55,123 research outputs found

    Uncertain inference using interval probability theory

    Get PDF
    AbstractThe use of interval probability theory (IPT) for uncertain inference is demonstrated. The general inference rule adopted is the theorem of total probability. This enables information on the relevance of the elements of the power set of evidence to be combined with the measures of the support for and dependence between each item of evidence. The approach recognises the importance of the structure of inference problems and yet is an open world theory in which the domain need not be completely specified in order to obtain meaningful inferences. IPT is used to manipulate conflicting evidence and to merge evidence on the dependability of a process with the data handled by that process. Uncertain inference using IPT is compared with Bayesian inference

    The belief noisy-or model applied to network reliability analysis

    Get PDF
    One difficulty faced in knowledge engineering for Bayesian Network (BN) is the quan-tification step where the Conditional Probability Tables (CPTs) are determined. The number of parameters included in CPTs increases exponentially with the number of parent variables. The most common solution is the application of the so-called canonical gates. The Noisy-OR (NOR) gate, which takes advantage of the independence of causal interactions, provides a logarithmic reduction of the number of parameters required to specify a CPT. In this paper, an extension of NOR model based on the theory of belief functions, named Belief Noisy-OR (BNOR), is proposed. BNOR is capable of dealing with both aleatory and epistemic uncertainty of the network. Compared with NOR, more rich information which is of great value for making decisions can be got when the available knowledge is uncertain. Specially, when there is no epistemic uncertainty, BNOR degrades into NOR. Additionally, different structures of BNOR are presented in this paper in order to meet various needs of engineers. The application of BNOR model on the reliability evaluation problem of networked systems demonstrates its effectiveness

    Statistical Models with Uncertain Error Parameters

    Full text link
    In a statistical analysis in Particle Physics, nuisance parameters can be introduced to take into account various types of systematic uncertainties. The best estimate of such a parameter is often modeled as a Gaussian distributed variable with a given standard deviation (the corresponding "systematic error"). Although the assigned systematic errors are usually treated as constants, in general they are themselves uncertain. A type of model is presented where the uncertainty in the assigned systematic errors is taken into account. Estimates of the systematic variances are modeled as gamma distributed random variables. The resulting confidence intervals show interesting and useful properties. For example, when averaging measurements to estimate their mean, the size of the confidence interval increases for decreasing goodness-of-fit, and averages have reduced sensitivity to outliers. The basic properties of the model are presented and several examples relevant for Particle Physics are explored.Comment: 26 pages, 27 figure

    Bayesian Inference in Processing Experimental Data: Principles and Basic Applications

    Full text link
    This report introduces general ideas and some basic methods of the Bayesian probability theory applied to physics measurements. Our aim is to make the reader familiar, through examples rather than rigorous formalism, with concepts such as: model comparison (including the automatic Ockham's Razor filter provided by the Bayesian approach); parametric inference; quantification of the uncertainty about the value of physical quantities, also taking into account systematic effects; role of marginalization; posterior characterization; predictive distributions; hierarchical modelling and hyperparameters; Gaussian approximation of the posterior and recovery of conventional methods, especially maximum likelihood and chi-square fits under well defined conditions; conjugate priors, transformation invariance and maximum entropy motivated priors; Monte Carlo estimates of expectation, including a short introduction to Markov Chain Monte Carlo methods.Comment: 40 pages, 2 figures, invited paper for Reports on Progress in Physic
    • …
    corecore