65 research outputs found

    Radiolabeled Compounds for Diagnosis and Treatment of Cancer

    Get PDF
    Radiopharmaceuticals are used in the diagnosis and treatment of various diseases, especially cancer. In general, radiopharmaceuticals are either salts of radionuclides or radionuclides bound to biologically active molecules, drugs, or cells. Tremendous progress has been made in discovering, developing, and commercializing numerous radiopharmaceuticals for the imaging and therapy of cancer. Significant research is ongoing in academia and the pharmaceutical industry to develop more novel radiolabeled compounds as potential radiopharmaceuticals for unmet needs. This Special Issue aims to focus on all aspects of the design, characterization, evaluation, and development of novel radiolabeled compounds for the diagnosis and treatment of cancer and the application of new radiochemistry and methodologies for the development of novel radiolabeled compounds. Outstanding contributions presented in this Special Issue will significantly add to the field of radiopharmaceuticals

    Development and Applications of Infrared Structural Biology

    Get PDF
    Aspartic acid (Asp), Glutamic acid (Glu) and Tyrosine (Tyr) often play critical roles at the active sites of proteins. Probing the structural dynamics of functionally important Asp/Glu and Tyr provides crucial information for protein functionality. Time-resolved infrared structural biology offers strong advantages for its high structural sensitivity and broad dynamic range (picosecond to kilosecond). In order to connect the vibrational frequencies to specific structures of COO- groups and phenolic -OH groups, such as the number, type, and geometry of hydrogen bond interactions, we develop two sets of vibrational structural markers (VSM), built on the symmetric and asymmetric stretching frequencies for COO- and C-O stretching and C-O-H bending frequencies for phenolic -OH. Extensive quantum physics (density functional theory) based computational studies, combined with site-specific isotope labeling as well as site-directed mutagenesis, and experimental FTIR data on Asp/Glu in proteins, are used to establish a unique correlation between the vibrations and multiple types of hydrogen bonding interactions. Development of those vibrational structural markers significantly enhances the power of time-resolved infrared structural biology for the study of functionally important structural dynamics of COO- from Asp/Glu and phenolic -OH from Tyr residues in proteins, including rhodopsin for biological signaling, bacteriorhodopsin and PYP for proton transfer, photosystem II for energy transformation, and HIV protease for enzymatic catalysis. Furthermore, this approach can be adopted in the future development of vibrational structural markers for other functionally important amino acid residues in proteins, such as arginine (Arg), histidine (His), and serine (Ser).Physic

    Online learning of physics during a pandemic: A report from an academic experience in Italy

    Get PDF
    The arrival of the Sars-Cov II has opened a new window on teaching physics in academia. Frontal lectures have left space for online teaching, teachers have been faced with a new way of spreading knowledge, adapting contents and modalities of their courses. Students have faced up with a new way of learning physics, which relies on free access to materials and their informatics knowledge. We decided to investigate how online didactics has influenced students’ assessments, motivation, and satisfaction in learning physics during the pandemic in 2020. The research has involved bachelor (n = 53) and master (n = 27) students of the Physics Department at the University of Cagliari (N = 80, 47 male; 33 female). The MANOVA supported significant mean differences about gender and university level with higher values for girls and master students in almost all variables investigated. The path analysis showed that student-student, student-teacher interaction, and the organization of the courses significantly influenced satisfaction and motivation in learning physics. The results of this study can be used to improve the standards of teaching in physics at the University of Cagliar

    Laboratory Directed Research and Development Program FY 2008 Annual Report

    Full text link

    Kind Historicism & Biological Ontology

    Get PDF
    This thesis develops a new theory of natural kinds for the biological world, called ‘Kind Historicism’, and addresses the relationship between natural kind theorizing and scientific reasoning. Applied to natural kinds and individuals in biology, Kind Historicism provides an ontology of the biological world. Discussions of biological ontology have struggled to balance insights from scientific practice with tools from analytic philosophy, metaphysics, and ontology. Ontological questions and practical/epistemic questions are often entangled. This thesis separates the two enquires, explaining why an ontological account of ‘what-there-is’ in biology should not straightforwardly dictate scientific categories, objects, or concepts. More precisely this thesis provides, in two parts, the development of Kind Historicism in light of discussions of natural kinds, essentialism, and monism, followed by the application of Kind Historicism to the natural kind status of biochemicals and to the problem of biological individuality. Finally, the success of Kind Historicism is measured against its ability to account for ‘intrinsic heterogeneity’ and ‘theoretical pluralism’, features of the biological world and science, respectively, believed to preclude biological natural kinds

    2013 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Seventh Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1007/thumbnail.jp

    The Economics of Big Science

    Get PDF
    The essays in this open access volume identify the key ingredients for success in capitalizing on public investments in scientific projects and the development of large-scale research infrastructures. Investment in science – whether in education and training or through public funding for developing new research tools and technologies – is a crucial priority. Authors from big research laboratories/organizations, funding agencies and academia discuss how investing in science can produce societal benefits as well as identifying future challenges for scientists and policy makers. The volume cites different ways to assess the socio-economic impact of Research Infrastructures and their role as hubs of global collaboration, creativity and innovation. It highlights the different benefits stemming from fundamental research at the local, national and global level, while also inviting us to rethink the notion of “benefit” in the 21st century. Public investment is required to maintain the pace of technological and scientific advancements over the next decades. Far from advocating a radical transformation and massive expansion in funding, the authors suggest ways for maintaining a strong foundation of science and research to ensure that we continue to benefit from the outputs. The volume draws inspiration from the first “Economics of Big Science” workshop, held in Brussels in 2019 with the aim of creating a new space for dialogue and interaction between representatives of Big Science organizations, policy makers and academia. It aspires to provide useful reading for policy makers, scientists and students of science, who are increasingly called upon to explain the value of fundamental research and adopt the language and logic of economics when engaging in policy discussions

