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resumo 
 

 

As nanopartículas de prata (AgNPs) apresentam uma vasta gama de aplicações 
devido às suas inerentes propriedades físico-químicas e atividade biológica. 
Para além disso, a síntese verde de nanopartículas está a ser estudada como 
uma alternativa fiável e promissora para minimizar a utilização de substâncias 
prejudiciais utilizadas na síntese convencional. No presente trabalho, as AgNPs 
foram sintetizadas usando extratos de casca de Eucalyptus globulus e 
comparados com as sintetizadas por "Pulsed Laser Abalation in Liquids" (PLAL). 
Ambos os conjuntos de nanopartículas foram caracterizados por espectroscopia 
de UV-Visível, dispersão dinâmica de luz (DLS) e microscopia eletrónica de 
varrimento (SEM). A concentração de prata nas soluções aquosas de NPs foi 
avaliada por análise de Espectrometria de Emissão Ótica por Plasma Acoplado 
Indutivamente (ICP-OES). A toxicidade das partículas na linha celular de 
queratinócitos humanos, HaCaT, foi avaliada pelo ensaio convencional de MTT, 
para avaliação da viabilidade celular, e o ciclo celular foi analisado por citometria 
de fluxo. Finalmente, o perfil metabólico das células foi avaliado por 
espectroscopia de Ressonância Magnética Nuclear (NMR) e análise 
multivariada (metabolómica). 
 
Os resultados da caracterização mostraram que as AgNPs foram de facto 
formadas e apresentaram uma ampla distribuição de diâmetros de 
aproximadamente 30 a 70 nm no caso das nanopartículas produzida por síntese 
verde (GS) e de 10 nm com distribuição estreita para as sintetizadas via PLAL. 
As partículas dispersas em meio de cultura celular apresentaram ligeira 
aglomeração, enquanto o armazenamento à temperatura ambiente não induziu 
nenhum efeito no tamanho final. Contudo, o “envelhecimento” resultou na 
formação de uma pequena quantidade de nanoestruturas com formato de 
agulha. O MTT indicou um IC50 para as células HaCaT de aproximadamente 15 

g/mL no caso das AgNPs preparadas por síntese verde e de 24 g/mL no caso 
das NPs sintetizadas via PLAL. As partículas de GS também induziram redução 
da proliferação na dose mais baixa e extensa morte celular na dose mais 
elevada, com a análise do ciclo celular mostrando paragem na fase G2. Os 
revestimentos quer das nanopartículas de GS, quer de PLAL não induziram 
toxicidade nas concentrações testadas, e a interferência de AgNPs com o ensaio 
de MTT foi considerada insignificante. A análise metabolómica revelou que as 
AgNPs em concentrações sub-tóxicas causaram alterações a nível do 
metabolismo energético, proteção antioxidante e membranas celulares. 
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abstract 

 
Silver nanoparticles (AgNPs) present a wide range of applications due to their 
inherent physiochemical properties and biological activities. Moreover, green 
synthesis of metal nanoparticles is being studied as a reliable and promising 
alternative to minimize the use of harmful substances usually used in 
conventional synthesis. Here, AgNPs were synthesized using Eucalyptus 
globulus bark extract (GS) and compared against those synthesized externally 
via Pulsed Laser Abalation in Liquids (PLAL) technique. Both sets of particles 
were then characterized using UV-Visible spectroscopy, dynamic light scattering 
(DLS), and scanning transmission electron microscopy (SEM). The silver 
concentration of the aqueous solutions of NPs was also assessed by ICP-OES 
analysis. The toxicity of the particles on the human keratinocyte cell line, HaCaT, 
was evaluated using MTT, a conventional viability assay and cell cycle analysis 
was performed using flow cytometry. Finally, cellular metabolomics profiling was 
evaluated using NMR spectroscopy and multivariate analysis.  
 
Characterization results showed that AgNPs were indeed formed; presenting 
diameters of approximately 30 to 70 nm, and a wide size distribution for the GS 
route and 10 nm with a narrow distribution for the PLAL synthesis. Dispersion of 
particles in cell culture media promoted a slight agglomeration, while aging of 
particles at room temperature did not have an effect on their final size. 
Nevertheless, this aging time resulted in the formation of a small amount of 
needle-like nanostructures. MTT results indicated an IC50 value of approximately 
15 ug/mL of silver for the GS route and approximately 24 ug/mL for the PLAL 
AgNPs. The GS particles also induced slower proliferation at the low 
concentration and extensive cell death at the high concentration, with cell cycle 
analysis showing arrest at the G2 phase. Neither the coating from the GS, nor 
the PLAL particles induced any toxicity at the concentrations tested, and the 
interference of AgNPs with the MTT assay was found to be negligible. 
Metabolomics using 1H NMR revealed that sub-toxic concentrations also caused 
significant alterations in energy metabolism, membrane modifications, and 
antioxidant protection in a dose and particle dependent manner. More 
specifically, GSH levels saw an increase, whereas amino acids, creatine 
compounds, and choline compounds all saw decreases. The GS AgNPs induced 
a stronger response in HaCaT cells than that of the PLAL. 
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Chapter I:  Introduction 

I.1 THE NANO WORLD 

As nanotechnology and nanomaterials become more commonplace, so does the probability of 

common people having contact with them; thus, government associations have recently begun to look 

deeper into their safety. The International Organization for Standards (ISO) defines nanomaterials as 

those with a length of 1 to 100 nanometres in any of their three dimensions, as well as those slightly 

outside that range displaying nano specific behaviour [1]. Nanomaterials are then divided into nano-

objects and nano-structured materials with inner or surface structures at the nanoscale (e.g. 

nanoporous systems, nanofoams). Officially, a nanoparticle (NP) is a nano-object that has all three 

dimensions in the nanoscale, where typically, the ratio of the longest and shortest axes does not 

exceed three times. Where it does, the terms "nanofiber", a nano-object having two dimensions in 

the nanoscale, and “nanoplate”, a nano-object with one dimension in the nanoscale, can be applied 

[1].  

Nanotechnology has been hailed as revolutionary, often being compared with the invention of the 

steam engine and automobile, or the growing use of computers and later the Internet at the end of 

the twentieth century. Nanoscience, or rather the “nano approach”, can be applied to almost any 

industry or process, making them more efficient, less costly, and more environmentally friendly. One 

of the first areas to benefit from the rise of nanotechnology was the electronics industry. This was 

closely followed by applications in composite materials; making objects stronger, lighter, harder, 

waterproof, rust proof, or with special optical or magnetic properties, using a fraction of the amount 

of bulk material needed. Nowadays one of the most thriving domains is the realm of biology and 

medicine; here nanomaterials have a wide range of applications including sensors, prosthetics, 

sanitation, imaging, detection, drug delivery, and omic techniques [2].  

However, the downside of such exponential growth is a lack, or rather "lag", of regulation. Although 

nanomaterials are usually a new form of previously approved materials, their unique properties at this 

scale are reason enough that they be classified and treated as novel materials and thus subject to re-

approval by governing bodies [3]. 

In 2007, the European Commission put into effect REACH, the European Regulation on Registration, 

Evaluation, Authorization and Restriction of Chemicals. The European Chemicals Agency, created in 

the same vein, works alongside national authorities in the implementation and administration of 

REACH [4]. A large part of this document, which has since been updated in 2012, concerns the 

regulation of nanomaterials, particularly with regards to their risk assessment. The regulation is 

indeed timely, considering an estimated market of 11 million tonnes of nanomaterials at a market 

value of EUR 200 billion; and a forecast of up to EUR 2 trillion in products by 2015 [4]. Nowadays, the 

three nanomaterials dominating the global production market are silver, zinc oxide, and titanium 

dioxide nanoparticles, at 452, 34 000, and 88 000 tonnes/year respectively [5].  
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In this light, the general aim of this thesis is to characterize the toxicity of “Green Synthesis” silver 

nanoparticles (AgNPs) by first applying a comprehensive physico-chemical characterization, followed 

by conventional toxicity studies, and finally an NMR metabolomics approach. This chapter will first 

provide a general background on the four topics involved: particle synthesis theory and applications 

in biosynthesis; characterization techniques for nanomaterials and their importance; toxicology 

workflow and the conventional assays utilized; and finally omic techniques, metabolomics, and cellular 

metabolism. An extensive state of the art on silver nanoparticles will then be provided, covering 

applications, properties, and a full review of the latest studies in toxicity and metabolomics. Lastly, 

the aims of this work and a plan of the thesis will be presented.  

I.2 PARTICLE SYNTHESIS THEORY 

Material synthesis can be divided into two general categories, namely that of top-down and bottom-

up approaches. Top down methods involve starting from a bulk material and removing matter, and 

bottom-up methods involve the assembly of smaller pieces of matter such as atoms or molecules [6]. 

The latter is particularly applicable for the synthesis of nanoparticles as they are close in scale to the 

realm of molecules and clusters. For this specific case and in its simplest form, the synthesis of metal 

nanoparticles in solution starts with the formation of hydroxilated complexes, followed by the 

formation of clusters, then primary NPs, their growth and maturation (Figure 1) [7]. This process is 

governed by the standard nucleation and growth theory, which can also be applied to liquid 

condensation, crystallization of solids, phase changes in alloys and other colloidal phases [7]. 

 

Figure 1: Particle nucleation kinetics profile of concentration over time, where C* is the critical concentration. 

The hydroxilation of the metal ions occurs almost instantaneously after their dissolution in water; the 

exact complexes formed are related to the electro-negativity of the atom, its charge, and the pH of 

the solution. These complexes can then self-assemble to form polyions and metal clusters; in the latter 

case another species would be required to aid in the redox reaction. The concentration and size of 

such clusters would continue to grow until a critical radius, and a critical concentration of that radius, 

are reached [8]. The satisfaction of these criteria leads to the formation of nucleation sites, or 

nucleation; this event is based on the free energy given by the following equation:  
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∆𝐺 = −
4

3
𝜋𝑟3|∆Gv| + 4𝜋𝑟2γ 

Where ∆𝐺 is the free energy of the system, ∆Gv the difference of free energy between the old phase 

(the ionic solution) and the new phase (the NPs), γ the interfacial energy at the crystal-medium 

boundary, and r the radius of the nucleus [8].The first term, having to do with the supersaturation of 

the solution and the volume of the clusters is always negative, while the second term, having to do 

with the surface energy of the particles is positive as it requires energy [9]. A graphical representation, 

showing the Gibbs free energy versus the radius is given in Figure 2.  

 

Figure 2: Gibb's free energy for particle nucleation given as the combination of surface energy and bulk free energy, where 
rc is the critical radius [10]. 

The rate of nucleation is dependent on the supersaturation state S, the temperature T, and the surface 

energy of the particles γ, given by the equation:  

𝐽 = 𝐴 ∗ exp⁡(
−16𝜋𝛾3Ω2

3𝑘3𝑇3𝑙𝑛2𝑆
) 

Where Ω is the molecular volume, and A and k the Arrhenius and Boltzmann constants respectively. 

Homogenous nucleation occurs within the solution, whereas heterogeneous nucleation occurs at 

other surface boundaries; for example the vessel wall, impurities, or the interface with air [9].  

For the formation of a uniform size distribution the nucleation and growth regimes need to be 

decoupled [11]. This means that the nucleation rate must be much faster than the cluster generation 

rate, so that all the available clusters are consumed and the system moves away from the critical 

concentration region. In this way, any further clusters generated are used for the growth of particles 

rather than the generation of new nuclei. This is often called the LaMer growth model [11]. After the 

formation of the nuclei, growth can also occur via Ostwald ripening, digestive ripening, or coalescence. 

Ostwald ripening is the gradual dissolution of smaller particles and their redeposition onto larger ones 

[12]. The physical reason behind this being that the higher surface area of smaller particles creates 
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greater surface energy and results in higher solubility. Digestive ripening is the opposite phenomenon, 

where larger particles dissolve to allow smaller particles to grow, usually due to the surface tension 

properties [13]. Coalescence is the flocculation or joining of two or more particles, first as 

agglomerates and then as aggregates. The rate of growth can in turn fall under two regimes; diffusion 

limited or surface reaction limited. The former is limited by the rate at which the clusters can reach 

the surface of the particles, whereas the latter is limited by the surface reaction for their incorporation 

[13]. Depending on the nuclei’s size and the concentration of the precursor in solution, the growth 

may lead to a self-sharpening of the size distribution, or its broadening [9, 13]. Further discussion on 

the theory of nucleation and growth is outside the scope of this report.  

I.3 NANOPARTICLES SYNTHESIS: GREEN SYNTHESIS  

Parallel to the rise of these novel nanomaterials, the chemical industry has also evolved, becoming 

more concerned with chemical sustainable development. Innovations which strive to overcome 

challenges in reducing pollution levels and consumption of resources are greatly valued and a solid 

shift has been made towards minimizing their impact on the environment. It was Paul Anastas and 

John Warner that developed the Twelve Principles of Green Chemistry in 1998, in order to explain 

how to implement green chemistry concepts and other sustainable development ideas into practical 

terms. In general, the list targeted design of products and processes that minimize the waste of 

materials and energy; in fact, it advocated the prevention of waste as the best method of its disposal. 

With regards to materials, it advocated the use of those which have little or no toxicity or impact on 

human health and the environment, while maximizing the amount of raw material in the final product 

[14]. 

For the synthesis of metallic NPs, the most common method is chemical reduction in solution [15]; 

where hydrazine, sodium borohydrate or hydrogen are used as reducing agents [16, 17], and polymers 

such as chitosan [18], cellulose [19], and copolymer micelles can be used as stabilizing agents [20]. 

Aside from their intrinsic toxicity, some of these compounds require organic solvents such as ethanol, 

dimethyl formamide, ethylene glycol, tolulene, and chloroform [21]. Not only are these chemicals 

harmful to the environment, but also their residues on NPs can be a source of surface contamination, 

leading to adverse effects on consumers [22]. While physical approaches to synthesis pose a lower 

risk to human health and the environment, offering high purity and selective size control of NPs, they 

require complicated instruments and high power consumption [23]. These result in indirect 

environmental effects as well as high operating costs.  

On the other hand, green synthesis is deemed attractive because it is sustainable, cheaper, quicker 

and environmentally friendly as compared to the mentioned conventional methods. While there are 

many approaches for making a synthesis process more "green", a particularly interesting one is 

biosynthesis. In these, life forms such as bacteria [24], yeast [25], fungi [26], algae [27], and plants are 

used in whole, or in part, to synthesize organic, inorganic or composite materials [23]. These routes 

have been recently applied to synthesize a variety of nanomaterials [28], particularly nanoparticles 

[29].  

The underlying mechanism of biosynthesis is the exploitation of the natural defence of living 

organisms against heavy metals in their environment. Some of these mechanisms include: excretion 
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across membranes [30], enzymatic oxidation or reduction [31], accumulation of NPs outside plasma 

membrane [32]; chelating with peptides [33]; efflux pump systems [34]; metal precipitation as 

carbonates, phosphates, and sulphides; and volatilization through methylation and/or ethylation [35]. 

The rate of the above mentioned mechanisms is dependent on: metal salt uptake, metal inactivation, 

storage, and large biomass production; with the first being the critical step [33]. While these steps 

apply to synthesis within living organisms (intracellular), the same biomolecules involved can 

sometimes be used to induce the same reactions outside the organisms (extracellular).  

In the case of bacteria, the most commonly used mechanism is the reduction of heavy metal ions in 

the environment to NPs. As mentioned earlier, the synthesis can be intracellular or extracellular; for 

bacteria this means allowing the bacteria to grow in media and removing the cell-free supernatant 

after centrifugation. The most commonly studied metal NPs are gold (Au) and silver (Ag), usually via 

bacteria isolated from mines and grown in metal-salt rich conditions [36, 37, 38]. Though 

advantageous compared to chemical and physical approaches, microbial synthesis has certain 

drawbacks as well. For example, NP characteristics are governed by parameters such as pH, 

temperature and reaction time. However, modifying pH or temperature might also effect the 

livelihood of the microbes, thus hindering the bioreduction process [23]. Moreover, special facilities 

and long incubation times are required, especially considering the risks that some of the organisms 

pose to human health; thus translating to high operating costs.  

I.3.1 PLANT SYNTHESIS 
While bacteria offer a low cost method of producing specific nanomaterials, plant biomass and plant 

extracts have been shown to offer even cheaper, easier and higher volumes in production [39]. Similar 

to bacterial biosynthesis, plant biosynthesis can occur using living or inactivated biomasses. Gold 

accumulation in plants has been documented for decades, especially for the indication of gold 

deposits in mining applications [40]. It was Gardea-Torresdey et al. who first demonstrated the 

synthesis of gold and silver nanoparticles inside a living plant; namely the Medicago sativa or "alfalfa" 

[41]. The same plant was later used for the biosynthesis of other NPs such as iron oxide [42], as well 

as titanium-nickel alloys [43]. Other plants used in a similar fashion include wheat [44], and Avena 

sativa (oat) [45], for the synthesis of various morphologies of Au. It is important to note that different 

parts of the plant accumulate metals of different size, size distribution and morphology, based on the 

available biomolecules in those parts [46]. A particularly interesting application of this process is the 

use of the Sesbania drummondii biomass with accumulated AuNPs to catalytically reduce hazardous 

and toxic pollutants such as 4-nitrophenol [47].  

The main disadvantage of using plant biomass is the need of post-synthesis processing to extract or 

release the NPs. This can be performed by physicochemical methods such as freeze-thawing, heating, 

or osmotic shock, which may interfere with the morphology and aggregation state of the NPs; or 

alternatively, via enzymatic digestion, which is both expensive and difficult considering the rigidity of 

plant cell walls [48]. Although plant biomass offers advantages over microbial synthesis, it is best 

reserved for niche applications where the living plant itself is an essential component, as in the case 

for S. drummondii.  

Therefore, it becomes easier to understand why the majority of recent research has focused on 

extracellular plant biosynthesis; more commonly named biosynthesis via plant extracts. The plant 
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biomass, which may include the root, stem, leaves, bark, flower or seed, is processed by creating a 

broth whereby the compounds responsible for the reduction and stabilization are extracted and 

added to the metal salt solution [49]. These compounds can generally be divided into five families of 

terpenoids, flavanoids, polysaccharides, proteins, and alkaloids. Flavanoids, are water soluble 

polyphenolic compounds, that together with carotenes, are responsible for the colouring of fruits, 

vegetables and herbs [50]. Whereas terpenoids are from a lipid family and responsible for the scent, 

flavour, and colour of certain plants. Both flavanoids and terpenoids have been shown to act as 

reducing agents, by donating electrons through the enol-to-keto conversion, as well as contributing 

to the capping of the NPs. In sugars, it is believed to be the free aldehyde groups that are the main 

reducing agents, while for proteins it is said to be the interactions with the amine groups of certain 

peptides [23]. As an example, Figure 3 shows the oxidation mechanism of Gallic acid and the 

simultaneous reduction of ionic silver to metallic silver.  

 

Figure 3: Oxidation mechanism of Gallic acid and the simultaneous reduction of ionic silver to metallic silver. 

 

Although biosynthesis is attractive because of the advantages it offers, the limited capacity of plant 

and plant extracts for reducing metal ions results in the process being efficient only for metal ions with 

large electrochemical potential, such as Au and Ag [51]. Moreover, variations in regional soil, climate 

and plant strains cause minor differences between each batch in terms of the reducing compounds 

and capping agents, making it difficult to replicate work on a global scale.  

I.4 PHYSICO-CHEMICAL CHARACTERIZATION OF NANOMATERIALS 

As with the characterization of any novel object, a series of sequential steps must be followed. In this 

case, to assess the safety of nanomaterials and more specifically nanoparticles, the inherent 

properties must be evaluated. Working backwards, safety requires risk assessment; risk assessment 

requires various toxicity and exposure studies; and toxicity studies require knowledge regarding the 

material being tested, namely the physicochemical properties and characteristics that it holds.  

However, in trying to evaluate the risk of nanomaterials, there are a number of challenges that present 

themselves; not only due to the change in scale and large variability within each material, but also 

because the adaptation of conventional instruments and discovery of new methods requires time. 

Some of the more prominent challenges, as outlined in ANSES's (Agence National de sécurité sanitaire 

de l'alimentation, de l'environnement, et du travail) report on the "Evaluation of the Risk of 

Nanomaterials" are: a lack of standardization (in terms of terminology, reference materials, test 
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methods, calibrations, etc.), realistic doses, and studies of error margins and confidence levels [52]. In 

order to better compare toxicology and clinical studies of nanomaterials, it has been often 

recommended that a comprehensive characterization of the material first take place.  

ISO has proposed the following list of physico-chemical parameters pertinent to nano objects: particle 

size and size distribution, aggregation and/or agglomeration state, shape, specific surface area, 

composition, surface chemistry, surface charge, solubility, and dispersibility [53]. The high surface area 

to volume ratio of NPs is what sets them apart from their bulk counterparts; and it is these 

physicochemical parameters that set NPs apart from each other.  

I.4.1 TECHNIQUES FOR CHARACTERIZATION 
While there are many techniques that can be used for the characterization of NPs, the following is a 

list of the most commonly used instruments and tests available. In order to visualize the particles, in 

other words their morphology and approximate size, a number of microscopy techniques can be used; 

optical microscopy, light/florescence/Raman confocal microscopy, scanning or transmission electron 

microscopy (SEM, TEM), and atomic force microscopy (AFM). These can be coupled with image 

analysis software packages in order to determine size distribution. Diffraction techniques such as x-

ray diffraction (XRD), x-ray photoelectric spectroscopy (XPS), and energy dispersive x-ray spectroscopy 

(EDX), can be used to determine elemental composition for a powder as a whole, on the surface, or 

at a particular point, respectively [54]. 

Fourier Transformed Infrared spectroscopy (FTIR) can be used to determine functional groups, as well 

as the mass of polymer particles or organic coatings. Differential scanning calorimetric (DSC) and 

thermogravimetric analysis (TGA) can be used to determine the melting point, glass transition 

temperature, and composition, respectively. While BET analyzers are generally used for the 

determination of porosity and specific surface area, zeta potential analyzers are used to determine 

surface charge. Particle size distribution can be determined using several light scattering techniques, 

with the most common being dynamic light scattering (DLS) [55], or by more novel methods such as 

nanoparticle tracking analysis (NTA) [56]. The nuclear magnetic resonance (NMR) of elements such as 

hydrogen, carbon, and nitrogen, can be utilized to determine the environment of those elements, the 

structure of the compounds, as well as to quantify their ratios [57].  

As NPs are often coated, sometimes with small organic molecules such as peptides, or larger ones 

such as proteins, chromatography columns (for example HPLCs) can be used to separate the various 

molecules, while UV-Vis, mass spectrometers (MS) and NMR can be used to determine their 

concentration and or determine their composition respectively. Similarly, gel permeation 

chromatography (GPC) or size exclusion chromatography (SEC) can also be used to separate 

compounds, prior to characterizing their composition [58]. 

Characterizing the surface of NPs is particularly important for toxicity studies, for it is the first point of 

contact with the biological environment, and determinant of the particles' corona in that fluid. The 

change in surface chemistry in biologically relevant media often results in changes in the 

agglomeration state, hydrodynamic diameter, and surface potential; therefore, it is equally important 

to follow the physicochemical evolution of the NPs once they are in the targeted environment [58].  
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I.5 TOXICITY STUDIES 

Risk assessment is generally divided into two main components: effect assessment (or more 

commonly toxicity), which covers hazard assessment and dose-response; and exposure assessment, 

which covers route, amount and frequency of release, bioavailability and bioaccumulation. The study 

of toxicity then divides into in vitro, in vivo, ex vivo, in silico, and environmental studies, though the 

five categories are not always mutually exclusive (Figure 4) [59]. In vitro methods are those performed 

with cultured bacteria or mammalian cell lines. While in vivo methods make use of live animal models, 

ex vivo methods study those animal models post mortem. In silico methods have emerged with the 

recent developments in computing power; they use informatics and or simulations to model cell 

behaviour. Furthermore, they can be used to study, sometimes quantitatively, the relationship 

between chemical compounds and biological activity; also known as Quantitative Structure-Activity 

Relationship (QSAR), or Quantitative Structure-Property Relationship (QSPR) [60]. Environmental 

toxicology, in turn, makes use of any of these methods to study the effects of potential toxins on the 

environment [59].  

 

Figure 4: A schematic of the relationship between various forms of toxicity studies. 

The workflow of such studies generally commences with in vitro studies in relevant models, and 

continues to a progression of in vivo models, depending on the nature of the agent being studied 

(Figure 4) [59]. For example in the case of a new pharmaceutical product, after thorough physico-

chemical characterization, the compound is subject to in vitro testing, not only for its effectiveness as 

a drug, but also to test any toxicity it might induce. These are followed by studies in various established 

animal models, depending on the final end point of the product, and a progression from smaller 

animals to mammals that mimic human physiology best [61]. Through these, dose thresholds, such as 

the No Observable Adverse Effect Level (NOAEL), Lowest Observable Adverse Effect Level (LOAEL), as 

well as the therapeutic range and the safe dose for a "first-in-man" study, can be established. At this 

stage, if approved by a governing body, the product moves from pre-clinical, to clinical trials, whereby 

it is tested in three different phases, on humans [61]. Though consumer products and chemicals are 

not subject to as rigorous a process as pharmaceuticals, information regarding their toxicity on 

standard animal models and the environment is still required by regulating bodies such as REACH [4].  
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I.5.1 IN VITRO TOXICOLOGY 
Toxicity studies can also be classified based on the route of entry, the most common of which include: 

inhalation, ingestion, injection, and transdermal delivery. It is sometimes suggested that a preliminary 

in vivo study based on the route of entry (or primary exposure organ) be conducted first, in order to 

determine the absorption, distribution, metabolism, and excretion (ADME) in the animal model, as 

well as the target organs (or secondary exposure organs). Then, based on those results, in vitro studies 

be conducted on a single, homogenous cell type, in order to ascertain more specific mechanisms and 

endpoints. In the ideal scenario, the preliminary in vivo would be followed by thorough in vitro work, 

and then performed in parallel as explained above. However, as is often the case, the cost, effort, time 

and special facilities required for animal experiments, make it difficult to perform the studies as 

explained. Added to this are various legislatures put into effect in recent decades [62], that aim to 

replace, reduce, and refine the use of animals for scientific purposes, as suggested by Russell and 

Burch's "3 Rs" in 1959 [63]. Thus, in vitro studies, though lacking complexity, are an attractive point of 

commencement.  

