their first 30 minutes. This seems to have succeeded in generating suggestions

with a wide range of complexity. Furthermore, the moderate phase should prevent low-quality

code or suggestions from being created. When selecting code snippets from programs, the

script could also be designed to more effectively filter out poor code. Furthermore, depending

on the type of repository, there might be ways of measuring expertise that could be used to

give higher priority to certain examples or suggestions. A few possibilities are the frequency

of use of certain programming constructs and the number of programs or code contributions

a user has made.

175

7.7.4 Personalization

Automated approaches for creating learning material means that there is more potential

for personalization. Our approach generated many suggestions for each concept. Some of

the suggestions were also highly similar to each other. This could enable systems to further

personalize the suggestions provided based on a broader set of information about the novice

programmer. In this study, some participants paid less attention to the suggestions and some

had more trouble understanding the suggestions. Personalization might enable a system to

better support a broader range of children. This would be hard to do using expert-created

content because the expert would need to create much more content and determine how it

applies to different types of children.

7.8 Conclusion

Existing systems require significant human effort to generate support to help programmers.

As programming becomes more prevalent, there are more and more systems for children

to begin learning programming. With each of these new systems comes the need for more

documentation and support, which is often static and outside of the novice’s context. Being

able to generate support semi-automatically for these systems provides a substantial advantage

over requiring human effort to author the support. Semi-automatic suggestion generation

also provides a way to keep support up to date, such as with themes in pop culture that can

be highly motivating for children. This chapter demonstrates an approach that produces

equivalent suggestions to an expert set, as well as a novel set of suggestions. Our approach

could ease the human costs associated with creating and updating help resources. While

future work should explore how to automate this process even further, this work supports

hypothesis 3, which claims that we can reduce the human effort required. Combined with

176

an effective suggestion system for artifact-driven programming and example support, this

semi-automatic approach for generating content has the potential to help children overcome

plateaus by encouraging exploration of previously unused skills, ideally leading to learning

and continued interest in programming.

177

Chapter 8

Summary and Future Work

This section first summarizes the contributions of this thesis and their potential implications

for supporting artifact-based learning. It then discusses future directions that build upon our

contributions.

8.1 Summary

This thesis makes three main contributions: 1) a better understanding of how novices use

and focus on example code, 2) the design of a system that encourages novice programmers to

explore new skills in a artifact-based context, and 3) an approach for generating suggestions

and rules semi-automatically for artifact-based novice programming. These contributions

advance our ability to design systems that can expose novice users to new skills as they work

toward their own project goals.

This work contributes to the gap in knowledge about what makes example code use difficult for

novice programmers through two studies looking at: 1) novices’ processes using examples and

178

2) how they memorize and recall code. These studies showed several important results: novices

need help knowing what to focus on in examples, novices benefit from comparing example code,

novices need support for finding code blocks in blocks-based environments, and novices need

examples designed to reduce distraction. At a narrow scope, these findings provide important

guidelines for designing support for example use in blocks programming environments. Blocks

programming environments should provide multiple short code example snippets in which

the critical elements are early in the example and other unknown elements are limited. The

examples should also emphasize the critical elements and provide support to help the novice

programmer find those blocks in the programming environment. These recommendations have

the potential for high impact, as most blocks programming environments do not currently

include example support beyond reuse of entire programs. Beyond novice programming

in blocks programming environments, this body of knowledge can also apply to other

programming environments, complex software systems, or digital learning environments.

With this better understanding of novice example use, we designed the Example Guru,

which encouraged novice programmers to explore programming skills during artifact-based

programming more than common static support. The Example Guru provides multiple

examples to encourage comparison and self-exploration. The suggestions are initially available

as annotations on the code that demonstrate the connection of the suggestions to their code.

Suggestions are also available in a list to make them accessible throughout the programming

process. Finally, the suggestions provide a button or directions to help novices find the

code blocks. Evaluations of the Example Guru support the success of these suggestions in

encouraging exploration of new skills in a artifact-based context. Artifact-based learning

is common for novice programming, with the popularity of blocks-based programming

environments like App Inventor, Scratch, Alice, and Kodu. When novices use these contexts

outside of a classroom, they select the type of app, animation, or game that they want to

179

create. This type of suggestion system can then encourage these programmers to explore

new skills as they work. This is particularly useful for children in blocks programming

environments, which typically lack even basic in-context support. These results have broader

implications for more experienced programmers, as well as artifact-based novices in other

contexts. Even intermediate to experienced programmers will likely lack knowledge of all of

the useful API methods or APIs that could improve their programs.

Finally, our approach for semi-automatically generating suggestions and rules for artifact-

based novice programming produced an impressive and effective array of suggestions. The

approach generated suggestions that aligned with expert-created suggestions and a novel set

of suggestions not generated by an expert. Our study showed that these suggestions often

triggered for novice programmers and encouraged them to explore abstract programming

concepts. This approach is not specific to Looking Glass. Similar types of suggestions and

rules could be generated with other code repositories and defined grouping metrics. In

combination with the evidence that novice programmers gain significantly more exposure to

new programming concepts with suggestions than other support, this approach for generating

suggestions has the potential for significant impact in the context of larger systems. This

could enable programmers to discover skills at appropriate times and make better use of

available programming resources. It could also help newer programmers feel more empowered.

Empowering artifact-based novice programmers could increase retention of diverse populations

in computer science.

8.2 Future work

The contributions of this thesis imply that making suggestions to novices in artifact-based

contexts may encourage novices to explore new relevant skills. However, the scope of this

180

thesis has focused only on children in a blocks programming environment and on a small

subset of skills. The designs and approaches of this work have the potential to have a

large impact beyond novice programming if the human effort can be further reduced and if

suggestions can be generated equally well for other types of information. Beyond improving

the scope of this type of system, enabling user interaction with the system could improve the

relevance of suggestions. Enabling users to interact with the content could allow researchers to

better evaluate suggestion relevance. It could also improve learning outcomes by encouraging

self-explanation and community improvement of suggestions. Future work should address the

resulting open questions about the generalizability, scalability, and interactivity of this type

of system: 1) how can we apply large-scale, in-context, suggested content to help people learn

other topics, 2) how can we automatically generate context-relevant support at a large scale,

and 3) what types of user interaction can help users learn and improve suggestion relevance?

8.2.1 How can we apply large-scale in-context suggested content

to help people learn other topics?

Systems like the Example Guru have the potential to be highly effective in helping users explore

more complex programming skills and skills in artifact-based areas beyond programming. As

programming and computing skills become more complex, they may require more complex

suggestions and rules. Beyond programming, a variety of other skill-sets have software

in which users likely learn as they work on projects, such as data analysis, engineering,

architecture, and design. If we could generate suggestion content like we did for the Example

Guru in these other contexts, on-the-fly feedback could be available for a wide variety of

topics. As an example, let’s consider how suggestions could apply to data analysis and the

new challenges in suggesting content outside of programming.

181

Many researchers learn data analysis methods somewhat on-the-fly. Learners define their

own project goals and may not realize there are more correct ways to analyze their data

or parameters they should apply in certain cases. This is an artifact-based context like

programming, but unlike programming, relevant information for data analysis may exist in

the data itself as opposed to the code. Thus, rules would need to be able to analyze imported

data sets and suggestions would need ways to link or refer to data. Furthermore, many

questions and answers are often more conceptual and text-based rather than code-based. Tags

or key words may still help to link textual information to specific concepts, but examples may

need to be drawn from more formalized instructional information rather than crowdsourced

online content.

The method for generating content will need adaptation for other topics because the body

of examples online for data analysis and similar topics is much smaller than the population

of general programmers. Much of the information about data analysis is in the form of

expert knowledge, documentation, websites, forums, slides, and books. If we could generate

suggestions from these varied sources by extracting examples and related text and linking

them, it would enable much further generalization of this type of system beyond programming.

In order to be able to generate suggestions for topics other than programming, systems may

need to be able to generate suggestions and rules at a large scale without repositories of

examples. The next section discusses future work in this direction and also the possibility of

generating suggestions with less human effort than our semi-automatic approach.

182

8.2.2 How can we automatically generate context-relevant support

at a large scale?

In order to create suggestions on a large scale, systems need to construct them automatically.

My dissertation shows that a system can generate suggestions semi-automatically by drawing

from a repository of programs for animation code [93]. This approach still requires human ef-

fort to define the ways to group example snippets and for authoring the titles and descriptions

of suggestions and examples. We could create systems for suggesting content to artifact-based

learners even more efficiently if we could create this content without an expert in the loop

and from other kinds of content than code repositories. There are two avenues to address

here: 1) can we generate suggestions automatically from other types of content, like forums,

and 2) can we generate these suggestions without a human in the loop?

Code repositories often do not provide descriptions or other information about the code or

may not even exist. Other resources, such as forums, documentation, or revision histories

might provide more context and richer support. One way to integrate this type of content

into a suggestion system might be to use example code in the questions to generate rules

and examples in the solutions as the suggestions. The question and answer text could be

used as the description information for the suggestions. An approach like this would need

to filter out poor questions, answers, and examples. It would also need to determine which

text and example code is relevant and useful, either algorithmically or using crowdsourcing.

Another possibility would be to use the question and answer information to design the rules,

but to find more reliable content for the suggestion and examples, such as from high quality

open-source projects or documentation.

Using sources of examples that also contain text descriptions may also help to remove the

expert in the loop in order to generate suggestions and rules completely automatically. Using

183

resources like forums or documentation that include text descriptions or using multiple types

of information could alleviate some of the effort of experts writing the descriptions themselves.

The experts’ other main role was to identify the ways to group code snippets. Machine

learning techniques may also enable us to cluster code examples with less human intervention.

Another way to reduce expert effort may be to have the learners select which examples are

the most helpful and author the suggestion titles and example descriptions. This is just one

of several interaction techniques that could improve this type of suggestion system.

8.2.3 What types of user interaction can help users learn and im-

prove suggestion relevance?

Current systems that support programmers allow for little to no feedback or input from

the user. By interacting with a suggestion system, we believe learners could: learn through

contributing descriptions, improve the suggestion model, and provide feedback that could

enable better evaluation of effectiveness.

One form of interactivity that will likely improve users’ learning from content is involving

them in authoring the descriptions for suggestions or examples. As discussed, self-explanation

can be very helpful for learners. Suggestions could start off with automatically generated

suggestions about the code included, such as “Based on your usage of X, others have used Y”.

They could then ask users to provide a better title to the suggestion. Descriptions of examples

could come from content like revision histories or forum text and ask users to improve the

descriptions. Once several users have started adding titles and descriptions, users could have

the option to select the best description, mark incorrect descriptions, or author their own.

Research on learners labeling video content suggests that having learners label examples will

184

likely support deep understanding of the suggested concepts and also generate valuable labels

[109].

Integrating feedback into how these systems provide information would likely make them

better in two main ways: the system could use feedback to improve when suggestions get

triggered and information about users’ perceptions of suggestions could enable a system to

provide more support. Promptor, which suggests Stack Overflow content within Eclipse has

a thumbs up or thumbs down option [168]. This is a starting point, but is still very limited

because it does not provide any information about why the information is not useful to the

programmer. For example, content might be irrelevant, incorrect, or confusing. A user could

also alert the system that they planned to try to use a suggestion. If a system collected

this feedback, it could augment rules with relevance ratings, remove incorrect feedback, and

provide more support for users who find a suggestion confusing. If a system knows that a

user is trying to implement a suggestion but having difficulty or a user does not understand

a suggestion, it could provide more information or suggestions with the information broken

down. In an educational or evaluation setting, this information could also indicate whether

example content effectively enables users to use new skills and how often automatically

generated suggestions are triggered incorrectly.

Overall, this thesis demonstrates the potential of a suggestion system to encourage novice

programmers to explore new programming skills in an artifact-based context. It also inspires

new directions to establish the effectiveness of this system more generally and to improve its

value to users through interactivity.

185

References

[1] ISO/IEC 9126-1 2001. Software Engineering- Product Quality – Part 1: Quality Model.
2001.

[2] Beth Adelson. “Problem solving and the development of abstract categories in pro-
gramming languages”. In: Memory & cognition 9.4 (1981), pp. 422–433. url: http:
//www.springerlink.com/index/F4656R1818X225R2.pdf.

[3] Alice Community. url: http://www.alice.org/community/.
[4] Amazon Mechanical Turk - Welcome. url: https://www.mturk.com/mturk/welcome.
[5] Nancy Anderson and Ben Shneiderman. “Use of peer ratings in evaluating computer

program quality”. In: Proc. 15th annu.SIGCPR conf. SIGCPR ’77. New York, NY,
USA: ACM, 1977, pp. 218–226. doi: 10.1145/800100.803247. url: http://doi.
acm.org/10.1145/800100.803247.

[6] Anybody can learn | Code.org. url: http://code.org/.
[7] D. Arnow and O. Barshay. “WebToTeach: An interactive focused programming exercise

system”. In: Frontiers in Education Conf. FIE’99. 29th Annual. Vol. 1. 1999, 12A9–39.
url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=839303.

[8] C. Artho and A. Biere. “Applying static analysis to large-scale, multi-threaded Java
programs”. In: Software Engineering. Proc. Australian. 2001, pp. 68–75. url: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=948499.

[9] Muhammad Asaduzzaman, Chanchal K Roy, and Kevin A Schneider. “PARC: Recom-
mending API methods parameters”. In: Software Maintenance and Evolution (ICSME),
2015 IEEE International Conference on. IEEE. 2015, pp. 330–332.

[10] Muhammad Asaduzzaman, Chanchal K Roy, Kevin A Schneider, and Daqing Hou.
“Cscc: Simple, efficient, context sensitive code completion”. In: Software Maintenance
and Evolution (ICSME), 2014 IEEE International Conference on. IEEE. 2014, pp. 71–
80.

[11] Dimitar Asenov, Otmar Hilliges, and Peter Müller. “The effect of richer visualizations
on code comprehension”. In: Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. ACM. 2016, pp. 5040–5045.

186

http://www.springerlink.com/index/F4656R1818X225R2.pdf
http://www.springerlink.com/index/F4656R1818X225R2.pdf
http://www.alice.org/community/
https://www.mturk.com/mturk/welcome
http://dx.doi.org/10.1145/800100.803247
http://doi.acm.org/10.1145/800100.803247
http://doi.acm.org/10.1145/800100.803247
http://code.org/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=839303
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=948499
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=948499

[12] Robert K. Atkinson, Sharon J. Derry, Alexander Renkl, and Donald Wortham. “Learn-
ing from examples: Instructional principles from the worked examples research”. In:
Review of educational research 70.2 (2000), pp. 181–214. url: http://rer.sagepub.
com/content/70/2/181.short.

[13] Alan Baddeley. “Working memory”. In: Science 255.5044 (1992), pp. 556–559.
[14] Omar Badreddin, Andrew Forward, and Timothy C Lethbridge. “Model oriented

programming: an empirical study of comprehension”. In: Proceedings of the 2012
Conference of the Center for Advanced Studies on Collaborative Research. IBM Corp.
2012, pp. 73–86.

[15] Sushil K. Bajracharya, Joel Ossher, and Cristina V. Lopes. “Leveraging usage similarity
for effective retrieval of examples in code repositories”. In: Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of software engineering.
ACM, 2010, pp. 157–166. url: http://dl.acm.org/citation.cfm?id=1882316.

[16] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre Baldi,
and Cristina Lopes. “Sourcerer: a search engine for open source code supporting
structure-based search”. In: Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications. ACM, 2006, pp. 681–
682.

[17] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine Bier.
“Clone Detection Using Abstract Syntax Trees”. In: Proceedings of the International
Conference on Software Maintenance. ICSM ’98. Washington, DC, USA: IEEE Com-
puter Society, 1998, pp. 368–. url: http://dl.acm.org/citation.cfm?id=850947.
853341.

[18] Laura Beckwith, Cory Kissinger, Margaret Burnett, Susan Wiedenbeck, Joseph
Lawrance, Alan Blackwell, and Curtis Cook. “Tinkering and gender in end-user
programmers’ debugging”. In: Proceedings of the SIGCHI conference on Human Fac-
tors in computing systems. ACM, 2006, pp. 231–240. url: http://dl.acm.org/
citation.cfm?id=1124808.

[19] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
“Comparison and evaluation of clone detection tools”. In: IEEE Transactions on
software engineering 33.9 (2007). url: http://ieeexplore.ieee.org/abstract/
document/4288192/.

[20] R E. Berry and B A.E. Meekings. “A style analysis of C programs”. In: Commun.
ACM 28.1 (Jan. 1985), pp. 80–88. doi: 10.1145/2465.2469. url: http://doi.acm.
org/10.1145/2465.2469.

