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This paper proposes the generalized projective synchronization for chaotic heavy symmetric gyroscope systems versus external
disturbances via sliding rule-based fuzzy control. Because of the nonlinear terms of the gyroscope, the system exhibits complex
and chaotic motions. Based on Lyapunov stability theory and fuzzy rules, the nonlinear controller and some generic sufficient
conditions for global asymptotic synchronization are attained. The fuzzy rules are directly constructed subject to a common
Lyapunov function such that the error dynamics of two identical chaotic motions of symmetric gyros satisfy stability in the
Lyapunov sense. The proposed method allows us to arbitrarily adjust the desired scaling by controlling the slave system. It is
not necessary to calculate the Lyapunov exponents and the Eigen values of the Jacobian matrix. It is a systematic procedure
for synchronization of chaotic systems. It can be applied to a variety of chaotic systems no matter whether it contains external
excitation or not. It needs only one controller to realize synchronization no matter how much dimensions the chaotic system
contains, and the controller is easy to be implemented. The designed controller is robust versus model uncertainty and external
disturbances. Numerical simulation results demonstrate the validity and feasibility of the proposed method.

1. Introduction

Dynamic chaos is a very interesting nonlinear effect which
has been intensively studied during the last three decades.
Chaotic phenomena can be found in many scientific and
engineering fields such as biological systems, electronic
circuits, power converters, and chemical systems [1].

Since the synchronization of chaotic dynamical systems
has been observed by Pecora and Carroll [2] in 1990, chaos
synchronization has become a topic of great interest [3–
5]. Synchronization phenomena have been reported in the
recent literature. Until now, different types of synchroniza-
tion have been found in interacting chaotic systems, such as
complete synchronization [2, 6, 7], generalized synchroniza-
tion [8], phase synchronization [9], and antiphase synchro-
nization [10]. In 1999, projective synchronization has been
first reported by Mainieri and Rehacek [11] in partially linear
systems that the master and slave vectors synchronize up to

a constant scaling factor α (a proportional relation). Later,
some researchers have extended synchronization to a general
class of chaotic systems without the limitation of partial
linearity, such as non-partially-linear systems [12, 13]. After
that, a new synchronization, called generalized projective
synchronization (GPS), has been observed in the nonlinear
chaotic systems [14–16].

On the other hand, the dynamics of a gyro is a very
interesting nonlinear problem in classical mechanics. The
gyro has attributes of great utility to navigational, aeronau-
tical, and space engineering [17]. Gyros for sensing angular
motion are used in airplane automatic pilots, rocket-vehicle
launch guidance, space-vehicle attitude systems, ship’s gyro-
compasses, and submarine inertial autonavigators. The
concept of chaotic motion in a gyro was first presented in
1981 by Leipnik and Newton [18], showing the existence
of two strange attractors. In the past years, gyros have
been found with rich phenomena which give benefit for the
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understanding of gyro systems. Different types of gyros with
linear/nonlinear damping are investigated for predicting the
dynamic responses such as periodic and chaotic motions [17,
19, 20]. Some methods have been presented to synchronize
two identical/nonidentical nonlinear gyro system such as
active control [21] and neural sliding mode control [7, 8].

The goal of this paper is to synchronize two chaotic heavy
symmetric gyroscope systems versus external disturbances.
To achieve this goal, sliding rule-based fuzzy control is
applied. In addition, the results of this paper may be extended
to synchronize many classes of nonlinear chaotic systems.

This paper is organized as follows. In Section 2, dynamics
of a heavy symmetric gyroscope system are described. Gen-
eralized synchronization problem is explained in Section 3.
In Section 4, sliding rule-based fuzzy control is designed to
chaos synchronization of chaotic gyroscopes. Simulations
are presented in Section 5, to show the effectiveness of
the proposed control method to chaos synchronization of
chaotic gyroscope systems versus disturbances. At the end,
the paper is concluded in Section 6.