 

Figure 5: Biokinetics of Nano-sized Particles. Showing absorption, distribution, metabolism, and excretion of NPs [64]. 

There are a number of approaches to assessing the in vitro toxicity of a material, each with their own 

battery of available assays. The most common is tracking the viability or vitality of the cells, while 

others include, uptake, membrane integrity, genotoxicity and gene expression, immunogenicity and 

inflammatory effects, and oxidative stress [65, 66]. Viability testing itself can be subdivided into three 

types of assays; colonogenic assays, in which colonies of cells are counted by visual inspection [67], 

flow cytometry or image analysis [68, 69]; metabolic assays, in which the reduction of tetrazolium salts 

to formazan dyes [70], or total ATP content [71], is linked to the percentage of metabolically active 

cells; and cell cycle analysis, in which cell DNA is analyzed to determine if and at what point cell cycle 

arrest occurs [72]. A typical end point for these assays is the determination of the concentration that 

induces a 50% inhibition (IC50). 

Uptake deals with the amount that passes through the cell membrane, and the location in which they 

accumulate. It is typically studied visually using TEM or fluorescence microscopy; though quantitative 
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results can be obtained using Inductive Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) or 

flow cytometry [73]. Other novel techniques include Raman confocal microscopy for Raman active 

materials [74], and susceptibility to a magnetic field for magnetic particles [75]. Membrane integrity 

assays exploit the ability of intact cell membranes in excluding various dye compounds such as Trypan 

blue [76], propidium iodide [77], and Neutral Red [78]; or the release of internal cell components such 

as the enzyme lactate dehydrogenase (LDH) into the extracellular medium upon cell death [79]. 

Genotoxicity assays use the frequency and extent of single or double DNA strand breaks to determine 

the amount of DNA damage; the most popular techniques include the cytokinesis-blocked 

micronucleus and Comet assays [80, 81]. Alterations in gene expression can be tracked using either 

real time PCR [82] or DNA microarrays [83] for specific genes, or other omic techniques when a 

broader approach is required.  

Immunogenicity or inflammatory assays measure the amount of pro-inflammatory cytokines such as 

IL-6 or IL-8; this can be done directly using ELISA techniques [84], or indirectly by using PCR to measure 

mRNA expression of IL-18 or its receptor [85]. Similarly, oxidative stress can be measure directly, with 

dyes or compounds that bind to reactive oxygen species (ROS) [86]; or indirectly, by looking at the 

cell's response to ROS by measuring the amount of antioxidants such as superoxide dismutase (SOD) 

[87], or glutathione (GSH) [88].  

I.5.2 CHALLENGES PERTAINING TO THE STUDY OF NANOPARTICLES 
As discussed in the previous section, the physicochemical characterization of NPs as compared to their 

bulk counterparts, requires more extensive testing to confirm the obtained values. Similarly, the 

toxicity testing of NPs also requires modifications of the conventional testing methods. In this case it 

is the NPs unique properties that cause them to interfere with the assays. Of these properties, first 

and foremost, is the high surface area-to-volume ratio that results in higher adsorption capacities, 

leading to numerous consequences [66]. A high adsorption capacity means that once immersed in 

biological fluids such as serum or cell culture medium, the particle's size, shape, surface charge and 

surface chemistry will change. The change will depend on the initial properties of the particle, as well 

as what is available in that medium. This may relay stealth to NPs in vivo, preventing their being 

marked as invading particles by the immune system, through a process called opsonization. Thus, 

either allowing them to remain longer in the bloodstream, or to facilitate their uptake into the cells 

themselves [89]. For in vitro cell culture, this process of adsorption results in the depletion of proteins 

and nutrients from the media, essential to cell survival [90]. Furthermore, higher adsorption capacities 

may also interfere with assays themselves. Carbon nanotubes (CNTs) and porous silica were able to 

adsorb the dyes of viability assays leading to false negatives [91, 92]; while in an assay measuring 

calcium ions, negatively charged chitosan NPs bound to those calcium ions [93]. In another study, 

AgNPs were able to adsorb LDH, one of the most common markers of membrane leakage, leading an 

underestimation of the LDH leakage [94]. Finally, adsorption allows contaminants to remain longer 

with the particles, as is the case with CNTs and heavy metal catalysts [95].  

Similarly, the unique optical properties of NPs can interfere with spectroscopy techniques; whereby 

the particles' either scatter the incident rays causing false positives [96], or quench the intensity of 

the fluorescing dyes they are bound to causing false negatives [97]. Many NPs allow for the dissolution 

of metal ions; not only does this lead to direct interference with the assay dyes and substrates [98], 

but it also causes a change in pH, which then indirectly affects the assay [99, 100]. Finally, the high 
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catalytic or redox capacity of NPs may lead to the direct oxidation or reduction of assay dyes and 

substrates [101].  

 

Figure 6: Graphic of NP properties and their interference with toxicology assays. 

 

I.6 METABOLOMICS 

Omic techniques are those dealing with fields of study in biology ending in "-omics"; they most 

commonly include, but are not limited to: genomics, transcriptomics, proteomics, and metabolomics. 

Their approach is the collective characterization and quantification of biological molecules: DNA, RNA, 

proteins, and metabolites, respectively (Figure 7) [102].  

 

Figure 7: Schematic of the relationship between omic technologies as applied to biological systems [103]. 
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The information offered by the four techniques is complementary, and offers a wider and deeper 

understanding of biological processes, in what is termed "systems biology". While genomics deals with 

the entire set of coding and non-coding DNA of a species, transcriptomics looks at the genes that are 

expressed and translated into RNA. As gene expression is influenced by events in the environment, it 

is a good preliminary indicator of cellular response. RNA in turn codes for proteins, which can be 

studied through proteomics; this is a broad field that ranges from post-translational modifications, to 

protein-protein interactions. Finally, metabolites, the subjects of metabolomics, are small molecules 

(less than 1kDa) that are the end products left behind by physiological processes. They reflect 

upstream changes in genes and proteins, though are equally capable of causing those changes as a 

response to alterations in the cell environment [104]. As metabolomics offers a snap shot of the 

physiology of the cell, it is a useful method in determining cell response to stimuli such as toxins.  

In order to analyse and interpret alterations in the metabolome, an understanding of cellular 

processes and metabolic pathways is required. While an explanation of all cellular processes and 

metabolic pathways is outside the scope of this report, there are a number of important metabolic 

pathways in humans that will be discussed. Glucose is the substrate of two major metabolic pathways 

depending on oxygen availability. Under aerobic conditions glycolysis occurs, a process in which 

glucose is transformed into pyruvate, to be then used by the tricarboxylic acid (TCA) cycle, releasing 

energy for cell use. Under anaerobic conditions however, the pyruvate is transformed into lactate. 

Glucose itself can be obtained from three sources: directly from the bloodstream; through 

gluconeogenesis, by building it from smaller precursors; or through glycogen degradation, by breaking 

down previously stored polysaccharides ( [105] for a review). 

The TCA cycle is the process by which acetate in the form of acetyl-CoA, is oxidized to generate 

chemical energy, as adenosine triphosphate (ATP). The process can be divided into three stages; first 

the oxidation of fatty acids, glucose, or amino acids, to give acetyl-CoA; second, the oxidation of acetyl 

groups through the TCA, yielding four electrons; third, the electrons are transported to the 

mitochondria by NADH, to ultimately reduce O2 to H2O and generate ATP. The latter step, with NADH 

acting as a reducing agent, is also called oxidative phosphorylation or the electron transport chain . 

High concentrations of ROS have been shown to inhibit parts of the TCA cycle; to compensate, cells 

may use an alternative pathway of generating energy such as glutaminolysis. Glutamine, an essential 

amino acid, can be lysed to glutamate and ammonium, and further transformed to give oxaloacetate, 

pyruvate and lactate. Moreover, glutamate can also be combined with two other amino acids cysteine 

and glycine to give the antioxidant GSH, mentioned in the previous section.  
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Figure 8: Tricarboxylic Acid Cycle based on various images in [106]. 

As these cellular processes are essential to most cells, they are typically the starting point for verifying 

metabolomic analysis. In studying toxicity through metabolomics, alterations in basic cell functions 

are followed by examining conventional pathways for cells under duress. Alterations that fall outside 

of stress-induced pathways are then explored further. 

I.7 STATE OF THE ART ON THE USE, SYNTHESIS AND TOXICITY OF SILVER 

NANOPARTICLES 

I.7.1 APPLICATIONS OF AgNPS 
Silver has been used for a large variety of applications throughout the millennia, including currency 

coins, ornaments, jewellery, tableware and utensils, and sometimes even as medicine [107]. 

Historically such uses include silver films for the preservation of water and wine by ancient 

Phoenicians, silver powders as anti-disease agents by the ancient Egyptians, and more recently silver 

nitrate for the prevention of gonococcal opthalmia neonatorum in 1884 [108]. Currently the main 

market for silver nanoparticles (AgNPs) is as an antimicrobial agent; however, they are also ideal 

candidates for molecular detection and cellular imaging due to their surface plasmon properties and 

signal enhancement [109], as well as applications in photothermal therapy for cancer treatment [110]. 

Outside of medical antimicrobial applications, these particles have also been used for air [111], water 

[112], and waste water disinfection [113], in paints [114], food packaging, clothing, linen, cosmetics, 

and even commodities such as toothpaste [115].  

The discovery of antibiotics in the late nineteenth century led to a rampant expansion of the field and 

their widespread use. In turn, the overuse of antibiotics in the twentieth century led to the rise of 

antibiotic resistant bacteria [116]. This is especially true in hospital environments where the need for 

disinfection has created multi-drug resistant strains, all the while even minor infections can have dire 
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consequences for patients and staff. It is no wonder then that the most common use of AgNPs is for 

medical antimicrobial application. Silver has been routinely used to treat skin wounds for decades; 

with a move towards silver nitrate, followed now by silver nanoparticles [117]. Other medical 

applications have included coatings for heart valves [118], catheters [119], orthodontic adhesives 

[120], dental fillings [121], orthopaedic implants such as bone cements and grafts [122, 123], as well 

as the clothing of medical staff [124]. 

I.7.2 SYNTHESIS OF AgNPS 
The synthesis of AgNPs can be divided into two general categories of chemical or physical synthesis. 

Chemical methods may be divided into chemical reduction, electrochemical techniques, irradiation 

assisted chemical methods, and pyrolysis; while physical methods encompass physical vapour 

deposition, direct method magnetron sputtering, thermal decomposition, and arc discharge [125]. 

The concepts of green chemistry can be applied to each of those categories. Biosynthesis, as explained 

in the previous section, is the use of living organisms or their extracts as reaction components, 

whereas examples of green physical synthesis are chemical free and typically involve lower energy 

consumption and less heat pollution. For example, laser ablation [126], or the application of electrical 

current between two wires [127], and more recently, the evaporation of silver granules and their 

condensation in helium, yielding particles with high purity, narrow size distribution and high surface 

area as compared to commercial products [128].  

In chemical syntheses stronger reducing agents tend to create smaller and more uniform particles; 

however, as the electrochemical potential of silver is quite high, even weaker reducing agents, such 

as those found in plant extracts, are capable of making the reduction. Parameters such as 

temperature, reaction time, pH, concentration and ratio of reactants have a great influence on 

characteristics such as size, shape, and surface chemistry [23]. Typically higher temperatures increase 

the synthesis kinetic and lower the energy barrier for nucleation; this usually moves the reaction 

towards a LaMer model, resulting in a rather uniform particle size distribution [129]. Depending on 

the other parameters, longer reaction times may lead to continuous nucleation, and or the increase 

in particle size as more ions are deposited at the particles’ surface [130]. This leads to size distribution 

broadening in the former case, and uniform particle growth in the latter. The pH typically influences 

the reactivity of the reducing agent; in biosynthesis higher pH environments are usually favoured for 

they shift the equilibrium towards the release of protons, thus making the reduction reaction more 

favourable [131, 132].  

A comparison of conventional synthesis methods with biosynthesis for AgNPs was described by 

Faramarzi and Sadighi [133]; while morphologies resulting from various plants and extracts are 

discussed here [23, 134]. 

I.7.3 PROPERTIES OF AgNPS 
Depending on the synthesis method and conditions, AgNPs can be made to have various shapes and 

sizes; these include nano spheres, rods, plates, and wires. Though silver itself has no charge, there is 

evidence that the outer layer of AgNPs is actually silver oxide, leading to dissolution [135]. The surface 

chemistry can also be modified with ligands or capping agents, with the most popular ones being 

citrate, poly(ethylene glycol) (PEG), poly(vinyl)alcohol (PVA), polyvinyl pyrrolidone (PVP), and 

peptides. There has been conflicting data on the agglomeration of these particles, mostly depending 
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on the surface coating and dispersant. The dissolution rate of AgNPs has been linked to temperature 

[136] and time [137], thus suggesting low long-term stability for these particles. 

The most prominent biological property of AgNPs is their antimicrobial activity, including their well-

known antibacterial properties, which will be discussed shortly, as well as antifungal abilities. A study 

of 44 strains of 6 fungal species found an 80% inhibition concentration (IC80) of 1 to 7 μg/mL [138]. 

Moreover, antiviral activity has also been reported for AgNPs. Antiviral effects against Human 

Immunodeficiency Virus type 1(HIV-1) [126], Tacaribe Virus (TCRV) [127], Hepatitis B virus (HBV) [127], 

Respiratory Syncytial Virus (RSV) [128], Monkeypox virus (MPV) [129], Murine Norovirus type 1 (MNV-

1) [130], Influenza A Virus subtype H1N1 (A-H1N1) [131], and Herpes Simplex Virus type 1 and 2 (HSV-

1 and 2) [139] have been investigated with encouraging results. The anti-inflammatory properties of 

AgNPs were investigated on porcine skin with contact dermatitis as compared to AgNO3 and saline 

solution; the results showed a return to near normal after 72 hours for those treated with AgNPs [140]. 

In the same light, this anti-inflammatory effect was also studied in a postoperative peritoneal adhesion 

model in mice, showing effective decrease in inflammation and no significant toxicity [141]. 

Furthermore, AgNPs have shown a potential for anti-cancer treatments against leukemia, breast and 

lung cancer, skin, oral and heptocellular carcinoma, and angiogenesis [142]. Finally, a recent paper 

reported the use of AgNPs at concentrations of 0.5 to 2.0 μg/mL as protection against UVB radiation 

on human keratinocyte (skin) cells [143]. 

 

Figure 9: Graphical summary of AgNP properties and applications. 

AgNPs are what is considered "broad spectrum" antibacterials as they inhibit both Gram positive 

bacteria such as Staphylococcus aureus, as well as Gram negative bacteria such as Escherichia coli, 

among many other highly pathogenic bacteria [144]. The minimum inhibition concentration has been 

found to be between 50 and 100 ng/mL, and IC50 values between 1 and 100 μg/mL [145]. The 

bactericidal effect is dependent on concentration [145], size [146], surface area, and shape [147]. 

Interestingly, it was found that truncated triangular AgNPs showed the highest antibacterial activity 

as compared to spherical and rod-shaped AgNPs [148]. This was proposed to be related to the 

crystallographic surface structure of the NPs, whereby nanotriangles have the {111}, a more reactive 

plane, exposed as oppose to the {100} plane of the spheres and rods [148].  
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Though the bactericidal effect of AgNPs is well documented, the mechanism of action is still not fully 

understood. Studies agree that at least part of the mechanism is related to the activity of the released 

silver ions; which can penetrate the membrane, and cause damage to cell components such as 

decreasing ATP levels and DNA synthesis [144]. However, the full extent of damage cannot be 

explained by the effect of silver ions alone [149]. AgNPs have a tendency to attach to the cell 

membrane, disrupting the permeability and respiration of the bacterial cell [150, 151]. Moreover, they 

are responsible for the creation of ROS, which in turn cause further damage to cell components and 

DNA [152]. The NPs themselves are also thought to interact directly with sulfur and phosphor 

compounds, once again, impairing cellular processes such as protein and DNA synthesis [153]. Finally, 

a recent study has shown that AgNPs induce an apoptosis-like response in certain bacteria [154]. The 

mentioned mechanisms are shown in Figure 10. 

 

Figure 10: Bactericide mechanism of AgNPs. 

Although rare, silver-resistant bacteria do indeed exist. Historically they could be isolated from silver-

rich environments, such as mines, however, as early as the 1970s, they have also been isolated from 

human environments such as the burn units of hospitals [155]. This is thought to be due to the rise in 

use of silver nitrate and silver sulfadiazine to manage the infection of burns. While many fear that this 

will lead to an increase in resistant strains, it has been shown unlikely due to the multiple mechanisms 

with which silver effects bacteria [156]. Silver resistance is encoded into four genes; this means that 

bacteria would need to mutate all four genes simultaneously, from one generation to the next, in 

order to survive [157]. However, it has also been suggested that if the concentration of silver ions 

released is inadequate for killing all the bacteria, these mutations can occur sequentially at each 
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generation. In other words the concentration must be a number of times higher than the minimum 

inhibitory concentration (MIC) [157].  

I.7.4 TOXICITY OF AgNPS TO HIGHER ORGANISMS 

I.7.4.1 Human Studies 

As expected, this toxicity towards bacteria is also seen in humans, although to a lesser extent. From 

the available literature on human toxicology, aside from wound healing studies [125], these are 

currently limited to a handful of case studies [158], one recent work on ingestion [159], and one 

relating to workers' health [160].  

One of the case studies was conducted on a self-medicating arthritic man ingesting the equivalent of 

approximately 60.75 mg of homemade colloidal silver per day for ten months. Although the arthritis 

significantly improved, visual discolouration of skin and nail beds led him to a specialist where skin 

biopsies revealed extensive deposition in the dermis [161]. Another case study encountered a man 

similarly ingesting homemade colloidal silver as alternative medicine, with a variable frequency 

throughout a two year period. He too was diagnosed with argyria, due to the discolouration of his skin 

and nail beds, and silver granules in the biopsy of his skin [162]. This rare condition is associated with 

chronic exposure to silver-containing products [161]. Its occurrence suggests adsorption via the 

gastrointestinal tract into the blood stream and the systematic distribution of AgNPs or silver ions; 

those in areas exposed to sunlight are thought to be reduced back to metallic silver [161, 162].  

On the other hand, a recent single-blind, placebo-controlled, crossover, intent-to-treat study on 

ingestion of commercial colloidal silver showed little effect on the subjects. Of the sixty healthy 

volunteers, between the ages of 20 and 76, 36 received a 10 ppm colloidal solution of 5 to 10 nm 

AgNPs, (equivalent to 100 μg per day) and 24 received a 32 ppm colloidal solution of 25 to 40 nm 

AgNPs (equivalent to 480 μg per day) for 14 days. No clinically important changes were identified with 

regard to metabolic, hematologic, urinalysis, and no morphological changes were found in lungs, heart 

or abdomen as measured by MRI [159]. Note that there is almost a 130 fold difference in per day dose 

between this clinical study and the case on argyria. 

A health surveillance case study was conducted on silver nanomaterial manufacturing workers. Their 

exposure levels were extrapolated based on a one-time, one-day walk-through evaluation of the 

manufacturing process, and the health effects were assessed based on blood and urine samples. Two 

male workers who had worked in the silver nanomaterial industry for over seven years showed 

exposure levels of 0.35 and 1.35 ppt, blood silver concentrations of 0.34 and 0.135 ppb and urine silver 

concentrations of 0.43 ppb and undetectable [160]. Though the blood chemistry and haematology 

were within normal ranges and no adverse health effects were seen in the two men, this suggests 

silver accumulation in the body for long term chronic exposure scenarios.  

The most extensive use of silver and silver products for medicinal purposes has been for dermal 

applications, namely for the healing of burn patients and chronic wounds. Silver nitrate and silver 

sulfadiazine were introduced in the 1960s in order to control infection in burn wounds. However, their 

rapid inactivation by the wound environment led to the design of new silver-impregnated dressings in 
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the 1990s, beginning with Acticoat™ [163]. Made of a rayon-polyester core sandwiched between two 

layers of silver-coated high-density polyethylene, this product has a steady dissolution rate of the 

metallic nanocrystalline silver which is thought to be responsible for its antimicrobial and anti-

inflammatory effects [163]. Although such wound dressings have been extensively used to treat burns, 

high quality clinical trials are still lacking; most tend to be case studies, or low in the number of patients 

surveyed, with inadequate controls or insignificant results as compared to the conventional 

treatments [156]. 

Nevertheless, for those studies that went beyond healing rate and investigated toxicity, the results 

have been somewhat conflicting. A 28 day study on Acticoat™, with a 3- and 6-month follow up, was 

conducted on 30 patients with relatively small burns. Despite increased levels of silver in serum, there 

was no clinical, biochemical or haematological signs of toxicity [164]. Similarly, a random clinical trial 

of 166 wounds in 98 patients with Acticoat™ and silver sulfadiazine as control, revealed no local 

allergic or systematic symptoms [165]. On the other hand, a case study on a young male with 30% 

mixed depth burns resulted in argyria-like symptoms and the abortion of the Acticoat™ treatment, 

followed by a return to normal of silver levels in plasma and urine [166]. This is somewhat reflected in 

another study, where 191 second degree burn patients were divided into three treatment groups: 

group A receiving silver nanoparticle dressings, group B receiving silver sulfadiazine creams, and group 

C receiving Vaseline cream. Although group A showed a significantly shorter healing time for 

superficial burns as compared to the other two groups, there was no significant difference for deep 

burns as compared to group B. This suggests that while AgNPs may promote re-epithelialisation, they 

do not have an effect on deeper tissue generation such as angiogenesis or proliferation [167].  

I.7.4.2 In Vivo Studies 

A number of animal models have been used to study the toxicity of AgNPs, particularly in the last 

decade.  These can be divided into those for environmental toxicity, and those meant to model human 

toxicity; only the latter will be covered in this section. These studies can be further divided based on 

the route of exposure; namely inhalation, intravenous and intraperitoneal, ingestion, implantation, 

and dermal application.  

Of the inhalation studies available, most focus on either the respiratory or nervous systems. A 28 day 

study on Sprague-Dawley (SD) rats showed no significant changes in body weight, haematology or 

blood chemical values [168]. A similar study focusing on nasal respiratory mucosa showed that while 

AgNPs had an influence on neutral mucins, there was no toxicological significance [169]. Longer 

studies of 90 days and 13 weeks revealed decreased lung function and chronic alveolar inflammation, 

as well as citing lung and liver as target organs [170, 171]. A lack of genotoxicity of femur bone marrow, 

after a 90 day study, was revealed using a micronucleus assay [172]; while a similar lack in the lung 

tissue was shown by the Comet assay [173]. Because the above six studies were conducted by the 

same group, with the same NPs, durations, and similar doses, the experimental results are highly 

comparable to each other. A 10 day sub-acute study on mice showed minimal pulmonary 

inflammation or cytotoxicity [174].  

The past five years have seen an increase in studies on the neurotoxicity of AgNPs. A genomics study 

in 2010 was conducted on the brains of mice exposed to AgNPs via inhalation, revealing alterations in 

genes related to motor neuron disorders, neurodegenerative disease, and immune cell function [175]. 
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Two sequential inhalation studies performed by a different group investigated the neurotoxicity of 

AgNPs in  neonatal SD rats over a 14 week period, discovering motor dysfunction, and its attenuation 

by Vitamin E, respectively [176, 177].  

A 24 week study on Wister rats through subcutaneous injection showed that AgNPs, as compared to 

micro silver particles, were able to cross the blood brain barrier (BBB), accumulate in the brain, and 

cause neural degeneration [178]. Similarly, an intraperitoneal study on the brain of male mice, showed 

alterations in gene expression related to oxidative stress and disturbances in the immune systems 

[179]. On the other hand, male mice that were given intraperitoneal injections for a seven day period 

showed no impairment of cognitive outcome or hippocampal neurogenesis [180].  

Intravenous injections are usually used to determine distribution and accumulation in target organs. 

A kinetics-based study on Wister rats, using three different AgNP sizes, revealed accumulation in liver, 

followed by kidneys, and spleen for the 20 nm particles, and spleen, followed by liver and lungs for 

the 80 and 110 nm particles [181]. Another study on Wister rats found significant changes in 

haematology and liver enzymes for doses above 20 mg/kg, as well as DNA damage [182]. Mice were 

used for an acute biokinetics and tissue distribution study; after two weeks, no obvious acute toxicity 

was apparent, though there were inflammatory reactions in liver and lung cells for the highest dose 

of 120 mg/kg, and accumulation in spleen and liver. An interesting find was the gender-related 

difference in the biokinetic profile, namely that male mice had higher clearance rates [183]. Wister 

rats were also used in a study of systemic and immunotoxicity where various doses of AgNPs were 

intravenously administered daily for 28 days. Although the treatments were well tolerated by the 

subjects, growth retardation, immuno-suppression, an increase in spleen size, and AgNP accumulation 

in spleen, liver and lymph nodes were detected [184]. The immuno-suppression was confirmed by a 

follow-up study focusing on T-cell antibody response by the same group [185]. Two other interesting 

studies include a dissertation on the tissue distribution and embryonic development following 

intravenous exposure of pregnant mice to AgNPs [186]; and the improvement of stealth properties of 

AgNPs using dextran coating in a rabbit model [187]. 

There are few available in vivo ingestion works on the toxicity of AgNPs. A 28 day oral-exposure study 

of tissue distribution and bone marrow genotoxicity in SD rats showed a similar trend as the 

intravenous study cited above [183]; namely that the AgNPs accumulated in female kidneys twice as 

much as male ones. Moreover, although dose dependent accumulation was apparent in tissue, no 

significant toxicity or genotoxicity were seen, and only slight liver damage was indicated for the 

medium dose of 300 mg/kg [188]. The same group later investigated sub-chronic oral toxicity on Fisher 

344 rats over a 90 day period; there was a significant decrease in the weight of male rats. Additionally, 

similar outcomes such as gender-related differences in kidneys, slight liver damage for the medium 

dose of 125 mg/kg, and dose-dependent tissue accumulation were also discovered in this model [189]. 

