62 research outputs found

    Chaos Synchronization Using Adaptive Dynamic Neural Network Controller with Variable Learning Rates

    Get PDF
    This paper addresses the synchronization of chaotic gyros with unknown parameters and external disturbance via an adaptive dynamic neural network control (ADNNC) system. The proposed ADNNC system is composed of a neural controller and a smooth compensator. The neural controller uses a dynamic RBF (DRBF) network to online approximate an ideal controller. The DRBF network can create new hidden neurons online if the input data falls outside the hidden layer and prune the insignificant hidden neurons online if the hidden neuron is inappropriate. The smooth compensator is designed to compensate for the approximation error between the neural controller and the ideal controller. Moreover, the variable learning rates of the parameter adaptation laws are derived based on a discrete-type Lyapunov function to speed up the convergence rate of the tracking error. Finally, the simulation results which verified the chaotic behavior of two nonlinear identical chaotic gyros can be synchronized using the proposed ADNNC scheme

    Synchronization and antisynchronization protocol design of chaotic nonlinear gyros: an adaptive integral sliding mode approach

    Get PDF
    A novel control protocol design, via integral sliding mode control with parameter update laws, for synchronization and desynchronization of a chaotic nonlinear gyro with unknown parameters is the focus of this work. The error dynamics of the actual system are substructured into nominal and uncertain parts to employ adaptive integral sliding mode (AISM) control. The uncertain parameters are estimated via devised adaptive laws. Then the disagreement dynamics are guided to origin via AISM control. The stabilizing controller is also designed in terms of nominal control along with a compensating component. The control and the parameter update laws are constructed to ensure the strictly negative derivative of a Lyapunov function. Graphical results related to synchronization, desynchronization, and chaos suppression are displayed to demonstrate the potential of the proposed control

    Adaptive hermite-polynomial-based CMAC neural control for chaos synchronization

    Get PDF
    [[abstract]]Gyros are a particularly interesting form of nonlinear systems that have attracted many researchers due to their applications in the navigational, aeronautical and space engineering domains. In this paper, a problem of synchronization between two chaotic gyros based on a mater-slave scheme is studied. An adaptive Hermite-polynomial-based CMAC neural control (AHCNC) system which is composed of a neural controller and a smooth compensator is proposed. The neural controller using a Hermite-polynomial-based CMAC neural network (HCNN) is main controller and the smooth compensator is designed to guarantee system stable in the Lyapunov stability theorem. Finally, the simulation results show that the proposed AHCNC scheme can achieve favorable chaos synchronization after the controller parameters learning.[[sponsorship]]Chinese Automatic Control Society (CACS); National Formosa University Taiwan[[conferencetype]]國際[[conferencedate]]20121130~20121202[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Yunlin, Taiwa

    Adaptive hermite-polynomial-based CMAC neural control for chaos synchronization

    Get PDF
    [[abstract]]An adaptive Hermite-polynomial-based CMAC neural control (AHCNC) system which is composed of a neural controller and a smooth compensator is proposed. The neural controller using a Hermite-polynomial-based CMAC neural network (HCNN) is main controller and the smooth compensator is designed to guarantee system stable in the Lyapunov stability theorem.[[notice]]缺頁數[[incitationindex]]EI[[conferencetype]]國際[[conferencedate]]20121130~20121202[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Yunlin, Taiwa

    Control of a non-holonomic mobile robot system with parametric uncertainty

    Get PDF
    In this paper, the control of a mobile robot system via a feedback linearization controller and anti-control of chaos with parametric uncertainty is researched. Anti-control is also applied to convert non-chaotic systems to chaotic ones and to create chaos dynamic. The synchronization of system errors with a chaotic gyroscope system is researched for energy reduction and performance improvement. In the other words, control effort is based on synchronizing the error system with chaos for decreasing control cost. The combination of these techniques yields high efficiency and global convergence of trajectories, even in the presence of parametric uncertainty, which has been shown by simulation. Finally, the energy of control signals is calculated and compared for showing the energy reduction

    Passivity-Sliding Mode Control of Uncertain Chaotic Systems with Stochastic Disturbances

    Get PDF
    This paper is concerned with the stabilization problem of uncertain chaotic systems with stochastic disturbances. A novel sliding function is designed, and then a sliding mode controller is established such that the trajectory of the system converges to the sliding surface in a finite time. Using a virtual state feedback control technique, sufficient condition for the mean square asymptotic stability and passivity of sliding mode dynamics is derived via linear matrix inequality (LMI). Finally, a simulation example is presented to show the validity and advantage of the proposed method
    corecore