[21] Michael Blumenstein, Steven Green, Ann Nguyen, and Vallipuram Muthukkumarasamy.
“An experimental analysis of GAME: a generic automated marking environment”. In:
SIGCSE Bull. 36.3 (June 2004), pp. 67–71. doi: 10.1145/1026487.1008016. url:
http://doi.acm.org/10.1145/1026487.1008016.

187

http://rer.sagepub.com/content/70/2/181.short
http://rer.sagepub.com/content/70/2/181.short
http://dl.acm.org/citation.cfm?id=1882316
http://dl.acm.org/citation.cfm?id=850947.853341
http://dl.acm.org/citation.cfm?id=850947.853341
http://dl.acm.org/citation.cfm?id=1124808
http://dl.acm.org/citation.cfm?id=1124808
http://ieeexplore.ieee.org/abstract/document/4288192/
http://ieeexplore.ieee.org/abstract/document/4288192/
http://dx.doi.org/10.1145/2465.2469
http://doi.acm.org/10.1145/2465.2469
http://doi.acm.org/10.1145/2465.2469
http://dx.doi.org/10.1145/1026487.1008016
http://doi.acm.org/10.1145/1026487.1008016

[22] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. “Example-
centric programming: integrating web search into the development environment”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2010, pp. 513–522. url: http://dl.acm.org/citation.cfm?id=1753402.

[23] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
“Two studies of opportunistic programming: interleaving web foraging, learning, and
writing code”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2009, pp. 1589–1598. url: http://dl.acm.org/citation.
cfm?id=1518944.

[24] Dennis M. Breuker, Jan Derriks, and Jacob Brunekreef. “Measuring static quality
of student code”. In: Proc. 16th annu. joint conf. on ITiCSE. ITiCSE ’11. New
York, NY, USA: ACM, 2011, pp. 13–17. doi: 10.1145/1999747.1999754. url:
http://doi.acm.org/10.1145/1999747.1999754.

[25] Ruven Brooks. “Towards a theory of the comprehension of computer programs”.
In: International journal of man-machine studies 18.6 (1983), pp. 543–554. url:
http://www.sciencedirect.com/science/article/pii/S0020737383800315.

[26] Marcel Bruch, Martin Monperrus, and Mira Mezini. “Learning from examples to
improve code completion systems”. In: Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM. 2009, pp. 213–222.

[27] Peter Brusilovsky. “WebEx: Learning from Examples in a Programming Course.” In:
WebNet. Vol. 1. 2001, pp. 124–129. url: http://www.pitt.edu/~peterb/papers/
WebNet01.html.

[28] Peter Brusilovsky and Gerhard Weber. “Collaborative example selection in an intelli-
gent example-based programming environment”. In: Proceedings of the 1996 interna-
tional conference on Learning sciences. International Society of the Learning Sciences,
1996, pp. 357–362. url: http://dl.acm.org/citation.cfm?id=1161185.

[29] Build software better, together. en. url: https://github.com (visited on 03/27/2018).
[30] Margaret Burnett, Scott D. Fleming, Shamsi Iqbal, Gina Venolia, Vidya Rajaram,

Umer Farooq, Valentina Grigoreanu, and Mary Czerwinski. “Gender differences and
programming environments: across programming populations”. In: Proceedings of the
2010 ACM-IEEE international symposium on empirical software engineering and
measurement. ACM, 2010, p. 28. url: http://dl.acm.org/citation.cfm?id=
1852824.

[31] Raymond PL Buse and Westley Weimer. “Synthesizing API usage examples”. In:
Proceedings of the 34th International Conference on Software Engineering. IEEE Press,
2012, pp. 782–792.

188

http://dl.acm.org/citation.cfm?id=1753402
http://dl.acm.org/citation.cfm?id=1518944
http://dl.acm.org/citation.cfm?id=1518944
http://dx.doi.org/10.1145/1999747.1999754
http://doi.acm.org/10.1145/1999747.1999754
http://www.sciencedirect.com/science/article/pii/S0020737383800315
http://www.pitt.edu/~peterb/papers/WebNet01.html
http://www.pitt.edu/~peterb/papers/WebNet01.html
http://dl.acm.org/citation.cfm?id=1161185
https://github.com
http://dl.acm.org/citation.cfm?id=1852824
http://dl.acm.org/citation.cfm?id=1852824

[32] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Paterson,
Carsten Schulte, Bonita Sharif, and Sascha Tamm. “Eye movements in code reading:
Relaxing the linear order”. In: Program Comprehension (ICPC), 2015 IEEE 23rd
International Conference on. IEEE. 2015, pp. 255–265.

[33] Teresa Busjahn, Carsten Schulte, and Edna Kropp. “Developing Coding Schemes
for Program Comprehension using Eye Movements”. In: PPIG, University of Sussex
(2014). url: http://www.mi.fu-berlin.de/inf/groups/ag-ddi/members/
wimis/Busjahn-et-al_---2014---Developing-Coding-Schemes-for-Program-
Comprehensio.pdf.

[34] Jill Cao, Yann Riche, Susan Wiedenbeck, Margaret Burnett, and Valentina Grigoreanu.
“End-user mashup programming: through the design lens”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 2010, pp. 1009–
1018. url: http://dl.acm.org/citation.cfm?id=1753477.

[35] William M Carroll. “Using worked examples as an instructional support in the algebra
classroom.” In: Journal of Educational Psychology 86.3 (1994), p. 360.

[36] Richard Catrambone. “The subgoal learning model: Creating better examples so that
students can solve novel problems.” In: Journal of Experimental Psychology: General
127.4 (1998), p. 355.

[37] Richard Catrambone and Keith J Holyoak. “Overcoming contextual limitations on
problem-solving transfer.” In: Journal of Experimental Psychology: Learning, Memory,
and Cognition 15.6 (1989), p. 1147.

[38] Kerry Shih-Ping Chang and Brad A. Myers. “WebCrystal: understanding and reusing
examples in web authoring”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2012, pp. 3205–3214. url: http://dl.acm.
org/citation.cfm?id=2208740.

[39] William G. Chase and Herbert A. Simon. “Perception in chess”. In: Cognitive psychology
4.1 (1973), pp. 55–81. url: http://www.sciencedirect.com/science/article/
pii/0010028573900042.

[40] Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. “Sniff: A search engine for
java using free-form queries”. In: Fundamental Approaches to Software Engineering
(2009), pp. 385–400.

[41] Michelene TH Chi, Miriam Bassok, Matthew W. Lewis, Peter Reimann, and Robert
Glaser. “Self-explanations: How students study and use examples in learning to
solve problems”. In: Cognitive science 13.2 (1989), pp. 145–182. url: http://www.
sciencedirect.com/science/article/pii/0364021389900025.

[42] Michelene TH Chi, Paul J. Feltovich, and Robert Glaser. “Categorization and rep-
resentation of physics problems by experts and novices”. In: Cognitive science 5.2
(1981), pp. 121–152. url: http: / / onlinelibrary. wiley .com / doi /10 . 1207 /
s15516709cog0502_2/abstract.

189

http://www.mi.fu-berlin.de/inf/groups/ag-ddi/members/wimis/Busjahn-et-al_---2014---Developing-Coding-Schemes-for-Program-Comprehensio.pdf
http://www.mi.fu-berlin.de/inf/groups/ag-ddi/members/wimis/Busjahn-et-al_---2014---Developing-Coding-Schemes-for-Program-Comprehensio.pdf
http://www.mi.fu-berlin.de/inf/groups/ag-ddi/members/wimis/Busjahn-et-al_---2014---Developing-Coding-Schemes-for-Program-Comprehensio.pdf
http://dl.acm.org/citation.cfm?id=1753477
http://dl.acm.org/citation.cfm?id=2208740
http://dl.acm.org/citation.cfm?id=2208740
http://www.sciencedirect.com/science/article/pii/0010028573900042
http://www.sciencedirect.com/science/article/pii/0010028573900042
http://www.sciencedirect.com/science/article/pii/0364021389900025
http://www.sciencedirect.com/science/article/pii/0364021389900025
http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog0502_2/abstract
http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog0502_2/abstract

[43] Michelene TH Chi, Robert Glaser, and Ernest Rees. Expertise in problem solving.
Tech. rep. DTIC Document, 1981. url: http://oai.dtic.mil/oai/oai?verb=
getRecord&metadataPrefix=html&identifier=ADA100138.

[44] Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira Dontcheva, Wilmot Li, and Björn Hartmann.
“MixT: automatic generation of step-by-step mixed media tutorials”. In: Proceedings
of the 25th annual ACM symposium on User interface software and technology. ACM,
2012, pp. 93–102. url: http://dl.acm.org/citation.cfm?id=2380130.

[45] Code Analyzer for Java. url: http://qjpro.sourceforge.net/index.html.
[46] Joel Cordeiro, Bruno Antunes, and Paulo Gomes. “Context-based recommendation to

support problem solving in software development”. In: Recommendation Systems for
Software Engineering (RSSE), 2012 Third International Workshop on. IEEE. 2012,
pp. 85–89.

[47] Davor Čubranić and Gail C Murphy. “Hipikat: Recommending pertinent software
development artifacts”. In: Proceedings of the 25th international Conference on Software
Engineering. IEEE Computer Society. 2003, pp. 408–418.

[48] Jácome Cunha, João Fernandes, Hugo Ribeiro, and João Saraiva. “Towards a catalog
of spreadsheet smells”. In: ICCSA 2012 (2012), pp. 202–216. url: http://www.
springerlink.com/index/41084U52236674V5.pdf.

[49] Simon P. Davies, David J. Gilmore, and Thomas R. G. Green. “Are Objects That
Important? Effects of Expertise and Familiarity on Classification of Object-Oriented
Code”. In: Human–Computer Interaction 10.2-3 (June 1995), pp. 227–248. doi: 10.
1080/07370024.1995.9667218. url: http://www.tandfonline.com/doi/abs/10.
1080/07370024.1995.9667218.

[50] Adriaan D. De Groot and Adrianus Dingeman de Groot. Thought and choice in chess.
Vol. 4. Walter de Gruyter, 1978. url: https://books.google.com/books?hl=en&
lr=&id=EI4gr42NwDQC&oi=fnd&pg=PR5&dq=thought+and+choice+in+chess+de+
groot&ots=5ESZLGvbmT&sig=_CBrlhCbxPJ6GLbvlQvvFLzEkPA.

[51] Uri Dekel and James D Herbsleb. “Improving API documentation usability with knowl-
edge pushing”. In: Software Engineering, 2009. ICSE 2009. IEEE 31st International
Conference on. IEEE. 2009, pp. 320–330.

[52] Difflib — Helpers for computing deltas — Python 2.7.13 documentation. url: https:
//docs.python.org/2/library/difflib.html.

[53] diff-match-patch. url: https://www.npmjs.com/package/diff-match-patch.
[54] Christian Dörner, Andrew R Faulring, and Brad A Myers. “EUKLAS: Supporting

copy-and-paste strategies for integrating example code”. In: Proceedings of the 5th
Workshop on Evaluation and Usability of Programming Languages and Tools. ACM.
2014, pp. 13–20.

190

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA100138
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA100138
http://dl.acm.org/citation.cfm?id=2380130
http://qjpro.sourceforge.net/index.html
http://www.springerlink.com/index/41084U52236674V5.pdf
http://www.springerlink.com/index/41084U52236674V5.pdf
http://dx.doi.org/10.1080/07370024.1995.9667218
http://dx.doi.org/10.1080/07370024.1995.9667218
http://www.tandfonline.com/doi/abs/10.1080/07370024.1995.9667218
http://www.tandfonline.com/doi/abs/10.1080/07370024.1995.9667218
https://books.google.com/books?hl=en&lr=&id=EI4gr42NwDQC&oi=fnd&pg=PR5&dq=thought+and+choice+in+chess+de+groot&ots=5ESZLGvbmT&sig=_CBrlhCbxPJ6GLbvlQvvFLzEkPA
https://books.google.com/books?hl=en&lr=&id=EI4gr42NwDQC&oi=fnd&pg=PR5&dq=thought+and+choice+in+chess+de+groot&ots=5ESZLGvbmT&sig=_CBrlhCbxPJ6GLbvlQvvFLzEkPA
https://books.google.com/books?hl=en&lr=&id=EI4gr42NwDQC&oi=fnd&pg=PR5&dq=thought+and+choice+in+chess+de+groot&ots=5ESZLGvbmT&sig=_CBrlhCbxPJ6GLbvlQvvFLzEkPA
https://docs.python.org/2/library/difflib.html
https://docs.python.org/2/library/difflib.html
https://www.npmjs.com/package/diff-match-patch

[55] Stephen H. Edwards and Manuel A. Perez-Quinones. “Web-CAT: automatically grading
programming assignments”. In: Proc. 13th annual conf. on ITiCSE. ITiCSE ’08. New
York, NY, USA: ACM, 2008, pp. 328–328. doi: 10.1145/1384271.1384371. url:
http://doi.acm.org/10.1145/1384271.1384371.

[56] The CSTA Standards Task Force. CSTA K-12 Computer Science Standards. Tech. rep.
CSTA, 2011.

[57] Martin Fowler and Kent Beck. Refactoring: Improving the Design of Existing Code.
en. Addison-Wesley Professional, 1999.

[58] C Ailie Fraser, Mira Dontcheva, Holger Winnemöller, Sheryl Ehrlich, and Scott
Klemmer. “DiscoverySpace: Suggesting Actions in Complex Software”. In: Proceedings
of the 2016 ACM Conference on Designing Interactive Systems. ACM. 2016, pp. 1221–
1232.

[59] X. Fu, B. Peltsverger, K. Qian, L. Tao, and J. Liu. “APOGEE: automated project
grading and instant feedback system for web based computing”. In: ACM SIGCSE
Bulletin. Vol. 40. 2008, pp. 77–81. url: http://dl.acm.org/citation.cfm?id=
1352163.

[60] Dedre Gentner. “Structure-mapping: A theoretical framework for analogy”. In: Cog-
nitive science 7.2 (1983), pp. 155–170. url: http://www.sciencedirect.com/
science/article/pii/S0364021383800093.

[61] Dedre Gentner and Cecile Toupin. “Systematicity and surface similarity in the de-
velopment of analogy”. In: Cognitive science 10.3 (1986), pp. 277–300. url: http:
//onlinelibrary.wiley.com/doi/10.1207/s15516709cog1003_2/abstract.

[62] Mary L. Gick and Keith J. Holyoak. “Analogical problem solving”. In: Cognitive psy-
chology 12.3 (1980), pp. 306–355. url: http://www.sciencedirect.com/science/
article/pii/0010028580900134.

[63] Mary L. Gick and Keith J. Holyoak. “Schema induction and analogical transfer”. In:
Cognitive psychology 15.1 (1983), pp. 1–38. url: http://www.sciencedirect.com/
science/article/pii/0010028583900026.

[64] D. J. Gilmore and T. R. G. Green. “Programming plans and programming expertise”.
In: The Quarterly Journal of Experimental Psychology 40.3 (1988), pp. 423–442. url:
http://www.tandfonline.com/doi/abs/10.1080/02724988843000005.

[65] Barney G. Glaser and Anselm L. Strauss. The discovery of grounded theory: Strategies
for qualitative research. Aldine de Gruyter, 1967. url: http://books.google.com/
books?hl=en&lr=&id=rtiNK68Xt08C&oi=fnd&pg=PA1&dq=grounded+theory&ots=
UUzTWhWL-L&sig=GzQM6hpGR1LGezru_rqbWxaK86Y.

[66] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C. Miller.
“OverCode: Visualizing variation in student solutions to programming problems at
scale”. In: ACM Transactions on Computer-Human Interaction (TOCHI) 22.2 (2015),
p. 7. url: http://dl.acm.org/citation.cfm?id=2699751.

191

http://dx.doi.org/10.1145/1384271.1384371
http://doi.acm.org/10.1145/1384271.1384371
http://dl.acm.org/citation.cfm?id=1352163
http://dl.acm.org/citation.cfm?id=1352163
http://www.sciencedirect.com/science/article/pii/S0364021383800093
http://www.sciencedirect.com/science/article/pii/S0364021383800093
http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1003_2/abstract
http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1003_2/abstract
http://www.sciencedirect.com/science/article/pii/0010028580900134
http://www.sciencedirect.com/science/article/pii/0010028580900134
http://www.sciencedirect.com/science/article/pii/0010028583900026
http://www.sciencedirect.com/science/article/pii/0010028583900026
http://www.tandfonline.com/doi/abs/10.1080/02724988843000005
http://books.google.com/books?hl=en&lr=&id=rtiNK68Xt08C&oi=fnd&pg=PA1&dq=grounded+theory&ots=UUzTWhWL-L&sig=GzQM6hpGR1LGezru_rqbWxaK86Y
http://books.google.com/books?hl=en&lr=&id=rtiNK68Xt08C&oi=fnd&pg=PA1&dq=grounded+theory&ots=UUzTWhWL-L&sig=GzQM6hpGR1LGezru_rqbWxaK86Y
http://books.google.com/books?hl=en&lr=&id=rtiNK68Xt08C&oi=fnd&pg=PA1&dq=grounded+theory&ots=UUzTWhWL-L&sig=GzQM6hpGR1LGezru_rqbWxaK86Y
http://dl.acm.org/citation.cfm?id=2699751

[67] Fernand Gobet, Peter CR Lane, Steve Croker, Peter CH Cheng, Gary Jones, Iain
Oliver, and Julian M. Pine. “Chunking mechanisms in human learning”. In: Trends in
cognitive sciences 5.6 (2001), pp. 236–243. url: http://www.sciencedirect.com/
science/article/pii/S1364661300016624.