The neurotoxicity of the ingestion of AgNPs and ionic silver on rats was recently examined over a 14 

day period; the results showed ultrastructural changes in synapses for both forms of silver, though 

AgNPs caused a more severe synaptic degeneration [190].  

The dermal toxicity of a commercial nanocrystalline wound dressing was investigated in a porcine burn 

model. Analysis of internal liver, heart, kidney and brains showed a significant increase of silver 

deposition even when the total body surface area burn ratio was 2%; however, the study did not 
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mention any clinical end points [191]. Healthy porcine skin doused with four different types of AgNPs 

showed no macroscopic irritation; however, microscopic and ultrastructural analysis revealed areas 

of focal inflammation and AgNP localization at the upper stratum corneum layers of the skin [192]. A 

rather rare study was conducted on the acute dermal and ocular toxicity of colloidal AgNPs using 

guinea pigs, with observations of up to 14 days. No deaths or abnormalities were reported for either 

scenario; and only a transient ocular irritation during the first 24 hours [193]. In another study using 

SD rats with deep partial-thickness wounds, the combination of AgNPs on a chitosan film was able to 

reduce the concentration of silver in blood by a factor of four, as compared to silver sulfadiazine [194]. 

A recent publication investigated the activity and toxicity of biogenic AgNPs complexed with 

enoxaparin in improving wound healing on a burn model using Wister rats. Although there was a 

significant acceleration as compared to the control after the 28 days of treatment, there was little 

difference between enoxaparin alone, AgNPs alone, and AgNP-Enoxaprin complex. No toxicity was 

found in the biochemistry or haematological parameters; however an increase in urea levels was 

attributed to inflammation and proteolysis [195].  

I.7.4.3 In Vitro Studies 

In vitro studies allow for the creation of controlled environments in which specific responses can be 

elicited, leading to the derivation of cellular pathway. Cell models can originate from the primary 

organ of exposure, or from the secondary, or so called target, organs or systems. Primary organs of 

exposure typically include the lung, gastro-intestinal tract, and skin, while secondary sites include the 

circulatory, nervous, lymphatic, immune and reproductive systems, and organs such as the liver, 

spleen, and kidneys. The following section summarizes and compares various in vitro studies on 

AgNPs, with a more in-depth discussion of studies using human cell lines from the lung, liver or skin.  

The results from various studies agree on changes in morphology, reduced viability, decrease in GSH, 

and an increase in ROS, DNA damage, and changes in gene expression relating to oxidative stress and 

heat shock proteins [71, 196, 197]. However, the particle characteristics and the administered dose 

are not always comparable. A trend of increased cytotoxicity with decreasing size has also been noted, 

though whether this can be attributed to a higher surface area, a greater release of ions, a facilitation 

for uptake, or something entirely different is still a topic of debate [158]. Similarly, various coatings 

that have been investigated by different groups include citrate, PVP, PEG, starch, peptides, and 

carbon. Due to different experimental parameters, the results from these studies are sometimes 

conflicting and difficult to compare directly.  

The lung is an important organ to study for it is one of the main routes of entry for NPs. The most 

common cell line used for AgNP toxicity studies on the lung is the A549, derived from human lung 

adenocarcinoma epithelial cells. A multi-cell line study in 2010 showed IC50 concentrations of 1.02, 

9.96, and 14.31 μg/mL for 5, 20, and 50 nm AgNPs, respectively, through the MTT viability assay. Of 

the four cell lines studied, the A549 were the most sensitive to the 20 nm and 50 nm particles, and 

the least sensitive to the 5 nm [198]. On the other hand, a study using silver uncoated AgNPs in a range 

of 1 to 100 nm on the same cell line, with the same assay, had an IC50 of over 100 μg/mL [199]. 

Foldbjerg et al showed an increase in ROS and DNA damage, G2 cell cycle arrest, and gene expression 

for oxidative stress [197, 200]. A frequently cited paper comparing IMR-90 cells (lung) with U251 cells 

(brain) also reported cell cycle arrest at the G2 phase, as well as a decrease in metabolic activity and 

an increase in DNA damage [71]. 
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While mentioned studies have reported a size effect, with smaller particles inducing higher toxicity, 

some contradictory evidence exists. One study showed that by converting the dose unit from μg/cm2 

to cm2/cm2 it was in fact particles with the largest diameter of 200 nm that had the highest toxicity 

[201]. On the other hand, a study of size and surface coating on BEAS-2B lung cells found the smallest 

tested diameter of 10 nm to be the most toxic, regardless of the surface treatment; namely citric acid, 

PVP and uncoated [196]. Another study on surface coating found the common citric acid capping agent 

to produce more cytotoxicity as compared to L-lactose and an oligonucleotide [202]. 

The liver has been identified as one of the main target organs in NP toxicity. The most commonly 

studied is the HepG2 cell line, originating from human hepatoma; though others include the L02, 

Chang, and Huh7. Viability assays with liver cells have yielded IC50 values between 4 μg/mL in Chang 

cells (30 nm) [203], to 25 μg/mL in L02 cells (38 nm) [204], and 0.59, 25.35, and 33.57 μg/mL in HepG2 

cells depending on the size (5, 20, 50 nm) [198]. The latter also showed an increase in ROS levels, a 

higher uptake of smaller particles, as well as cell cycle arrest in the S phase [198]. Cell cycle arrest at 

the G2 phase was also reported for 21 nm AgNPs, in dispersion of deionized water, phosphor buffered 

saline, and cell culture media [205]. Interestingly, nontoxic concentrations, below 0.05 μg/mL, have 

been shown to increase proliferation of the cells [206]. A comparison of 10 and 75 nm, citric and PVP 

coated AgNPs showed 10 nm citric acid coated to be the most potent in terms of stress-response 

[207]; similarly between 4.7 and 42 nm AgNPs the smaller were more cytotoxic, and induced higher 

ROS levels, GSH depletion and SOD inhibition [208]. Genotoxicity has also been shown on HepG2 cells, 

with an increase in DNA damage and alterations in gene expression related to metabolism, 

development, differentiation, and death [209, 210]. The role of ROS in inciting damages has been 

confirmed with an inhibition assay, where the addition of antioxidants was successful in alleviating 

the induced stress [208, 211].  

Skin can be considered a primary route of exposure, for in many cases it the first organ that comes 

into contact with a new object or material; it can also be considered a secondary or target organ, for 

it has been shown that in medical cases of argyria, ingested silver accumulates in skin layers. At the 

same time, the increasing use of AgNPs in commercial and medical products makes the validation of 

its safety essential. Although one of the main functions of the skin is to act as a barrier layer, AgNPs 

and silver ions have been shown the ability to penetrate and permeate the skin under certain 

conditions; these include mechanical stress, abrasions and wounds, dissolution in sweat, and through 

hair follicles [212, 213, 214].  To complicate matters further, the studies on wound dressings, which 

are the most common use of AgNPs, often present conflicting results, especially in vitro. A study of 

Acticoat™, with human keratinocyte cells grown on a cultured Laserskin, resulted in a 90% loss of cell 

viability [215]; similarly cells exposed to extracts from a number of wound dressings showed that those 

containing silver were the most toxic [216]. However, though a more recent study also shows a 

reduction in dermal fibroblast cell metabolic activity, the nuclear integrity was maintained and no 

signs of death were visible [217]. 

The standard battery of assays, however, have yielded similar results as those of other cell lines. A 

study on two cancerous cell lines, A431 and HT-1080, showed IC50 values of 10.6 and 11.6 μg/mL for 

7 and 20 nm particles, respectively, obtained using the XTT assay [218]. Normal human keratinocytes 

(HEK) were used in another study of 24 and 48 hour exposure periods to 15 nm PVP coated AgNPs. 

The decrease in viability was dose and time dependent, with longer exposures also showing an 

increase in caspase 3 and 7 activation and DNA damage [219]. Tamankova et al investigated five types 
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of commercially purchased NPs, three of which were silver, and two titanium dioxide (TiO2). AgNPs 

showed higher cytotoxicities while TiO2 particles had higher genotoxicity; the uptake of particles was 

measured using Raman confocal microscopy [220].  

The effect of size (20, 50, and 80 nm) and surface coating (washed, unwashed, and carbon coated) 

were also investigated with HEK cells, via three viability assay and four immuno-markers over a 

concentration range of 0.000544 to 1.7 μg/mL. Only the unwashed showed a dose-dependent 

decrease in viability, and a significant increase in pro-inflammatory mediators [192]. HaCaT cell 

recovery from exposure to AgNPs was investigated by Zanette et al; the results showed that an acute 

exposure of 24 hours to the particles resulted in reduced proliferation and viability, though not 

necessarily death, with IC50 values of 6.8 and 15.3 μg/mL after 24 hours and 6 days, respectively. The 

effect was found to be independent of cell penetration or ROS levels [221]. While an investigation on 

the performance of an AgNP embedded hydrogel confirmed its superiority over current commercial 

ones, it also showed that the HEK and HaCaT cell lines do not always respond in the same way. The 

HEK were found to be more sensitive at longer exposure times [222]. The HaCaT were also more 

resilient as compared to the HeLa cell line, attributed to its higher natural antioxidant levels [223]. A 

summary of these studies is presented in Table 1. 

Table 1: Summary of In Vitro studies on AgNPs performed using skin cells. 

Cell Type NP Properties Findings Ref 

HEK 
Fibroblast 

15nm, PVP-coated 

Longer exposures lead to death via 
caspase 3 and 7 
DNA damage, reduced viability, reduced 
proliferation 

[219] 

HEK 
Fibroblast 

20,50,80/20,50,80/25,35 nm 
Unwashed, washed and 
Carbon-coated 

MTT, Alamar Blue, 96AQ & 
Inflammation Only unwashed showed 
toxicity in dose dependent manner. 
AB the most sensitive technique. 

[192] 

HEK/HaCaT 
Hydrogel AgNP vs 
commercial dressings 

Cell viability tested; hydrogel out 
performed others 
HEK & HaCaT don’t have the same 
response 

 

HaCaT 28 nm 

HeLa cells are more sensitive 
MTT is most sensitive assay tested 
Increased ROS, and depleted GSH levels  
ATP/ADP ratio shows apoptosis 

[223] 

HaCaT 25 nm, PVP-coated 
Short exposure has long effect on 
proliferation; independent of 
penetration or ROS 

[221] 

HaCaT 24 nm, citrate-coated 

Protection against UVB, 0.5 to 80 μg/mL 
has no toxicity and higher viability, 
lower ROS, G1/S arrest, protein pathway 
also studied 

[143] 

HaCaT 70 nm, PVP-coated 
Air vs argon or storage; Air leads to 
more dissolution, ROS, and toxicity 

[224] 
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Keratinocyte 
(Foreskin) 

Cells+Dressing+ 
H2O, PBS, Media; 30mins 

Solvent study on subconfluent cells; 
viability reduced to : 0, 0, 9.3% 

[215] 

SVK14 

Commercial TiO2 and AgNPs 

Raman/AAS uptake, increased ROS and 
genotoxicity; Genotoxicity doesn’t 
correspond to ROS for TiO2; Ag has 
higher cytotoxicity 

[220] 

BJ 
(Foreskin) 

Dermal 
Fibroblast 

Acticoat™ dressing, 3D 
culture model 

Ag release investigated; Reduced 
mitochondrial activity, but nuclear 
integrity maintained and no visible cell 
death reported. 

[217] 

Dermal  
Fibroblast 

50 nm 
Citrate, lactose, and 
oligonuclide-coated 

Performed MTT, Comet, Annexin, P53 
RNA; Reported that citrate coated 
induced more toxicity than others, 

[202] 

A431 
Carcinoma 

7 – 20 nm 

Reported increase in GSH, and lipid 
oxidation, SOD inhibition, apoptosis 
threshold <1μg/mL 

[218] 

HT-1080 
Fibrosarcoma 

Keratinocyte 
Extracts from various wound 
dressings 

Silver containing were most toxic, but 
all inhibited proliferation (MTT) 

[216] 

  

I.7.4.4 Cellular Toxicity Mechanism 

A number of studies have focused on uncovering the mechanism through which AgNPs induce toxicity 

to mammalian cells. Silver, whether in its ionic or nanoparticle form, can enter the cell via endocytosis, 

diffusion, or protein channels in the membrane. There is evidence that there is a preferential uptake 

of AgNPs via endocytosis, leading to what is called a “Trojan Horse Effect” [196]. Once inside, the silver 

becomes activated and more bioavailable as it degrades into ions at the lower pH environment of the 

lysosome [225]. These then generate reactive oxygen species (ROS) that interact with cellular 

components and cause oxidative stress. There is a general consensus that oxidative stress is the 

leading cause of cell death, implied by an increase in measured ROS levels, depletion of GSH, and loss 

of mitochondrial function, reported in the previous section. However, whether this is generated 

directly by the particles or by the ions, or even the result of dysfunctional mitochondria, is still 

unknown.  

The ROS, in turn, inflict damage in a number of ways; to the cell membrane by lipid peroxidation, to 

DNA by modification of base pairs and strand breakage, and to the cell itself by the induction of 

apoptosis [226]. Evidence for this mechanism has been cited by showing a decrease in ROS levels 

accompanied by increased viability upon the addition of an external antioxidant species such as N-

acetylcysteine (NAC) [208, 211]. On the other hand, a loss of viability accompanied by a lack of ROS 

species or GSH depletion has also been reported, with the suggestion that another mechanism is 

responsible for the toxicity [227, 228]. Elsewhere, AgNPs were reported to induce perturbations in the 

function of the endoplasmic reticulum (ER), thereby causing ER stress, leading to unfolded protein 

response, and eventually apoptosis [229].  

The extent of the contribution of silver ions has been a subject of debate. An investigation of storage 

conditions revealed that AgNPs were subject to dissolution as a function of time, temperature and 

surface coating; with some particles losing up to 90% of their weight over a 125 day period. This 
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release of ions subsequently lead to a considerably higher toxicity towards human mesenchymal cells 

(MSC) [137]. Similarly, a comparison of AgNPs stored under oxygen and argon revealed those in 

oxygen of having a higher concentration of silver ions and subsequently higher toxicities towards 

HaCaT cells [224]. On the other hand, a study that investigated the effect of ionic silver found that 

when the percentage of ions was below 5.5%, a contribution of toxicity from the AgNPs was evident 

[136]. Similarly, others that had investigated AgNPs with low silver ion percentages, could not explain 

the full extent of toxicity by the amounts of silver ions [206, 211].  

I.7.4.5 Toxicity Studies on Biosynthesized AgNPs 

In recent years a small number of toxicity studies on biosynthesized AgNPs have also been executed. 

In one case, AgNPs synthesized using Nigella sativa were compared in terms of their physico chemical 

characteristics and toxicity to bone-building stem cells of mice (MSC) and six strains of plants. The 

particles were approximately 15 and 30 nm respectively. These showed IC50 of over 0.4, 0.2, 0.2 μg/mL 

and 0.1, 0.1, 0.1 μg/mL for 24, 72, and 96 hour exposures, respectively [230]. While another group 

having synthesized 4 to 35 nm AgNPs from Albizia adianthifolia leaf saw no toxicity on normal 

peripheral lymphocytes, and only a decrease of 21% viability on the A549 cell line, as measured by the 

MTT [231]. Similarly another study on A549 cells using AgNPs of 12 nm synthesized using garlic clove 

extract, only showed a 10% increase at the highest tested concentration of 50 μg/mL [232]. Moulton 

et al showed an increase in HaCaT cell viability after their exposure to various diameters of AgNPs, 

ranging 10 to 90 nm, synthesized from various ratios of either epicatechin or tea extract at 

concentrations of 100 μg/mL. Viability, as measured by mitochondrial function, increased for all 

samples, ranging 10 to 40%; this was attributed to the antioxidants present on the surface of the NPs 

[233].  

Elsewhere, AgNPs were synthesized using the extract of Sabucus nigra (European black elderberry), a 

mixture that is said to be rich in antioxidants compounds such as polyphenols, and anthocyanins. 

AgNPs of diameters ranging from 20 to 80 nm were exposed to HaCaT cells and viability testing using 

the MTT assay was conducted concentrations of AgNPs and the extract. The results showed an IC50 of 

approximately 300 μg/mL for the AgNPs (concentration not tested), and 79.4 μg/mL for the extract. 

Inflammation studies, using UVB, showed that although the initial addition of AgNPs increased 

cytokine levels, AgNP pre-treated particles had lower levels than controls, while pre-treatment with 

the extract had no effect. In vivo studies conducted on male Wister rats with induced paw edema; and 

human psoriasis lesions also reduced inflammation [234].  

I.7.4.6 Metabolomic Studies with AgNPs 

The application of metabolomics to toxicology allows for the simultaneous measurement of multiple 

endpoints, and the discovery of unexpected ones. However, as it is an emerging field, the studies using 

this approach are far and few in between, particularly for nanotoxicology. Moreover, most tend to 

focus on biological fluids, such as blood plasma and urine, rather than cell extracts. Studies on other 

inorganic nanoparticles such as gold, silica, iron oxide, and titanium oxide have received more 

attention as compared to silver. The trends show alterations in substrate and end-products of 

metabolic pathways such as glycolysis and the TCA cycle, suggesting changes in energy metabolism; 

alterations in lipid and choline compounds, suggesting disturbance of the cell membrane; and 

alterations in antioxidant compounds, reflecting oxidative stress.  
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For silver in particular, one group investigated metabolic changes in male and female Wister rat urine 

after exposure to PVP-coated 14 nm AgNPs administered orally for 28 days; this was performed using 

high performance liquid chromatography-quadruple time-of-flight mass spectrometry (HPLC-QTOF-

MS). The results confirmed earlier research that had shown gender-related differences in kidney 

toxicity, for the urine from male rats did not show any metabolic alterations. Urine from female rats 

showed an increase in uric acid and its degradation product allantoin, indicating alterations in purine 

metabolism resulting from oxidative stress [235]. 

Another study made use of high resolution magic angle spinning (HR-MAS) NMR spectroscopy to 

investigate the metabolic profile of intact human Chang liver cells exposed to AgNPs. Changes in 

pyruvate and lactate levels indicated changes in energy metabolism; while an increase in choline, 

phosphocholine (PC) and glycerol-phosphocholine (GPC) suggested disruption of the cell membrane. 

Glutamine, glutamate and glycine showed a decrease, matching that of low GSH levels and indicating 

oxidative stress; while an increase in branched chain amino acids such as leucine, valine, isoleucine, 

and alanine match that of pyruvate. Similar levels of metabolites as compared to the controls were 

recovered when the cells were pre-treated with the antioxidant NAC [236]. These alterations were in 

agreement with their previous work that showed a decrease in GSH levels upon exposure to AgNPs 

and its subsequent attenuation with NAC [203].  

A recent publication by our workgroup highlights alterations in the metabolome upon exposure of 

HaCaT cells to 30 nm citrate coated AgNPs using NMR metabolomics. The cells were exposed to a sub-

toxic and toxic concentration, 10 μg/mL and 40 μg/mL respectively, as determined by MTT viability 

assay, and the intracellular aqueous and organic extracts, as well as the extracellular culture medium 

was analyzed. The results, given by multivariate analysis showed increase glutaminolysis, energy 

depletion and cell membrane modification. Furthermore, alterations in the TCA cycle were noted, 

suggesting a downregulation of the cycle’s activity. Glutathione (GSH) levels showed an increase at 

both concentrations, indicating an upregulation in antioxidant protection [237].  

I.8 AIMS 

The general aim of this work is the comprehensive physico-chemical characterization and toxicity 

assessment of silver nanoparticles synthesized via green synthesis, namely by one chemical and one 

physical method using conventional toxicity assays and the metabolomics approach.  

The specific aims of this work are: 

Synthesis of silver nanoparticles via biosynthesis using the Eucalyptus globulus bark extract as 

reducing agent 

Characterization of silver nanoparticles synthesized via Green Chemistry Synthesis (GS) and Pulsed 

Laser Ablation in Liquids (PLAL) in terms of their physico-chemical properties.  



Chapter I: Introduction 

26 | P a g e  
 

Evaluating the cytotoxicity of said particles in a skin keratinocyte cell line (HaCaT) using 

conventional cytotoxicity assays. 

Characterizing the metabolic response of the HaCaT cell line to silver nanoparticles synthesized 

via GS and PLAL routes using 1H NMR.  

To this end, this thesis will be organized in the following manner. Chapter 2 will introduce the 

analytical techniques utilized throughout this thesis, providing general information about the 

techniques, as well as presenting their benefits and limitations. Chapter 3 will then detail the 

procedures followed for each experiment. Chapter 4 will present and discuss the results from the 

physico-chemical characterization of the AgNPs, in fulfillment of the first and second goals. Similarly, 

Chapter 5 and 6 will present and discuss the results from the cytotoxicity assessment, third goal, and 

metabolomics response, fourth goal, respectively. Chapter 7 will summarize the results and 

conclusions of the three studies, and present future perspectives for the continuation of this work.  
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Chapter II:  Principles of the Analytical 
Methods Employed 

II.1 CHARACTERIZATION OF NPS 

In order to properly characterize the AgNPs in terms of their physicochemical properties according to 

ISO recommendations, a number of techniques were employed. UV-Visible Spectroscopy was used to 

confirm the formation of nanoparticles, as well as to give a qualitative indication of their size 

distribution. Dynamic Light Scattering was used to determine the hydrodynamic diameter, as well as 

the respective agglomeration, in various media; zeta potential was measured with the same 

instrument. The particles' shape and morphology were visualized using Scanning Electron Microscopy 

in Transmission mode; the average size and size distributions were measured and calculated using 

image analysis, namely the ImageJ program. The composition was assumed to be pure, based on the 

reagents used and the closed environment. The surface chemistry for the Green Synthesis AgNPs was 

assumed to be similar to that of previous work, namely that of sugar compounds [238]; for the PLAL 

it was assumed to be citric acid, based on the producers’ specifications, and ubiquitin coated, after 

incubation with ubiquitin [239].  

II.1.1 UV-VISIBLE SPECTROSCOPY 
The surface plasmon resonance (SPR) properties of silver nanoparticles have been firmly established 

in the recent years [240]. The exact resonance frequency, or alternatively wavelength, is highly 

dependent on size and shape. For AgNPs, this resonance band falls within the visible spectrum, is 

tunable between 393 to 738 nm, and can be detected with a UV-Vis Spectrometer [241]. Such 

spectrometers typically consist of a light source, filter, monochrometer, sample holder and detector. 

The filter and monochrometer allow only a specific wavelength of light to shine at the sample at each 

time, whereby the detector then determines the amount of transmitted or reflected light as a 

percentage of a reference. For this particular application, a range of wavelengths are tested in order 

to determine the SPR absorbance band for the sample [242]. The advantages of this technique lie in 

its simplicity, speed, ease of sample preparation and execution. However, the results are sometimes 

difficult to interpret, and can only contribute qualitative information unless calibrated with the help 

of another technique.  

II.1.2 DYNAMIC LIGHT SCATTERING 
Cited as one of the most user-friendly, rapid, and consistent methods, Dynamic Light Scattering (DLS) 

has become the preferred technique to routinely determine the size distribution of NPs [56]. The 

instrument itself is made of a monochromatic light source, a red or green laser, two polarizers, before 

and after the sample chamber, the photodetector, and the computer [243]. The technique is based 

on three principles; Firstly, Rayleigh scattering asserts that particles smaller than 250 nm scatter light 

in all direction. Given a colloidal solution, the scattering from these particles would create patterns of 

constructive and destructive interference, called a Speckle Pattern. Secondly, Brownian Motion 

Theory asserts that particles in a fluid are in constant motion due to collisions with the fluid's 

molecules. Therefore, the Speckle Pattern of a colloidal solution would change over time, in other 

words the intensity at a particular point would be seen to fluctuate. Thirdly, the Brownian motion of 
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a particle can be related to its diffusion coefficient and hence its radius, based on the Stokes-Einstein 

equation [243].  

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
 

DLS works by measuring the fluctuations in scattering intensity, and using correlation algorithms and 

polynomial series, to relate those fluctuations to an exponential decay that is directly proportional to 

the diffusion coefficient. The diffusion coefficient is then put into the Stokes-Einstein equation to 

calculate particle size; with large particles diffusing slower and small particles diffusing faster. The 

software then generates an intensity-based size distribution for the colloidal solution. The intensity 

distribution can be converted to a volume distribution based on Mie Theory, or even a number 

distribution. However, these models are less reliable as small errors in data collection can have a great 

effect on the correlation function [243].  
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Nevertheless, it is important to realize the difference between the three types of distribution. A 

solution made of an equal number of 5 nm particles and 50 nm particles would have a number size 

distribution of two equal peaks. The 50 nm peak on a volume distribution graph for the same sample 

would have 1000 times the area of the 5 nm peak; this is because the radii differ by a factor of 10, thus 

the volumes are related by 103 (Volume=(4πr3/3)). Similarly as the intensity is related to the radius by 

the Rayleigh Scattering Equation, i.e. a factor of r6, the area of the 50 nm peak would be 1,000,000 

times the area of the 5 nm peak. Thus it becomes obvious why even small amounts of large particles 

would have a high impact on the intensity size distribution calculated by the DLS [243]. 

DLS has a number of disadvantages that must be taken into consideration when working with the 

obtained analyses. According to the manufacturer, the Z-Average particle size, obtained from the 

intensity distribution, though a useful value for quality control purposes, is only suitable for comparing 

with other techniques if the sample is monomodal, spherical and monodispersed. Otherwise, meaning 

for samples that have a polydispersity index (PDI) above 0.5, the z-average value is misleading [243]. 

In addition more weight is attributed to larger particles, as discussed above. Thus, while able to 

provide a general perspective of how particle size distributions compare to each other, the average 

values and distribution curves calculated by this technique may greatly differ from the actual ones. 

Nevertheless, it was chosen for this study for it allowed for a quick and easy way to qualitatively 

compare similar samples under various conditions. 

