4,081 research outputs found

    Parameterization invariance and shape equations of elastic axisymmetric vesicles

    Full text link
    The issue of different parameterizations of the axisymmetric vesicle shape addressed by Hu Jian-Guo and Ou-Yang Zhong-Can [ Phys.Rev. E {\bf 47} (1993) 461 ] is reassesed, especially as it transpires through the corresponding Euler - Lagrange equations of the associated elastic energy functional. It is argued that for regular, smooth contours of vesicles with spherical topology, different parameterizations of the surface are equivalent and that the corresponding Euler - Lagrange equations are in essence the same. If, however, one allows for discontinuous (higher) derivatives of the contour line at the pole, the differently parameterized Euler - Lagrange equations cease to be equivalent and describe different physical problems. It nevertheless appears to be true that the elastic energy corresponding to smooth contours remains a global minimum.Comment: 10 pages, latex, one figure include

    Mass and pressure constraints on galaxy clusters from interferometric SZ observations

    Full text link
    Following on our previous study of an analytic parametric model to describe the baryonic and dark matter distributions in clusters of galaxies with spherical symmetry, we perform an SZ analysis of a set of simulated clusters and present their mass and pressure profiles. The simulated clusters span a wide range in mass, 2.0 x 10^14 Msun < M200 < 1.0 x 10^15Msun, and observations with the Arcminute Microkelvin Imager (AMI) are simulated through their Sunyaev- Zel'dovich (SZ) effect. We assume that the dark matter density follows a Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. By numerically exploring the probability distributions of the cluster parameters given simulated interferometric SZ data in the context of Bayesian methods, we investigate the capability of this model and analysis technique to return the simulated clusters input quantities. We show that considering the mass and redshift dependency of the cluster halo concentration parameter is crucial in obtaining an unbiased cluster mass estimate and hence deriving the radial profiles of the enclosed total mass and the gas pressure out to r200.Comment: 5 pages, 2 tables, 3 figure

    Slow dynamics in critical ferromagnetic vector models relaxing from a magnetized initial state

    Full text link
    Within the universality class of ferromagnetic vector models with O(n) symmetry and purely dissipative dynamics, we study the non-equilibrium critical relaxation from a magnetized initial state. Transverse correlation and response functions are exactly computed for Gaussian fluctuations and in the limit of infinite number n of components of the order parameter. We find that the fluctuation-dissipation ratios (FDRs) for longitudinal and transverse modes differ already at the Gaussian level. In these two exactly solvable cases we completely describe the crossover from the short-time to the long-time behavior, corresponding to a disordered and a magnetized initial condition, respectively. The effects of non-Gaussian fluctuations on longitudinal and transverse quantities are calculated in the first order in the epsilon-expansion and reliable three-dimensional estimates of the two FDRs are obtained.Comment: 41 pages, 9 figure

    Optimal Strokes for Driftless Swimmers: A General Geometric Approach

    Get PDF
    Swimming consists by definition in propelling through a fluid by means of bodily movements. Thus, from a mathematical point of view, swimming turns into a control problem for which the controls are the deformations of the swimmer. The aim of this paper is to present a unified geometric approach for the optimization of the body deformations of so-called driftless swimmers. The class of driftless swimmers includes, among other, swimmers in a 3D Stokes flow (case of micro-swimmers in viscous fluids) or swimmers in a 2D or 3D potential flow. A general framework is introduced, allowing the complete analysis of five usual nonlinear optimization problems to be carried out. The results are illustrated with examples coming from the literature and with an in-depth study of a swimmer in a 2D potential flow. Numerical tests are also provided

    Nuclear physics for geo-neutrino studies

    Full text link
    Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results for the geo-neutrinos from Bi-214 decay, a process which accounts for about one half of the total geo-neutrino signal. The feeding probability of the lowest state of Bi-214 - the most important for geo-neutrino signal - is found to be p_0 = 0.177 \pm 0.004 (stat) ^{+0.003}_{-0.001} (sys), under the hypothesis of Universal Neutrino Spectrum Shape (UNSS). This value is consistent with the (indirect) estimate of the Table of Isotopes (ToI). We show that achievable larger statistics and reduction of systematics should allow to test possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed.Comment: 8 pages RevTex format, 8 figures and 2 tables. Submitted to PR
    corecore