[68] Max Goldman and Robert C. Miller. “Codetrail: Connecting source code and web
resources”. In: Journal of Visual Languages & Computing 20.4 (2009), pp. 223–235. url:
http://www.sciencedirect.com/science/article/pii/S1045926X09000263.

[69] Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira Dontcheva, and Takeo Igarashi.
“Generating photo manipulation tutorials by demonstration”. In: ACM Transactions
on Graphics (TOG) 28.3 (2009), p. 66. url: http://dl.acm.org/citation.cfm?
id=1531372.

[70] Simon Gray, Caroline St Clair, Richard James, and Jerry Mead. “Suggestions for
graduated exposure to programming concepts using fading worked examples”. In:
Proceedings of the third international workshop on Computing education research.
ACM. 2007, pp. 99–110.

[71] Greenfoot | Latest Activity. url: https://www.greenfoot.org/home (visited on
03/26/2018).

[72] Paul A. Gross, Micah S. Herstand, Jordana W. Hodges, and Caitlin L. Kelleher. “A
code reuse interface for non-programmer middle school students”. In: Proceedings of the
15th international conference on Intelligent user interfaces. ACM, 2010, pp. 219–228.
url: http://dl.acm.org/citation.cfm?id=1720001.

[73] Paul Gross and Caitlin Kelleher. “Non-programmers identifying functionality in
unfamiliar code: strategies and barriers”. In: Journal of Visual Languages & Computing
21.5 (2010), pp. 263–276. url: http://www.sciencedirect.com/science/article/
pii/S1045926X10000431.

[74] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. “On the use of
automated text summarization techniques for summarizing source code”. In: Reverse
Engineering (WCRE), 2010 17th Working Conference on. IEEE, 2010, pp. 35–44. url:
http://ieeexplore.ieee.org/abstract/document/5645482/.

[75] Kyle J. Harms, Dennis Cosgrove, Shannon Gray, and Caitlin Kelleher. “Automatically
generating tutorials to enable middle school children to learn programming indepen-
dently”. In: Proceedings of the 12th International Conference on Interaction Design
and Children. ACM, 2013, pp. 11–19. url: http://dl.acm.org/citation.cfm?id=
2485764.

[76] Kyle J. Harms, Jordana H. Kerr, Michelle Ichinco, Mark Santolucito, Alexis Chuck,
Terian Koscik, Mary Chou, and Caitlin L. Kelleher. “Designing a community to
support long-term interest in programming for middle school children”. In: Proceedings
of the 11th International Conference on Interaction Design and Children. IDC ’12.
New York, NY, USA: ACM, 2012, pp. 304–307. doi: 10.1145/2307096.2307152.
url: http://doi.acm.org/10.1145/2307096.2307152.

192

http://www.sciencedirect.com/science/article/pii/S1364661300016624
http://www.sciencedirect.com/science/article/pii/S1364661300016624
http://www.sciencedirect.com/science/article/pii/S1045926X09000263
http://dl.acm.org/citation.cfm?id=1531372
http://dl.acm.org/citation.cfm?id=1531372
https://www.greenfoot.org/home
http://dl.acm.org/citation.cfm?id=1720001
http://www.sciencedirect.com/science/article/pii/S1045926X10000431
http://www.sciencedirect.com/science/article/pii/S1045926X10000431
http://ieeexplore.ieee.org/abstract/document/5645482/
http://dl.acm.org/citation.cfm?id=2485764
http://dl.acm.org/citation.cfm?id=2485764
http://dx.doi.org/10.1145/2307096.2307152
http://doi.acm.org/10.1145/2307096.2307152

[77] Kyle J. Harms, Noah Rowlett, and Caitlin Kelleher. “Enabling independent learning of
programming concepts through programming completion puzzles”. In: Visual Languages
and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on. IEEE, 2015,
pp. 271–279. url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
7357226.

[78] Kyle James Harms, Jason Chen, and Caitlin L. Kelleher. “Distractors in Parsons
Problems Decrease Learning Efficiency for Young Novice Programmers”. In: Proceedings
of the 2016 ACM Conference on International Computing Education Research. ACM,
2016, pp. 241–250. url: http://dl.acm.org/citation.cfm?id=2960314.

[79] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. “What would other
programmers do: suggesting solutions to error messages”. In: Proc. 28th int. conf. on
Human factors in computing systems. 2010, pp. 1019–1028.

[80] Andrew Head, Codanda Appachu, Marti A. Hearst, and Björn Hartmann. “Tutorons:
Generating context-relevant, on-demand explanations and demonstrations of online
code”. In: Visual Languages and Human-Centric Computing (VL/HCC), 2015 IEEE
Symposium on. IEEE, 2015, pp. 3–12. url: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=7356972.

[81] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo, Loris
D’Antoni, and Björn Hartmann. “Writing Reusable Code Feedback at Scale with
Mixed-Initiative Program Synthesis”. In: Proceedings of the Fourth (2017) ACM
Conference on Learning@ Scale. ACM, 2017, pp. 89–98. url: http://dl.acm.org/
citation.cfm?id=3051467.

[82] Lars Heinemann, Veronika Bauer, Markus Herrmannsdoerfer, and Benjamin Hummel.
“Identifier-based context-dependent api method recommendation”. In: Software Main-
tenance and Reengineering (CSMR), 2012 16th European Conference on. IEEE. 2012,
pp. 31–40.

[83] Wint Hnin, Michelle Ichinco, and Caitlin Kelleher. “An Exploratory Study of the
Usage of Different Educational Resources in an Independent Context”. In: Visual
Languages and Human-Centric Computing (VL/HCC), 2017 IEEE Symposium on.
IEEE, 2017, To Appear.

[84] Raphael Hoffmann, James Fogarty, and Daniel S Weld. “Assieme: finding and leveraging
implicit references in a web search interface for programmers”. In: Proceedings of the
20th annual ACM symposium on User interface software and technology. ACM. 2007,
pp. 13–22.

[85] Reid Holmes and Gail C. Murphy. “Using structural context to recommend source code
examples”. In: Proceedings of the 27th international conference on Software engineering.
ACM, 2005, pp. 117–125. url: http://dl.acm.org/citation.cfm?id=1062491.

[86] Reid Holmes and Robert J Walker. “A newbie’s guide to eclipse APIs”. In: Proceedings
of the 2008 international working conference on Mining software repositories. ACM.
2008, pp. 149–152.

193

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7357226
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7357226
http://dl.acm.org/citation.cfm?id=2960314
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7356972
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7356972
http://dl.acm.org/citation.cfm?id=3051467
http://dl.acm.org/citation.cfm?id=3051467
http://dl.acm.org/citation.cfm?id=1062491

[87] Reid Holmes, Robert J. Walker, and Gail C. Murphy. “Approximate structural context
matching: An approach to recommend relevant examples”. In: Software Engineering,
IEEE Transactions on 32.12 (2006), pp. 952–970. url: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=4016572.

[88] Michael J. Hull, Daniel Powell, and Ewan Klein. “Infandango: automated grading for
student programming”. In: Proc. 16th annu. joint conf. ITiCSE. ITiCSE ’11. New
York, NY, USA: ACM, 2011, pp. 330–330. doi: 10.1145/1999747.1999841. url:
http://doi.acm.org/10.1145/1999747.1999841.

[89] Ichinco, M., Harms, K.J., and Kelleher, C. “Towards Understanding Successful Novice
Example User in Blocks-Based Programming”. In: Journal of Visual Languages and
Sentient Systems Volume 3.July 2017 (July 2017), pp. 101–118.

[90] Michelle Ichinco, Wint Yee Hnin, and Caitlin L. Kelleher. “Suggesting API Usage
to Novice Programmers with the Example Guru”. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. CHI ’17. New York, NY,
USA: ACM, 2017, pp. 1105–1117. doi: 10.1145/3025453.3025827. url: http:
//doi.acm.org/10.1145/3025453.3025827.

[91] Michelle Ichinco and Caitlin Kelleher. “Exploring novice programmer example use”. In:
Visual Languages and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium
on. IEEE, 2015, pp. 63–71. url: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=7357199.

[92] Michelle Ichinco and Caitlin Kelleher. “Towards block code examples that help young
novices notice critical elements”. In: Visual Languages and Human-Centric Computing
(VL/HCC), 2017 IEEE Symposium on. IEEE. 2017, pp. 335–336.

[93] Michelle Ichinco and Caitlin L Kelleher. “Semi-Automatic Suggestion Generation for
Young Novice Programmers in an Open-Ended Context”. In: Proceedings of the 17th
International Conference on Interaction Design and Children. ACM. 2018, To Appear.

[94] Michelle Ichinco, Aaron Zemach, and Caitlin Kelleher. “Towards generalizing expert
programmers’ suggestions for novice programmers”. In: Visual Languages and Human-
Centric Computing (VL/HCC), 2013 IEEE Symposium on. IEEE, 2013, pp. 143–
150.

[95] Takeo Igarashi and John F Hughes. “A suggestive interface for 3D drawing”. In:
Proceedings of the 14th annual ACM symposium on User interface software and
technology. ACM. 2001, pp. 173–181.

[96] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä. “Review of recent systems for
automatic assessment of programming assignments”. In: Proceedings of the 10th Koli
Calling International Conference on Computing Education Research. 2010, pp. 86–93.
url: http://dl.acm.org/citation.cfm?id=1930480.

[97] Google Inc. Gallup Inc. “Trends in the State of Computer Science in U.S. K-12 Schools”.
In: (2016). url: http://goo.gl/j291E0.

194

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4016572
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4016572
http://dx.doi.org/10.1145/1999747.1999841
http://doi.acm.org/10.1145/1999747.1999841
http://dx.doi.org/10.1145/3025453.3025827
http://doi.acm.org/10.1145/3025453.3025827
http://doi.acm.org/10.1145/3025453.3025827
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7357199
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7357199
http://dl.acm.org/citation.cfm?id=1930480
http://goo.gl/j291E0

[98] David Jackson and Michelle Usher. “Grading student programs using ASSYST”. In:
Proc. 28th SIGCSE technical symp. on Computer science education. SIGCSE ’97.
New York, NY, USA: ACM, 1997, pp. 335–339. doi: 10.1145/268084.268210. url:
http://doi.acm.org/10.1145/268084.268210.

[99] javapoet: A Java API for generating .java source files. original-date: 2013-02-01T16:56:30Z.
Aug. 2017. url: https://github.com/square/javapoet.

[100] Will Jernigan et al. “A principled evaluation for a principled idea garden”. In: Visual
Languages and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on.
IEEE, 2015, pp. 235–243. url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=7357222.

[101] E. L. Jones. “Grading student programs-a software testing approach”. In: J. of
Computing Sci. in Colleges 16.2 (2001), pp. 185–192. url: http://dl.acm.org/
citation.cfm?id=369279.369354.

[102] M. Gail Jones, Laura Brader-Araje, Lisa Wilson Carboni, Glenda Carter, Melissa
J. Rua, Eric Banilower, and Holly Hatch. “Tool time: Gender and students’ use
of tools, control, and authority”. In: Journal of Research in Science Teaching 37.8
(2000), pp. 760–783. url: http://onlinelibrary.wiley.com/doi/10.1002/1098-
2736(200010)37:8%3C760::AID-TEA2%3E3.0.CO;2-V/full.

[103] N. Jovanovic, C. Kruegel, and E. Kirda. “Pixy: A static analysis tool for detecting
web application vulnerabilities”. In: Security and Privacy, IEEE Symp. on. 2006, 6–pp.
url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1624016.

[104] David Kawrykow and Martin P. Robillard. “Improving api usage through automatic
detection of redundant code”. In: Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer Society, 2009, pp. 111–
122. url: http://dl.acm.org/citation.cfm?id=1747513.

[105] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. “Storytelling alice motivates middle
school girls to learn computer programming”. In: Proceedings of the SIGCHI conference
on Human factors in computing systems. ACM, 2007, pp. 1455–1464. url: http:
//dl.acm.org/citation.cfm?id=1240844.

[106] Marouane Kessentini, Wael Kessentini, Houari Sahraoui, Mounir Boukadoum, and
Ali Ouni. “Design Defects Detection and Correction by Example”. In: Program Com-
prehension, IEEE 19th Int.Conf. 2011, pp. 81–90. url: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=5970166.

[107] Khan Academy. url: http://www.khanacademy.org.
[108] Md Adnan Alam Khan, Volodymyr Dziubak, and Andrea Bunt. “Exploring personal-

ized command recommendations based on information found in Web documentation”.
In: Proceedings of the 20th International Conference on Intelligent User Interfaces.
ACM, 2015, pp. 225–235. url: http://dl.acm.org/citation.cfm?id=2701387.

195

http://dx.doi.org/10.1145/268084.268210
http://doi.acm.org/10.1145/268084.268210
https://github.com/square/javapoet
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7357222
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7357222
http://dl.acm.org/citation.cfm?id=369279.369354
http://dl.acm.org/citation.cfm?id=369279.369354
http://onlinelibrary.wiley.com/doi/10.1002/1098-2736(200010)37:8%3C760::AID-TEA2%3E3.0.CO;2-V/full
http://onlinelibrary.wiley.com/doi/10.1002/1098-2736(200010)37:8%3C760::AID-TEA2%3E3.0.CO;2-V/full
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1624016
http://dl.acm.org/citation.cfm?id=1747513
http://dl.acm.org/citation.cfm?id=1240844
http://dl.acm.org/citation.cfm?id=1240844
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5970166
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5970166
http://www.khanacademy.org
http://dl.acm.org/citation.cfm?id=2701387

[109] Juho Kim, Robert C Miller, and Krzysztof Z Gajos. “Learnersourcing subgoal labeling
to support learning from how-to videos”. In: CHI’13 Extended Abstracts on Human
Factors in Computing Systems. ACM. 2013, pp. 685–690.

[110] Cory Kissinger, Margaret Burnett, Simone Stumpf, Neeraja Subrahmaniyan, Laura
Beckwith, Sherry Yang, and Mary Beth Rosson. “Supporting end-user debugging:
what do users want to know?” In: Proceedings of the working conference on Advanced
visual interfaces. ACM, 2006, pp. 135–142. url: http://dl.acm.org/citation.cfm?
id=1133293.

[111] Klocwork. url: http://www.klocwork.com/.
[112] Andrew Jensen Ko, Brad A. Myers, and Htet Htet Aung. “Six learning barriers in

end-user programming systems”. In: Visual Languages and Human Centric Computing,
2004 IEEE Symposium on. IEEE, 2004, pp. 199–206. url: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=1372321.

[113] Kodu Forum | Discussion. url: https://www.kodugamelab.com/discussion (visited
on 03/26/2018).

[114] Kodu | Home. url: http://www.kodugamelab.com/.
[115] Jürgen Koenemann and Scott P. Robertson. “Expert problem solving strategies for

program comprehension”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 1991, pp. 125–130. url: http://dl.acm.org/citation.
cfm?id=108863.

[116] Jochen Kreimer. “Adaptive Detection of Design Flaws”. In: Electron. Notes Theor.
Comput. Sci. 141.4 (Dec. 2005), pp. 117–136. doi: 10.1016/j.entcs.2005.02.059.
url: http://dx.doi.org/10.1016/j.entcs.2005.02.059.

[117] Benjamin Lafreniere, Parmit K. Chilana, Adam Fourney, and Michael A. Terry.
“These Aren’t the Commands You’re Looking For: Addressing False Feedforward
in Feature-Rich Software”. In: Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology. ACM, 2015, pp. 619–628. url: http:
//dl.acm.org/citation.cfm?id=2807482.

[118] Jill Larkin, John McDermott, Dorothea P. Simon, and Herbert A. Simon. “Expert and
novice performance in solving physics problems”. In: Science 208.4450 (1980), pp. 1335–
1342. url: https : / / www . researchgate . net / profile / John _ Mcdermott10 /
publication/6064271_Expert_and_Novice_Performance_in_Solving_Physics_
Problems/links/5489c30f0cf214269f1abb55.pdf.