II.1.3 SCANNING ELECTRON MICROSCOPY IN TRANSMISSION MODE 
Scanning electron microscopy (SEM) detectors are typically set to capture back scattered electrons 

and secondary electrons from the sample. The former gives information about the composition of the 

sample, while the latter yields images of surface morphology. However, if a detector is placed beneath 

the sample, and if the appropriate sample holder is used, the microscope can be used in transmission 

mode. This is particularly useful when analyzing small particles as the images obtained show the outer 

shape, while the contrast indicates elemental composition and thickness [54]. The downfall of using 

SEM or STEM for morphology and size distribution is misrepresentation as only a minute fraction of 

the sample can be captured in the images. Furthermore, the image analysis may be influenced by the 

subconscious bias of the analyzer in how they choose and measure the particles being assessed. 
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Nevertheless, in the case of AgNPs, STEM remains one of the most routine methods for measuring 

average size and size distribution.  

II.1.4 ELECTROPHORESIS AND ZETA POTENTIAL 
Charged particles placed in a solution have a tendency to attract counter ions to their surface; those 

on the inner region are strongly bound, while those on the outer region are less firmly attached. These 

counter ions continue to stay with the particle, even when an external force is applied. The boundary 

at which counter ions no longer move with the particle is called the hydrodynamic shear or slipping 

plane. The electrostatic potential at this boundary is known as the zeta potential. The magnitude of 

this value indicates the colloidal stability of a solution; those with high zeta potential, typically greater 

than |±30|, repel each other such that there is little or no tendency to agglomerate [244].  

Electrophoresis is the phenomenon where charged particles in a fluid move towards the electrode of 

the opposite charge when an external electric field is applied. The viscosity of the solvent will work to 

counteract this movement; an equilibrium is eventually reached where the particles move with 

constant velocity. This velocity can be related to the zeta potential, based on the Henry equation [244]. 

𝜇𝑒 =
2𝜀𝜁

3𝜂
𝑓(𝑘𝑎) 

The same instrument that measures DLS can also measure zeta potential, using the concept of Laser 

Droppler Velocimetry. Here the velocity of the particles, as they move towards each electrode, is 

determined by measuring intensity fluctuations between the reference beam and light scattered at 

17o [242]. The advantage of this technique is that it is rapid, user-friendly, and can be directly 

combined with DLS measurements. However, as the Henry equation is strongly dependent on solvent 

viscosity and ion concentrations, it may not be a suitable for media other than ultra-pure water.  

II.2 TOXICITY STUDIES IN VITRO 

The HaCaT cell line was chosen for assessing the potential cytotoxicity of AgNPs. Two qualitative and 

two quantitative methods were chosen to fulfill this purpose. Changes in morphology and proliferation 

were checked qualitatively using a light microscope; while preliminary uptake experiments were 

conducted with a Raman confocal microscope. The viability of the cells was determined via metabolic 

activity using the colourimetric 3-(4,5- dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT) 

assay; while cell cycle alterations were explored using flow cytometry. As the uptake experiments 

were preliminary in nature, an in depth analysis of the nature of the techniques is not included in this 

section. 

II.2.1 MODEL CELL LINE 
Given that the majority of commercial AgNP applications place the particles in contact with the skin, 

skin cell lines constitute appropriate in vitro models to study potential toxic effects of AgNPs.  The skin 

consists of two parts: the dermis and the epidermis, for the inner and outer parts respectively (Figure 

11) [245]. Each is composed of a number of layers, with the outermost layer of the epidermis made 

entirely of dead cells. The innermost layer of the epidermis, called the stratum basal, mainly consists 

of keratinocyte cells. These can continuously proliferate or begin differentiation; secreting keratin 

proteins which contribute to the skin's functional and mechanical properties, as they move further 

towards the outermost layer. In the final stages, they lose their nucleus and fuse into sheets that are 

eventually shed [245]. The HaCaT cell line is a nontumorigenic immortalized human keratinocyte cell 
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line that may be kept in continuous proliferation for over 140 passages [246]. Although it is a well-

established cell line for the in vitro modeling of skin, the end application must be kept in perspective. 

As proliferating keratinocytes are found at the inner layers of the epidermis, in a realistic situation the 

AgNPs must have somehow breached or diffused through the outer layers. Though there is evidence 

for penetration and permeation of AgNPs across intact and damaged skin, the amounts were found 

to be negligible [212]. Therefore this model is best suited for wound healing applications of AgNPs, 

and would only apply to AgNPs in textiles in cases where there has been a skin damage.  

 

Figure 11: Simplified anatomy of the skin [247]. 

 

II.2.2 CELL VIABILITY 
Of the viability assays mentioned in section 1.3, the reduction of tetrazolium salts to formazan is by 

far the most common method. While there exist a number of variations of tetrazolium compounds, 

MTT is the most widely used version. The MTT dye is a soluble yellow compound that the 

mitochondrial enzyme succinate dehydrogenase is able to reduce to the insoluble purple formazan 

(Figure 12). Formazan can then be released from the cells using a detergent and detected with a 

spectrophotometer as it has a strong absorbance at 570 nm.  

 

Figure 12: Reduction reaction of MTT to Formazan by mitochondrial reductase.  

The cell viability can be calculated by comparing the absorbance of exposed cells to controls using the 

equation below. Furthermore, by testing a range of concentrations, the half maximal inhibitory 

concentration (IC50) can be calculated using the appropriate data regression fit [248].  

%⁡𝐶𝑒𝑙𝑙⁡𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ((𝑆𝑎𝑚𝑝𝑙𝑒⁡𝐴𝑏𝑠)/(𝐶𝑜𝑛𝑡𝑟𝑜𝑙⁡𝐴𝑏𝑠)) ∗ 100% 
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The main advantages of MTT are its simplicity, easy of execution, low cost, and reproducibility. 

However, the MTT dye is sensitive to pH and has previously been shown to offer false positives with 

certain NPs [96, 97]. At the same time, it must be noted that a change in metabolic activity is not 

necessarily a sign of cell death [249]. A comparison of MTT, Alamar Blue, Neutral Red, with the same 

concentrations of AgNPs showed Alamar Blue to be the most sensitive and therefore the 

recommended assay of use [192]. Nevertheless, since the interference reported in this study was 

minimal, and otherwise not reported elsewhere for AgNPs with the MTT, as well as its availability and 

ease of execution, it was chosen as the principal method for assessing viability.  

II.2.3 CELL CYCLE ANALYSIS 

II.2.3.1 Cell Cycle 

Alterations in cell cycle can be used as an early indication of DNA damage and even cell death by 

determining the percentage of cells in each phase of the cell cycle [226]. Non-proliferating cells are 

said to be in a quiescent state, called Gap 0 or G0. Proliferating cells go through interphase, where they 

grow, and mitosis where they divide. Interphase is divided into three stages; Gap 1 or G1, where the 

cells increase in size; Synthesis or S, where the DNA is replicated; and Gap 2 or G2, where the cells 

continue to grow, having twice as much DNA. The cycle is completed with mitosis, or M phase, where 

the cell divides into two identical daughter cells, each having the entire genome of the original cell 

(Figure 13). Therefore, the cells in each phase can be distinguished based on the amount of DNA 

present; G0 and G1 having one set of DNA, G2 and M having two sets of DNA, and S having a number 

in between [226].  

In order to regulate and monitor the progress of cell division, each of these stages has a check point, 

allowing for the verification of cell processes and the repairing of damaged DNA. The main checkpoints 

occur at G1/S, G2/M, and M; with the G1/S transition being the rate-limiting step (Figure 13). Typically, 

the cells cannot continue onto the next stage if the requirements for the checkpoint have not been 

met; if the cell is not able to repair itself, it goes through programmed cell death, called apoptosis. 

This is to prevent damaged DNA from being passed on to the daughter cells [226].  

 

Figure 13: Cell cycle checkpoint pathways impinging upon the cell division cycle [250]. 
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II.2.3.2 Flow Cytometry 

DNA quantification is performed using a flow cytometer; an instrument that is also used for cell 

counting, cell sorting, biomarker detection, and protein quantification [251]. It consists of five main 

components: the flow cell, where cells suspended in a continuous stream of liquid (sheath fluid) are 

carried and aligned to pass in a single file through the light beam; the measurement system, typically 

a laser; the detectors, measuring forward scattered (FSC) light, as well as side scattered (SSC) light and 

fluorescence; the amplification system, where the detected signals are amplified and converted from 

analogue to digital; and finally the computer (Figure 14). While FSC and SSC give information about 

the size and shape of the cell, the fluorescence detectors are capable of simultaneously measuring 

signals from multiple markers. For example, the different antigens on a cell surface can be labelled 

with various fluorescent markers, and detected at the same time as measuring the intrinsic 

fluorescence of an internal component of the cell. These multiplexing capabilities are enhanced even 

further as more lasers and detection channels are added. Recently optics that allow the direct 

visualization of the cells have also been adopted for flow cytometers [251]. 

 

Figure 14: Schematic of a flow cytometer [252] 

In order to assess DNA content, a fluorescent dye that binds to specifically and proportionally to DNA, 

such as propidium iodide or 4',6-diamidino-2-phenylindole (DAPI) can be used. As such, the frequency 

of cells can be graphed as fluorescence intensity, or DNA content, with G0/G1 having approximately 

half as much fluorescence as G2, and the S phase falling between the two. False negatives can arise 

from the binding of the fluorescent dye, not only to the DNA molecules, but also to double strand RNA 

(dsRNA); therefore, special precaution must be taken to remove all RNA and to avoid any further 

contamination. False negatives can also occur for the G2 phase if two nuclei in the G1 phase pass 

through the beam at the same time. However, as the signal-intensity versus peak-area is different for 

these instances, they can be discriminated by changing the DNA peak-to-area threshold [251]. Despite 

these disadvantages, flow cytometry remains the standard for cell cycle analysis, offering rapid and 

easy measurements, relatively low cost, and higher accuracy as compared to visual inspection with a 

microscope.  
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II.3 METABOLOMICS 

The two analytical techniques generally used for metabolomic studies are Nuclear Magnetic 

Resonance (NMR) spectroscopy and Liquid or Gas Chromatography coupled with Mass Spectrometry 

(LC-MS or GC-MS). NMR allows for the direct and non-destructive analysis of complex biological fluids, 

tissues, cells or their extracts; while LC/GC-MS techniques usually require more extensive sample 

preparation and separation prior to analysis. On the other hand, NMR has low inherent sensitivity, 

with detection limits typically in the micromolar to millimolar range, while LC/GC-MS allows for the 

detection of molecules at lower concentrations [253]. The main advantage of NMR is its ability to 

perform untargeted analysis, allowing for the discovery of unexpected results. This can in fact work to 

complement LC/GC-MS techniques; broad analyses can be performed with NMR and followed through 

with LC/GC-MS for a more efficient and sensitive analysis of a targeted family of compounds [253]. 

The NMR technique has been chosen here for its broader perspective offers a more appropriate first-

analysis of alterations in the cell metabolome. 

As metabolomics requires the processing and comparison of complex data sets with hundreds of 

variables, the aid of statistical tools such as multivariate analysis (MVA) are drawn upon [254]. The 

work flow of metabolomics, given in Figure 15 generally follows a route where sample collection and 

preparation are followed by data acquisition, by either NMR or LC/GC-MS techniques; the data is then 

pre-processed and compared to existing databases for compound identification; the change in 

concentration of these compounds are compared to each other or the controls using MVA methods 

such as Principal Component Analysis (PCA) and Partial Least Squares Discriminate Analysis (PLS-DA); 

the PLS-DA data is converted to a set of loadings, showing the importance of each compound in 

separating the data; univariate analysis is then applied to those peaks, in order to calculate compound-

specific changes, and eventually elicit the overall changes in cellular processes [254].  

 

Figure 15: Workflow process of metabolomics. 

II.3.1 NMR PRINCIPLES 
Nuclear Magnetic Resonance (NMR) is a phenomenon that occurs when nuclei are placed in a 

magnetic field, as they absorb and reemit electromagnetic waves. In its simplest form it is present in 

nuclei with an odd number of protons and/or neutrons. This is due to the resulting non-zero magnetic 
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moment of the nucleus. As such, only certain isotopes of certain elements are available for use. While 

the most commonly used isotopes are 1H and 13C, isotopes of boron, nitrogen, fluorine and chlorine 

are also utilized for more specific applications. The classical set up employs a constant magnetic field 

and a perpendicular radio frequency (RF) pulse over a range of frequencies, to perturb the alignment 

of the nuclear spins. The frequency at which a particular nucleus emits a signal is called its "resonance 

frequency" [57].  

There are two factors that affect the resonance frequencies of a nucleus: the type of nucleus and the 

local atomic environment. The type of nucleus dictates the basic resonance frequency with which an 

isotope needs to be excited. While a number of nuclei may be excited by the "carrier frequency", it 

should closely match the basic resonance frequency of the "observed nucleus". For example, 1H nuclei 

would require a carrier frequency of approximately 500 MHz if an 11.7 T is used, whereas 13C would 

require one of 126 MHz. It should also be noted that the obtained frequencies from a sample also 

depend on the abundance and sensitivity of a particular isotope [57].  

The local atomic environment of the nucleus changes based on the atoms it is bonded to and 

surrounded by. Electrons, similar to the nucleus, have a rotation and charge, creating a magnetic field 

opposite to that of the nucleus. This field reduces the magnetic field the nucleus experiences, which 

in turn determines its NMR frequency, and hence the term "shielding". For practical purposes this 

means that the NMR frequency of a particular nucleus will be different, not only based on its number 

of protons and neutrons, but also by the number of electrons in its environment [57].  

The most common method, proton NMR, uses the carrier frequency of 1H and detects the minor shifts 

in its local environment. Proton NMR owes its popularity to the abundance of the 1H isotope, its high 

sensitivity, and the large number of materials into which it is incorporated. The raw data gathered is 

the free induction decay, to which a Fourier Transform is applied, in order to obtain a frequency 

domain spectrum. Furthermore, the spectra are typically given in terms of relative frequency instead 

of absolute frequencies. This is done using a chemical reference, tetramethylsilane (TMS), which is 

made to be the "zero" point. Finally, the x-axis of the spectra are usually in parts per million (ppm) as 

opposed to Hertz (Hz). As the strength of the magnet affects the absolute resonance frequency, by 

dividing the frequencies by this value, variations between spectrometers (and different magnets) can 

be taken into account [57].  

Proton NMR is commonly applied in determining and validating the structure of organic and biological 

compounds. There are three main pieces of information that can be derived from each spectrum; the 

position of a peak indicates the chemical shift (reflecting the electronic environment), the area under 

a peak is proportional to the number of nuclei in that environment (reflecting concentration), and the 

peak splitting indicates the coupling with neighbouring NMR-active protons. Protons that are in the 

same chemical environment are said to be "chemically equivalent" and will resonate at the exact same 

frequency without coupling; benzene, for example has six chemically equivalent hydrogen, resulting 

in a single peak with a shift of 7.5 ppm and 6 fold intensity (Figure 16). Ethanol on the other hand, has 

hydrogen in three different chemical environments, resulting in 3 different peaks at approximately 

1.3, 3.5 and 6 ppm, with area ratios of 3:2:1 respectively (Figure 16) [57].  
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Figure 16: 1H NMR spectra of Benzene and Ethanol. Arrows indicate the peak relating to the hydrogen of the same colour. 

Spin-spin coupling occurs between protons, or groups of chemically equivalent protons, that are 

magnetically inequivalent but connected via bonding electrons. For example, consider an ethyl group, 

with carbon A having three hydrogen, HA (shown as blue in Figure 16), and carbon B having two 

hydrogen, HB (shown as red in Figure 16).  As there exists n+1 spin states for chemically equivalent 

protons, the three HA would combine in four possible magnetic states, and split the peak of the HB into 

a quartet. Similarly, the two HB would combine in three possible magnetic states and split the peak of 

HA into a triplet. While quite complex for larger compounds, this phenomenon allows for the 

distinction of a variety of molecules [57]. In complex mixtures, like that of biological samples typically 

analysed through metabolomics, the proton spectrum comprises a large multitude of signals, requiring 

the use of bidimensional (2D) experiments to assign those signals to specific metabolites.  

Before applying MVA to the 1H NMR spectra, a few pre-processing steps are usually required: peak 

alignment, to correct for shifts due to differences in pH or ionic strength; normalization, to account 

for differences in sample dilution and cell numbers, usually be dividing each point of the spectra by its 

total integrated intensity (total area); and scaling, to balance the weight given to larger and smaller 

signals in the MVA [255]. The most common scaling method is Unit Variance (UV), where the mean 

value is subtracted and each variable is divided by the standard deviation; similarly, Pareto scaling also 

subtracts the mean value from the variables, but divides each by the square root of the standard 

deviation. While UV scaling gives equal weight to all metabolites, because of the difference in this 

division factor, Pareto gives more weight to metabolites of lower concentration without inflating 

baseline noise [256]. The processed NMR spectra are then placed into a matrix of n samples and m 

variables. These variables are the peak intensity values and are inputted into the matrix as “buckets”; 

a bucket can be an individual ppm point or a range of values. 

II.3.2 MULTIVARIATE ANALYSIS (MVA) 
Multivariate statistical analysis is applied to datasets in order to detect consistent variation patterns. 

If each variable (metabolite signal in metabolomics) is considered a dimension, this statistical 

approach allows for the reduction of highly complex multi-dimension spaces, to simpler ones from 

which meaningful information can be extracted [257]. The data can be treated in two different ways: 

unsupervised methods, such as Principal Component Analysis, where no a priori information about 

sample class is provided in order to reveal inherent clustering and outliers; or supervised methods, 

such as the Partial Least Squares – Discriminant Analysis (PLS-DA), where information about the 

sample class is provided to maximize class separation (for example placebo and drug) [257].  
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PCA is a projection-based method; in simple terms, the plane that provides the most information, in 

this case the grouping of data in clusters, is chosen, and the coordinates of the original data are 

converted to the new coordinate system of this plane (for a visual explanation of projection-based 

methods see Appendix A). Thus the data transforms from a complex multi-variable set, into one of 

two, or more, principal components (PCs), where PC1 shows the largest variation in the data set, 

followed by PC2 and so on, with each component being orthogonal to all others [258]. More 

rigorously, linear algebraic algorithms are used to decompose the original matrix X into a scores matrix 

T, a loadings matrix W, and a residual matrix E. 

𝑋 = 𝑇 ∙ 𝑊 + 𝐸 

Where W is the matrix of eigenvectors given by XTX, and E is the part of matrix X that cannot be 

explained by the model [258]. A scores plot is given by plotting the scores of any two PCs against each 

other; information can be extract by means of comparing how the samples have grouped together or 

separated along the axes. The loadings in turn, provide information about the variables responsible 

for such clusters or separations [257].  

The PLS is a regression model that works in a similar way; however, the plane of projection is chosen 

such that it provides the greatest differentiation between the pre-defined classes provided by the 

user, given by a second matrix Y [259]. In cases where Y provides qualitative information, for example 

control versus treated, discriminant analysis can be applied for more enhanced results. The data is 

thus converted into a series of Latent Variables (LVs) that show the variance in matrix X considering 

its correlation with Y according to the following equations:  

𝑋 = 𝑇 ∙ 𝑊 + 𝐸 

𝑌 = 𝑈 ∙ 𝑄 + 𝐹 

Where similar to PCA, the T and U are the scores matrices, W and Q the loadings, and E and F the 

residual errors for X and Y respectively [259].  

As PCA is an unsupervised method, it enables the identification of outliers, trends, and groups, and 

allows for the clustering of data based on unexpected variables. PLS-DA on the other hand, provides 

more quantitative results, with the ultimate aim of plotting the variables against the loadings, and 

colouring the spectra as a function of variable importance in the projection (VIP). However, PLS-DA 

can also fall prey to overfitting of the algorithm, and is best used in combination with PCA and other 

validation techniques. 

II.3.3 UNIVARIATE ANALYSIS 
Univariate analysis is the statistical analysis of data when only one variable is involved; it explains the 

sample with tools such as the mean, median, mode, standard deviation, and variance. Moreover, 

inferential methods may also be used in order to determine the statistical significance or fit of the 

data. The t-test, Wilcoxon test, effect-size estimation, and analysis of variance (ANOVA) are typically 

used for assessing the robustness of scientific data, and are here applied to validate and complement 

the MVA results [260].  

The significant difference between two groups of data, for example the mean value of the control 

samples and the mean value of the exposed samples, can be evaluated by setting a significance 

threshold, and performing one of the abovementioned tests; for normally distributed results the t-

test can be applied [260]. The test calculates the probability of the null hypothesis being true, and 

provides a p-value. If this value is below the set criteria, the null hypothesis is rejected, meaning that 
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the observed results do indeed show a relationship between the two groups compared. The threshold 

is usually set at <0.05 or <0.001. The Wilcoxon test is a similar method for data that is not normally 

distributed, and ANOVA for comparing three or more groups of data [260].  

However, the use of the p-value has fallen to a great amount of criticism in recent years [261]. While 

greatly influenced by the sample size, the p-value does not provide any information about the 

magnitude of variation between the two groups or their practical (for example medical) significance. 

Hence in the last decades, another parameter called “effect size” was proposed, and has been 

increasingly gaining momentum [261, 262]. The effect size estimate allows for the comparison of two 

groups based on the magnitude and direction of their variation. This parameter is particularly useful 

in the fields of medicine, toxicology, and metabolomics for two reasons. Firstly, its lower sensitivity to 

the sample size allows for the extraction of significance even when enough cases do not exist; an 

example would be orphan diseases. Additionally, it also allows for the meta-analysis of large quantities 

of data by calculating comparable values; something that is becoming more prominent as more 

databases are established [262]. Effect size, and its corresponding 95% confidence interval can be 

calculated according to the equations below (Table 2). The factor J is applied to correct for the upward 

bias when sample sizes are small [262].  

𝐽 = 1 −
3

4(𝑛1 + 𝑛2 − 2) − 1
 

𝑠 =
√(𝑛1 − 1)𝜎1

2 + (𝑛2 − 1)𝜎2
2

𝑛1 + 𝑛2 − 2
 

Table 2: Summary of equation for calculating Effect Size and its Standard Error. 

Effect Size based on 
Standardized Mean Difference 

Effect Size based on 
Standardized Mean Difference 

for Small Sample Sizes 

𝐸𝑆 =
𝑥1̅̅ ̅ + 𝑥2̅̅ ̅

𝑠
 𝐸𝑆𝑔 = 𝐽 ∗ 𝐸𝑆 = 𝐽 ∗

𝑥1̅̅ ̅ + 𝑥2̅̅ ̅

𝑠
 

𝑆𝐸 = ⁡√
𝑛1 + 𝑛2
𝑛1𝑛2

+
𝐸𝑆2

2(𝑛1 + 𝑛2)
 𝑆𝐸𝑔 = 𝐽 ∗ ⁡𝑆𝐸 = 𝐽 ∗⁡√

𝑛1 + 𝑛2
𝑛1𝑛2

+
𝐸𝑆2

2(𝑛1 + 𝑛2)
 

𝐸𝑆 ± 1.96 ∗ 𝑆𝐸 𝐸𝑆𝑔 ± 1.96 ∗ 𝑆𝐸𝑔 
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Chapter III:  Experimental Procedures 

III.1  SYNTHESIS OF SILVER NANOPARTICLES (AgNPS) 

III.1.1 GREEN SYNTHESIS 
Silver nanoparticles were synthesized according to the method outlined by Santos et al., with minor 

modifications [238]. Ground E. globulus bark samples, having a granulometry lower than 2 mm (RAIZ, 

Forest and Paper Research Institute, Aveiro, Portugal), were subject to a 1:50 mass-to-volume water 

extraction at 100 °C for two minutes under constant stirring. The water and bark suspension was 

filtered using a Buckner funnel and 87 g/m2 filter paper. This extract was then autoclaved using 

standard parameters; 20 minutes at 121 °C and 2 atmospheres. A 1 mM solution of silver nitrate 

(99.9%, Sigma-Aldrich), was prepared in distilled or ultra-pure water. The autoclaved extract was 

added to the AgNO3 solution at a 1:3 volume ratio, sealed, and allowed to react for 72 hours. The NP 

suspension was centrifuged at 6000 rpm for 15 minutes, and the supernatant was removed. This was 

repeated three more times, with the addition of distilled or ultra-pure water, and removal of 

supernatant at each time for a complete "washing" of the sample.  

A small volume of the pre-wash solution was kept for analysis. Similarly, a small volume was taken for 

reanalysis after approximately five and nine weeks; with these being considered "aged" nanoparticles. 

Part of the AgNP sample was autoclaved under the same conditions after approximately five weeks, 

and these too underwent characterization. The final synthesis was made by autoclaving the extract at 

and the silver nitrate the same ratio as cited above, under standard autoclaving conditions based on 

the method by Kora et al [263].  

III.1.2 PULSED LASER ABLATION IN LIQUID (PLAL) SYNTHESIS 
Silver nanoparticles, synthesized via PLAL, and already concentrated 6-fold using centricons in 2 mM 

citrate buffer, were kindly provided by Dr Prof. Fabio Arnesano, Department of Chemistry, University 

of Bari "Aldo Moro". Briefly the synthesis procedure by PLAL described by Mangini et al. [239] is the 

following: A silver target (Goodfellow Cambridge Limited, 99.95% purity, 6 mm thickness), was placed 

inside a cuvette of ultra-pure Milli-Q water, and subjected to focused laser pulses from a 532 nm ND-

YAG laser (Quanta System PILS-GIANT, 10 Hz repetition, 8 ns duration) for an ablation time of 

3 minutes at an irradiance of 131 GW/cm2. The AgNPs were then diluted at a ratio of 1:2.5 with ultra-

pure water and left to stabilize for 24 hours.  

Upon being received, the AgNP were characterized and from these, a portion was aliquoted for 

functionalization with 25 M ubiquitin (Giotto Biotech); both types of particles, with and without 

ubiquitin, were used for toxicity and metabolomic testing.  
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III.2  PHYSICO-CHEMICAL CHARACTERIZATION OF AgNPS 

III.2.1 UV-VIS SPECTROSCOPY 
A UV-Visible spectrophotometer (Evolution 220, Thermo Scientific) was used to record the optical 

spectra of the nanoparticles. The AgNPs were diluted in both ultra-pure, and phosphate buffered 

saline (PBS) or cell culture media and the spectra recorded. Diluted samples were placed into quartz 

cuvettes and the spectrum was taken over an interval of 250 to 750 nm, with a bandwidth of 1 nm, 

and integration time of 0.25 seconds, using the instrument's Insight software. 