    Síntese e caracterização de nanopartículas de prata: uma abordagem da toxicidade e do perfil metabólico em células da pele

    Get PDF
    Mestrado em Ciência e engenharia de materiaisAs nanopartículas de prata (AgNPs) apresentam uma vasta gama de aplicações devido às suas inerentes propriedades físico-químicas e atividade biológica. Para além disso, a síntese verde de nanopartículas está a ser estudada como uma alternativa fiável e promissora para minimizar a utilização de substâncias prejudiciais utilizadas na síntese convencional. No presente trabalho, as AgNPs foram sintetizadas usando extratos de casca de Eucalyptus globulus e comparados com as sintetizadas por "Pulsed Laser Abalation in Liquids" (PLAL). Ambos os conjuntos de nanopartículas foram caracterizados por espectroscopia de UV-Visível, dispersão dinâmica de luz (DLS) e microscopia eletrónica de varrimento (SEM). A concentração de prata nas soluções aquosas de NPs foi avaliada por análise de Espectrometria de Emissão Ótica por Plasma Acoplado Indutivamente (ICP-OES). A toxicidade das partículas na linha celular de queratinócitos humanos, HaCaT, foi avaliada pelo ensaio convencional de MTT, para avaliação da viabilidade celular, e o ciclo celular foi analisado por citometria de fluxo. Finalmente, o perfil metabólico das células foi avaliado por espectroscopia de Ressonância Magnética Nuclear (NMR) e análise multivariada (metabolómica). Os resultados da caracterização mostraram que as AgNPs foram de facto formadas e apresentaram uma ampla distribuição de diâmetros de aproximadamente 30 a 70 nm no caso das nanopartículas produzida por síntese verde (GS) e de 10 nm com distribuição estreita para as sintetizadas via PLAL. As partículas dispersas em meio de cultura celular apresentaram ligeira aglomeração, enquanto o armazenamento à temperatura ambiente não induziu nenhum efeito no tamanho final. Contudo, o “envelhecimento” resultou na formação de uma pequena quantidade de nanoestruturas com formato de agulha. O MTT indicou um IC50 para as células HaCaT de aproximadamente 15 g/mL no caso das AgNPs preparadas por síntese verde e de 24 g/mL no caso das NPs sintetizadas via PLAL. As partículas de GS também induziram redução da proliferação na dose mais baixa e extensa morte celular na dose mais elevada, com a análise do ciclo celular mostrando paragem na fase G2. Os revestimentos quer das nanopartículas de GS, quer de PLAL não induziram toxicidade nas concentrações testadas, e a interferência de AgNPs com o ensaio de MTT foi considerada insignificante. A análise metabolómica revelou que as AgNPs em concentrações sub-tóxicas causaram alterações a nível do metabolismo energético, proteção antioxidante e membranas celulares.Silver nanoparticles (AgNPs) present a wide range of applications due to their inherent physiochemical properties and biological activities. Moreover, green synthesis of metal nanoparticles is being studied as a reliable and promising alternative to minimize the use of harmful substances usually used in conventional synthesis. Here, AgNPs were synthesized using Eucalyptus globulus bark extract (GS) and compared against those synthesized externally via Pulsed Laser Abalation in Liquids (PLAL) technique. Both sets of particles were then characterized using UV-Visible spectroscopy, dynamic light scattering (DLS), and scanning transmission electron microscopy (SEM). The silver concentration of the aqueous solutions of NPs was also assessed by ICP-OES analysis. The toxicity of the particles on the human keratinocyte cell line, HaCaT, was evaluated using MTT, a conventional viability assay and cell cycle analysis was performed using flow cytometry. Finally, cellular metabolomics profiling was evaluated using NMR spectroscopy and multivariate analysis. Characterization results showed that AgNPs were indeed formed; presenting diameters of approximately 30 to 70 nm, and a wide size distribution for the GS route and 10 nm with a narrow distribution for the PLAL synthesis. Dispersion of particles in cell culture media promoted a slight agglomeration, while aging of particles at room temperature did not have an effect on their final size. Nevertheless, this aging time resulted in the formation of a small amount of needle-like nanostructures. MTT results indicated an IC50 value of approximately 15 ug/mL of silver for the GS route and approximately 24 ug/mL for the PLAL AgNPs. The GS particles also induced slower proliferation at the low concentration and extensive cell death at the high concentration, with cell cycle analysis showing arrest at the G2 phase. Neither the coating from the GS, nor the PLAL particles induced any toxicity at the concentrations tested, and the interference of AgNPs with the MTT assay was found to be negligible. Metabolomics using 1H NMR revealed that sub-toxic concentrations also caused significant alterations in energy metabolism, membrane modifications, and antioxidant protection in a dose and particle dependent manner. More specifically, GSH levels saw an increase, whereas amino acids, creatine compounds, and choline compounds all saw decreases. The GS AgNPs induced a stronger response in HaCaT cells than that of the PLAL
    corecore