[119] Wei Li, Justin Matejka, Tovi Grossman, Joseph A. Konstan, and George Fitzmaurice.
“Design and evaluation of a command recommendation system for software applications”.
In: ACM Transactions on Computer-Human Interaction (TOCHI) 18.2 (2011), p. 6.
url: http://dl.acm.org/citation.cfm?id=1970380.

[120] Dastyni Loksa and Andrew J Ko. “Modeling Programming Problem Solving Through
Interactive Worked Examples”. In: (2017).

196

http://dl.acm.org/citation.cfm?id=1133293
http://dl.acm.org/citation.cfm?id=1133293
http://www.klocwork.com/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1372321
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1372321
https://www.kodugamelab.com/discussion
http://www.kodugamelab.com/
http://dl.acm.org/citation.cfm?id=108863
http://dl.acm.org/citation.cfm?id=108863
http://dx.doi.org/10.1016/j.entcs.2005.02.059
http://dx.doi.org/10.1016/j.entcs.2005.02.059
http://dl.acm.org/citation.cfm?id=2807482
http://dl.acm.org/citation.cfm?id=2807482
https://www.researchgate.net/profile/John_Mcdermott10/publication/6064271_Expert_and_Novice_Performance_in_Solving_Physics_Problems/links/5489c30f0cf214269f1abb55.pdf
https://www.researchgate.net/profile/John_Mcdermott10/publication/6064271_Expert_and_Novice_Performance_in_Solving_Physics_Problems/links/5489c30f0cf214269f1abb55.pdf
https://www.researchgate.net/profile/John_Mcdermott10/publication/6064271_Expert_and_Novice_Performance_in_Solving_Physics_Problems/links/5489c30f0cf214269f1abb55.pdf
http://dl.acm.org/citation.cfm?id=1970380

[121] Looking Glass Community. url: https://lookingglass.wustl.edu/.
[122] Mark Mahoney. “Storyteller: A New Medium for Guiding Students Through Code

Examples”. In: Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. ACM. 2018, pp. 1112–1112.

[123] Yuri Malheiros, Alan Moraes, Cleyton Trindade, and Silvio Meira. “A source code
recommender system to support newcomers”. In: Computer Software and Applications
Conference (COMPSAC), 2012 IEEE 36th Annual. IEEE. 2012, pp. 19–24.

[124] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. “Jungloid Mining:
Helping to Navigate the API Jungle”. In: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI ’05. New
York, NY, USA: ACM, 2005, pp. 48–61. doi: 10.1145/1065010.1065018. url:
http://doi.acm.org/10.1145/1065010.1065018.

[125] M. Mantyla, J. Vanhanen, and C. Lassenius. “A taxonomy and an initial empirical
study of bad smells in code”. In: Int. Conf. on Software Maintenance, 2003. ICSM
2003. Proc. Sept. 2003, pp. 381–384. doi: 10.1109/ICSM.2003.1235447.

[126] M.V. Mantyla. “An experiment on subjective evolvability evaluation of object-oriented
software: explaining factors and interrater agreement”. In: Int.Symp. on Empirical
Software Eng. Nov. 2005, 10 pp. doi: 10.1109/ISESE.2005.1541837.

[127] M.V. Mantyla, J. Vanhanen, and C. Lassenius. “Bad smells - humans as code critics”.
In: 20th IEEE Int. Conf. on Software Maintenance. Proc. Sept. 2004, pp. 399–408.
doi: 10.1109/ICSM.2004.1357825.

[128] Lauren E Margulieux, Richard Catrambone, and Mark Guzdial. “Employing subgoals
in computer programming education”. In: Computer Science Education 26.1 (2016),
pp. 44–67.

[129] Lauren E Margulieux, Mark Guzdial, and Richard Catrambone. “Subgoal-labeled
instructional material improves performance and transfer in learning to develop
mobile applications”. In: Proceedings of the ninth annual international conference on
International computing education research. ACM. 2012, pp. 71–78.

[130] Lauren Margulieux and Richard Catrambone. “Using Learners’ Self-Explanations of
Subgoals to Guide Initial Problem Solving in App Inventor”. In: Proceedings of the
2017 ACM Conference on International Computing Education Research. ACM. 2017,
pp. 21–29.

[131] Lauren Margulieux, Briana B Morrison, Mark Guzdial, and Richard Catrambone.
“Training learners to self-explain: Designing instructions and examples to improve
problem solving”. In: (2016).

[132] Radu Marinescu. “Detection strategies: Metrics-based rules for detecting design flaws”.
In: Software Maintenance. Proc. 20th IEEE Int. Conf. 2004, pp. 350–359. url:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1357820.

197

https://lookingglass.wustl.edu/
http://dx.doi.org/10.1145/1065010.1065018
http://doi.acm.org/10.1145/1065010.1065018
http://dx.doi.org/10.1109/ICSM.2003.1235447
http://dx.doi.org/10.1109/ISESE.2005.1541837
http://dx.doi.org/10.1109/ICSM.2004.1357825
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1357820

[133] Justin Matejka, Tovi Grossman, and George Fitzmaurice. “Ambient help”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,
2011, pp. 2751–2760. url: http://dl.acm.org/citation.cfm?id=1979349.

[134] Justin Matejka, Wei Li, Tovi Grossman, and George Fitzmaurice. “Community-
Commands: Command Recommendations for Software Applications”. In: Proceedings
of the 22Nd Annual ACM Symposium on User Interface Software and Technology. UIST
’09. Victoria, BC, Canada: ACM, 2009, pp. 193–202. doi: 10.1145/1622176.1622214.
url: http://doi.acm.org/10.1145/1622176.1622214.

[135] Justin Matejka, Wei Li, Tovi Grossman, and George Fitzmaurice. “Community-
Commands: command recommendations for software applications”. In: Proceedings of
the 22nd annual ACM symposium on User interface software and technology. ACM.
2009, pp. 193–202.

[136] Justin Matejka, Wei Li, Tovi Grossman, and George Fitzmaurice. “Community-
Commands: command recommendations for software applications”. In: Proceedings of
the 22nd annual ACM symposium on User interface software and technology. UIST
’09. New York, NY, USA: ACM, 2009, pp. 193–202. doi: 10.1145/1622176.1622214.
url: http://doi.acm.org/10.1145/1622176.1622214.

[137] J. Nathan Matias, Sayamindu Dasgupta, and Benjamin Mako Hill. “Skill Progression
in Scratch Revisited”. In: Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems. ACM, 2016, pp. 1486–1490. url: https://unmad.in/pdfs/
matias-skill_progression_CHI2016.pdf.

[138] T.J. McCabe. “A Complexity Measure”. In: IEEE Trans. on Softw. Eng. SE-2.4 (Dec.
1976), pp. 308–320. doi: 10.1109/TSE.1976.233837.

[139] Frank McCarey, Mel O Cinneide, and Nicholas Kushmerick. “A recommender agent for
software libraries: An evaluation of memory-based and model-based collaborative filter-
ing”. In: Intelligent Agent Technology, 2006. IAT’06. IEEE/WIC/ACM International
Conference on. IEEE. 2006, pp. 154–162.

[140] Daniel McFarlane. “Comparison of four primary methods for coordinating the inter-
ruption of people in human-computer interaction”. In: Human-Computer Interaction
17.1 (2002), pp. 63–139. url: http://dl.acm.org/citation.cfm?id=1464475.

[141] Katherine B. McKeithen, Judith S. Reitman, Henry H. Rueter, and Stephen C.
Hirtle. “Knowledge organization and skill differences in computer programmers”. In:
Cognitive Psychology 13.3 (1981), pp. 307–325. url: http://www.sciencedirect.
com/science/article/pii/0010028581900128.

[142] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. “Portfo-
lio: finding relevant functions and their usage”. In: Proceedings of the 33rd International
Conference on Software Engineering. ACM, 2011, pp. 111–120.

[143] S.A. Mengel and J. Ulans. “Using Verilog LOGISCOPE to analyze student programs”.
In: Frontiers in Education Conf., 1998. FIE ’98. 28th Annual. Vol. 3. Nov. 1998,
1213–1218 vol.3. doi: 10.1109/FIE.1998.738617.

198

http://dl.acm.org/citation.cfm?id=1979349
http://dx.doi.org/10.1145/1622176.1622214
http://doi.acm.org/10.1145/1622176.1622214
http://dx.doi.org/10.1145/1622176.1622214
http://doi.acm.org/10.1145/1622176.1622214
https://unmad.in/pdfs/matias-skill_progression_CHI2016.pdf
https://unmad.in/pdfs/matias-skill_progression_CHI2016.pdf
http://dx.doi.org/10.1109/TSE.1976.233837
http://dl.acm.org/citation.cfm?id=1464475
http://www.sciencedirect.com/science/article/pii/0010028581900128
http://www.sciencedirect.com/science/article/pii/0010028581900128
http://dx.doi.org/10.1109/FIE.1998.738617

[144] Joan Meyers-Levy. “Gender differences in information processing: A selectivity inter-
pretation”. PhD thesis. Northwestern University, 1986.

[145] Joan Meyers-Levy and Durairaj Maheswaran. “Exploring differences in males’ and
females’ processing strategies”. In: Journal of Consumer Research 18.1 (1991), pp. 63–
70. url: http://jcr.oxfordjournals.org/content/18/1/63.abstract.

[146] George A Miller. “The magical number seven, plus or minus two: Some limits on our
capacity for processing information.” In: Psychological review 63.2 (1956), p. 81.

[147] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur. “DECOR: A Method
for the Specification and Detection of Code and Design Smells”. In: IEEE Trans. on
Softw. Eng. 36.1 (Feb. 2010), pp. 20–36. doi: 10.1109/TSE.2009.50.

[148] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K. Vijay-Shanker. “Automatic generation of natural language summaries for java
classes”. In: Program Comprehension (ICPC), 2013 IEEE 21st International Con-
ference on. IEEE, 2013, pp. 23–32. url: http://ieeexplore.ieee.org/abstract/
document/6613830/.

[149] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial.
“Subgoals Help Students Solve Parsons Problems”. In: Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. ACM, 2016, pp. 42–47. url:
http://dl.acm.org/citation.cfm?id=2844617.

[150] Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. “Subgoals, Context,
and Worked Examples in Learning Computing Problem Solving”. In: Proceedings of
the eleventh annual International Conference on International Computing Education
Research. ACM, 2015, pp. 21–29. url: http://dl.acm.org/citation.cfm?id=
2787733.

[151] Matthew James Munro. “Product Metrics for Automatic Identification of”. In: Software
Metrics, 2005. 11th IEEE Int. Symp. 2005, pp. 15–15. url: http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1509293.

[152] Sundar Murugappan, Subramani Sellamani, and Karthik Ramani. “Towards beautifi-
cation of freehand sketches using suggestions”. In: Proceedings of the 6th Eurographics
Symposium on Sketch-Based Interfaces and Modeling. ACM. 2009, pp. 69–76.

[153] N. Nagappan and T. Ball. “Static analysis tools as early indicators of pre-release
defect density”. In: Proc. 27th int. conf. on Software eng. 2005, pp. 580–586. url:
http://dl.acm.org/citation.cfm?id=1062455.1062558.

[154] Takao Nakagawa, Yasutaka Kamei, Hidetake Uwano, Akito Monden, Kenichi Mat-
sumoto, and Daniel M German. “Quantifying programmers’ mental workload during
program comprehension based on cerebral blood flow measurement: A controlled
experiment”. In: Companion Proceedings of the 36th International Conference on
Software Engineering. ACM. 2014, pp. 448–451.

199

http://jcr.oxfordjournals.org/content/18/1/63.abstract
http://dx.doi.org/10.1109/TSE.2009.50
http://ieeexplore.ieee.org/abstract/document/6613830/
http://ieeexplore.ieee.org/abstract/document/6613830/
http://dl.acm.org/citation.cfm?id=2844617
http://dl.acm.org/citation.cfm?id=2787733
http://dl.acm.org/citation.cfm?id=2787733
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1509293
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1509293
http://dl.acm.org/citation.cfm?id=1062455.1062558

[155] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. “What makes
a good code example?: A study of programming Q&A in StackOverflow”. In: Software
Maintenance (ICSM), 2012 28th IEEE International Conference on. IEEE, 2012,
pp. 25–34. url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
6405249.

[156] Lisa Rubin Neal. “A system for example-based programming”. In: ACM SIGCHI
Bulletin. Vol. 20. ACM, 1989, pp. 63–68. url: http://dl.acm.org/citation.cfm?
id=67464.

[157] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi, Hung
Viet Nguyen, Jafar Al-Kofahi, and Tien N. Nguyen. “Graph-based pattern-oriented,
context-sensitive source code completion”. In: Proceedings of the 34th International
Conference on Software Engineering. IEEE Press, 2012, pp. 69–79. url: http://dl.
acm.org/citation.cfm?id=2337232.

[158] Laura R. Novick and Keith J. Holyoak. “Mathematical problem solving by analogy.”
In: Journal of Experimental Psychology: Learning, Memory, and Cognition 17.3 (1991),
p. 398. url: http://psycnet.apa.org/journals/xlm/17/3/398/.

[159] Stephen Oney and Joel Brandt. “Codelets: linking interactive documentation and
example code in the editor”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2012, pp. 2697–2706. url: http://dl.acm.
org/citation.cfm?id=2208664.

[160] Fred GWC Paas, Jeroen JG Van Merriënboer, and Jos J. Adam. “Measurement of
cognitive load in instructional research”. In: Perceptual and motor skills 79.1 (1994),
pp. 419–430. url: http://journals.sagepub.com/doi/abs/10.2466/pms.1994.
79.1.419.

[161] Fred Paas, Alexander Renkl, and John Sweller. “Cognitive load theory and instructional
design: Recent developments”. In: Educational psychologist 38.1 (2003), pp. 1–4.

[162] John F. Pane, Brad A. Myers, and Chotirat Ann Ratanamahatana. “Studying the
language and structure in non-programmers’ solutions to programming problems”. In:
Int. J. Hum.-Comput. Stud. 54.2 (Feb. 2001), pp. 237–264. doi: 10.1006/ijhc.2000.
0410. url: http://dx.doi.org/10.1006/ijhc.2000.0410.

[163] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. “Crowd
documentation: Exploring the coverage and the dynamics of API discussions on Stack
Overflow”. In: Georgia Institute of Technology, Tech. Rep (2012).

[164] Jean Piaget. “Intellectual evolution from adolescence to adulthood”. In: Human devel-
opment 15.1 (1972), pp. 1–12. url: http://www.karger.com/Article/Abstract/
271225.

[165] Peter Pirolli and Margaret Recker. “Learning strategies and transfer in the domain of
programming”. In: Cognition and instruction 12.3 (1994), pp. 235–275.

[166] PMD. url: http://pmd.sourceforge.net/.

200

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6405249
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6405249
http://dl.acm.org/citation.cfm?id=67464
http://dl.acm.org/citation.cfm?id=67464
http://dl.acm.org/citation.cfm?id=2337232
http://dl.acm.org/citation.cfm?id=2337232
http://psycnet.apa.org/journals/xlm/17/3/398/
http://dl.acm.org/citation.cfm?id=2208664
http://dl.acm.org/citation.cfm?id=2208664
http://journals.sagepub.com/doi/abs/10.2466/pms.1994.79.1.419
http://journals.sagepub.com/doi/abs/10.2466/pms.1994.79.1.419
http://dx.doi.org/10.1006/ijhc.2000.0410
http://dx.doi.org/10.1006/ijhc.2000.0410
http://dx.doi.org/10.1006/ijhc.2000.0410
http://www.karger.com/Article/Abstract/271225
http://www.karger.com/Article/Abstract/271225
http://pmd.sourceforge.net/

[167] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele
Lanza. “Mining StackOverflow to turn the IDE into a self-confident programming
prompter”. In: Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, 2014, pp. 102–111. url: http://dl.acm.org/citation.cfm?
id=2597077.

[168] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele
Lanza. “Prompter”. In: Empirical Software Engineering 21.5 (2016), pp. 2190–2231.

[169] Thomas W Price, Yihuan Dong, and Tiffany Barnes. “Generating Data-driven Hints
for Open-ended Programming.” In: EDM. 2016, pp. 191–198.

[170] David F. Redmiles. “Reducing the variability of programmers’ performance through
explained examples”. In: Proceedings of the INTERACT’93 and CHI’93 Conference
on Human Factors in Computing Systems. ACM, 1993, pp. 67–73. url: http://dl.
acm.org/citation.cfm?id=169082.

[171] Alexander Renkl. “Learning from worked-out examples: A study on individual dif-
ferences”. In: Cognitive science 21.1 (1997), pp. 1–29.