III.2.2 DYNAMIC LIGHT SCATTERING (DLS) 
Dynamic Light Scattering (DLS) was used for the determination of the size distribution and zeta 

potential of the AgNPs (Zetasizer Nano Series Analyzer, Malvern Instruments). Particles were first 

diluted in the dispersant of interest (distilled water, PBS, cell culture media), and placed into the 

instrument using the disposable folded capillary cell. Particle size distribution, as well as zeta potential 

measurements, are each an average of three separate measurements, each consisting of 12 to 

18 runs. For the study on the effect of concentration and time, the samples were each vortexed prior 

to the measurement; incubated at 37 °C and measured again after 24 and 48 hours.  

III.2.3 SCANNING ELECTRON MICROSCOPY IN TRANSMISSION MODE (STEM) 
The particles were visualized using a field emission gun scanning electron microscope (FEG SEM, 

Hitachi SU70), operated at 15 kV. The samples were prepared by dipping a carbon-coated copper grid 

into the AgNP solution, and allowing the water to evaporate. Samples were mounted on a TEM stage, 

allowing the auxiliary electron detector below to capture the images in STEM mode. Image processing 

was conducted with ImageJ software. Average particle size and size distribution were determined by 

taking measurements of the particles' diameters (at least 50 particles were measured for each 

sample). 

III.2.4 ICP-OES 
The concentration of silver in solution was determined using Induction Coupled Plasma Optical 

Emission Spectroscopy (ICP-OES, Jobin Yvon 70 Plus) at Laboratório Central de Análises (LCA) - 

Universidade de Aveiro. The AgNP solutions were delivered as previously diluted in distilled water. 

They were then digested using concentrated nitric acid at an elevated temperature of 160 °C, and 

further diluted as required. Potentiometric studies were performed using a silver ion-selective 

electrode (ISE: silver/sulphide) coupled to a Consort C933.  

III.3  CYTOTOXICITY OF AgNPS 

III.3.1 CELL LINES AND CELL CULTURE METHODS 
HaCaT cells (Cell Line Services, Eppelheim, Germany) were previously sub-cultured and frozen 

according to cell bank creation protocols. Upon thawing the cells were maintained in Dulbecco's 

Modified Eagle Medium (DMEM) (Life Technologies, Carlsbad, CA, USA) containing glucose, and 

further supplemented with 10% fetal bovine serum (FBS, Gibco, USA), 2 mM L-glutamine (Life 
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Technologies, Carlsbad, CA, USA), 100 U/mL Penicillin Streptomycin (Life Technologies, Carlsbad, CA, 

USA), and 250 µg/mL Fungizone (Life Technologies, Carlsbad, CA, USA) in a 37 °C incubator with a 

humidified atmosphere and 5% CO2 saturation. The cells were sub-cultured every three to four days, 

once they had reached 60 to 80% confluence. A flow hood, Level II, was used to carry out all cell culture 

related work; standard aseptic techniques were followed.  

For the sub-culturing of the cells, the old media was first removed. The cells were then washed for 

approximately one minute with phosphate buffered saline (PBS, Gibco, USA) in order to remove traces 

of serum, calcium, magnesium and any dead organic matter that would prevent the dissociation 

reagent from lifting the cells. The PBS was removed, and the cells were incubated for ten minutes with 

a solution of 0.05% ethylenediaminetetraacetic acid (EDTA, Sigma Aldrich) in PBS to further wash any 

metal ions. Once this was removed, the cells were incubated for 5 minutes with 0.25% Trypsin-EDTA 

(Gibco, USA), a digestive enzyme whose role is the hydrolysis of proteins, to detach the cells from the 

adhered surface. Once the cells had fully detached, they were diluted using fresh media and passed 

through a syringe (21G), using gravity only, to create a uniform cell suspension. A portion, usually 10%, 

was then put into a new flask. The cells for this project began at passage 53 and continued onto 

passage 84.  

III.3.2 MORPHOLOGY AND GROWTH 
Cells were observed under a phase contrast microscope (Nikon Eclipse 80i, Mexico) at each sub-

culture step, as well as before and after exposure to the AgNPs for signs of contamination, growth 

rate, and changes in morphology. Digital images were obtained using a Nikon Digital Sight Series 

camera (Nikon, Japan), and the images were processed using the NIS-Elements F software.  

III.3.3 MTT ASSAY 
The same procedure as above was followed in order to create a uniform cell suspension. Here, the 

cells were counted using a haemocytometer (Neubauer Improved), always taking two samples out of 

the suspension and counting the four corner squares. The cell suspension was then diluted such that 

each well of the 96-well plate would be seeded with 6 000 or 5 000 cells in a volume of 100 L, for the 

24 hour and the 48 hour assays respectively. The assay wells were surrounded by a row of media on 

each of the four sides, in order to compensate for evaporation in the incubator.The seeded plates 

were placed in the incubator, and the cells were given a 24 hour period to adhere and grow.  

For the exposure step, various concentrations of AgNPs were freshly prepared by diluting the 

nanoparticles in cell culture media. For the Green Synthesis AgNPs the concentrations included: 0, 5, 

7.5, 10, 12.5, 15, 17.5, 20, 25, 50, 100 μg/mL; while the PLAL AgNPs included: 0, 2.5, 5, 7.5, 10 μg/mL 

with and without the ubiquitin coating. The old media in each of the assay wells was removed and 

replaced with 100 L of the vortexed AgNP dilution. Preliminary assays consisted of three or five 

technical replicates, while standard assays consisted of four technical replicates and three 

independent assays. Exposed plates were once again placed in the incubator for their respective assay 

times of 24 or 48 hours.  

The MTT Assay protocol, as described by Twentyman and Luscombe, was followed with minor 

modifications [70]. A 1 mg/mL solution of MTT (Sigma-Aldrich, USA) in sterile PBS was freshly prepared 
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and 50 L was allocated to each assay well. The plates were then placed in the incubator for four 

hours, upon which the media and MTT solutions were removed from each well, to be replaced with 

150 L of dimethyl sulfoxide (DMSO, Sigma Aldrich, USA) for the solubilisation of formazan crystals. 

Three additional wells, designated as blank, were also filled with 150 L of DMSO. This was followed 

by two hours on a rotational shaker and medium speed.  

Finally, the optical density of reduced MTT (formazan) in each well was measured at 570 nm using an 

automatic plate reader (Synergy HT Multi-Mode, BioTek Instruments Inc, USA); the data being 

collected by the BioTek Gen5.1.1 software. The absorbance values of the blank wells, considered as 

background from the plastic and the DMSO, were averaged and subtracted from the assay wells. The 

following formula was then used to compare the results.  

%⁡𝐶𝑒𝑙𝑙⁡𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = (
(𝑆𝑎𝑚𝑝𝑙𝑒⁡𝐴𝑏𝑠 − 𝐷𝑀𝑆𝑂⁡𝐴𝑏𝑠)

(𝐶𝑜𝑛𝑡𝑟𝑜𝑙⁡𝐴𝑏𝑠 − 𝐷𝑀𝑆𝑂⁡𝐴𝑏𝑠)
) ∗ 100% 

These results were then fit with a sigmoidal curve of three parameters (a, b, and x0) using the 

SigmaPlot 12.5 software (Systat Software Inc.) and the equation below. The equation was then used 

to calculate the IC10, IC20 and IC50 for each AgNP type.  

𝑦 = ⁡
a

1 + (
x
xo
)
b
 

Based on these results the doses of 5 μg/mL, 10 μg/mL and 15 μg/mL were selected for the Green 

Synthesis AgNPs for the IC10, IC20 and IC50 respectively; while 1.09 μg/mL and 3.42 μg/mL were selected 

for the PLAL AgNPs for the IC10 and IC20. 

III.3.4 CELL CYCLE ANALYSIS 
Cell cycle was analyzed by flow cytometry according to the method previously described by Oliveira 

et al. [72]. Briefly, cells were seeded into six-well cluster plates, with each well receiving 100 000 cells 

in a volume of 2 mL. They were allowed 24 hours to adhere and grow in the incubator before being 

exposed to the IC10, IC20 and IC50 concentrations (5, 10 and 15 μg/mL) of the Green Synthesis AgNPs; 

in short the old media was removed and the AgNPs, diluted in media and vortexed, were added to 

each well. Each assay concentration consisted of three technical replicates. This was followed by an 

incubation time of 24 or 48 hours.  

Afterwards, the media and AgNPs were removed, the cells were washed with PBS, trypsinized, and 

resuspended in media. The suspensions were placed in microtubes and centrifuged at 300g for 

5 minutes. The supernatant was removed and the pellet was washed with PBS. Finally the pellet was 

resuspended in cold 85% ethanol and samples were subsequently kept at -20 °C until the day of the 

analysis. 
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To prepare the samples for analysis, the fixed cells were centrifuged at 300g for 5 minutes, and washed 

with PBS to remove the ethanol. The suspensions were vortexed, followed by filtration using a 55 m 

nylon mesh in order to remove large clusters of cells. Propidium iodide (PI, Fluke, USA) was added for 

the staining of nuclear DNA, while RNAse (Sigma Aldrich, USA) was added to enzymatically dissolve 

any RNA in the samples. This was followed by 20 minutes of incubation in the dark.  

A flow cytometer (Beckman Coulter XL) having an argon laser (15 mW, 488 nm) was used to measure 

the relative fluorescence intensity of approximately 5 000 stained nuclei, per sample. The data were 

processed using FlowJo software (Tree Star Inc, Ashland, Oregon, USA), with the ratio of peak 

intensities and peak areas used to determine the percentage of nuclei in each cell cycle phase: G0/G1, 

S and G2 phases.  

III.3.5 CELL UPTAKE 
Cells were seeded onto round microscope glass covers (18 mm), inside 12-well cluster plates; each 

well receiving 300 000 cells in a volume of 1 mL. The same exposure protocols as above were followed 

for the exposure of the cells to 2.5, 5, 7.5, 10, and 15 μg/mL of AgNPs. After 24 or 48 hours of exposure, 

the glass covers were washed three times in PBS, and fixed using 1.5 mL of 4% paraformaldehyde for 

20 minutes. The covers were then washed, three more times, in PBS. 50 μg/mL PI was used to stain 

the cells for visualization of nuclei, for a five minute duration, followed by washing in PBS. The glass 

covers were kept in PBS at 4 oC until the day of imaging.  

Steps were taken to create a protocol for the visualization of particles with a fluorescence microscope, 

as well as a Raman confocal microscope. The preliminary acquisition parameters for the Raman 

microscope (Alpha300AR; WITec, Ulm, Germany) were as follows: two lasers with wavelengths of 633 

and 532 nm were used to excite the samples, at 22 and 35 mW respectively. Images were acquired at 

150 points per line and 150 lines per image, with an integration time of 0.05 seconds, and an area of 

approximate 70 to 40 um. The 50X magnification objective was used for all measurements.  

Image processing was performed with WITec’s Project Four software. Heat maps were created 

through an iterative process based on the few peaks available in the spectra.  

III.4  CELL METABOLOMICS 

III.4.1 SAMPLE PREPARATION 
Cell culture plates with a diameter of 10 cm were seeded with 800 000 cells; the cells were given 

24 hours to adhere and were then exposed to the pre-selected concentrations of AgNPs (IC10 and IC50 

for the Green Synthesis AgNPs, and IC10 and IC20 with and without ubiquitin for the PLAL AgNPs), using 

the same protocol as described above. Cells were exposed to the AgNPs for 24 hours, followed by their 

extraction as described below. A plate with media only was included as a further control. 

The extraction of cells for metabolomics followed the protocol described by Teng et al. with minor 

modifications [263]. The media from each plate was discarded and the cells were washed four times 
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with cold PBS. The cells were removed using a scraper after the addition of cold 80% methanol, and 

put into Eppendorf tubes already having glass beads. After being vortexed for two minutes, 

chloroform and MilliQ water were added to each sample, followed by further vortexing. A waiting 

period of 10 minutes was followed by centrifugation at 4 °C at 2000g for 15 minutes, at which point 

the solutions separated into two phases. The top aqueous phase was removed and dried under 

vacuum using a rotary evaporator for approximately 7 hours. The bottom lipid phase was removed 

and dried using mild nitrogen flow for approximately ten minutes. The beads, protein layer and pellet 

were also stored for possible analysis. Furthermore, a sample of media, before washing with PBS, was 

removed from each plate, centrifuged for 5 minutes at 1000 rpm, and had the supernatant taken for 

analysis. All parts of the extraction, aqueous, lipid, media, and pellet, were frozen and kept at -80 °C 

until the day of the analysis.  

In order to prepare the aqueous samples for 1H NMR analysis, the dried extract was dissolved in 1 mM 

phosphate buffered saline of pH 7.4, prepared fresh using only deuterium oxide. The solution also 

contained 0.1 mM tetramethylsilyl propionate (TSP, Sigma Aldrich, USA) for the calibration of the NMR 

spectrum. The solution was then poured inside a glass 5 mm NMR tube. Similarly, the dried lipid 

extracts were dissolved in deuterated chloroform containing 0.1 mM tetramethylsilane (TMS, Euriso-

top, France), and poured into glass NMR tubes. Finally, the medium samples were thawed at room 

temperature, vortexed, and mixed in a 9:1 ratio with deuterium oxide containing 0.25% TSP, before 

being poured into glass NMR tubes.  

III.4.2 NMR ACQUISITION AND PROCESSING 
NMR spectra were acquired on the Bruker Avance DRX-500 spectrometer operating at 500 MHz for 1H 

observation using a Triple Resonance Probe (TXI) at 298 K. Both acquisition and the pre-processing of 

the spectra were performed with the Bruker TopSpin 3.2 software (Bruker BioSpin, Germany). 

Acquisition parameters, based on previous studies using the same cell line and similar nanoparticles, 

were used as a starting point and modified so as to improve quality of the spectra. For each sample, a 

standard 1D spectrum with water presaturation was recorded (pulse program ‘noesypr1d’ in Bruker 

library), consisting of 512 scans collected into 32 000 data points with a spectral width of 7002.8 Hz. 

The relaxation delay was 4 s and the acquisition time was 2 s (D1). For some samples, with lower cell 

numbers, 2048 scans were used instead. All spectra were Fourier Transformed (FT) with a squared 

cosine window function (SSB2) and a zero filling factor of 2, equivalent to approximately 64 000 points. 

They were then subject to manual phase and baseline correction, as well as calibration using the TSP 

or TMS peaks at 0 ppm. The parameters are summarized in Table 3. 

Spectral assignment for HaCaT cell extracts was previously performed by our work group and used 

throughout this work [264]. Briefly, based on the chemical shift and multiplicity information gathered 

from 1D and 2D experiments, peaks of various metabolites and lipidic species were identified through 

cross referencing with data available in already established databases (e.g. Bruker Biorefcode 

database and HMDB – Human metabolome database [265]).  
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Table 3: Summary of 1H NMR Acquisition and Processing Parameters. 

1D 1H NMR (500 MHz) 298 K 

Acquisition Parameters 

Experiment Standard 1D 

Pulse Programme noesypr1d/zg  

Number of Scans 512/2048 

FID data points 32k 

Spectral Width 7002.80 Hz 

Acquisition Time (AQ) 2.34 

Relaxation Delay (D1) 2 s 

Mixing Time 100 ms 

Processing Parameters 

Window Function Squared cosine 

SSB 2 

Spectrum Data Points 64k 

 

III.5  STATISTICAL ANALYSIS 

III.5.1 UNIVARIATE ANALYSIS 
Univariate analysis was performed for the MTT and cell cycle data; the results are reported as the 

mean average ± the standard deviation of four technical replicates in each of the three independent 

experiments, and the three replicates, respectively. The one-way ANOVA test was used to determine 

the statistical significance between control and exposed cells for the MTT assay, followed by Dunnet 

or Dunn's method (as parametric and non-parametric tests, respectively), using Sigma Plot 12.5 

software (Systat Software Inc.). The Holm-Sidak test was used in place of Dunnet or Dunn's method 

where applicable. 

Univariate analysis was also performed on the integrated peaks of NMR spectra. The integrals for each 

peak were normalized using the total area. The average value, standard deviation, variation from 

control and standard error were subsequently calculated. The student’s t-test was applied to compare 

the mean value of the samples and the controls. Finally, effect size was calculated based on the 

method discussed in Chapter 2, with the J factor included for all parameters [262].  

III.5.2 MULTIVARIATE ANALYSIS (MVA) OF NMR DATA 
Multivariate Analysis (MVA) was performed on all data sets of the same type, i.e. aqueous, lipid, 

medium, using the SIMCA -P 11.5 software (Umetrics, Sweden). Prior to MVA, interfering solvent 

signals (e.g. methanol, chloroform, water) were removed and normalized by total spectral area and 

scaled. Different scaling types were tested and Pareto scaling was selected based on the resulting MVA 

quality parameters. PCA was first applied, followed by PLS-DA. The default seven-fold internal cross 

validation was utilized in order to derive predictive ability (Q2), and explained variance (R2).  The PLS-

DA models were used to create loadings plots in R (R Foundation for Statistical Computing, Austria); 
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showing the obtained weight loadings as a function of the spectrum, and coloured using the Variable 

Importance in Projection (VIP). 

While the scores scatter plots show the dispersion of sample scores in the multivariate space, thus 

giving information on grouping trends, the loading plots give information regarding the magnitude 

and importance of the variation in metabolites between the data sets. Peaks of metabolites showing 

high VIP, as well as those previously found to play an important role in cell function, were subject to 

signal integration using the AMIX-Viewer software 3.9 (Bruker, Germany) in order to quantify those 

variations. 
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Chapter IV:  Physico-Chemical 
Characterization of Ag NPs 

Although only one batch of AgNPs from the Green Synthesis was used throughout the cytotoxicity and 

metabolomics testing, a number of modifications were made to the process in order to optimize the 

safety, and the resulting particles were characterized. Furthermore, as the cytotoxicity and 

metabolomics each required a number of weeks to complete, the same batch of particles was also 

evaluated in terms of stability and uniformity over an extended period of time. 

Table 4 summarizes the various batches of Green Synthesis (GS) AgNPs synthesized, as well as the 

characterization studies that were carried out for each one. Throughout the text, AC refers to AgNPs 

that were synthesized using an "Autoclaved" plant extract; of these, two identical batches AC1 and 

AC2, differ only in the type of water used, distilled and MilliQ water respectively. The "Double 

Autoclaved" or DAC sample is an aliquot of AC1 that was subject to standard autoclave conditions 

approximately one month after the initial synthesis. The One Pot Synthesis (OPS) refers to a batch of 

AgNP where a mixture of as-filtered extract and AgNO3 were autoclaved under standard conditions.  

Table 4: Summary of syntheses and respective parameters studied. 

 Synthesis Washing Aging Solvent Incubation 

Autoclaved 1 (AC1)      

AC1 at One Month      

AC1 at Two Months      

Autoclaved 2 (AC2)      

Double Autoclaved 

(DAC) 
     

One Pot Synthesis (OPS)      

PLAL      

 

Five different studies were conducted on these particles employing one or more characterization 

techniques. The "Synthesis" study looked at minor modifications, such as the type of water used, and 

the step at which the particles were autoclaved, using UV-Vis, DLS, and STEM. The "Washing" study 

made a comparison of the AgNP immediately after the synthesis, and after the centrifugation and 

washing; termed "Pre Wash" and "Post Wash" respectively, using UV-Vis and DLS. For "Aging" the Post 

Wash of the AC1 batch was compared against the same Post Wash particles after one and two months, 

using UV-Vis, DLS and STEM. Immediately before the start of the cytotoxicity testing, the AC1 batch 

had aged one month, and was thus used to compare the effect of solvent (water, PBS, DMEM), using 

UV-Vis and DLS. Similarly before starting the metabolomics, two months after the initial synthesis, the 

particles were once again characterized using UV-Vis and DLS in the most relevant solvents, water and 

DMEM. Finally, the effect of 24 and 48 hour incubation at 37 °C in water and DMEM was studied for 

the same concentrations as those of the MTT test, using DLS.  

The AgNPs synthesized via PLAL were also characterized in order to confirming that they indeed had 

the properties suggested by the partnering laboratory and thus, were not subject to an extensive study 
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[239]. Moreover, it is important to note that the small volume available created a large hurdle for 

thorough characterization.  

Outside of the mentioned studies, the results from the ICP-AES for the AC1 batch showed a 

concentration of 2.36 mg/mL and the results for the PLAL AgNPs showed a concentration of 0.170 

mg/mL. 

The following sections describe and discuss the results for the various studies, using processed data 

from the UV-Vis, DLS, and STEM instruments.  

IV.1  CHARACTERIZATION OF GREEN SYNTHESIS AgNPS 

IV.1.1 STUDY OF MODIFICATIONS IN SYNTHESIS PARAMETERS 
Since the surface plasmonic resonance (SPR) properties of silver are detectable at the nano scale, 

namely an absorption band in the visible region (approximately at 400 nm) [240], UV-Vis spectroscopy 

was firstly used to confirm the formation of the NPs. The resonance band, the wavelength at which 

the particles show the highest SPR, is related to the size of the particles; with smaller ones resonating 

at shorter wavelengths and creating a blue shift. Consequently, the narrower the size distribution, the 

narrower the peak [240]. Figure 17 shows the UV-Vis spectra of the four batches of Green Synthesis.  

 

Figure 17: UV-Vis Spectra of AgNPs of Various Syntheses and respective maximum absorbance. 

As expected, the change in the water source does not translate to a change in the UV-Vis spectra for 

AC1 and AC2 have almost identical curves. The peak values are also very similar, however AC1 appears 

to be slightly broader than AC2, suggesting a wider size distribution. Autoclaving the particles a second 

time (DAC) seems to create a narrower band, perhaps as a result of the silver ions in solution being 

reduced to AgNPs by the remaining trace amount of extract at the surface of particles and in between. 

It may also be attributed to the dissolution of smaller particles and their deposition at the surface of 

the larger ones at the higher temperature, resulting in a more uniform distribution [12]. The OPS 

synthesis, on the other hand, shows a double peak at 426 nm and 510 nm respectively, suggesting a 
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bimodal distribution of particles; this is probably due to an increase in reaction kinetics resulting from 

the initial increase in temperature [7]. 

Keeping in mind the discussion on the limitations of size distribution analysis by DLS in Chapter 2, the 

results are discussed in terms of the qualitative information they provide. Similar trends, as those of 

UV-Vis, are observed in the data acquired by the DLS for the hydrodynamic diameter based on 

intensity (Figure 18). Once again, the AC1 and AC2 have similar curves, though vary slightly in their 

mean size. The OPS shows a higher hydrodynamic diameter than the others, while the DAC has a 

diminished left shoulder, suggesting an increase in the percentage of larger particles. As this is the 

distribution by intensity, there may be a distortion due to larger particles or contaminants, as they 

have a greater weight in the scattering equation [243]. Size distribution by number was also generated 

in order to extract more information (Figure 19).  

 

Figure 18: Hydrodynamic size distribution by intensity for various AgNP syntheses (Zetasizer Software). 

In studying the size distribution by number, the profile of AC1 and AC2 remains identical as compared 

to each other, though they both lose the shoulder on the left (Figure 19). The profile of DAC changes 

drastically when compared with the intensity distribution showing a bimodal distribution with 

approximately half the particles at the lower range and half at the higher. The micro-sized particles 

for OPS disappear from the curve, though they are most likely what causes the peak to shift further 

right as compared to the other samples. As the size distribution by number allows for a better 

separation of the syntheses batches, and keeping in mind that the average values are not reliable as 

discussed in Chapter 2, it was the analysis type used for all following studies. 
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Figure 19: Hydrodynamic Size Distribution by Number for Various AgNP Syntheses (Zetasizer Software). 

In order to obtain a more accurate value for the average size and size distribution, particle diameters 

were measured from the STEM images. Here, the analysis revealed new information about the 

characteristics of the particles; namely the striking difference between AC1 and AC2. Comparing the 

STEM images (Figure 20 and Figure 21), the AC1 batch seem to be blurry and highly agglomerated; 

however, as the inset reveals, this is due to a host of much smaller particles surrounding the larger 

ones. This is subsequently reflected in the size distribution graph, with the 10 to 20 nm group clearly 

outside the Gaussian distribution curve. AC2 on the other hand has a more uniform size distribution, 

both visually and as measured, shown by the smaller standard deviation. As the only difference 

between their syntheses is the purity of the water used, it would suggest that perhaps there are 

certain components in the distilled water that interfered with the reduction of silver ions; whether 

through side reactions with the reducing agents or direct interaction with the silver.  

 

Figure 20: STEM Image of AC1 Post Wash at 90X Magnification and respective size distribution: 3 Images, 310 Measurements.  
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Figure 21: STEM Image of AC2 Post Wash at 100X Magnification and respective size distribution: 2 Images, 198 

Measurements. 

The particles that were autoclaved one month after their synthesis (DAC) also showed a more uniform 

distribution, with the STEM images confirming the lack of the smaller particles. As it stands, the 

uniformity can be equally attributed to aging or the second round of autoclaving. Although the STEM 

results indicate a relatively normal distribution, neither the UV-Vis nor the DLS show that. This can be 

attributed to the way the human eye can distinguish between particles in an agglomerate, whereas 

neither the UV-Vis nor DLS algorithms are able to do so. Upon inspection of images with a lower 

magnification, it becomes apparent that aside from the spherical nanoparticles measured, there are 

many elongated particles, as well as a number of high aspect-ratio nano wires (Figure 23). This would 

in turn explain the discrepancy between the diameter values suggested by the three techniques.  

  

Figure 22: STEM Image of DAC at 80X Magnification and respective size distribution: 2 Images, 269 Measurements. 
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Figure 23: STEM Image of DAC at 20X Magnification showing Nano Wires. 

IV.1.2 EFFECT OF WASHING 
Centrifugation and washing were used to separate and remove the excess extract remaining in the 

solution. However, as shown in the following sections, this process caused a significant change in the 

properties of the particles.  

Looking at the UV-Vis data (Figure 24), once again, AC1 and AC2 present similar absorption curves; in 

both cases the Pre Wash shows a double peak, and the Post Wash is a broader single peak, with a 

slight red shift. The double peak in this case would suggest a bimodal size distribution. The 

disappearance of the first peak after the washing would confirm this; the smaller set of particles would 

not be subject to an equivalent amount of centrifugal force, thus remaining in and being removed with 

the supernatant. Furthermore, the main peak of the Post Wash is at the same wavelength as the 

second peak of the Pre Wash, showing that it is in fact the larger particles that remain [266].  

It is rather interesting that the OPS displays the inverse trend, with the Pre Wash having a single, rather 

narrow peak, and the Post Wash as a double. The narrow single peak of the Pre Wash is most likely 

due to the high temperature and pressure conditions of the synthesis, in which a large number of 

nucleation sites are created at the same time and grow into particles at the same rate, perhaps 

following the LaMer model [11]. The double peak of the Post Wash can probably be attributed to 

agglomeration during the centrifugation step. That the second peak is at a higher wavelength would 

further suggest that it is the combination of the smaller particles rather than the creation of smaller 

ones. As for the reason that this type of agglomeration does not occur for the other syntheses, it is 

possible that the capping agents of the extract were modified during the autoclaving such as to have 

a preference for this state [267, 268].  

 

Figure 24: UV-Vis Spectra of Pre versus Post Wash for the Various Syntheses. 
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As Figure 25 shows, there is very little difference between the Pre and Post Wash hydrodynamic 

diameters as detected by DLS. This is especially true for the AC1 and AC2 batches. Both of the OPS 

batches show a larger diameter than the AC batches, with the Post Wash even larger than the Pre 

Wash.  

 

Figure 25: Hydrodynamic Diameter Size Distribution of Pre versus Post Wash of Various Syntheses (Zetasizer Instruments). 

IV.1.3 EFFECT OF AGING TIME 
Due to the experiments progressing through a number of months, a study on "Aging" or rather, the 

evolution of the particles' characteristics over time, was conducted. Here the initial AC1 batch is 

compared to two other time points of one and two months.  

The UV-Vis spectra showed little to no change with the passage of time (Figure 26). The peak seems 

to have become narrower for the AgNPs aged two months and a definite blue shift, indicating a 

narrower size distribution and smaller particle sizes. 

 

Figure 26: UV-Vis Spectra of AC1 Particles at Various Time Points with respective maximum absorbance. 
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The size distributions shown for the hydrodynamic diameter by the DLS in Figure 27 is somewhat 

surprising when compared to the STEM images and their respective diameter size distribution (Figure 

20 and Figure 28). The DLS seems to suggest that after one month of aging, the particles fall into two 

size categories, whereas the initial AgNPs and the ones aged for two months fall into one. The 

suggested bimodal discrepancy can be attributed again to the limitations of the DLS. When compared, 

the STEM images and corresponding size distributions, offer a different but more logical explanation. 

The particles in the aged sample look more distinct and uniform (Figure 28), compared to the haze of 

smaller particles that surrounded the larger ones in the AC1 sample (Figure 20). The measured 

distribution confirms this; while the 10 to 20 nm category is still outside of the Gaussian curve, its 

magnitude has greatly decreased. This change can be attributed to the aging that other colloids, and 

often alloys as well, are subject to [13]. It is interesting to note that, while the value of the standard 

deviation has decreased, it is still relatively high as compared to the mean value.  

At the onset of the reaction, a number of nucleation sites are created; under certain conditions, 

namely that the concentration of the precursors drops below the critical concentration for nucleation, 

these nucleation sites all grow at the same rate to become particles of the same size (LaMer model) 

[11]. Otherwise if the precursor concentration is above the critical point, nucleation sites are 

continuously created and so the particles grow to be of various sizes [13]. In the latter case, once the 

initial source of reactants has been depleted, the smaller particles are gradually dissolved, leading to 

re-deposition onto the larger particles; this phenomenon is the so-called Ostwald Ripening effect 

discussed in Chapter 1 [12]. 

 

Figure 27: Size Distribution of Hydrodynamic Diameter for AC1 sample at various reaction times (Zetasizer Software). 
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Figure 28: A) STEM Image of AC1 Aged One Month at 120X Magnification B) AC1 Aged One Month Size Distribution: 2 Images, 

215 Measurements. 

IV.1.4 EFFECT OF THE SOLVENT 
It has been confirmed that the dispersing solvent has a great influence on the physico-chemical 

properties of NPs [269, 270]. The characteristics most affected are surface charge, hydrodynamic 

diameter, and agglomeration state. Here, the AgNPs were dispersed in two additional solvents, PBS 

and DMEM, in order to determine these changes. While DMEM is the solvent in which the particles 

are dispersed for in vitro testing, PBS is a good model for the use of AgNPs for signal enhancement in 

immunohistochemistry or similar applications [109]. While PBS consists of water with sodium 

phosphate and sodium chloride ions, DMEM also contains various amino acids and proteins, as well 

as vitamins and glucose. In fact, a number of studies on silica, ZnO, and TiO2 NPs, have shown that the 

composition of the medium and the type of serum (proteins) used, also effect the stability of the 

particles [271, 272]. 

It is interesting to note that the UV-Vis spectra for sample AC1 (aged 1 month) in DMEM and water 

are quite similar, whereas in PBS they show a broader peak overall and a slight blue shift of the tip 

(Figure 29). It may be that the change in pH and ionic strength of the PBS solution modify the capping 

agents of the extract surrounding the particles; perhaps causing them to detach and diffuse into the 

solution. The DMEM on the other hand, would cause a similar detachment; however, it would also 

create a new coating made of amino acids and proteins. The results from zeta potential 

measurements, shown in Table 5, confirm this.  The zeta potential of the particles increases from -

27.5 mV in water to -17.6 mV in PBS and -9.37 in DMEM. As the particles have a negative surface 

charge by nature, they attract the positive ions, or positive molecules, in the two solutions, leading to 

an increase in zeta potential. The reason for the more drastic increase in the DMEM solution may have 

to do with higher charged molecules, or simply the conformation of the interaction [273]. On the other 

hand, this decrease in zeta potential can also indicate less stability; less surface charge means a lesser 

ability to repel other particles and may lead to agglomeration [243].  
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Figure 29: UV-Vis Spectra of AC1 Aged One Month in Various Solvents. 

 

Table 5: Zeta Potential of AgNPs under various condition. 

NP Zeta Potential (mV) 

AC1 Post Wash -30.1 

AC1 Aged One Month in Water -27.5 

AC1 Aged One Month in PBS -17.6 

AC1 Aged One Month in DMEM -9.37 

AC1 Aged Two Months -23.6 

 

The size distribution suggested by the DLS can only be used to compare the distribution curves, and 

not the suggested diameter values (Figure 30). It shows a bimodal distribution for AgNP in water and 

PBS, with most of the particles being of the larger size in water, and the majority being of the smaller 

size in PBS. This suggests that upon dispersion in PBS the particles tend to agglomerate or that their 

hydrodynamic volume is increased in some other way. The AgNPs in DMEM seem to be a combination 

of the other two curves; a bimodal distribution shifted towards a smaller particle size, with the smaller 

particles making up the larger peak. Here perhaps, the instability of the ions and particles in solution 

is balanced by the stereo-chemical interaction of the surface proteins; thereby reducing the 

agglomeration [273]. 
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Figure 30: Hydrodynamic Diameter Size Distribution of AC1 sample Aged One Month in Various Solvents (Zetasizer 

Instrument). 

IV.1.5 EFFECT OF INCUBATION 
In order to mimic the conditions of the AgNPs during the cytotoxicity and metabolomics testing, the 

particles were subject to size distribution analysis by DLS at an initial, as well as 24 and 48 hour time 

points during which they were incubated at 37 oC. A previous study in our workgroup had shown that 

the concentration of the AgNP in solution was a factor in their agglomeration state [274]; thus the 

concentrations that were being tested for the cytotoxicity and metabolomics assays were those 

chosen for this study. Finally, the particles were tested in both water and DMEM. Figure 31 shows the 

compilation of this data.   

The AgNP dispersed in water showed good stability, both in terms of time and concentration. Indeed, 

it is only after 48 hours, and only for the lowest concentration of 5 μg/mL, that an increase in 

hydrodynamic diameter was observed. The AgNPs in DMEM have an overall higher hydrodynamic 

diameter, as expected, due to the protein corona that envelopes them. However here, we see the 

diameter increase at every concentration as the incubation time is increased. Moreover, a 

concentration dependent trend also forms, where at lower concentrations the diameters become 

increasingly larger. The increase in size due to incubation time can be attributed to the formation of 

agglomerates; or equally, the slower motion of the particles due to the evaporation of water and a 

subsequent increase in viscosity, for the instrument’s algorithm is based on the particles’ motion or 

velocity [243]. Similarly, the apparent increase in size at low concentrations may also be a 

consequence of velocity, rather than agglomeration. At low concentrations, the particles collide with 

each other less often, resulting in decreased motion, equated by the instrument to “larger” particles 

[275].    
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Figure 31: Hydrodynamic Diameter of AC1 sample Aged Two Months in Water and DMEM for Various Concentrations and 

Three Incubations Times. 

IV.2  CHARACTERIZATION OF PLAL AgNPS 

UV-Vis presents a narrow band (maximum of absorbance at 421 nm) for the PLAL synthesis, indicating 

a more uniform size distribution as compared to the GS AgNPs (Figure 32). The PLAL, contrary to 

expectations, showed a broad, almost bimodal, curve around the same diameter as the GS AgNP 

samples when analyzed by DLS distribution by intensity (Figure 33). However, using the distribution 

by number, the band becomes narrow, with a peak indicating that it has a much smaller average 

diameter than the GS AgNPs, confirming the producers’ specifications (Figure 34) [239]. Moreover, 

the particles also showed a more negative zeta-potential of -32.9 mV, indicating their superior 

stability, as compared to GS AgNPs, in water. 
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Figure 32: UV-Vis Spectra of PLAL AgNP Synthesis and respective maximum absorbance. 

 

Figure 33: Hydrodynamic size distribution by intensity for PLAL AgNP synthesis (Zetasizer Software). 

 

Figure 34: Hydrodynamic size distribution by number for PLAL AgNP synthesis (Zetasizer Software). 

Finally, the STEM images as well as the derived size distribution for the PLAL particles are in fact in 

agreement with the UV-Vis and DLS distribution by number results (Figure 35). As expected, based on 

the specifications given by the collaborating partners [239], they showed a narrow size distribution, 

centered at approximately 10 to 15 nm with an average value of 10.84 nm. The only doubt that can 

be cast is towards the low number of measurements taken as compared to the other images. 

However, this was also expected for the initial concentration of these AgNPs was much lower.  
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Figure 35: STEM Image of AgNP by PLAL at 250X Magnification and respective size distribution: 2 Images, 86 Measurements.  
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Chapter V:  Cytotoxicity Evaluation of 
AgNPs in Human Keratinocytes 

To characterize the Green Chemical Synthesis (GS) and PLAL AgNPs in terms of their cytotoxicity, 

HaCaT cells were exposed to them over 24 and 48 hour periods. The change in cells’ morphology was 

observed and recorded, and the cell viability and cell cycle dynamics were also evaluated. A number 

of control studies were performed before testing of the actual particles. Where applicable, statistical 

analysis, in the form of the one way ANOVA test, was applied to the data. The IC10, IC20, and IC50 values 

were determined and used for the metabolomics studies (discussed in Chapter 6). As the results for 

the uptake study were preliminary, they are included in Appendix B. The following section describes 

and discusses the cytotoxicity results and their significance.  

V.1 EXPOSURE TO GREEN SYNTHESIS AgNPS 

V.1.1 CELL VIABILITY 
The potential cytotoxicity of GS AgNPs was evaluated using the MTT cell viability assay in seven rounds 

of testing at 24 and 48 hour exposures, as well as two sets of controls; one for the toxicity of the 

Eucalyptus globulus Bark Extract (EGB), and one without cells to test for the interference of AgNPs 

with the MTT assay reagents.  

V.1.1.1 Exposure of Green Synthesis AgNPs to HaCaT Cells 

At each of those seven rounds of testing, small adjustments were made to the dose range until an 

appropriate range was selected. The results from the last round, with three independent assays each 

having four technical replicates, are presented in Figure 36. The displayed regressions are based on a 

logistical three parameter equation, previously shown in Chapter 2; where a is the curve's maximum 

value, b the steepness of the curve, and xo the x value at the midpoint of the sigmoidal curve. It is in 

fact this xo value that is used as the IC50.The regression equation was modified from the one expressed 

in Chapter 2 by the software to include negative values of x and b. 
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Figure 36: Cell Viability upon 24 and 48 hour Exposure to GS AgNP and the Respective Sigmoidal Logistic Curve Fitting; Where 
"a"  indicates a significant difference as compared to the 24h control, and "b"  indicates a significant difference as compared 
to the 48h control (p<0.05). 

For the GS AgNPs 24 hour Exposure: 

𝑦 = 90.0435 ∗ (
|

𝑥
15.4932|

|7.4475|

1 + |
𝑥

15.4932
|
|7.4475|

) 

For the GS AgNPs 48 hour Exposure: 

𝑦 = 88.7534 ∗ (
|

𝑥
14.2183|

|5.9769|

1 + |
𝑥

14.2183|
|5.9769|

) 

Though lacking significance, the lowest concentration tested shows a visible decrease in viability, with 

the 10 μg/mL and the 12.5 μg/mL concentrations causing a 20% decrease and falling onto the linear 

region of the sigmoidal curve. The next tested concentration of 15 μg/mL results in a 48% decrease in 

viability, and is quite influential in the calculation of the IC50 value. Moreover, the small standard 

deviation and homogeneous response for this concentration result in a significant difference as 

compared to the control for both the 24 and 48 hour exposure periods; therefore the calculation for 

the IC50 value can be considered reliable. A time-dependent effect is also apparent within the results 

as the cell viability for the 48 hour exposure is lower than that of the 24 hour. Moreover, a slight 

increase in “cell viability” can be noted for the highest AgNP concentration at 50 μg/mL.  

The equations were used to calculate IC10, IC20 and IC50 values for cell cycle and metabolomics studies, 24 hour durations 
24 hour durations only. The calculated values are listed in  

Table 6 along with the actual tested values. The actual tested values for the GS AgNPs were adjusted 

to reflect the decrease in viability based on the averages, as shown on the graphs, rather than the 

sigmoidal equations. 
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Table 6: Summary of Calculated Inhibition Concentrations for GS AgNPs. 

IC10 (μg/mL) IC20 (μg/mL) IC50 (μg/mL) 

Calculated Tested Calculated Tested Calculated Tested 

11.7072 5.00 13.0838 10.0 15.4932 15.0 

 

V.1.1.2 EGB Extract Control Study 

As the AgNPs would be coated with the components of the EGB extract, its potential toxicity was 

assessed through a series of dilutions with cell culture media for 24 and 48 hour exposures. The cell 

viability as a function of the dilution factor is shown in Figure 37. The results indicate that the 

autoclaved EGB extract has little to no toxicity for the 24 hour exposure time, dipping to approximately 

60% at the lowest dilution of 1/10 (0.1 on the figure). The toxicity does indeed increase for the longer 

exposure time of 48 hours, with the viability of the same dilution factor falling to approximately 30%.  

  

Figure 37: Cell Viability upon 24 and 48 hour Exposure to Various Dilutions of EGB Extract and Respective Sigmoidal Logistic 
Fits; where "a"  indicates a significant difference as compared to the 24h control, and "b"  indicates a significant difference 
as compared to the 48h control (p<0.05). 

In order to put the extract cytotoxicity into context, the equivalent dilution factors to which the cells 

would be exposed with the AgNPs were calculated. The synthesis process included a number of 

dilution factors: with silver nitrate at a 1/4 dilution; during the washing at a 1/15 dilution, consisting 

of approximately 10 mL of AgNPs and 40 mL of water per wash, performed three times; and finally, 

the dilution in cell culture media according to the selected exposure concentrations. The AgNP 

concentrations in cell culture media and the corresponding extract dilution factors are given in Table 

7.  
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Table 7: Equivalent Dilution of EGB Extract during AgNP Exposure 

Concentration of Silver Final Dilution Factor of Extract 

100 1/1000 
50 3/10 000 
25 2/10 000 
20 2/10 000 

17.5 1/10 000 
15 1/10 000 

12.5 9/100 000 
10 7/100 000 
7.5 5/100 000 
5 3/100 000 

 

The highest dilution factor in the MTT Assay is 1/200, and shows a 1% decrease in cell viability; 

whereas even with the highest concentration of AgNPs, the associated amount of extract is equivalent 

to a 1/1000 dilution, suggesting a residual contribution to the toxicity. 

V.1.1.3 AgNP Interference Control Study 

As discussed in Chapter 1, some assays are prone to interference from nanoparticles. This was checked 

by performing five independent MTT assays without any cells, using only the GS AgNPs over a range 

of concentrations and the assay reagents. Figure 38 shows the averaged absolute absorbance values 

from these assays, as well as a typical curve from an assay with cells, while the inset shows only the 

no-cell absorbance curves. From the inset, the results show no increase in absorbance for 

concentrations below 17.5 μg/mL; from 25 μg/mL to 100 μg/mL there is a slight but steady increase, 

with a final difference of 0.03 as compared to the control. Statistical analysis on these numbers did 

not yield any significant difference. Moreover, these differences seem almost insignificant when put 

into the context of assays with cells. Nevertheless the increase in absorbance at the higher 

concentrations, above 50 μg/mL, is noticeable in assays with and without cells. 

 

Figure 38: Absolute Absorbance at 570 nm of an MTT Assay performed without cells using the Green Synthesis AgNPs; 
Statistical analysis failed in finding a significant difference between any of the values.  
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V.1.2 MORPHOLOGY 
HaCaT cells, under normal conditions, are adhering cells of triangular shape that grow into a 

monolayer. With a light microscope at 10X magnification, the nucleus can be distinguished as the 

relatively spherical grey outline at the center of each cell, with the smaller darker shapes being various 

cell organelles. Once seeded, the cells start to grow in colonies that eventually reach each other; the 

flask or plate is considered fully confluent when the entire surface is covered with cells (Figure 39).  

  

Figure 39: Left, A confluent surface of HaCaT cells at 10X magnification; Right, A colonoy of HaCaT cells at 40X 
magnification. 

The cells were exposed to three concentrations of GS AgNPs; 5 μg/mL, 10 μg/mL and 15 μg/mL. After 

24 hours of incubation, the cells exposed to 5 μg/mL were indifferentiable from the control, however, 

those exposed to 10 μg/mL showed a lower confluence, suggesting slower proliferation. The cells 

exposed to 15 μg/mL no longer had intact cell membranes; instead, there were a number of circular 

outlines around and overlapping the cells (Figure 40). Moreover, the cell organelles, as well as a 

number of round floating cells, could be seen suspended throughout the media. Together, these signs 

confirm cell death, with the spherical outlines suggesting apoptosis, or programmed cell death. The 

number of cells per colony was close to the cell density upon exposure, suggesting that the cell cycle 

was arrested and that they died shortly afterwards. 

 

Figure 40: Cell morphology after 24 hours of exposure to GS AgNPs at 10X magnification; A) Control; B) 5 μg/mL; C) 10 
μg/mL; D) 15 μg/mL; Inset at 40X magnification. 
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After 48 hours of exposure, the 5 μg/mL wells were approximately 10 to 15% less confluent than the 

controls, while the 10 μg/mL wells showed 30 to 40% less confluence, with little or no signs of cell 

death. This may indicate that while this concentration slows down or stops the regular cell cycle, it 

does not cause cell death. The 15 μg/mL wells looked just as they had at the 24 hour mark, with all 

the cells being dead. 

V.1.3 CELL CYCLE ANALYSIS 
Approximately three months after their synthesis, the Green Synthesis AgNPs were used to conduct 

cell cycle analysis. Three concentrations of 5, 10 and 15 μg/mL were tested against the controls, for 

both a 24 and 48 hour duration. The number of counted nuclei was plotted against the intensity of 

fluorescence detected in channel 3 (FL3) as shown in Figure 41 and Figure 42; where the intensity of 

fluorescence is proportional to the amount of PI bound to the DNA. The boundaries of the peaks were 

set using the FlowJo software to distinguish nuclei in the G0/G1, S, and G2/M phases, as shown by the 

green, beige, and blue colours, respectively; the area under each curve was then calculated. The ratio 

of these areas were determined and plotted in Figure 43. Although a concentration of 15 μg/mL was 

also tested, the results were omitted as there was not a sufficient number of cells for significant 

detection by the flow cytometer.  

 

Figure 41: The number of counted nuclei with respect to the intensity of fluorescence detected in channel 3 (FL3) for the 24 
hour exposure of HaCaT cells to 0, 5, and 10 μg/mL of Green Synthesis AgNPs. 

 

Figure 42: The number of counted nuclei with respect to the intensity of fluorescence detected in channel 3 (FL3) for the 48 
hour exposure of HaCaT cells to 0, 5, and 10 μg/mL of Green Synthesis AgNPs. 
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Figure 43: Percent of cells in each phase of the cell cycle upon exposure to GS AgNPs for 24h (Left) and 48h (Right); where “a” 
and “b” indicate a significant difference as compared to the control sample in that phase, and where “a” is significantly 
different from “b” as assessed by one way ANOVA. 

An asynchronous culture of cells will have a random number of nuclei in each cell cycle phase. In this 

case, at the end of the 24 hours, the control population had almost an equal number of nuclei in the 

G0/G1 and S phases, with the G2/M phase at almost half of those values (Figure 43), indicating that the 

cells are actively proliferating. However, the G0/G1 population decreases incrementally for both of the 

exposure concentrations, while the S phase population increases. The number of cells in G2/M phase 

remains at a relatively constant percentage, though slightly less for the 10 μg/mL concentration. The 

increase in S phase suggests cell cycle delay at the S-phase and the decrease in G2/M phase confirms 

this. This in turn shows that that cells are attempting to repair damaged or miscopied DNA. 

After 48 hours, the control cells are once again, equally divided between the G0/G1 and S phases; 

however, the population in G2/M phase is now barely more than a quarter of the others. A decrease 

in G0/G1 phase is evident as the exposure concentration increases, though contrary to the 24 hour 

duration, it is the population in G2/M phase that increases incrementally, rather than the S. On the 

other hand, the 24 and 48 hour G2/M percentage values for the 5 and 10 μg/mL concentrations have 

opposite changes; the 5 μg/mL changes from 21.0% to 17.5%, whereas the 10 μg/mL changes from 

17.1% to 20.2%. The decrease of the population in G2/M phase for 5 μg/mL is in line with the change 

in controls, suggesting that the cells were able to move past the G2 checkpoint, divide, and are now 

part of the G0/G1 phase. The increase in G2/M phase for the 10 μg/mL, coupled with the decrease in 

the S phase, would suggest that the cells that were previously held at the S-phase checkpoint were 

able to pass, and are now held at the G2 checkpoint, indicating cell cycle arrest. Furthermore, a 

possible implication of the altered arrest checkpoint is that the cells were successful in making the 

repairs, suggesting that cell recovery is possible.  

V.2 EXPOSURE TO PLAL AgNPS 

V.2.1 CELL VIABILITY 
The PLAL AgNP, coming from a stock solution of lower concentration, could only be tested up to a 

concentration of 10 μg/mL; this is because the maximum dilution of media tolerated by the cells is 

approximately 10%. Moreover, a smaller amount of this stock further lead to limitations in terms of 

the type of studies that could be employed. On the other hand, the particles were tested with the 
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original citrate coating, as well as an ubiquitin coating. Similar to the case for GS AgNPs above, a 

coating toxicity control was also performed, where HaCaT cells were exposed to ubiquitin only. 

V.2.1.1 Exposure of HaCaT Cells to PLAL AgNPs 

Cell viability was assessed using the MTT assay, as before. Figure 44 and Figure 45 show the resulting 

cell viabilities for the 24 and 48 hour exposures respectively. Considering the low concentrations 

tested, a significant decrease in cell viability can be seen for all tested concentrations at 24 hours, 

including the lowest at 2.5 μg/mL (Figure 44). Furthermore, the shape of the logistic curve fit and 

respective equations, namely the b value, are very different from those of the Green Synthesis AgNPs, 

having a gradual decrease in viability as oppose to a drop. The precision of the three independent 

assays is notable, especially considering that they were conducted in a two week period, completely 

independent of time. Moreover, there is no statistical significance between the particles coated with 

and without ubiquitin.  

 

Figure 44: Cell Viability upon 24 Hour Exposure to PLAL AgNP and the Respective Sigmoidal Logistic Curve Fits; where “a” 
indicates a significant difference as compared to the AgNP control, and “b” indicates a significant difference as compared to 
the AgNP+Ubq Control (p<0.05) 

For 24 hour exposure to PLAL AgNPs:  

𝑦 = 100.2524 ∗ (
|

𝑥
24.1934|

|0.7103|

1 + |
𝑥

24.1934|
|0.7103|

) 

For 24 hour exposure to PLAL AgNPs coated with Ubiquitin: 

𝑦 = 103.2493 ∗ (
|

𝑥
16.5899|

|0.9010|

1 + |
𝑥

16.5899|
|0.9010|

) 

The 48 hour exposure to PLAL AgNPs showed similar results in terms of curve shape and statistical 

significance (Figure 45). However, the toxicity does not seem to be dependent on time for the 
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decrease in viability is minutely different between the 24  and 48 hour exposures. This is reflected in 

the equations, where the xo values are greater for the 48 hour exposure than the 24 hour. In fact, the 

regression curves calculated seem more linear than sigmoidal. 

 

Figure 45: Cell Viability upon 48 hour Exposure to PLAL AgNP and the Respective Sigmoidal Logistic Curve Fits; where "a" 
indicates a significant variation as compared to the AgNP control, and "b" indicates a significant variance as compared to the 
AgNP+Ubq Control 

For 48 hour exposure to PLAL AgNPs: 

𝑦 = 100.0516 ∗ (
|

𝑥
29.8978|

|0.5446|

1 + |
𝑥

29.8978|
|0.5446|

) 

For 48 hour exposure to PLAL AgNPs coated with ubiquitin: 

𝑦 = 85.8139 ∗ (
|

𝑥
17.7664|

|1.2146|

1 + |
𝑥

17.7664|
|1.2146|

) 

The calculated values based on the above equations are listed in Table 8 along with the actual tested 

values. For the PLAL AgNPs, the actual tested values were based on the AgNPs without the ubiquitin 

coating, in order to minimize the number of altered parameters.  