[172] Alexander Renkl, Robert K Atkinson, and Cornelia S Große. “How fading worked
solution steps works–a cognitive load perspective”. In: Instructional Science 32.1-2
(2004), pp. 59–82.

[173] Alexander Renkl, Robert K Atkinson, Uwe H Maier, and Richard Staley. “From
example study to problem solving: Smooth transitions help learning”. In: The Journal
of Experimental Education 70.4 (2002), pp. 293–315.

[174] Alexander Renkl, Robin Stark, Hans Gruber, and Heinz Mandl. “Learning from
worked-out examples: The effects of example variability and elicited self-explanations”.
In: Contemporary educational psychology 23.1 (1998), pp. 90–108.

[175] Lindsey E. Richland, Keith J. Holyoak, and James W. Stigler. “Analogy use in eighth-
grade mathematics classrooms”. In: Cognition and Instruction 22.1 (2004), pp. 37–60.
url: http://www.tandfonline.com/doi/abs/10.1207/s1532690Xci2201_2.

[176] Robert S. Rist et al. “Plans in programming: definition, demonstration, and de-
velopment”. In: first workshop on empirical studies of programmers on Empir-
ical studies of programmers. 1986, pp. 28–47. url: https : / / books . google .
com / books ? hl = en & lr = &id = sswoYivNQVUC & oi = fnd & pg = PA28 & dq = Plans + in +
Programming:+Definition,+Demonstration,+and+Developmen&ots=agQcW1mfUI&
sig=P6kY3KdQHl3cq_mgfmuE7BsaOvY.

[177] Kelly Rivers and Kenneth R. Koedinger. “Automatic generation of programming
feedback: A data-driven approach”. In: The First Workshop on AI-supported Education
for Computer Science (AIEDCS 2013). Vol. 50. 2013.

201

http://dl.acm.org/citation.cfm?id=2597077
http://dl.acm.org/citation.cfm?id=2597077
http://dl.acm.org/citation.cfm?id=169082
http://dl.acm.org/citation.cfm?id=169082
http://www.tandfonline.com/doi/abs/10.1207/s1532690Xci2201_2
https://books.google.com/books?hl=en&lr=&id=sswoYivNQVUC&oi=fnd&pg=PA28&dq=Plans+in+Programming:+Definition,+Demonstration,+and+Developmen&ots=agQcW1mfUI&sig=P6kY3KdQHl3cq_mgfmuE7BsaOvY
https://books.google.com/books?hl=en&lr=&id=sswoYivNQVUC&oi=fnd&pg=PA28&dq=Plans+in+Programming:+Definition,+Demonstration,+and+Developmen&ots=agQcW1mfUI&sig=P6kY3KdQHl3cq_mgfmuE7BsaOvY
https://books.google.com/books?hl=en&lr=&id=sswoYivNQVUC&oi=fnd&pg=PA28&dq=Plans+in+Programming:+Definition,+Demonstration,+and+Developmen&ots=agQcW1mfUI&sig=P6kY3KdQHl3cq_mgfmuE7BsaOvY
https://books.google.com/books?hl=en&lr=&id=sswoYivNQVUC&oi=fnd&pg=PA28&dq=Plans+in+Programming:+Definition,+Demonstration,+and+Developmen&ots=agQcW1mfUI&sig=P6kY3KdQHl3cq_mgfmuE7BsaOvY

[178] Romain Robbes, Mircea Lungu, and David Röthlisberger. “How do developers react
to api deprecation?: the case of a smalltalk ecosystem”. In: Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering.
ACM. 2012, p. 56.

[179] T. J. Robertson, Shrinu Prabhakararao, Margaret Burnett, Curtis Cook, Joseph R.
Ruthruff, Laura Beckwith, and Amit Phalgune. “Impact of interruption style on
end-user debugging”. In: Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, 2004, pp. 287–294. url: http://dl.acm.org/citation.
cfm?id=985729.

[180] Martin P. Robillard. “What makes APIs hard to learn? Answers from developers”. In:
IEEE software 26.6 (2009), pp. 27–34. url: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=5287006.

[181] Martin P. Robillard and Robert Deline. “A field study of API learning obstacles”.
In: Empirical Software Engineering 16.6 (2011), pp. 703–732. url: http://link.
springer.com/article/10.1007/s10664-010-9150-8.

[182] Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney
D’Mello. “Improving Automated Source Code Summarization via an Eye-tracking
Study of Programmers”. In: Proceedings of the 36th International Conference on
Software Engineering. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 390–401.
doi: 10.1145/2568225.2568247. url: http://doi.acm.org/10.1145/2568225.
2568247.

[183] M. B. Rosson, J. Ballin, and H. Nash. “Everyday Programming: Challenges and
Opportunities for Informal Web Development”. In: 2004 IEEE Symposium on Visual
Languages and Human Centric Computing. Sept. 2004, pp. 123–130. doi: 10.1109/
VLHCC.2004.26.

[184] Mary Beth Rosson and John M. Carroll. “Active Programming Strategies in Reuse”. In:
Proceedings of the 7th European Conference on Object-Oriented Programming. Springer-
Verlag, 1993, pp. 4–20. url: http://dl.acm.org/citation.cfm?id=679356.

[185] Mary Beth Rosson and John M. Carroll. “The reuse of uses in Smalltalk programming”.
In: ACM Transactions on Computer-Human Interaction (TOCHI) 3.3 (1996), pp. 219–
253. url: http://dl.acm.org/citation.cfm?id=234530.

[186] Naiyana Sahavechaphan and Kajal Claypool. “XSnippet: Mining For Sample Code”.
In: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications. OOPSLA ’06. New York, NY,
USA: ACM, 2006, pp. 413–430. doi: 10.1145/1167473.1167508. url: http://doi.
acm.org/10.1145/1167473.1167508.

[187] Riku Saikkonen, Lauri Malmi, and Ari Korhonen. “Fully automatic assessment of
programming exercises”. In: Proc. 6th ann. conf. on ITiCSE. ITiCSE ’01. New York,
NY, USA: ACM, 2001, pp. 133–136. doi: 10.1145/377435.377666. url: http:
//doi.acm.org/10.1145/377435.377666.

202

http://dl.acm.org/citation.cfm?id=985729
http://dl.acm.org/citation.cfm?id=985729
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5287006
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5287006
http://link.springer.com/article/10.1007/s10664-010-9150-8
http://link.springer.com/article/10.1007/s10664-010-9150-8
http://dx.doi.org/10.1145/2568225.2568247
http://doi.acm.org/10.1145/2568225.2568247
http://doi.acm.org/10.1145/2568225.2568247
http://dx.doi.org/10.1109/VLHCC.2004.26
http://dx.doi.org/10.1109/VLHCC.2004.26
http://dl.acm.org/citation.cfm?id=679356
http://dl.acm.org/citation.cfm?id=234530
http://dx.doi.org/10.1145/1167473.1167508
http://doi.acm.org/10.1145/1167473.1167508
http://doi.acm.org/10.1145/1167473.1167508
http://dx.doi.org/10.1145/377435.377666
http://doi.acm.org/10.1145/377435.377666
http://doi.acm.org/10.1145/377435.377666

[188] Nicholas Sawadsky and Gail C. Murphy. “Fishtail: from task context to source code
examples”. In: Proceedings of the 1st Workshop on Developing Tools as Plug-ins. ACM,
2011, pp. 48–51. url: http://dl.acm.org/citation.cfm?id=1984722.

[189] Christopher Scaffidi and Christopher Chambers. “Skill progression demonstrated by
users in the Scratch animation environment”. In: International Journal of Human-
Computer Interaction 28.6 (2012), pp. 383–398. url: http://www.tandfonline.com/
doi/abs/10.1080/10447318.2011.595621.

[190] Christopher Scaffidi, Christopher Chambers, and Sheela Surisetty. “A Code-Centric
Cluster-Based Approach for Searching Online Support Forums for Programmers”. In:
2015 IEEE 14th International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2015, pp. 1032–1037.

[191] Alan H. Schoenfeld and Douglas J. Herrmann. “Problem perception and knowledge
structure in expert and novice mathematical problem solvers.” In: Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition 8.5 (1982), p. 484. url:
http://psycnet.apa.org/journals/xlm/8/5/484/.

[192] Jan Schumacher, Nico Zazworka, Forrest Shull, Carolyn Seaman, and Michele Shaw.
“Building empirical support for automated code smell detection”. In: Proc. ACM-
IEEE Int. Symp. on Empirical Software Eng. and Measurement. ESEM ’10. New
York, NY, USA: ACM, 2010, 8:1–8:10. doi: 10.1145/1852786.1852797. url: http:
//doi.acm.org/10.1145/1852786.1852797.

[193] Rolf Schwonke, Jörg Wittwer, Vincent Aleven, RJCM Salden, Carmen Krieg, and
Alexander Renkl. “Can tutored problem solving benefit from faded worked-out exam-
ples”. In: Proceedings of EuroCogSci. Vol. 7. 2007, pp. 59–64.

[194] Michael J. Scott and Gheorghita Ghinea. “On the domain-specificity of mindsets:
The relationship between aptitude beliefs and programming practice”. In: IEEE
Transactions on Education 57.3 (2014), pp. 169–174. url: http://ieeexplore.ieee.
org/abstract/document/6662493/.

[195] Scratch - Imagine, Program, Share. url: https://scratch.mit.edu/discuss/
(visited on 03/26/2018).

[196] Scratch - Imagine, Program, Share. url: https://scratch.mit.edu/ (visited on
03/12/2018).

[197] Scratch - Tips. url: https://scratch.mit.edu/ (visited on 03/26/2018).
[198] Ben Shneiderman. “Exploratory experiments in programmer behavior”. In: Interna-

tional Journal of Computer & Information Sciences 5.2 (1976), pp. 123–143. url:
http://link.springer.com/article/10.1007/BF00975629.

[199] Ben Shneiderman and Richard Mayer. “Syntactic/semantic interactions in programmer
behavior: A model and experimental results”. In: International Journal of Parallel
Programming 8.3 (1979), pp. 219–238. url: http://www.springerlink.com/index/
Q26TJ60786117943.pdf.

203

http://dl.acm.org/citation.cfm?id=1984722
http://www.tandfonline.com/doi/abs/10.1080/10447318.2011.595621
http://www.tandfonline.com/doi/abs/10.1080/10447318.2011.595621
http://psycnet.apa.org/journals/xlm/8/5/484/
http://dx.doi.org/10.1145/1852786.1852797
http://doi.acm.org/10.1145/1852786.1852797
http://doi.acm.org/10.1145/1852786.1852797
http://ieeexplore.ieee.org/abstract/document/6662493/
http://ieeexplore.ieee.org/abstract/document/6662493/
https://scratch.mit.edu/discuss/
https://scratch.mit.edu/
https://scratch.mit.edu/
http://link.springer.com/article/10.1007/BF00975629
http://www.springerlink.com/index/Q26TJ60786117943.pdf
http://www.springerlink.com/index/Q26TJ60786117943.pdf

[200] Elliot Soloway and Kate Ehrlich. “Empirical studies of programming knowledge”.
In: IEEE Transactions on Software Engineering 5 (1984), pp. 595–609. url: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5010283.

[201] SourceMonitor. url: http://www.campwoodsw.com/sourcemonitor.html.
[202] Sai Krishna Sripada and Y Raghu Reddy. “Code comprehension activities in undergrad-

uate software engineering course-a case study”. In: Software Engineering Conference
(ASWEC), 2015 24th Australasian. IEEE. 2015, pp. 68–77.

[203] Stack Overflow. url: http://stackoverflow.com/.
[204] M.-A. Storey. “Theories, methods and tools in program comprehension: Past, present

and future”. In: Program Comprehension, 2005. IWPC 2005. Proceedings. 13th In-
ternational Workshop on. IEEE, 2005, pp. 181–191. url: http://ieeexplore.ieee.
org/abstract/document/1421034/.

[205] StyleCop. url: http://stylecop.codeplex.com/.
[206] Jeffrey Stylos, Andrew Faulring, Zizhuang Yang, and Brad A. Myers. “Improving API

documentation using API usage information”. In: Visual Languages and Human-Centric
Computing, 2009. VL/HCC 2009. IEEE Symposium on. IEEE, 2009, pp. 119–126.
url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5295283.

[207] Jeffrey Stylos and Brad A. Myers. “Mica: A web-search tool for finding api components
and examples”. In: Visual Languages and Human-Centric Computing, 2006. VL/HCC
2006. IEEE Symposium on. IEEE, 2006, pp. 195–202. url: http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1698785.

[208] Leigh Ann Sudol-DeLyser, Mark Stehlik, and Sharon Carver. “Code comprehension
problems as learning events”. In: Proceedings of the 17th ACM annual conference on
Innovation and technology in computer science education. ACM. 2012, pp. 81–86.

[209] Sheela Surisetty, Catherine Law, and Chris Scaffidi. “Behavior-based clustering of
visual code”. In: Visual Languages and Human-Centric Computing (VL/HCC), 2015
IEEE Symposium on. IEEE, 2015, pp. 261–269. url: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=7357225.

[210] Ryo Suzuki, Gustavo Soares, Elena Glassman, Andrew Head, Loris D’Antoni, and
Björn Hartmann. “Exploring the Design Space of Automatically Synthesized Hints for
Introductory Programming Assignments”. In: Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems. ACM, 2017, pp. 2951–
2958. url: http://dl.acm.org/citation.cfm?id=3053187.

[211] John Sweller. “Cognitive load theory, learning difficulty, and instructional design”. In:
Learning and instruction 4.4 (1994), pp. 295–312.

[212] John Sweller and Graham A. Cooper. “The use of worked examples as a substitute for
problem solving in learning algebra”. In: Cognition and Instruction 2.1 (1985), pp. 59–
89. url: http://www.tandfonline.com/doi/abs/10.1207/s1532690xci0201_3.

204

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5010283
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5010283
http://www.campwoodsw.com/sourcemonitor.html
http://stackoverflow.com/
http://ieeexplore.ieee.org/abstract/document/1421034/
http://ieeexplore.ieee.org/abstract/document/1421034/
http://stylecop.codeplex.com/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5295283
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1698785
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1698785
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7357225
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7357225
http://dl.acm.org/citation.cfm?id=3053187
http://www.tandfonline.com/doi/abs/10.1207/s1532690xci0201_3

[213] MohammadReza Tavakoli, Abbas Heydarnoori, and Mohammad Ghafari. “Improving
the quality of code snippets in stack overflow”. In: Proceedings of the 31st Annual
ACM Symposium on Applied Computing. ACM, 2016, pp. 1492–1497. url: http:
//dl.acm.org/citation.cfm?id=2851789.

[214] The MIT App Inventor Library: Documentation & Support | Explore MIT App
Inventor. url: http://appinventor.mit.edu/explore/library.html (visited on
03/26/2018).

[215] Suresh Thummalapenta and Tao Xie. “Parseweb: a programmer assistant for reusing
open source code on the web”. In: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering. ACM. 2007, pp. 204–213.

[216] Suresh Thummalapenta and Tao Xie. “Parseweb: a programmer assistant for reusing
open source code on the web”. In: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering. ACM, 2007, pp. 204–213.
url: http://dl.acm.org/citation.cfm?id=1321663.

[217] Nghi Truong, Paul Roe, and Peter Bancroft. “Static analysis of students’ Java pro-
grams”. In: Proc. 6th Australasian Conf. on Computing Educ.- Volume 30. ACE ’04.
Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2004, pp. 317–
325. url: http://dl.acm.org/citation.cfm?id=979968.980011.

[218] Tutorials for App Inventor | Explore MIT App Inventor. url: http://appinventor.
mit.edu/explore/ai2/tutorials.html.

[219] Iris Vessey. “Expertise in debugging computer programs: A process analysis”. In:
International Journal of Man-Machine Studies 23.5 (1985), pp. 459–494. url: http:
//www.sciencedirect.com/science/article/pii/S0020737385800547.

[220] Iris Vessey. “Expert-novice knowledge organization: An empirical investigation using
computer program recall”. In: Behaviour & Information Technology 7.2 (1988), pp. 153–
171. url: http://www.tandfonline.com/doi/abs/10.1080/01449298808901870.

[221] Camilo Vieira, Alejandra J Magana, Michael L Falk, and R Edwin Garcia. “Writing
in-code comments to self-explain in computational science and engineering education”.
In: ACM Transactions on Computing Education (TOCE) 17.4 (2017), p. 17.

[222] Arto Vihavainen, Craig S. Miller, and Amber Settle. “Benefits of Self-explanation in
Introductory Programming”. In: Proceedings of the 46th ACM Technical Symposium
on Computer Science Education. SIGCSE ’15. Kansas City, Missouri, USA: ACM,
2015, pp. 284–289. doi: 10.1145/2676723.2677260. url: http://doi.acm.org/10.
1145/2676723.2677260.

[223] Anneliese Von Mayrhauser and A. Marie Vans. “Program comprehension during
software maintenance and evolution”. In: Computer 28.8 (1995), pp. 44–55. url:
http://ieeexplore.ieee.org/abstract/document/402076/.

205

http://dl.acm.org/citation.cfm?id=2851789
http://dl.acm.org/citation.cfm?id=2851789
http://appinventor.mit.edu/explore/library.html
http://dl.acm.org/citation.cfm?id=1321663
http://dl.acm.org/citation.cfm?id=979968.980011
http://appinventor.mit.edu/explore/ai2/tutorials.html
http://appinventor.mit.edu/explore/ai2/tutorials.html
http://www.sciencedirect.com/science/article/pii/S0020737385800547
http://www.sciencedirect.com/science/article/pii/S0020737385800547
http://www.tandfonline.com/doi/abs/10.1080/01449298808901870
http://dx.doi.org/10.1145/2676723.2677260
http://doi.acm.org/10.1145/2676723.2677260
http://doi.acm.org/10.1145/2676723.2677260
http://ieeexplore.ieee.org/abstract/document/402076/

[224] Mark Ward and John Sweller. “Structuring effective worked examples”. In: Cognition
and instruction 7.1 (1990), pp. 1–39. url: http://www.tandfonline.com/doi/abs/
10.1207/s1532690xci0701_1.

[225] Michael S. Ware and Christopher J. Fox. “Securing Java code: heuristics and an
evaluation of static analysis tools”. In: Proc. workshop on Static analysis. SAW ’08.
New York, NY, USA: ACM, 2008, pp. 12–21. doi: 10.1145/1394504.1394506. url:
http://doi.acm.org/10.1145/1394504.1394506.

[226] Christopher Watson, Frederick Li, and Jamie Godwin. “BlueFix: Using Crowd-Sourced
Feedback to Support Programming Students in Error Diagnosis and Repair”. In:
Advances in Web-Based Learning-ICWL (2012), pp. 228–239. url: http://www.
springerlink.com/index/X52012344853048N.pdf.

[227] Gerhard Weber and Antje Mollenberg. “ELM-PE: A Knowledge-based Programming
Environment for Learning LISP.” In: (1994). url: http://eric.ed.gov/?id=
ED388302.

[228] David Weintrop and Uri Wilensky. “To block or not to block, that is the question:
students’ perceptions of blocks-based programming”. In: Proceedings of the 14th
International Conference on Interaction Design and Children. ACM, 2015, pp. 199–208.
url: http://dl.acm.org/citation.cfm?id=2771860.

[229] Susan Wiedenbeck. “Novice/expert differences in programming skills”. en. In: In-
ternational Journal of Man-Machine Studies 23.4 (Oct. 1985), pp. 383–390. doi:
10.1016/S0020-7373(85)80041-9. url: http://linkinghub.elsevier.com/
retrieve/pii/S0020737385800419.

[230] Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal. “Snipmatch: using source
code context to enhance snippet retrieval and parameterization”. In: Proceedings of the
25th annual acm symposium on user interface software and technology. ACM, 2012,
pp. 219–228. url: http://dl.acm.org/citation.cfm?id=2380145.

[231] Aaron Wilson, Margaret Burnett, Laura Beckwith, Orion Granatir, Ledah Casburn,
Curtis Cook, Mike Durham, and Gregg Rothermel. “Harnessing curiosity to increase
correctness in end-user programming”. In: Proceedings of the SIGCHI conference
on Human factors in computing systems. ACM, 2003, pp. 305–312. url: http :
//dl.acm.org/citation.cfm?id=642665.

[232] Benjamin Xiang-Yu Xie. “Progression of computational thinking skills demonstrated
by app inventor users”. PhD thesis. Massachusetts Institute of Technology, 2016. url:
https://dspace.mit.edu/handle/1721.1/106395.

[233] Benjamin Xie and Hal Abelson. “Skill progression in MIT app inventor”. In: Visual
Languages and Human-Centric Computing (VL/HCC), 2016 IEEE Symposium on.
IEEE, 2016, pp. 213–217. url: http://ieeexplore.ieee.org/abstract/document/
7739687/.

206

http://www.tandfonline.com/doi/abs/10.1207/s1532690xci0701_1
http://www.tandfonline.com/doi/abs/10.1207/s1532690xci0701_1
http://dx.doi.org/10.1145/1394504.1394506
http://doi.acm.org/10.1145/1394504.1394506
http://www.springerlink.com/index/X52012344853048N.pdf
http://www.springerlink.com/index/X52012344853048N.pdf
http://eric.ed.gov/?id=ED388302
http://eric.ed.gov/?id=ED388302
http://dl.acm.org/citation.cfm?id=2771860
http://dx.doi.org/10.1016/S0020-7373(85)80041-9
http://linkinghub.elsevier.com/retrieve/pii/S0020737385800419
http://linkinghub.elsevier.com/retrieve/pii/S0020737385800419
http://dl.acm.org/citation.cfm?id=2380145
http://dl.acm.org/citation.cfm?id=642665
http://dl.acm.org/citation.cfm?id=642665
https://dspace.mit.edu/handle/1721.1/106395
http://ieeexplore.ieee.org/abstract/document/7739687/
http://ieeexplore.ieee.org/abstract/document/7739687/

[234] Seungwon Yang, Carlotta Domeniconi, Matt Revelle, Mack Sweeney, Ben U. Gelman,
Chris Beckley, and Aditya Johri. “Uncovering trajectories of informal learning in large
online communities of creators”. In: Proceedings of the Second (2015) ACM Conference
on Learning@ Scale. ACM, 2015, pp. 131–140. url: http://dl.acm.org/citation.
cfm?id=2724674.

[235] Annie TT Ying and Martin P. Robillard. “Code fragment summarization”. In: Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM,
2013, pp. 655–658. url: http://dl.acm.org/citation.cfm?id=2494587.

[236] Annie Ying and Martin P. Robillard. “Selection and presentation practices for code
example summarization”. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014, pp. 460–471. url:
http://dl.acm.org/citation.cfm?id=2635877.

[237] Cheng Zhang, Juyuan Yang, Yi Zhang, Jing Fan, Xin Zhang, Jianjun Zhao, and
Peizhao Ou. “Automatic parameter recommendation for practical API usage”. In:
Proceedings of the 34th International Conference on Software Engineering. IEEE Press,
2012, pp. 826–836. url: http://dl.acm.org/citation.cfm?id=2337321.

[238] Yan Zhang, Sheela Surisetty, and Christopher Scaffidi. “Assisting comprehension of
animation programs through interactive code visualization”. In: Journal of Visual
Languages & Computing 24.5 (2013), pp. 313–326.

[239] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. “MAPO: Mining and
Recommending API Usage Patterns”. In: Proceedings of the 23rd European Conference
on ECOOP 2009 — Object-Oriented Programming. Genoa. Italy: Springer-Verlag,
2009, pp. 318–343. doi: 10.1007/978-3-642-03013-0_15. url: http://dx.doi.
org/10.1007/978-3-642-03013-0_15.

[240] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. “MAPO: Mining and
recommending API usage patterns”. In: ECOOP 2009–Object-Oriented Programming.
Springer, 2009, pp. 318–343. url: http://link.springer.com/chapter/10.1007/
978-3-642-03013-0_15.

[241] Sedigheh Zolaktaf and Gail C. Murphy. “What to learn next: recommending commands
in a feature-rich environment”. In: 2015 IEEE 14th International Conference on
Machine Learning and Applications (ICMLA). IEEE, 2015, pp. 1038–1044. url:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7424457.

207

http://dl.acm.org/citation.cfm?id=2724674
http://dl.acm.org/citation.cfm?id=2724674
http://dl.acm.org/citation.cfm?id=2494587
http://dl.acm.org/citation.cfm?id=2635877
http://dl.acm.org/citation.cfm?id=2337321
http://dx.doi.org/10.1007/978-3-642-03013-0_15
http://dx.doi.org/10.1007/978-3-642-03013-0_15
http://dx.doi.org/10.1007/978-3-642-03013-0_15
http://link.springer.com/chapter/10.1007/978-3-642-03013-0_15
http://link.springer.com/chapter/10.1007/978-3-642-03013-0_15
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7424457

Appendix A

Understanding How Novices Use

Examples Study Materials

A.1 Computing history survey

1. How old are you?

2. What is your current grade in school?

3. What is your gender? (choose one) a) Female b) Male c) Not specified

4. What kind of school do you go to? (choose one) a) Public school b) Private school c)

Home-schooled

5. How good do you think you are with computers? (choose one) a) Very good b) Good c)

Fair d) Poor

6. Have you ever written a computer program? (choose one) a) Don’t know b) Yes c) No

[208]

7. How would you characterize your computer programming experience? (choose one) a) No

programming experience. b) I have programmed a few times as part of an activity. c) I enjoy

programming in my free time. d) I’m not sure. e) Other:

8. Have you ever used the following computer programming software? (circle all that apply)

a) Alice b) LEGO Mindstorms c) Looking Glass d) Scratch e) Robotics f) Programming

languages such as: Javascript, Python, C++, Java, Visual Basic, C#, Processing g) Other

Programming Software:

9. Have you participated in the following programming activities? (circle all that apply)

a) Hour of code. (code.org) b) Programming at school as part of classroom activity. c)

A programming camp or after school workshop. d) Programming at an event (examples:

scouting, academy of science, science center) e) I program a computer at home. f) Looking

Glass research study. (Not including today) g) None – I have never participated in a

programming activity. h) Other:

A.2 Intro instructions

[209]

Figure A.1: The intro task sheet.
[210]

A.3 Task programs and solutions

Do Together task instructions: Make the pig wave both of his hands up and then both

down to signal the helicopter.

Figure A.2: Do together task

[211]

For each loop Task instructions: Make the girl, mom, boy, alien and suitcase fly to the

spaceship WITHOUT ADDING OR REMOVING any actions, questions or action ordering

boxes.

Figure A.3: For each loop task

[212]

Function task instructions: Make the ufo land exactly on the ground by WITHOUT

adding any ‘move’ actions AND WITHOUT creating a new number.

Figure A.4: Function task

[213]

API method task instructions: Make the orange fish stay with the whale as the whale

avoids the other creatures by ONLY ADDING ONE action, action ordering box or question

and WITHOUT REMOVING. anything.

Figure A.5: API method task

[214]

While loop task instructions: Make Alice the ghost go into the same space as the rabbit

and then have the rabbit run away by ONLY MAKING ONE MODIFICATION.

Figure A.6: While loop task

[215]

Repeat loop task instructions: Make the bunny do 2 jumping jacks and then hop 3 times

before lying down to rest by ONLY ADDING a total of TWO actions, questions or action

ordering boxes.

Figure A.7: Repeat loop task

[216]

A.4 Interview questions

Questions asked at the midpoint:

• What have you tried so far and why?

• What would you do next? Please explain it like you are telling your partner how to do

it. Why?

• Have you used the example at all? Why or why not?

Questions asked at the end of each task:

• If they correctly completed the task: How did you figure it out?

• If they did not complete the task: Did you have any ideas about how to finish it and

how would you do it?

• All participants: What did you try?

• All participants: How does the example work?

[217]

Appendix B

Comparing Novices and Experts

Study Materials

B.1 Instructions

In this HIT you will be asked to remember and then recall code. You do not need to have

any experience with code to complete this task. We only ask that you try to do the best that

you can.

Overall HIT structure (approx. 30 mins):

You will have 3 chances to study and recall each piece of code. **WARNING: if you copy/paste

or screenshot rather than memorizing and recalling, you will not be paid (the logging will

notify us of this).**

You will do this for 4 pieces of code. Two pieces of code will have problems.

[218]

The code will control an animation. For each piece of code, you will first view the animation

scene. Then you will be asked to memorize some code, which you will see on the next page.

B.2 Demographic survey

What is your gender?

• male

• female

• other or prefer not to specify

What is your programming experience?

• I have never programmed or coded before

• I program once in a while (i.e. once a week or month).

• I used to program once in a while or often.

• I program on an everyday basis.

How did you learn about programming?

• I have never learned about programming.

• I have learned about programming or coding informally (i.e. from an online tutorial or

Q&A website).

• I have learned about programming or coding from an online course like EdX or Coursera.

[219]

• I have learned about programming or coding from a high school course or extra-curricular

activity.

• I have learned about programming or coding from a college or university course or

courses.

Which languages have you used to program?

• I have never programmed.

• C/C++

• Java

• Javascript

• Python

• PHP

• SQL

• Other

B.3 Tasks

[220]

For each task

Figure B.1: For each loop block code snippet

Figure B.2: For each loop text code snippet
Problem:
Write less than 5 lines of code that make 5 dogs (named sparky, fluffy, rodger, red, and
dodger) say ’ruff’. Write the code in the same style as the code shown with this problem.

[221]

Repeat While Loop task

Figure B.3: Repeat While loop block code snippet

Figure B.4: Repeat While loop text code snippet
Problem:
Write code that makes a boy named Henry take a step toward a spider until he is right next
to it. Write the code in the same style as the code shown with this problem.

[222]

Simple Repeat Loop task

Figure B.5: Simple Repeat loop block code snippet

Figure B.6: Simple Repeat loop text code snippet
Problem:
Write less than 5 lines of code that make a dancer do a back-flip 10 times. Write the code in
the same style as the code shown with this problem.

[223]

Conditional task

Figure B.7: Conditional block code snippet

Figure B.8: Conditional text code snippet
Problem:
Write code that makes ’sportscar’ turn if it is near ’minivan’ and otherwise, move forward.
Write the code in the same style as the code shown with this problem.

[224]

B.4 Post-task survey

We asked participants to rate difficulty and mental effort on the following scales:

Figure B.9: Difficulty Scale

Figure B.10: Mental Effort Scale

Growth Mindset Scale: “I do not think I can really change my aptitude for programming.”

“I have a fixed level of programming aptitude, and not much can be done to change it.”

“I can learn new things about code, but I cannot change my basic aptitude for programming.”

“I believe I am able to achieve a high level of programming aptitude, with enough practice. ”

“I do believe I can change my aptitude for programming.”

[225]

Appendix C

Exploring Types of Suggestions Study

Materials

C.1 Skill trees

[226]

Jane

- create a world with characters

- make characters speak, walk, move, think
or turn to face

- use "do together"s for concurrency

-animate a body part (roll or turn)

- animate a joint

- use a "do together" with animation

-repeat movements using count

- add details and delays to animation

- use for each loop

- use for each together loop

- animate groups and make
them interact

- create a custom procedure

- use parameters and/or local
variables

- repeat the custom procedure

-have various characters use the
same procedure

- get a property

- use an "if/else" statement

- nest "if/else" statements

- use an “if/else” inside of a
count loop to change state

-use while loops with properties

-create custom methods with properties and while statements

-get input from user (booleans, strings or numbers)

-get user's mouse input

-create listeners

Beginner

Intermediate

Advanced

Figure C.1: Skill tree for ‘Jane’

[227]

Mike

- create a world with characters

- make characters speak, walk, move, think
or turn to face

- use "do together"s for concurrency

-animate a body part (roll or turn)

- animate a joint

- use a "do together" with animation

-repeat movements using count

- add details and delays to animation

- use for each in loop

- use for each in together loop

- animate groups and make
them interact

- create a custom procedure

- use parameters and/or local
variables

- repeat the custom procedure

-have various characters use the
same procedure

- get a property

- use an "if/else" statement

- nest "if/else" statements

- use an “if/else” inside of a
count loop to change state

-use while loops with properties

-create custom methods with properties and while statements

-get input from user (booleans, strings or numbers)

-get user's mouse input

-create listeners

Beginner

Intermediate

Advanced

Figure C.2: Skill tree for ‘Mike’

[228]

Molly

- create a world with characters

- make characters speak, walk, move, think
or turn to face

- use "do together"s for concurrency

-animate a body part (roll or turn)

- animate a joint

- use a "do together" with animation

-repeat movements using count

- add details and delays to animation

- use for each in loop

- use for each in together loop

- animate groups and make
them interact

- create a custom procedure

- use parameters and/or local
variables

- repeat the custom procedure

-have various characters use the
same procedure

- get a property

- use an "if/else" statement

- nest "if/else" statements

- use an “if/else” inside of a
count loop to change state

-use while loops with properties

-create custom methods with properties and while statements

-get input from user (booleans, strings or numbers)

-get user's mouse input

-create listeners

Beginner

Intermediate

Advanced

Figure C.3: Skill tree for ‘Molly’

[229]

Pete

- create a world with characters

- make characters speak, walk, move, think
or turn to face

- use "do together"s for concurrency

-animate a body part (roll or turn)

- animate a joint

- use a "do together" with animation

-repeat movements using count

- add details and delays to animation

- use for each in loop

- use for each in together loop

- animate groups and make
them interact

- create a custom procedure

- use parameters and/or local
variables

- repeat the custom procedure

-have various characters use the
same procedure

- get a property

- use an "if/else" statement

- nest "if/else" statements

- use an “if/else” inside of a
count loop to change state

-use while loops with properties

-create custom methods with properties and while statements

-get input from user (booleans, strings or numbers)

-get user's mouse input

-create listeners

Beginner

Intermediate

Advanced

Figure C.4: Skill tree for ‘Pete’

[230]

C.2 Programs and pre-made suggestions

Jane 1
 Modification: In places where characters are talking to each other, in the modified version, they turn their heads, making the
animation more realistic.
Student code: Modified code:

Figure C.5: One of the pre-made suggestions for ‘Jane’

[231]

Pete 1

Modification: The three foot wiggles were placed in a custom function called wiggle and consolidated into one count loop that runs

wiggle three times.