Table 8: Summary of Inhibition Concentration Values for PLAL AgNPs. 

 IC10 (μg/mL) IC20 (μg/mL) IC50 (μg/mL) 

Calculated Actual Calculated Actual Calculated Actual 

PLAL AgNPs 1.0928 1.09 3.4210 3.42 24.1934 N/A 
PLAL AgNPs+Ubq 1.3920 1.09 3.4075 3.42 16.5899 N/A 
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V.2.1.2 Ubiquitin Control Study 

Similarly, as a portion of the PLAL particles was coated in ubiquitin, an MTT Assay of this protein was 

also carried out. The stock solution of 500 μM ubiquitin in citric acid underwent a similar dilution series 

as that of the extract; the results shown below include the conversion from μM to μg/mL (Figure 46). 

 

Figure 46: Cell Viability upon 24 hour exposure to various concentrations of ubiquitin; where "a"  indicates a significant 
variation as compared to the control using the Holms-Sidak Method (p<0.05).  

Here the ubiquitin shows little to no toxicity, with the loss of cell viability at the highest concentration 

possibly being attributed to the decrease in cell culture media. In fact, at the lower concentrations, an 

increase in cell viability can be observed. Similar to the extract control, an equivalent concentration of 

ubiquitin during exposure with AgNPs was calculated. The final concentrations of ubiquitin with AgNPs 

ranged between 0.12 to 1.0 μg/mL; since the variance between the control and the lowest 

concentration of 20 μg/mL is not significant, neither an increase nor a decrease in viability due to the 

ubiquitin coating of particles can be concluded.  

V.3 DISCUSSION 

The AgNPs synthesized via two green synthesis techniques, one chemical and one physical, were 

characterized in terms of their cytotoxicity to the HaCaT cell line. Two qualitative and two quantitative 

methods were chosen; namely the study of morphology and uptake, as well as the MTT cell viability 

assay and cell cycle analysis. In addition, three control studies were conducted; two to determine the 

toxicity of the respective coatings, and the last to check for the interference of AgNPs with the MTT 

assay reagents.  

Neither of the coatings revealed an inherent toxicity, except at low dilutions. However, this can also 

be attributed to the 10% decrease in cell culture media; in other words for low dilution factors, each 

cell receives less nutrients. The increase in cell viability upon exposure to ubiquitin would correlate 

with recent studies that have shown the modulation of immune response and inflammation via 

extracellular ubiquitin [276, 277]. If true, it would suggest that the coating of particles with ubiquitin 

would in fact lower their effective toxicity. However, this was not reflected when the particles were 

coated in ubiquitin, as there was no significant difference between any of the tested PLAL AgNP 
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concentrations with their ubiquitin-coated counterparts. At the same time, the concentration of 

ubiquitin coating the tested AgNPs was much lower than the concentration that caused the increase 

in viability. A more appropriate dilution range must be tested in order to derive an exact response.  

The precedent of nanoparticle interference with toxicity assays, as discussed in Chapter 1, prompted 

a control study on whether the AgNPs used for this project would cause a similar interference with 

the assay reagents. AgNPs have been shown to interfere with the LDH assay [94], as well as more 

recently the MTS, a viability assay that works similar to the MTT [278]. Moreover, a study comparing 

three different viability assays using a similar type of control, found that unwashed and carbon-coated 

AgNPs induced a statistically significant increase in absorbance with the MTT assay reagents [192]. 

Previous studies in our workgroup had shown that PVP coated AgNPs caused an increase in absorption 

for the MTT, whereas neither citrate nor PEG coated particles did so [274]. Nevertheless, the MTT 

continues to be the standard for testing cell viability in literature, though the tendency to confirm the 

results with other assays has become common [71, 196, 192, 222]. Thus, while our investigation used 

the MTT assay as the sole method of determining viability, the respective interference study was 

performed.  

The results showed the interference to be negligible at low concentrations, and minimal at even the 

highest tested concentration. The MTT assays with cells did in fact show an increase in viability at the 

higher concentrations. The maximum interference detected increased the absorption by 

approximately 0.03; while it may be visually noticeable as compared to the 0.2 absorption for a well 

of dead cells, it is almost insignificant as compared to the control wells that retain absorptions of 1.5. 

The results from this control help explain the increase in signal at high concentrations, where the cells 

are known to be dead. At the same time, they also show that interference at low concentrations is 

minimal and that the MTT can be used as a viability assay with AgNPs. 

The viability assays revealed an IC50 value of 15.49 and 14.21 μg/mL for the GS AgNPs at 24 and 48 

hour exposures respectively; while the PLAL AgNPs showed 24.19 and 29.89 μg/mL for 24 and 48 hour 

exposures, and the PLAL AgNPs with ubiquitin coating showed 16.59 and 17.76 μg/mL, respectively. 

Based on the IC50s, the GS AgNPs cause the highest decrease in viability. However, the values from the 

latter type of synthesis cannot be considered reliable as they are extrapolated outside of the tested 

concentration range.  

The overwhelming death response induced by the IC50 dose for the morphology and cell cycle studies 

suggests a discrepancy, or rather a missing factor, that has not been accounted for. In both cases, 

exposure to the 50% inhibitory concentration caused a greater death response than expected. This 

discrepancy may be attributed to a number of factors; the steepness of the linear region of the 

sigmoidal curve; the effects of AgNP storage conditions; and the change in dose per cell.  

The steepness of the curve means that even the smallest change in concentration would create a 

drastic change in cell viability. Regarding storage conditions, other studies have shown that the 

dissolution of AgNPs is greatly affected by temperature and time [136, 137]. Unlike the PLAL AgNPs, 

the GS particles were stored in the dark but under ambient condition. The AgNPs become smaller as 

they dissolve by releasing more and more silver ions, increasing the toxicity in two ways; an increased 

concentration of silver ions, and smaller particles [192, 136, 224, 196, 198]. This in turn means that 

over time the same batch of AgNPs, for which a particular IC50 had been calculated, becomes more 

toxic with an actual IC50 that is potentially much lower.  

Furthermore, the dose per cell value must also be taken into consideration. The IC50 is calculated based 

on the MTT test, performed in 96-well plates, at a cell density of 6 000 seeded cells per well, whereas 
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the morphology and cell cycle assays are performed in 6-well plates, at a density of 100 000 seeded 

cells per well. In order for the IC50 to be an equivalent dose to those cells, they must be equally 

confluent at the time of exposure. However, this was not the case as observed by visual inspection, 

with the larger wells being less confluent 24 hours after seeding. This means that those cells received 

a higher concentration of AgNPs per cell, leading to their death in greater numbers than expected. 

Thus, higher inherent toxicity, due to storage conditions, and the lower number of cells, due to the 

seeding density, are enhanced by the steepness of the curve, ultimately resulting in the drastic effect 

observed.  

This is in part reflected by the changes in morphology and cell cycle. Observation of the cells after 24 

hours indicated extensive cell death, likely as apoptosis, for cells exposed to the IC50, while those 

exposed to the IC20 only a showed a slower proliferation, even after 48 hours. This was further 

confirmed by cell cycle analysis where the IC50 samples did not contain enough cells, and the IC10 and 

IC20 samples showed first a delay in S phase, then arrest at the G2/M phase, in a dose dependent 

manner. Other studies with AgNPs have also shown cell cycle arrest at the S [198] and G2 phases [200, 

197, 71, 205].   

Although the IC50 value derived for the PLAL AgNPs may not have been reliable, the smaller error bars 

and the resulting statistical significance as verified by the ANOVA test, suggest that they are more 

uniform in nature and more stable through time as compared to the GS AgNPs; especially considering 

that the PLAL assays were conducted throughout a two week period and the GS assays within hours 

of each other. This is further confirmed by the lack of correlation between cell viability and exposure 

time; which also indicates particle stability. In contrast, the variable results from the GS AgNPs would 

suggest a lack of uniformity and stability through time, similarly reported by the physico-chemical 

characterization (Chapter 4). The GS AgNPs showed an evolution in morphology, size, and size 

distribution with the passage of time, reflected here in cytotoxicity studies as variability within the 

same assays. This too, can be attributed to storage conditions and the excessive release of silver ions 

[136, 137, 279, 224].  

The different viability profiles and inhibition concentrations are usually due to the differences in 

average particle size, size distribution, and surface coating. While both silver ions and AgNPs may 

damage the cell membrane from the outside, it has been shown that their uptake into the cells, either 

via endocytosis or diffusion, can have far more devastating effects [196, 225]. The acidic environment 

of lysosomes has been suggested as the site where the particles are degraded into ions, thus becoming 

more available to create ROS, or to damage DNA and other organelles directly [225]. Here the smaller 

particles, PLAL AgNPs, induced a more uniform, almost linear, response. Whereas the larger particles, 

GS AgNPs, showed a steep drop in cell viability. This difference can be attributed to the uptake 

dynamics of each type of particle, as well as the ion release kinetics in solution and within the cell. 

However, without further testing of ionic silver concentrations, localization of particles upon uptake, 

and more systematic controls, a definite conclusion as to how each particle induces toxicity cannot be 

derived.  

Surface coating of NPs is another important factor in determining cellular response. Previous studies 

performed at our workgroup showed an IC50 value of approximately 40 μg/mL for citrate coated 

particles and over 50 μg/mL for PEG coated particles [274]. Other studies in literature have also shown 

the importance of AgNP coating, with citrate coatings reported as having higher toxicity compared to 

other coatings, namely PVP and L-Lactose. The difference in toxicity stemming from differences in 

coating can be attributed to two phenomenon: the particles’ uptake due to different interactions with 

the cell membrane; as well as the hindrance or enhancement of silver ion release, modulated by the 

steric nature of the coating molecules [280].  
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The toxicity seen for the GS AgNPs may be due to the nature of the saccharide coating. As the capping 

molecules are small, they provide low steric interaction and may readily detach, therefore allowing 

higher dissolution rates of silver ions, and thus higher toxicities. A comparison cannot be made to the 

PLAL particles, for not only does the coating change to citrate, but the size and size distribution are 

also different. Therefore, without controlling for one parameter or the other, it is not possible to 

attribute the difference in toxicity to a specific characteristic. Moreover the toxicity of PLAL citrate 

coated AgNPs cannot be compared to previous studies of the workgroup until higher concentrations 

are tested and a reliable IC50 is established.
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Chapter VI:  Metabolomics 
To further assess toxicity by understanding the alterations in cellular biochemical processes, an NMR-

based metabolomics approach was taken. A series of 24 hour assays were conducted comparing 

controls to a low exposure concentration (IC10), and a higher exposure concentration (IC20 or IC50). 

Each sample was subject to a dual-phase extraction to collect aqueous and organic phases. The results 

of the aqueous phase for the Green Synthesis AgNPs (GS or GAg) and the PLAL AgNPs (PAg) are given 

in the following section.  

VI.1 PEAK ASSIGNMENTS 

The averaged 1H NMR spectrum of four aqueous extract obtained from HaCaT cells is shown in Figure 

47. Due to the similarity in cell line, composition of particles, and methodology, the spectral peak 

assignment previously performed by our work group was confirmed on a peak-by-peak basis and 

subsequently used. Moreover a visual comparison of spectra from the two studies confirmed that 

there were no significant peaks outside those already assigned. Table 9 shows the compound names 

and the assigned peak positions.  

 

Figure 47: Averaged 1H NMR Spectrum of control aqueous extracts with some peak assignments indicated. 

Table 9: Assignment of resonances in the NMR profile of HaCaT cells’ aqueous extract (s, singlet; d, doublet; t, triplet; m, 
multiplet; dd, doublet of doublets); adapted with permission from [237]. 

No. Compound δ 1H in ppm (multiplicity, assignment) / δ 13C in ppm 

1 Acetate 1.92 (s, β-CH3)/26.0 

2 ADP 
4.22 (m, C5’H, ribose); 4.38 (m, C4’H, ribose); 4.61 (m, C2’H, ribose); 6.15 (d, C1’H, 

ribose)/89.4; 8.28 (s, C8, ring); 8.54 (s, C2, ring) 

3 Alanine 1.49 (d, β-CH3)/18.9; 3.78 (q, α-CH) 
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4 Aspartate 2.69 (dd, β-CH); 2.82 (dd, β’-CH); 3.90 (dd, α-CH) 

5 ATP 
4.22 (m, C5’H, ribose); 4.29 (m, C5’’H, ribose); 4.41 (m, C4’H, ribose); 4.62 (m, C2’H, 

ribose); 6.15 (d, C1’H, ribose)/89.4; 8.28 (s, C2, ring); 8.55 (s, NH, ring) 

6 Choline 3.21 (s, N(CH3)3); 3.53 (CH2)NH)); 4.07 (m, CH2(OH)) 

7 Creatine 3.04 (s, CH3)/39.6; 3.93 (s, CH2)/56.6 

8 Formate 8.46 (s, CH) 

9 Fumerate 6.52 (s, CH) 

10 α-Glucose 
3.40 (m, C4H)/72.3; 3.55 (dd, C2H)/74.0; 3.71 (m, C3H)/75.5; 3.83 (m, C6H)/63.2; 3.85 

(m, C5H)/74.2; 5.24 (d, C1H)/94.8 

11 β-Glucose 
3.26 (dd, C2H)/76.8; 3.41 (m, C4H)/72.3; 3.47 (m, C5H)/78.6; 3.49 (t, C3H)/78.4; 3.74 
(m, C6H)/63.4; 3.90 (dd C6’H)/63.4; 4.66 (d, C1H)/98.6 

12 Glutamate 2.06 (m, β-CH)/29.7; 2.13 (m, β’-CH)/29.7; 2.35 (m, γ-CH2)/36.2 

13 Glutamine 2.14 (m, β-CH2)/29.6; 2.45 (m, γ-CH2)/33.7 

14 
Glutathione Reduced 
(GSH) 

2.17 (m, β-CH2, Glu)/29.1; 2.56 (m, α-CH2, Cys)/34.2; 2.96 (m, α-CH2, Gly)/28.4; 3.78 (α-

CH)/46.1, 56.8; 4.57 (m, β-CH2)/58.5; 8.37 (NH, Gly); 8.56 (NH, Cys) 

15 
Glycerophosphocholine 
(GPC) 

3.235 (s, N(CH3)3)/56.6; 3.68 (β'-CH2(N))/68.6; 4.33 (m, α'-CH2(P))/62.2 

 Glycine 3.57 (s, α-CH2)/ 44.2 

16 3-Hydroxybuterate 
1.20 (d, γ-CH3); 2.30 (dd, CH2); 2.42 (dd, CH2); 4.16 (m, 

CH) 

17 Isoleucine 
0.94 (t, δ-CH3)/ 13.8; 1.01 (d, β'-CH3)/17.4; 1.26 (m, γ-CH2)/27.2; 1.48 (m, γ’-

CH2)/27.2; 1.98 (m, β-CH)/38.7; 3.68 (d, α-CH)/62.0 

18 Lactate 1.33 (d, β-CH3)/22.8; 4.12 (q, α-CH)/71.3 

19 Leucine 
0.96 (d, δ-CH3)/23.7; 0.97 (d, δ'-CH3)/24.9; 1.70 (m, γ-CH)/27.0; 1.72 (m, β-CH2)/42.4; 

3.74 (t, α-CH) 

20 Myo-inositol 3.29 (t, C5H)/77.1; 3.54 (C1H, C3H)/73.8; 3.63 (dd, C4H, C6H)/75.2; 4.07 (t, C2H)/74.9 

21 NAD+ 

4.23 (m, A5’); 4.36 (m, A4’); 4.39 (m, A4’/N5’); 4.42 

(dd, N3’); 4.50 (m, A3’); 4.54 (m, N2’); 6.04 (d, N1’); 

6.10 (d, A1’); 8.18 (s, A2); 8.19 (N5); 8.43 (s, A8); 8.83 
(d, N4); 9.14 (d, N6); 9.34 (s, N2) 

22 Phenylalanine 
3.14 (m, β-CH); 3.27 (dd, β'-CH); 4.00 (m, α-CH); 7.33 (d, C2H, C6H, ring)/131.9; 7.39 

(d, C4H, ring); 7.43 (t, C3H, C5H, ring)/131.7 

23 Phosphocholine (PC) 3.226 (s, N(CH3)3)/56.6; 3.62 (m, N-CH2)/69.3; 4.17 (m, PO3-CH2)/60.7 

24 Phosphocreatine (PCr) 3.05 (s, CH3); 3.95 (s, CH2)/63.2 

25 Succinate 2.41 (s, CH2) 

26 Threonine 1.34 (d, γ-CH3)/22; 3.59 (d, α-CH)/63.1; 4.26 (m, β-CH)/68 

27 Tyrosine 
3.07 (m, β'-CH); 3.21 (m, β-CH); 3.96 (m, α-CH); 6.91 (d, C3H, C5H, ring)/118.6; 7.20 

(d, C2H, C6H, ring)/133.6 

28 UDP 
4.23 (m, C5’H, ribose); 4.27 (m, C4’H, ribose); 4.40 (t, 
C2’H, ribose); 4.44 (t, C3’H, ribose); 5.97 (s, C1’H, 

ribose); 5.98 (d, C6, ring); 8.00 (d, C5, ring) 

29 UTP 
4.26 (m, C5’H, ribose); 4.30 (m, C4’H, ribose); 4.42 (t, 
C2’H, ribose); 4.45 (t, C3’H, ribose); 5.97 (s, C1’H, 

ribose); 5.99 (d, C6, ring); 7.98 (d, C5, ring) 

30 Valine 
0.99 (d, γ-CH3)/ 19.5; 1.05 (d, γ'-CH3)/20.7; 2.28 (m, β-CH)/31.7; 3.62 (d, α-

CH)/63.0 

 

VI.2  METABOLIC EFFECTS OF GREEN SYNTHESIS AgNPS 

The spectra from different groups (control and exposed) were initially compared using Amix-Viewer 

software. Visual inspection suggested a dose dependent pattern of changes. This was explored further 

using multivariate analysis (MVA) and the results are discussed in the following section.  

The data were first analysed using the unsupervised PCA method in order to uncover any outliers and 

inherent trends in sample grouping. The initial PCA score plot of the three sample classes, control, IC10 

and IC50, shows a clear separation of the IC50 samples (Figure 48). Moreover, the Controls and the IC10s 

appear in distinct clusters, though close together, indicating their similarity, while the IC50s have looser 

grouping tendencies.  
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Figure 48: PC1 vs PC2 scores scatter plot obtained by PCA of 1H NMR spectra from aqueous extracts of control cells and cells 
exposed to GS AgNPs at IC10 and IC50 concentrations. 

Table 10: Summary of MVA parameters.  

Model PCA PLS-DA 

Fit R2X R2X R2Y Q2 

GAg CT v Exposed 0.766 0.758 0.996 0.96 

GAg CT v IC10 0.625 0.562 1 0.943 

GAg CT v IC50 0.83 0.805 0.994 0.935 

GAg IC10 v IC50 0.835 0.809 0.995 0.939 

 

PLS-DA was then applied to each pair of groups, to maximize class separation and further interpret 

the variables accounting for that separation. The resulting R2 and Q2 values, indicating respectively the 

explained variance and predictive power, are shown in Table 10. The IC50s also show a spread in this 

model, though here they separate along the axis of LV2, suggesting that there is another factor that 

distinguishes them.  

 

Figure 49: LV1 vs LV2 scores scatter plot obtained by PLS-DA of 1H NMR spectra from aqueous extracts of control cells and 
cells exposed to GS AgNPs; Left, Control versus IC10 Samples; Right, Control versus IC50 Samples.  
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The PLS-DA LV1 loadings were then used to create plots that show the spectra in terms of the weight 

and variable importance (VIP) of those loadings. In practical terms, the variables, or peaks, most 

responsible for the separation along the LV1 axis have “hotter” colours in the loading plots, allowing 

for the identification of compounds that cause these variations (Figure 50 and Figure 51). The results 

show some dose dependent changes, such as the decrease in lactate, glycine, creatine, 

phosphocreatine (PCr), phosphocholine (PC) and glycerophosphocholine (GPC), which are more 

pronounced at the higher dose than the lower. However, there are also some dose specific alterations; 

for example the IC10 samples show an increase in GSH, whereas the IC50s show a decrease. The IC50s 

additionally show an increase in succinate, formate, phenylalanine, isoleucine and valine.  

 

Figure 50: LV1 Loadings coloured as a function of Variable Importance in Projection (VIP) for Pareto scaled PLS-DA model of 
controls and cells treated with the IC10 dose of GS AgNPs. 

 

Figure 51: LV1 Loadings coloured as a function of Variable Importance in Projection (VIP) for Pareto scaled PLS-DA model of 
controls and cells treated with the IC50 dose of GS AgNPs. 
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Peaks that showed a greater VIP, as well as those chosen based on earlier visual inspection, were also 

subject to univariate analysis. The integrated peaks were averaged, and their standard deviation, 

percent variation compared to control, corresponding error and effect size were calculated and are 

tabulated below (Table 11). The results for these metabolites are also graphically presented in Figure 

52. The highest effect size for the IC10 dose are GSH, PC, GPC, glutamine, and glycine, all with 

corresponding significant differences. For the IC50 dose, the highest effect sizes are seen for PCr, 

creatine, m-inositol, PC, and glutamate, also with statistical significance. It is interesting to note that 

the metabolites with the highest variation percent values, i.e. acetate, succinate, and formate, while 

statistically significant, did not have correspondingly high effect size values.  

Table 11: Percent Variation and Effect Size of Selected Metabolites in the Aqueous Extracts of HaCaT Cells Exposed to Green 
Synthesis AgNPs. 

Compound 
IC10 IC50 

%Variation of 
Control 

Effect Size 
% Variation of 

Control 
Effect Size 

Acetate 7.95 ± 6.958 0.68 ± 0.638 371.61 ± 18.41 4.34 ± 1.248 

ADP - - -77.6 ± 13.641 -5.72 ± 1.555 

Alanine -11.29 ± 5.103 -1.44 ± 0.713 -18.33 ± 8.677 -1.43 ± 0.711 

Aspartate -25.26 ± 4.538 -3.92 ± 1.156 -50.15 ± 9.641 -4.27 ± 1.232 

ATP -10.82 ± 6.038 -1.16 ± 0.68 -74.88 ± 18.917 -3.89 ± 1.151 

Creatine -32.69 ± 5.306 -4.53 ± 1.288 -78.19 ± 7.505 -10.52 ± 2.7 

Formate 6.67 ± 5.551 0.71 ± 0.64 391.54 ± 21.687 3.75 ± 1.122 

Glucose -13.72 ± 12.904 -0.7 ± 0.639 49.79 ± 15.128 1.62 ± 0.736 

Glutamate -12.24 ± 2.268 -3.53 ± 1.077 -50.6 ± 5.999 -6.94 ± 1.842 

Glutamine -14.83 ± 1.962 -5.02 ± 1.398 -31.88 ± 5.79 -4.03 ± 1.18 

GPC -20.09 ± 2.634 -5.21 ± 1.441 -62.56 ± 11.631 -3.62 ± 1.093 

Glycine -30.47 ± 4.802 -4.6 ± 1.305 -62.04 ± 15.296 -4.81 ± 1.351 

GSH1 78.44 ± 2.76 12.55 ± 3.198 -62.39 ± 15.51 -3.59 ± 1.089 

GSH2 85.66 ± 2.682 13.75 ± 3.493 -81.51 ± 20.296 -4.17 ± 1.21 

Isoleucine - - -21.75 ± 7.861 -1.91 ± 0.778 

Lactate -3.5 ± 2.667 -0.82 ± 0.648 - - 

Leucine - - -23.06 ± 7.663 -2.09 ± 0.807 

m-inositol -19.38 ± 4.266 -3.09 ± 0.988 -67.69 ± 7.154 -8.79 ± 2.283 

Phosphocholine -25.21 ± 3.283 -5.4 ± 1.484 -78.61 ± 11.36 -7.01 ± 1.857 

Phosphocreatine -34.02 ± 5.962 -4.23 ± 1.223 -87.12 ± 7.208 -13.17 ± 3.349 

Succinate - - 194.41 ± 15.19 3.99 ± 1.172 

Threonine - - -62.52 ± 10.486 -5.33 ± 1.468 

Tyrosine - - -48.43 ± 8.818 -4.46 ± 1.272 

Valine - - -20.69 ± 6.854 -2.07 ± 0.804 
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Figure 52: Average Percent variation of metabolites in Green Synthesis AgNP-exposed samples as compared to their controls. 
Error bars show the standard error; significance was calculated based on the Student’s t-test: * indicates p<0.05 and ** 
indicates p<0.001. 

VI.3  METABOLIC EFFECTS OF PLAL AgNPS 

The initial PCA for the PLAL AgNPs included the controls, ubiquitin controls, IC10 with and without 

ubiquitin, and IC20 with and without ubiquitin. It is recalled that IC20 was the maximum dose tested 

due to the quantity of AgNPs available, and the low concentration of the initial stock solution. The 

results showed a clear separation between IC20 samples and the other groups (Figure 53); with a slight 

overlap between the IC10 and controls and almost a complete overlap between the control samples 

and those exposed only to ubiquitin. It is also interesting to note that there is no consistent separation 

between samples exposed to AgNPs coated in ubiquitin (shown with lighter markers on the score plot) 

and their bare counterparts. In fact, the IC10 samples coated in ubiquitin have the most separation 

within their group, and the IC20 samples with ubiquitin are both within the cluster of their class.  

** **
* ** ** **

** **

* ** **

*

** * * **

*

** *
* * * *

* *
** ** **

*

* *
*

-200

-100

0

100

200

300

400

500

P
e

rc
e

n
t 

V
ar

ia
ti

o
n

GS AgNP-Induced Variations 

IC10

IC50



Chapter VI: Metabolomics 

79 | P a g e  
 

 

Figure 53: PC1 vs PC2 scores scatter plot obtained by PCA of 1H NMR spectra from aqueous extracts of control cells and cells 
exposed to PLAL AgNPs at IC10 and IC50 concentrations. 

Each of the group pairings was then analysed using PLS-DA; pairings that provided a low R2 and Q2 

values, redundant information, that were found to have too little variation, or that were not 

sufficiently separated on the score plot were excluded from further analysis. As the controls and the 

ubiquitin controls show little to no variation, they are hereon grouped together for proceeding 

analyses. Similarly, a lack of distinction between the particles coated with and without ubiquitin also 

lead to their combination. Figure 54 shows the PLS-DA score plots that provide the most relevant 

information for the PLAL AgNPs. Table 12 provides a summary of the resulting fit for the corresponding 

models. 

Table 12: Summary of MVA Parameters for PLAL AgNPs. 

Model PCA PLS-DA 

Fit R2X R2X R2Y Q2 

PAg CT v Exposed 0.46 0.412 0.911 0.629 

PAg 10+U v 20+U 0.589 0.587 0.999 0.97 

PAg CT+U v 10+U 0.436 0.366 0.977 0.422 

PAg CT+U v 20+U 0.504 0.496 0.994 0.963 

 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
C

2
 (

1
7

.2
%

)

PC1 (28.9%)

PCA of PLAL AgNPs

Control

Ubiquitin

IC10/U

IC20/U



Chapter VI: Metabolomics 

80 | P a g e  
 

 

Figure 54: : LV1 vs LV2 scores scatter plot obtained by PLS-DA of 1H NMR spectra from aqueous extracts of control cells and 
cells exposed to PLAL AgNPs; Left, Control versus IC10 Samples; Right, Control versus IC50 Samples  

The separations across the LV1 axes were further used to create the loading plots, allowing for the 

metabolites responsible for those separations to be visualized (Figure 55 and Figure 56). As the two 

doses tested are much closer in concentration, their induced effects are rather similar; both show an 

increase in GSH and decreases in glycine, lactate, PC and GPC. However, as the increase in GSH and 

decrease in PC and GPC become more prominent at the higher dose, the decrease in lactate and 

glycine diminishes. It is also interesting to note the ratio of ADP to ATP almost reverses from one dose 

to the other.  

 

Figure 55: LV1 Loadings coloured as a function of Variable Importance in Projection (VIP) for Pareto scaled PLS-DA model of 
controls and cells treated with the IC10 dose of PLAL AgNPs. 
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Figure 56: LV1 Loadings coloured as a function of Variable Importance in Projection (VIP) for Pareto scaled PLS-DA model of 
controls and cells treated with the IC20 dose of PLAL AgNPs. 

The same peak regions as those of the Green Synthesis AgNPs were integrated to obtain the univariate 

analysis; percent variation from the controls with the corresponding error, as well as effect size and 

its respective error are tabulated below in Table 13. The percent variation is also graphically presented 

in Figure 57. Here, the greatest effect size for the IC10 dose is also seen for GSH, glutamine and glycine. 

For the IC50 dose however, the highest value is for GSH, followed by GPC, aspartate, glutamate, and 

m-inositol.  

Table 13: Percent Variation and Effect Size of Selected Metabolites in the Aqueous Extracts of HaCaT Cells Exposed to PLAL 
AgNPs.  

 IC10 IC20 

Compound %Variation of 
Control 

Effect Size % Variation of 
Control 

Effect Size 

Acetate 6.7 ± 2.724 1.34 ± 0.628 - - 

ADP 26.73 ± 12.715 0.8 ± 0.588 -25.98 ± 14.472 -0.78 ± 0.587 

Alanine -7.03 ± 2.181 -1.48 ± 0.641 -6.85 ± 3.013 -1.28 ± 0.623 

Aspartate -9.64 ± 4.396 -1.22 ± 0.618 -20.71 ± 3.215 -2.95 ± 0.827 

ATP -16.47 ± 11.409 -0.72 ± 0.584 10.46 ± 8.336 - 

Creatine -6.46 ± 3.054 -1 ± 0.601 -19.17 ± 4.15 -2.69 ± 0.788 

Formate - - 7.35 ± 4.154 0.84 ± 0.591 

Glucose -19.72 ± 6.608 -1.59 ± 0.652 -9.33 ± 4.907 -0.81 ± 0.589 

Glutamate -3.02 ± 1.5 -0.88 ± 0.593 -10.9 ± 1.99 -2.92 ± 0.822 

Glutamine -8.12 ± 1.789 -2.01 ± 0.698 -8.96 ± 1.814 -2.21 ± 0.723 

GPC -3.49 ± 2.212 -0.74 ± 0.585 -18.94 ± 1.993 -4.22 ± 1.03 

Glycine -17.44 ± 3.165 -2.34 ± 0.739 -20.18 ± 3.97 -2.55 ± 0.769 

GSH1 25.54 ± 3.057 4.54 ± 1.086 69.18 ± 1.808 14.4 ± 2.993 

GSH2 27.05 ± 4.79 2.88 ± 0.816 71.96 ± 3.279 8.43 ± 1.812 

Isoleucine -3.13 ± 1.244 -1 ± 0.601 - - 

Lactate -10.28 ± 3.789 -1.45 ± 0.638 -3.67 ± 3.007 - 

Leucine -1.73 ± 1.115 -0.67 ± 0.581 - - 
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m-inositol - - -17.12 ± 3.016 -2.7 ± 0.789 

Phosphocholine - - -13.07 ± 2.595 -2.38 ± 0.745 

Phosphocreatine - - -16.23 ± 5.038 -1.85 ± 0.68 

Succinate - - -9.04 ± 3.511 -1.23 ± 0.619 

Threonine - - - - 

Tyrosine -5.07 ± 3.003 -0.78 ± 0.587 - - 

Valine -3.1 ± 1.39 -0.99 ± 0.6 - - 

 

 

Figure 57: Average Percent variation of metabolites in PLAL AgNP-exposed samples as compared to their controls. Error bars 
show the standard error; significance was calculated based on the Student’s t-test: * indicates p<0.05 and ** indicates 
p<0.001. 

VI.4  A COMPARISON OF THE METABOLIC EFFECTS OF GS AND PLAL 

AgNPS 

Univariate analysis was chosen to compare the Green Synthesis (GS) AgNPs with the Pulsed Laser 

Ablation in Liquid (PLAL) AgNPs for those doses that induced the same decrease in cell viability, i.e. 

the IC10s, and those metabolites that had shown a statistically significant variation as compared to 

their controls. The multivariate analysis was not followed through in this case, as an initial PCA of all 

control and IC10s separated not only the IC10s of the two synthesis methods, but also the controls of 

each synthesis from each other. This suggested that there exists some difference between the controls 

of each data set, preventing the data from being compared directly. Therefore, the percent variations 

of each IC10 set, as compared to their respective controls, were plotted for metabolites that had 

previously shown to have significant variations (Figure 58). Both types of particles tend to cause the 

same direction of response, however, aside from glucose and lactate, the GS AgNPs induce a much 

stronger response. 
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Figure 58: Percent variation of IC10 samples as compared to their respective controls for metabolites of statistically significant 
variation for GS and PLAL AgNPs; where * indicates p<0.05 and ** indicates p<0.001. 

VI.5  DISCUSSION ON CELLULAR IMPLICATIONS 

 

The biological effects of AgNPs synthesized via a chemical and a physical route were further evaluated 

at toxic and sub-toxic concentrations using an NMR based metabolomics approach. Aqueous extracts 

of HaCaT cells exposed to a low (IC10) and a higher concentration (IC20 or IC50) of each type of particle 

were analyzed using MVA and compared to their respective controls and each other. The results 

showed dose-dependent changes in a number of metabolites, as well as particle-specific biochemical 

responses.  

Before delving into results from the metabolomics, it is worth mentioning a note from the sample 

preparation. Observation of cells before the extraction process revealed the IC50 dose to have killed 

more than the expected 50% of cells, leaving only a small percentage for extraction. This is consistent 

with the dose response obtained for the morphology and cell cycle studies, as discussed in the 

previous chapter. It specifically effects the metabolomics study in two ways: as there are a fewer 

number of cells receiving the same concentration of AgNPs, a more extreme response can be 

expected; moreover, fewer cells in total means less intense signals, and therefore low signal to noise 

ratios. This was indeed the case for the IC50 samples, and consequently their need for longer 

acquisition times. 

GSH is an antioxidant molecule capable of modulating the reactive oxygen species (ROS) produced 

during regular cell metabolism, as well as excessive ROS resulting from stress factors. In conventional 

toxicology various reagents are used to measure the depletion of GSH as an endpoint indicating 

oxidative stress [65]. The majority of toxicity and metabolomics studies report a depletion of GSH upon 

exposure of various cell lines, including keratinocytes, to AgNPs [208, 204, 223, 203, 281]. However, 

in this study, the results showed a statistically significant increase in GSH levels for the low 

concentration doses of IC10 and IC20 as compared to the controls, and a decrease only for the IC50 dose. 
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An increase in GSH has also been reported by our workgroup for HaCaT cells exposed to citrate coated 

AgNPs [237]; and elsewhere for lung cells exposed to gold nanorods [282].  

Here, the increase in GSH was mirrored with a decrease in both glycine and glutamate, which are 

precursor compounds of GSH [283, 282]. The increase in GSH levels may also explain why cells 

pretreated with sub-toxic doses of AgNPs show less damage upon exposure to UVB radiation; as UVB 

radiation is also a source of ROS production, the GSH in excess would be able to modulate this new 

source of stress [143]. Thus, it is suggested that cells respond to AgNPs exposure through upregulation 

of GSH production in order to cope with NP-mediated oxidative stress [237]. However, at higher NP 

concentrations, it is possible that GSH is consumed at higher rate than it is produced or recycled, due 

to an even higher increase in ROS, thus leading to an overall decrease of GSH pools.  

Amino acids are essentially used in two ways in the human body; for the synthesis of proteins and 

enzymes, or for the release of energy via amino acid catabolism [105]. A decrease in amino acids such 

as leucine, isoleucine, valine, alanine, and threonine is seen in a dose-dependent manner for both 

particle types, though only with statistical significance at the highest dose of IC50. Their decrease 

suggests the catabolic pathway, where their by-products are fed into the tricarboxylic acid (TCA) cycle 

for the release of energy, or used for gluconeogenesis. The two fold increase of succinate at the IC50 

exposure seems to confirm the former pathway, suggesting the entry of threonine, isoleucine, and 

valine into the TCA cycle by conversion to succinyl-CoA, which is then converted to succinate along 

with the release of one ATP or equivalent. The alterations in energy metabolism in the cell can be 

related to the activity of the TCA cycle and the energy needs of the cell at a particular point [284]. 

These energy needs can also be associated with cell cycle arrest and apoptosis [285, 286]. 

At the same time, the accumulation of succinate may imply that the next step of the cycle, one that 

requires ubiquinone, may have faltered. Ubiquinone or Coenzyme Q (CoQ) is a component of the 

electron transport chain, aiding the generation of ATP in mitochondria; its ability to exist at a fully 

reduced form also allows it to act as an antioxidant [287]. The breakdown of this process further 

suggests oxidative stress and the eventual transition to apoptosis.  

Acetate is also a component of Acetyl Coenzyme A (CoA), part of the TCA cycle, as well as a building 

block of fatty acids. The trifold increase in formate and acetate may indeed be linked, as the former is 

typically a by-product in the latter’s production; with pyruvate as the substrate, pyruvate formate-

lyase as the enzyme, and acetyl-CoA and formate as the products [265]. The increase of acetate may 

indicate the breakdown of fatty acids in the lipid membrane of the cell, however, coupled with an 

increase in formate, it may also suggest the previously noted alterations to energy metabolism, i.e. 

the intensification of the TCA cycle to maintain energy levels in response to oxidative stress, cell cycle 

arrest and apoptosis.  

Cholines serve a number of functions throughout the body, with the most common being as the head 

group of phospholipids in biological membranes, in the form of phosphotidylcholine (PTC) [288]. The 

drastic decrease in PC and GPC may indicate synthesis or modification of cellular membranes, as the 

cells prepare for apoptosis [289, 290]. Since apoptosis is a type of programmed cell death, the 

constituents of the cells are lysed and divided between vesicles, as observed in the morphology of 

cells when the high dose of IC50 was applied. However, this cannot be confirmed until the organic 

extracts, where PTC would be detected, are analyzed.  

Normally, PCr acts as an energy reservoir for tissues and cells that consume ATP rapidly, such as 

skeletal muscles or the brain. In times of need, creatine kinase uses PCr in a reversible enzymatic 

reaction, to regenerate ATP from ADP, with creatine as the product [291]. Here, the cells show a 



Chapter VI: Metabolomics 

85 | P a g e  
 

decrease in creatine and PCr for all tested doses as compared to the controls. The decrease in PCr is 

in agreement with the increased energy needs of the cell, as discussed above, for the TCA cycle, DNA 

repair, and eventually apoptosis. However, the lack of an accompanying increase in creatine suggests 

either that this pathway is not the cause for the decrease in PCr, or that the degradation of PCr to 

creatine is followed by another reaction that then consume creatine.  

The comparison of the data from the two types of particles revealed a much stronger response in the 

samples exposed to GS AgNPs than PLAL AgNPs. Although this difference can be attributed to a 

number of differences in the particles’ characterization, namely size, size distribution, and coating, it 

is possible that the difference in storage conditions is the main cause. The GS AgNPs were previously 

shown to induce a drop in cell viability with the MTT assay (Chapter 5), and to have an evolution in 

morphology and size distribution with time (Chapter 4). It was proposed earlier that the storage 

condition, ambient temperature and pressure, are likely to have caused the particles’ dissolution, 

leading to a higher amount of silver ions in solution, and therefore a higher toxicity. If this is true, it 

would also explain the greater metabolic response found here for these particles as compared to the 

PLAL ones.  
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Chapter VII:  Conclusions and Future 
Perspectives 

In this work, two types of silver nanoparticles (AgNPs) were compared in terms of their physico-

chemical properties and biological effects. The PLAL AgNPs presented a more uniform size 

distribution, having a narrow band in UV-Vis spectra, and similarly narrow distributions in DLS and 

STEM measurements. The GS AgNPs were found to have a larger particle size and broader 

distributions. Modifications to the GS synthesis process showed the use of MilliQ water to be more 

favourable, while the “one pot synthesis” was deemed as a plausible potential for the synthesis of 

sterile AgNPs with a narrower size distribution than the other biosynthesis iterations. The washing and 

centrifugation step were found to inflict noticeable changes to the size distribution. Though stable up 

to 48 hours, the dispersion of AgNPs in cell culture media induced an overall increase in hydrodynamic 

diameter. 

Though DLS provides a general idea of the diameter and size distribution, it is not a reliable method 

for calculating the average diameter or size distribution of poly dispersed NPs. This is in part due to 

the very concept of the hydrodynamic diameter, one that includes the hard corona of solvent 

molecules bound to the particle, but more so because of the way the speckle pattern intensity 

fluctuations are used to calculate the average size. The average sizes derived based on intensity, 

volume, and number often have very different values, and can only be used in a qualitative manner to 

compare similar particles under similar conditions. It is suggested that alternative analysis methods, 

such as Nanoparticle Tracking Analysis (NTA) [56] or Analytical Centrifugation (AUC) [266], be explored 

in the long term. Moreover, for comparing the GS coating to other particles, a better understanding 

of the surface coating is required, especially considering that the extract is modified, most likely 

oxidized, during the autoclaving process. A study comparing the extract before and after autoclavation 

can be conducted using HPLC-MS or NMR; while coating displacement, coupled with NMR, can be 

used in-situ to determine the nature of the surface coating.  

In terms of cytotoxicity, neither particle coating, EGB nor ubiquitin, induced cytotoxicity at the 

concentrations tested. In light of the reported proliferative effects of extracellular ubiquitin, it is 

suggested that further testing be conducted on ubiquitin alone in order to determine this hypothesis’ 

validity. Furthermore, the interference of AgNPs was ruled as residual based on the experiments 

conducted. It is suggested that a similar experiment, with a modified protocol where the bottom of 

the wells are coated in agarose, also be performed in order to mimic the extracellular matrix to which 

the particles may potentially attach [292]. Another potential control study is testing for endotoxins, 

lipopolysaccharides released from the cell wall of Gram negative bacteria [293, 294, 295]. This control 

is particularly relevant for the GS AgNPs as they are synthesized using a biomass extract and such 

toxins would remain in solution even after autoclaving.  

The IC50 of the GS AgNPs was determined to be 15.49 and 14.21 μg/mL for 24 and 48 hour exposure 

times respectively; while that of the PLAL was extrapolated based on the regression to be 24.19 and 

29.89 μg/mL for the citrate coated, and 16.59 and 17.76 μg/mL for the ubiquitin coated, respectively. 

In order to obtain a reliable IC50 for the PLAL AgNPs, the range must be such that the IC50 value falls 

within; therefore it is recommended that higher concentrations be tested for the PLAL in future 

studies.  

The drastic changes in results from the GS AgNP IC50 dose for the morphology and cell cycle sample 

preparation suggested that particles’ toxicity is changing over time; this was confirmed by the physico-
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chemical changes encountered by UV-Vis, DLS, and STEM and attributed to the storage conditions and 

silver ion release. Therefore, it is recommended that the standard condition chosen for the storage of 

AgNPs include low temperatures so as to minimize dissolution. Furthermore, due to a lack of time and 

resources, a study on the concentration of silver ions was not conducted for this work. However, going 

forward, it is highly recommended that this parameter be included as part of the physico-chemical 

characterization. The most common method for performing this study is the use of centrifugation and 

ICP analysis of the supernatant [136].  

For the GS AgNPs, changes in morphology showed dose and time dependent trends; with the low 

concentrations causing slower proliferation and the higher concentrations causing extensive cell 

death, visually resembling apoptosis. Similarly cell cycle analysis showed a delay, followed by arrest, 

for the sub-toxic concentrations. Going forward, the type of cell death may be further investigated 

using Annexin V assay and the quantification of cell nuclei in the sub-G1 phase. Moreover, the work 

on uptake and localization in this thesis has been minimal due to time constraints. However, a 

thorough study can be performed using either TEM, fluorescence or Raman microscopies for 

localization visualization, and ICP and flow cytometry for uptake quantification.  

Based on the metabolomics results, it can be concluded that exposure to sub-toxic concentrations 

causes important and statistically significant alterations in the metabolome. Specifically, an increase 

in GSH for the lower doses was detected and attributed to antioxidant protection; while its depletion 

at the high concentration was attributed to extensive oxidative stress. Upregulation of TCA cycle 

activity was derived from a decrease in amino acids, phosphocreatine and creatine. TCA cycle activity 

can also be investigated further by measuring the consumption and excretion of metabolites from and 

into the extracellular media; it is recommended that the data acquired from these samples be 

analyzed and combined with the aqueous extract results. Decreases in phosphocholine, choline, and 

glycerophosphocholine suggested membrane modification; similarly, it is recommended that the 

acquired data from the organic extracts be analyzed and combined, in order to determine if there exist 

links between these precursors and the actual membrane compounds. 

In comparing the two sets of particles, the GS AgNPs induced a stronger metabolic response from the 

cells. This can be attributed to the difference in size, size distribution, surface coating, or storage 

conditions. Going forward, it is recommended that future experiments be performed in comparable 

pairs with relevant controls. In order to determine the cell response at toxic concentrations, a higher 

dose of PLAL AgNPs should also be tested; at the same time, it may be interesting to also investigate 

the suggested beneficial effects of ubiquitin at higher concentrations with metabolomics.  

It is also recommended that a control study, similar to that of the AgNP interference be conducted for 

the metabolomics. The cell-free samples, though with a layer of agarose to mimic cellular biofilm, 

would help determine whether the coating is release into the media, and its potential concentration. 

This is particularly useful when the coating is comprised of a molecule that is endogenous to the cell 

or cellular metabolism; in this case all three coatings, citrate, ubiquitin, and the EGB extract 

saccharides fall into this category. 

Finally, it can be concluded that metabolomics is a sensitive and high-throughput approach, capable 

of detecting alterations in cellular pathways at sub-toxic doses, and thus a complementary technique 

to the conventional battery of cytotoxicity assays.  

While beneficial in retrospect, the conclusions reached through the physico-chemical characterization 

could not be utilized in the toxicity or metabolomics testing, as they were being conducted in parallel. 
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Furthermore, it may be interesting to investigate the bactericide efficacy of each particle type, in one 

or more antibiotic-resistant strains. 
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Appendix A: Visualizing the Basics of 
PCA 

 

The following figures are meant to help the reader understand the concept of reducing dimension, 

which is done during PCA. The aim is to find a plane that provides the most amount of information 

about the data, while reducing the dimension. For example, in the case of going from a three 

dimensional image to a two dimensional one, Figure 59 shows a tea pot in four positions; however, 

only the top position gives information about the handle, the lid, and the spout at the same time. 

Figure 60 shows the same concept for reducing a graph of two axis to a graph of one axis using a 

projection based method. Here, projecting onto the x and y axes results in the loss of information; 

however, by choosing an axis that follows the trend line of the data, the maximum amount of 

information can be elicited. 

 

 

Figure 59: Tea pot in various positions. 

 

Figure 60: A) A set of data B) and D) Projecting the data onto the x and y axes respective C) Projecting the data onto a new 
axis along the trendline.
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Appendix B:  Uptake Results 
In order to localize the AgNPs with respect to the cells, two microscopy techniques were explored. 

Although AgNPs do not have an inherent fluorescence signal, the fluid movement of the stock solution 

on a glass slide produced a detectable signal when viewed with a fluorescent microscope. The nuclei 

of the cells were dyed with PI; however, this dye also intercalates with the RNA that exists throughout 

the cytoplasm. Therefore the entirety of the cells fluoresced under the laser, for both the controls and 

the samples exposed to 15 μg/mL of AgNPs (Figure 61). This meant that no specific signal could be 

detected from the NPs. Moreover, the high seeding density resulted in layers of cells that had grown 

on top of each other; not only does this make it difficult to distinguish each cell, but a higher seeding 

density also means a lower dose per cell and therefore higher survival rates.  

  

Figure 61: Fluorescence Images of HaCaT cells with 532 nm laser at 10X magnification. Left, Controls; Right, Cells exposed to 
IC50. 

The same samples were also visualized with confocal Raman microscopy. Although the SPR properties 

of both silver and gold nanoparticles can be used to enhance Raman signals, they are not intrinsically 

Raman active as metallic bonds are not Raman active in that range. Nevertheless, recent studies have 

shown various cell components, such as the nucleus, membrane, organelles, etc., to have distinct 

Raman signatures [296]. The enhancement of these signals in the presence of AgNPs as compared to 

the control samples, can therefore be used to localize the particles [297].  

In these preliminary tests, neither the stock solution nor dried AgNPs on a slide yielded a distinct 

Raman signal, though the saccharide coating of the particles may have produced the red spectrum in 

Figure 62A. Furthermore, the presence of PI, the fluorescent dye, created a high background in both 

the control and exposed samples, preventing the cell component signals from being distinguished. 

Nevertheless, the same fluorescence signal (3100 to 3600 cm-1) was successfully used for mapping the 

boundaries of the cells, providing 2D Raman images that were similar to those from the fluorescence 

microscopy using the 532 nm excitation laser source (Figure 63A).  
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Figure 62: Left, Spectra of stock AgNP solution dried on a glass slide, with the highlighted blue band showing C-C bonds, and 
the highlighted red band showing C-H bonds; Right, Spectrum of HaCaT cells, showing a high fluorescence background, with 
the inset showing the absorption/emission spectrum of PI 

Changing the laser from 532 to 633 nm, the fluorescent background was eliminated, as the absorption 

of PI is minimal after 580 nm; however, no signature peaks could be detected. Monitoring the Raman 

intensity of the band in the range of 100 to 300 cm-1, the 2D Raman images (Figure 63) were obtained 

with the 532 nm laser (A and B) and the 633 nm laser (C and D).  

 

Figure 63: 2D Raman mapping (intensity of the band at 100-300 cm-1) of HaCaT cells; A and B are obtained with 532 nm laser; 
and C and D with 633 nm laser. A and C are controls, B are cells exposed to 15 μg/mL of AgNPs, and D are cells exposed to 10 
μg/ML of AgNPs.  
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Figure 64: Raman spectrum for 10 μg/mL sample with 633 nm laser; where the highlighted range shows the integrated 
peak. 

A curiuos affect in Figure 63 is the black points that are scattered on top of the cells in D and at their 

periphery in B, while lacking in A and C, which are the controls. As the peak being integrated is outside 

the organic range, it cannot be attributed to the cells themselves. The size of the points, as compared 

to the cells, would suggest something on the nanoscale. That they are in higher quantity and in better 

arrangement in B than D might corrolate with the higher concentration of AgNPs in B and cell death. 

On the other hand, as the points are of lower intensity for the integrated peak than their surroundings, 

it cannot be attributed to scattering or fluorescence of the nanoparticles, nor the bending (100 to 200 

cm-1) or stretching (300 to 400 cm-1) of metal-sulfur or metal-nitrogen bonds. A possible, though 

unlikely hypothesis, would be that the particles are quenching the signal in that range, as elsewhere 

shown for the quenchign of Raman by CNTs [298] and the quenching of fluorescence by AuNPs [97]. 

However, this cannot be confirmed without further reproducible experiments and better isolation of 

variables.  

Thus, going forward, it is recommended that the protocol for sample preparation for fluorescence 

microscopy be modified in the following ways: that fewer cells be seeded on the glass slides; that the 

cells be treated with RNAse prior to staining with PI; and that the concentration PI and duration of 

staining be reduced. Similarly for the Raman samples, it is recommended that a lower seeding density 

be used, and that no fluorescence staining take place. Moreover, it would be worthwhile to determine 

the signature peaks of the cell components prior to performing uptake and localization studies. If such 

studies are unsuccessful, the use of a Raman dye with the AgNPs is possible, however, in this case 

isolation of the toxicity factor may become difficult. Overall, Raman confocal microscopy for the 

uptake and localization of AgNPs is an intersting technique that can be explored further.  

 