Student code: Modified code:

Figure C.6: One of the pre-made suggestions for ‘Pete’

[232]

Mike 1

Modification: Changed mrsMiller from “moving to” the ogre to moving only until she is 5 away from the ogre (“moveto” placed mrs

Miller at the exact location of the ogre).

Student code: Modified code:

Figure C.7: One of the pre-made suggestions for ‘Mike’

[233]

Molly 1

Modification: Instead of having four separate bow functions that all produced the same motion, they were replaced with one “bow”

function that all of the characters can use.
Student code:

Figure C.8: One of the pre-made suggestions for ‘Molly’, part 1

[234]

Molly 1

Modified code:

Figure C.9: One of the pre-made suggestions for ‘Molly’, part 2

[235]

C.3 Template

Please describe the rule in English in the form “if
,thenthecodefollowstherule”

Please code the rule in your preferred language’s pseudocode. Return TRUE if it follows the

rule and FALSE if it does not

[236]

Appendix D

Example Guru for API Methods

Study Materials

D.1 Instruction sheets

[237]

1. Double click on 1 and follow the instructions in the ‘note’ to create an animation!
When the time is up, an alert will pop up. Complete the survey and then move on to the next task.
If you’ve never done this before, look at the description below or raise your hand for help!

2. Double click 2 and follow the
instructions:

FIRST: Select the bunny

THEN: Click the button next to the bunny walk in the left menu.

THEN: click on ‘Show more options’ to see more examples.

When you are done, raise your hand​ and we will check to make sure it is correct.

3. Double click 3 and follow the instructions:

FIRST: Use the button next to the shark turn action in the left menu.

THEN: Click on ‘Show more options’ to see more examples.

When you are done, raise your hand​ and we will check to make sure it is correct.

4. Double click on 4 and follow the instructions in the ‘note’.
When the time is up, an alert will pop up. Move on to the next task (below).

5. Double click on 5 and follow the instructions in the ‘note’.
When the time is up, an alert will pop up. Move on to the next task (below).

(If you finish early)

6. Double click on 6.bat

1. Double click on 1 and follow the instructions in the ‘note’ to create an animation!
When the time is up, an alert will pop up. Complete the survey and then move on to the next task.
If you’ve never done this before, look at the description below or raise your hand for help!

2. Double click 2 and follow the
instructions:

First, PLAY the animation.

Then, click the tip shown in this image to help you solve the task!

When you are done, raise your hand​ and we will check to
make sure it is correct.

3. Double click on 3 and follow the instructions:

First, PLAY the animation.

Then, click the tip shown in this image to solve the task!!

When you are done, raise your hand​ and we will check to make sure it is correct.

4. Double click on 4 and follow the instructions in the ‘note’.
When the time is up, an alert will pop up. Move on to the next task (below).

5. Double click on 5 and follow the instructions in the ‘note’.
When the time is up, an alert will pop up. Move on to the next task (below).

(If you finish early)
7. Double click on 6

[238]

D.2 Templates

[239]

[240]

[241]

[242]

D.3 Suggestions, rules, and examples

Code Sug-

gested

Suggestion

Title

Primary Exam-

ple Title

Secondary Exam-

ple Title

Rule Summary

Anima-

tionStyle

argument

Make

[...] move

smoothly

Use animation

style to make

movements

smooth

Use animation

style to create

a pause a bit

between two

moves

Multiple move-

ments in a row by

the same object

(means that they

might look better

with a specified

animation style).

Anima-

tionStyle

argument

”Make [...]

turn sud-

denly or

smoothly

Make the ostrich

appear to almost

fall into the

pond by making

it turn backward

and then forward

abruptly.

Make the hippo

take a bow by

gently turning

forward and

backward.

One character does

multiple turns or

rolls without anima-

tionStyle.

Animation-

Style

Make

anima-

tions more

smooth!

Abrupt ani-

mation style

changes

smoothly be-

tween move-

ments

Gentle ani-

mation style

pauses between

movements like

movements with-

out animation

style

Sets animationStyle

to default so it has

no effect.

[243]

AsSeenBy

argument

Make

[...] turn

around

something

other than

itself

Make shark turn

around the kid

Make the kid

turn around the

spine

Code uses turn but

not asSeenBy.

AsSeenBy Look how

to use ’as

seen by’ ef-

fectively

As seen by ice

floe changes the

spinning center

from ice skater to

ice floe

Turning around

is already cen-

tered at the ice

skater

Uses asSeenBy

with the same

object (which has

no effect).

AsSeenBy

argument

Improve

the turning

animation

by not

going un-

derground

Make kid flip by

turning around

his belly

Make dog go

around kid

Object moves for-

ward or backward

at least one full ro-

tation and does not

use asSeenBy.

Delay

method

Pause

before

moving to

another

direction.

The painter

turns to look at

the man, pauses,

and then goes

back to painting.

Man turns right,

then left without

stopping

One character

moves in multiple

directions sequen-

tially but does not

use delay.

[244]

Duration

argument

Make

speech

display

longer!

Use a larger

duration value

to make speech

bubbles display

longer.

Use a short du-

ration to make

speech bub-

bles disappear

quickly.

Code has a say

code block with

long text (>50

characters) and no

duration argument

Duration Make [...]

move differ-

ent speeds.

Use a larger du-

ration value to

make the subma-

rine move down

slower.

Use a short dura-

tion to make the

fish move down

faster.

Object moves long

or very short dis-

tance (>2 or <.5)

but does not have a

duration.

Duration Make an-

imations

happen

faster or

slower

using a

duration

other than

1.0

User a duration

bigger than 1 to

make things hap-

pen for a longer

amount of time.

Use a duration

less than 1 to

make things hap-

pen faster.

Default duration of

1 selected.

GetDis-

tance-

ToGround

function

Move [...]

exactly to

the ground

Use ’getDistance-

ToGround’ to

move something

exactly to the

ground

Use a numerical

value to move

something a cer-

tain amount

If an object moves

down and does not

use getDistance-

ToGround.

[245]

GetDis-

tance-

ToGround

function

Try to

reach

something

above the

ground

Make girl reach

to mango on the

tree by moving

up for mango

distance from

ground.

Make girl reach

to mango on the

tree by moving

up an estimated

distance.

Move up with

no getDistance-

ToGround function.

GetDis-

tanceTo

function

Make a

character

walk the

distance

to another

object

Make yeti walk

directly inside of

the cave

Make yeti walk

for 5 meters

Turn + walk

in code without

getDistanceTo

function.

GetDis-

tanceTo

function

Find out

how much

[...] should

move to

get to

[target]

Use getDis-

tanceTo to move

the snowman

into the cave

Use a number to

move an object a

certain amount

If an object turns

and moves and

does not use

getDistanceTo.

GetJoint

function

Change

[...]’s pos-

ture before

spinning

Make ice skater

spin with one leg

out

Make ice skater

spin while stand-

ing straight

Code has charac-

ter turning without

having moved the

joints.

[246]

GetJoint

function

Make [...]

jump realis-

tically

The bunny

bends over

to prepare to

jump and then

straightens up

on the way down

The bunny does

a basic jump up

and then down.

Move up with no

joint movements.

GetJoint

movements

Make only

[...]’s head

turn

Use turn head to

make a character

just turn their

head.

Use turn with

a character to

make their whole

body turn.

If an object turns to

face something and

does not use joint

movements.

Move

method

Have you

thought

about

making [...]

move?

Move in a certain

direction

Move to the

same spot as

something else

If objects talk about

moving, but there

are no move code

blocks

Move Make [...]

move

Make carp es-

cape by moving

into the cave

Make alien move

down 2m from

the UFO

Characters say or

think direction

words, but move is

not used.

[247]

MoveInRe-

lationTo

”Use ‘move

in relation

to’ to make

objects

move to-

gether by

using it

with move

Whenever the

snowboard

moves, bunny

also moves in

same direc-

tion and same

amount

Bunny’s move-

ments do not

affect the snow-

board

MoveInRelationTo

used without a

following move.

MoveInRe-

lationTo

method

Make [...]

move to-

gether with

[target]

Make objects

move together

using ‘move in

relation to’

Moving two

objects in a row

makes them

move one after

the other

Two objects move

the same distance

and direction se-

quentially and do

not use moveInRe-

lationTo.

MoveInRe-

lationTo

Make [...]

move with

[target].

Make helmet

‘move in relation

to’ the alien to

make them move

together

Without move in

relation to, the

helmet doesn’t

move with the

alien.

Object moves to a

body part of a char-

acter, but moveIn-

RelationTo is not

used.

Orient-

ToUpright

method

Make [...]

get back to

upright po-

sition

Use ‘orient to up-

right’ to make an

object ‘stand up-

right’

You can use op-

posite actions to

make something

stand up again

If an object turns

and/or rolls but

does not use orient-

ToUpright.

[248]

Orient-

ToUpright

method

Use ‘orient

to upright’

to make

a charac-

ter stand

up after

rolling or

turning

Use ‘orient to up-

right’ to get the

boy to stand up-

right

Use ‘orient to’

to make objects

face the same

way

Turn or roll without

orientToUpright

method.

Resize Make [...]

disap-

pear by

shrinking

Use resize with a

very small value

to make some-

thing disappear

Use disappear to

make something

fade away

Code uses setOpac-

ity to make some-

thing disappear but

does not use resize.

Resize Make [...]

larger or

smaller by

using a

value other

than 1

Resizing 4 times

makes the plant

grow larger

Resizing by 0.5

makes the ice

shrink

Sets resize to 1

without having set

it to anything else

(which has no ef-

fect).

Resize Make [...]

bigger or

smaller

Make stuffed

tiger bigger

Make lioness

smaller

Characters say or

think words about

size, but resize is

not used.

[249]

SetAtmo-

sphere

method

Change sky

color

Change sky to

dark color for

night

Change sky to

bright color for

morning

If the characters

talk about time of

day but do not

change the atmo-

sphere color.

SetPaint

method

Make [...]

turn color

and then

disappear

Use ‘set paint’ to

change the color

or something be-

fore disappearing

Use ‘disappear’

to make some-

thing disappear.

If an object disap-

pears but the code

does not use the set-

Paint method.

SetPaint

method

Make

objects

change

color by

setting the

color to

something

other than

white!

Setting the paint

to black makes

the moonface go

dark.

Setting trans-

parency to 50%

makes the alien

look faded.

Code uses setPaint

with white color

(which has no ef-

fect).

SetTrans-

parency

method

You can

also make

[...] see-

through!

Make something

see-through by

setting trans-

parency to

50%.

Make something

disappear by

setting trans-

parency to

0.

Code uses dissap-

pear, but not set-

Transparency.

[250]

Straighte-

nOutJoints

method

Reset [...]’s

joints to

standing

straight.

Use ‘straighten

out joints’ to get

joints back to

original place

Turn or roll joint

in opposite direc-

tion to get back

to original place

Character turns

and moves joints

but does not

use straighte-

nOutJoints

Straighte-

nOutJoints

method

Reset [...]’s

joints to

original

posture

Use ‘straighten

out joints’ to get

joints back to

original place

Turn or roll joint

in opposite direc-

tion to get back

to original place

Code has joints

moved and then

straightened manu-

ally

Straighte-

nOutJoints

Use

‘straighten

out joints’

after joint

movements

to reset.

Use ‘straighten

out joints’ to get

yeti’s right shoul-

der back to origi-

nal position

Use ‘straighten

out joints’ to

get madhatter’s

joints back to

original position.

Straighte-

nOutJoints is

used, but no joint

movements are

used.

Turn Make [...]

spin.

Make girl spin by

turning around 2

times

Make the girl

turn her feet out

to dance using

roll

Characters use say

or think methods

with words about

dancing, but do

not use the turn

method.

TurnTo-

Face

Make [...]

turn to

face before

walking

Make girl turn to

face the cola be-

fore walking to-

ward it

Make girl walk

toward the cola

bottle

Walking without

turning to face

method.

[251]

TurnTo-

Face

method

Make [...]

turn to face

before mov-

ing

Make the dragon

face the UFO be-

fore moving to-

wards it.

The dragon can

move toward the

alien without

turning because

it’s already

facing it.

Move without

a turnToFace

method.

TurnTo-

Face

method

Make char-

acters face

each other

to talk to

each other!

Have a character

‘turn to face’ be-

fore speaking so

that it looks like

a conversation.

Have characters

‘orient to’ each

other to face the

same direction.

Say statements

with no turnToFace

method.

Walk

method

Make [...]

walk

Use ‘walk’ to

make 2-legged

characters walk,

like the yeti

Use ‘move’ to

make objects like

the sled move.

If a character with a

walk method moves

and there is no walk

method.

WalkPace

argument

Make [...]

walk faster!

”Use a larger

walk pace to

make a character

walk quicker.

Use a smaller

walk pace to

make a character

walk slower.

Character walks

more than 2 meters

at a pace <=1.

WalkTo

method

Make [...]

walk!

Make the tor-

toise walk to the

cake.

”Make the yeti

walk 1.0 meters

to walk to the

cake.

Movement words

in say or think

statements without

walkTo method

[252]

D.4 Surveys

D.4.1 Demographic history Survey

See section A.1.

D.4.2 Learning style survey

Rate on a Likert scale from 1-5 (strongly disagree to strongly agree):

I enjoy being taught new things in a classroom.

I enjoy learning new things from books.

I enjoy learning new things from online tutorials or video tutorials.

When I use a new app or technology (phone, computer, or game system), I like to try figure

out how all of the different features work.

I only learn the technology I have to know to do my schoolwork.

I enjoy trying out brand new technology that my friends or family might not know how to

use yet.

If an app or computer is not working, I will play around with it myself to try to get it to

work.

If an app or computer is not working, I will try to find information online about how to fix it.

I prefer to use technology that I am used to or that others already know how to use.

[253]

D.4.3 In-task survey questions

“You opened the tip for [...] (shown below) and used it in your program. Why did you open

the tip and add it to your animation?”

“You opened the tip for [...] (shown below) but did not use it in your program. Why did you

open the tip, but not add it to your animation?”

“Why did you not open the tip for [...] (shown below)?”

[254]

Appendix E

Semi-automatic Suggestion

Generation Study Materials

E.1 Surveys

E.1.1 Demographic and computing history survey

See section A.1.

E.1.2 Post-study survey

Please circle 1-7 in each row.

Today my coding experience was:

1 (disgusting) - 7 (enjoyable)

1 (dull) -7 (exciting)

[255]

1 (unpleasant) - 7 (pleasant)

1 (boring) - 7 (interesting)

Please rate how useful you found the [tips and hints or tutorials] in task 4 (create your own).

0 (N/A: did not look at them)

1 (I looked at them but they were not useful at all) - 7 (I looked at them and found them

very useful)

Please rate how understandable you found the [tips and hints or tutorials] in task 4 (create

your own).

0 (N/A: did not look at them)

1 (I looked at them and found them very confusing) - 7 (I looked at them and found them

very easy to understand)

Please write a few sentences describing why the tips and hints were or were not useful to you

in task 4 (create your own).

E.2 Training tasks

Figure E.1: First Training Task

[256]

Figure E.2: Second Training Task

E.3 Templates

Figure E.3: Seaworld template

[257]

Figure E.4: Templates for open-ended programming.

[258]

E.4 Tutorials

E.4.1 Turn the character’s head.

Click on the character drop down to find the head joint.

E.4.2 Increase the walk pace of a character

Make a character walk faster by using ’walk pace’ in the ’more’ drop-down menu.

E.4.3 Make the flash happen multiple times.

1. Scroll down in the action blocks. 2. Find the disappear block and drag it into your

program. 3. Then, drag in the appear block.

The repeat block makes the actions within it happen multiple times. 1. Scroll down to the

Action Ordering Boxes and find the repeat block. 2. Drag it into your code and select a

number of times you want the flash to repeat. 3. Drag the disappear and appear blocks into

the repeat block.

E.4.4 Make actions happen together

Drag in the move action and the disappear action blocks.

The Do together makes blocks within it happen at the same time. 1. Scroll down to the

Action Ordering Boxes. 2. Drag in the Do together block.

[259]

E.4.5 Make Alice wave three times

First, roll Alice’s shoulder. Then turn her elbow left and right to make a wave animation.

The repeat loop makes the actions happen multiple times. 1. Scroll down to Action Ordering

Boxes and drag in a repeat loop. 2. Set the number of times it repeats to 3. 3. Drag the roll

and turn blocks into the repeat block.

E.4.6 Make a character jump multiple times

Drag in move up and move down blocks.

The repeat loop makes the actions within it happen multiple times. 1. Scroll down to Action

Ordering Boxes and add the repeat block. 2. Set the number of times you want the actions

to repeat. 3. Drag the move blocks into the repeat block.

E.4.7 Make the two objects move together

Drag in move code blocks for two different objects.

The Do together block makes the blocks within it happen at the same time. 1. Scroll down

to Action Ordering Boxes and drag in a Do together block. 2. Drag the move blocks into the

Do together block.

E.4.8 Make the set of actions happen multiple times

Scroll in the actions to find blocks like move, turn and say.

[260]

The Do together block makes the blocks within it happen at the same time. 1. Scroll down to

Action Ordering Boxes and add a Do together block. 2. Add the actions to the do together

block.

The repeat block makes the blocks within it happen multiple times. 1. Drag in a repeat

block from the Action Ordering Boxes. 2. Drag the Do together block into the repeat block.

E.4.9 Make a character talk and walk at the same time.

Drag in a say block and set the text. Drag in a walk block.

The Do together block makes the blocks within it happen at the same time. 1. Scroll down

in the Action Ordering Boxes and drag in a Do together block. 2. Drag the say and walk

blocks into the Do together block.

E.4.10 Make an object change size and color at the same time

Scroll down in the actions to find the resize block and the set color block.

The Do together block makes the blocks within it happen at the same time. 1. Scroll down

to the Action Ordering Boxes and drag in a Do together block. 2. Drag the resize and set

color blocks into the Do together.

E.4.11 Make a character turn and turn back multiple times

Drag in two turn blocks and set the directions to be opposites.

[261]

The repeat loop makes the blocks within it happen multiple times. 1. Scroll down to the

Action Ordering Boxes and drag in a repeat block. 2. Set the number to the number of times

you want the turns to happen. 3. Drag the turn actions into the repeat block.

E.4.12 Make the dolphins flip at the same time

Drag in a turn block for the baby dolphin. Then click on the mom dolphin and drag in

another turn action.

The Do together makes actions within it happen at the same time. 1. Scroll down to the

Action Ordering Boxes. 2. Drag in a Do together block. 3. Drag both of the turn actions

into the Do together block.

E.4.13 Make the jump more realistic

Drag in three move actions. One should have the direction up, the next should have forward,

and the last should have down.

The Do together makes actions within it happen at the same time. 1. Scroll down to Action

Ordering Boxes and drag in a Do together block. 2. Drag the move up and move forward

blocks into the do together to make them happen at the same time.

E.5 Suggestions and examples

[262]

Code

Sug-

gested

Suggestion Title

(Number of Ex-

ample Snippets in

Group)

Primary Ex-

ample Title

Secondary Ex-

ample Title

Rule Summary

Repeat

Loop

Make prop’s joints

turn back and forth

multiple times.(3)

Treasure

chest opens

and closes 10

times.

Treasure

chest opens

and closes 2

times.

One character’s

joints turn back

and forth, but

no repeat loop is

used.

Make a prop move

back and forth mul-

tiple times! (3)

The rover

shakes 30

times

Camera

moves up and

down three

times.

A character

moves in one

direction and

then back the

other way but

does not use

repeat.

Make a character re-

peat turn and move

multiple times. (3)

Chicken turns

around and

jumps 3

times.

Dolphin flips

and jumps 3

times.

A character

turns and moves

multiple times

but does not

repeat.

Make a character

turn back and forth

multiple times. (4)

Baby yeti

turns left and

right 3 times.

Baby yeti

turns right

and left twice.

A character

turns back and

forth but does

not repeat.

[263]

Make a character

jump multiple

times. (6)

CheshireCat

jumps 3

times.

Seagull moves

a little 15

times.

A character

moves up and

down but does

not repeat.

Make a character’s

joint turn back and

forth many times.

(7)

Fox wags its

tail left and

right.

Dog wags its

tail right and

left.

Make a character

move multiple

times. (9)

Baby walrus

moves 1 meter

3 times.

Joe moves

back twice.

A character

moves multiple

times but does

not repeat.

Do

together

Make multiple char-

acters say or think

at the same time.

(105)

Poodle says

AHHH while

bison thinks

the same.

Clown fish

says ’a shark’

while blue

tang say to

run.

Make multiple char-

acters move at the

same time. (98)

Both boy and

girl move up

at the same

time.

Both boy

and girl walk

at the same

time.

Two characters

move one after

another with no

do together.

Make a character’s

multiple joints turn

at the same time.

(97)

The girl

moves her

arms out.

Ronalda

turns her

arms around.

A character

moves multiple

joints but not

within a do

together.

[264]

Make multiple char-

acters turn at the

same time. (62)

Both lioness

and jaguar

turn around.

The hippo

and camel

turn away

from each

other.

Two characters

turn but not in a

do together.

Make a character

turn and move at

the same time. (62)

Bunny turns

around as

it moves

forward.

Alien spins

and moves

up.

A character

turns and then

moves, not

within a do

together.

Make a character

move and talk at

the same time. (49)

Alien runs

away.

Panda walks

in while talk-

ing to wait.

A character talks

and then walks

not in a do to-

gether.

Make a prop move

diagonally. (45)

Plane flies up

and forward

at the same

time.

Camera

zooms out of

Odin.

An object moves

in two directions

sequentially.

Make multiple char-

acters move at the

same time. (39)

Alien and

spaceship

move in

opposite

directions.

Both witch

and cauldron

move up.

Two characters

move sequen-

tially.

Make a character

talk while turning.

(29)

Baby yeti

shouts while

falling.

Flamingo

shouts while

spinning.

A character

turns and then

talks.

[265]

Make a character’s

head move while

talking. (26)

Man drops his

head while he

speaks.

Pig turns

head to left as

it talks.

A character’s

head moves and

then it speaks.

Make multiple

characters change

appearance at the

same time. (25)

Ogre trans-

forms into a

prince.

Both fish dis-

appear at the

same time.

Two charac-

ters change

appearance

sequentially.

Make a character

move diagonally.

(24)

Panda moves

up and for-

ward.

The boy

moved back

and down to

the floor.

A character

moves in two

directions se-

quentially.

Make a characters’

joints multiple

times move while

talking. (24)

Baby yeti’s

mouth moves

as he speaks.

The camel’s

mouth moves

as it speaks.

Character’s

joints move and

then it speaks.

Make a character’s

leg joints move at

the same time. (21)

The man’s

both legs bent

forward.

The man

stretches the

legs.

A character’s leg

joints move se-

quentially.

Change a prop’s po-

sition and orienta-

tion at the same

time. (19)

Camera

moves and

faces Mor-

pheus.

Spaceship

spin as it

moves up.

A prop moves

and changes ori-

entation sequen-

tially.

Make a character’s

arm joints move at

the same time. (17)

Rabbit raises

its arms at the

same time.

Yeti bends his

arm towards

the face.

A character’s

arm joints move

sequentially.

[266]

multiple things

move at the same

time. (16)

Both curtains

open.

Multiple

things move

to ship.

Two objects

move sequen-

tially.

Make characters

move and say at

the same time. (11)

Three stu-

dents shout

and go up.

Three pigs say

as they move

back.

Make a character

use their legs more

realistically. (12)

The man

jumps.

The chicken

steps.

Change multiple

things’ visibility at

the same time. (10)

Cactus dis-

appears and

turns into a

cup of water.

Multiple

things disap-

pear at the

same time.

Multiple objects

change visibility,

but no do to-

gether used.

Make a character’s

arms and legs move

at the same time.

(10)

The girl’s

arms and legs

cross.

The boy poses

for a jump.

A character’s

arms and legs

move but no do

together used.

Table E.1: The 7 suggestions and rules for repeat and the suggestions and rules for do
together with 10 or more examples in the cluster.

E.6 Transfer tasks

[267]

Figure E.5: Transfer task 1

[268]

Figure E.6: Transfer task 2

[269]

Figure E.7: Transfer task 3

[270]

Figure E.8: Transfer task 4

[271]

	Washington University in St. Louis
	Washington University Open Scholarship
	Summer 8-15-2018

	The Example Guru: Suggesting Examples to Novice Programmers in an Artifact-Based Context
	Michelle Ichinco
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter 1: Introduction
	1.1 Resources for novice programmers
	1.2 Examples
	1.3 Approach
	1.3.1 The Example Guru system overview
	1.3.2 Looking Glass

	1.4 Hypotheses
	1.4.1 Hypothesis 1
	1.4.2 Hypothesis 2
	1.4.3 Hypothesis 3

	1.5 Contributions
	1.6 Summary
	1.6.1 Related work
	1.6.2 Hypothesis 1: Studies of novices using examples
	1.6.3 Hypothesis 2: Suggesting example code to novices with the Example Guru
	1.6.4 Hypothesis 3: Generating large-scale suggestion systems
	1.6.5 Summary and future work

	Chapter 2: Related Work
	2.1 Examples and learning from a cognitive perspective
	2.1.1 Analogical problem solving
	2.1.2 Worked examples for learning
	2.1.3 Takeaways

	2.2 Comprehending and presenting example code in programming and software engineering
	2.2.1 Code comprehension
	2.2.2 Code example use
	2.2.3 Quality of examples
	2.2.4 Code summarization
	2.2.5 Code visualization
	2.2.6 Takeaways

	2.3 Supporting access of relevant examples
	2.3.1 Recommendations for API or command usage
	2.3.2 Recommendations to improve code quality
	2.3.3 Recommendations to fix errors
	2.3.4 Providing examples as a way of recommending examples
	2.3.5 Takeaways

	Chapter 3: Understanding Novice Example Use
	3.1 Introduction
	3.2 Exploratory study
	3.2.1 Materials
	3.2.2 Study design
	3.2.3 Participants
	3.2.4 Analysis and results

	3.3 Hurdles and strategies
	3.3.1 Content distraction hurdle
	3.3.2 Example comprehension hurdle
	3.3.3 Programming environment hurdle
	3.3.4 Code misconception hurdle
	3.3.5 Code comprehension hurdle
	3.3.6 Idea generation strategy
	3.3.7 Code-example comparison strategy
	3.3.8 Example emphasis strategy

	3.4 Task behavior groups
	3.4.1 Long conclusion group
	3.4.2 Slow start group
	3.4.3 No realization group
	3.4.4 Quick group

	3.5 Threats to validity
	3.6 Discussion
	3.6.1 Implications of slow start behavior
	3.6.2 Implications of long conclusion behavior
	3.6.3 Implications for the design of the Example Guru

	3.7 Conclusion

	Chapter 4: Towards Better Code Snippets: Exploring How Code Snippet Recall Differs with Programming Experience
	4.1 Related work: novice and expert chunking in recall
	4.2 Methods
	4.2.1 Participants
	4.2.2 Materials
	4.2.3 Study setup

	4.3 Analysis
	4.3.1 Metrics
	4.3.2 Comparing responses to correct code snippets

	4.4 Results
	4.4.1 Overall
	4.4.2 Which elements do programmers initially recall?
	4.4.3 What did programmers fill in after the first attempt?
	4.4.4 Errors

	4.5 Threats to validity
	4.6 Lessons learned: recommendations for improving code examples
	4.6.1 Selecting or creating effective code for examples
	4.6.2 Purposely position elements within example
	4.6.3 General emphasis and deemphasis
	4.6.4 Example-specific emphasis and deemphasis
	4.6.5 Emphasize important arguments
	4.6.6 Emphasize tokens that stray from the norm
	4.6.7 Deemphasize unimportant early code elements

	4.7 Implications for the Design of the Example Guru
	4.7.1 Selecting effective examples
	4.7.2 Emphasizing elements

	4.8 Conclusion

	Chapter 5: Exploring Suggestion and Rule Design through Expert Content Creation
	5.1 Methods
	5.1.1 Materials
	5.1.2 Study procedures
	5.1.3 Participants

	5.2 Analysis
	5.2.1 Suggestions
	5.2.2 Rule pseudocode
	5.2.3 Rule implementation

	5.3 Results
	5.3.1 Suggestions
	5.3.2 Rule pseudocode
	5.3.3 Rule implementation

	5.4 Threats to validity
	5.5 Discussion
	5.5.1 Quality in expert created content
	5.5.2 Relevance of content for novices

	5.6 Implications for the design of the Example Guru
	5.6.1 Suggestions
	5.6.2 Rules

	5.7 Conclusion

	Chapter 6: Designing and Evaluating the Example Guru for Suggesting API Methods
	6.1 Introduction
	6.2 The Example Guru design
	6.2.1 System design methods

	6.3 Evaluation
	6.3.1 Documentation condition
	6.3.2 Participants
	6.3.3 Methods
	6.3.4 Study procedures
	6.3.5 Data collection and analysis

	6.4 Results
	6.4.1 Access and use of suggestions and documentation
	6.4.2 Do participants' demographics affect how they used suggestions and documentation?
	6.4.3 Do participants take advantage of API information features?
	6.4.4 Threats to validity

	6.5 Discussion
	6.5.1 Learning APIs
	6.5.2 Gender and the Example Guru

	6.6 Conclusion

	Chapter 7: Large-Scale Suggestions: Semi-Automatic Generation
	7.1 Related work
	7.2 Programming environment & suggestion system
	7.2.1 Looking Glass programming environment
	7.2.2 The Example Guru (final version)

	7.3 Suggestion generation approach
	7.3.1 Input repository
	7.3.2 Initial setup
	7.3.3 Example extraction
	7.3.4 Example grouping
	7.3.5 Human moderation
	7.3.6 Generate rules

	7.4 Comparison of semi-automatically generated to hand-authored suggestions
	7.4.1 Comparison methods
	7.4.2 Comparison results

	7.5 User study: novices' interaction with semi- automatically generated suggestions vs. tutorials
	7.5.1 Tutorial control condition
	7.5.2 Study protocol
	7.5.3 Participants
	7.5.4 Data and analysis
	7.5.5 Study results

	7.6 Threats to validity
	7.7 Discussion
	7.7.1 How our approach generalizes
	7.7.2 Potential of suggestions to increase use and learning
	7.7.3 Effect of the code repository on suggestion generation
	7.7.4 Personalization

	7.8 Conclusion

	Chapter 8: Summary and Future Work
	8.1 Summary
	8.2 Future work
	8.2.1 How can we apply large-scale in-context suggested content to help people learn other topics?
	8.2.2 How can we automatically generate context-relevant support at a large scale?
	8.2.3 What types of user interaction can help users learn and improve suggestion relevance?

	References
	Appendix A: Understanding How Novices Use Examples Study Materials
	A.1 Computing history survey
	A.2 Intro instructions
	A.3 Task programs and solutions
	A.4 Interview questions

	Appendix B: Comparing Novices and Experts Study Materials
	B.1 Instructions
	B.2 Demographic survey
	B.3 Tasks
	B.4 Post-task survey

	Appendix C: Exploring Types of Suggestions Study Materials
	C.1 Skill trees
	C.2 Programs and pre-made suggestions
	C.3 Template

	Appendix D: Example Guru for API Methods Study Materials
	D.1 Instruction sheets
	D.2 Templates
	D.3 Suggestions, rules, and examples
	D.4 Surveys
	D.4.1 Demographic history Survey
	D.4.2 Learning style survey
	D.4.3 In-task survey questions

	Appendix E: Semi-automatic Suggestion Generation Study Materials
	E.1 Surveys
	E.1.1 Demographic and computing history survey
	E.1.2 Post-study survey

	E.2 Training tasks
	E.3 Templates
	E.4 Tutorials
	E.4.1 Turn the character's head.
	E.4.2 Increase the walk pace of a character
	E.4.3 Make the flash happen multiple times.
	E.4.4 Make actions happen together
	E.4.5 Make Alice wave three times
	E.4.6 Make a character jump multiple times
	E.4.7 Make the two objects move together
	E.4.8 Make the set of actions happen multiple times
	E.4.9 Make a character talk and walk at the same time.
	E.4.10 Make an object change size and color at the same time
	E.4.11 Make a character turn and turn back multiple times
	E.4.12 Make the dolphins flip at the same time
	E.4.13 Make the jump more realistic

	E.5 Suggestions and examples
	E.6 Transfer tasks