2. Chaotic Gyroscope System

The symmetric gyroscope mounted on a vibrating base is
shown in Figure 1. The dynamics of a symmetrical gyro with
linear-plus-cubic damping of angle θ can be expressed as [17]

θ̈ + α2
1

(1− cos θ)2

sin3θ
− β1 sin θ + c1θ̇ + c2θ̇

3 = f sin ωt sin θ,

(1)

where f sinωt is a parametric excitation, c1θ̇ and c2θ̇3

are linear and nonlinear damping terms, respectively, and
α2

1((1 − cos θ)2/sin3θ) − β1 sin θ is a nonlinear resilience
force. According to [17], in a symmetric gyro mounted on
a vibrating base, the precession and the spin angles have
cyclic motions, and hence their momentum integrals are
constant and equal to each other. So the governing equations
of motion depend only on the mutational angle θ. Using
Routh’s procedure and assuming a linear-plus-cubic form for
dissipative force, (1) is obtained [17]. Given the states x1 = θ,
x2 = θ̇, and g(θ) = α2

1((1− cos θ)2/sin3θ)− β1 sin θ, (19) can
be rewritten as follows:

ẋ1 = x2,

ẋ2 = g(x1)− c1x1 − c2x
3
2 +
(
β + f sinωt

)
sin(x1).

(2)

This gyro system exhibits complex dynamics and has
been studied by [20] for values of f in the range 32 < f < 36
and constant values of α2

1 = 100, β1 = 1, c1 = 0.5, c2 = 0.05,
and ω2. Figure 2 illustrates the irregular motion exhibited by
this system for f = 35.5 and initial conditions of (x1, x2) =
(1, −1).

In the next section, the chaos synchronization problem
has been explained.
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Figure 1: A schematic diagram of a symmetric gyroscope.
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Figure 2: Time series of x1 and x2.

3. Generalized Projective
Synchronization Problem

Consider two coupled, chaotic gyroscope systems, where the
master and slave systems are denoted by x and y, respectively.
The master system is presented in (2). The slave system is
presented as follows:

ẏ1 = y2,

ẏ2 = g
(
y1
)− c1y1 − c2y

3
2 +

(
β + f sinωt

)
sin
(
y1
) = u(t).

(3)

Defining the generalized synchronization errors between
the master and slave systems as follows:

E(t) =
{
e1(t) = y1(t)− αx1(t),

e2(t) = y2(t)− αx2(t),
(4)

where α ∈ R is a scaling factor that defines a proportional
relation between the synchronized systems. Then, the error
dynamics can be obtained as

ė1(t) = e2(t),

ė2(t) = (1− α)p
(
x1, x2, y1, y2

)
+ u(t).

(5)
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In order to simplify the following procedure, a nonlinear
function is defined as follows:

p
(
x1, x2, y1, y2

)

= g
(
y1
)− c1y1 − c2y

3
2 +

(
β + f sinωt

)
sin
(
y1
)

1− α

− α
g(x1)− c1x1 − c2x

3
2 +
(
β + f sinωt

)
sin(x1)

1− α
.

(6)

The objective of the synchronization problem is to
design the appropriate control signal u(t) such that for
any initial conditions of the master and slave systems,
the synchronization errors converge to zero such that the
resulting synchronization error vector satisfies.

lim
t→∞‖E(t)‖ −→ 0, (7)

where ‖ · ‖ is the Euclidean norm of a vector. In the next
section, the control input will be obtained via sliding rule-
based fuzzy control to achieve the synchronization goal
presented in previous section.

4. Generalized Projective Synchronization of
Chaotic Gyroscopes versus Disturbances via
Sliding Rule-Based Fuzzy Control

The scheme of GPS of chaotic gyroscope systems versus
disturbances via the fuzzy system based on sliding mode
control is shown in Figure 3. First, sliding surface is designed
for chaos synchronization of chaotic gyroscope systems.
An appropriate observer is designed for the linear part of
the slave system. Then, sliding rule-based fuzzy control is
designed as a control to synchronize the master and the slave
systems, with considering the external disturbances.

4.1. Sliding Surface. Using the sliding mode control method
for GPS of chaotic gyroscope systems, involves two basic
steps:

(1) selecting an appropriate sliding surface such that the
sliding motion on the sliding manifold is stable and
ensures limt→∞‖E(t)‖ → 0;

(2) establishing a robust control law which guarantees
the existence of the sliding manifold S(t) = 0.

The sliding surfaces are defined as follows [22]:

S(t) =
(
d

dt
+ δ
)n−1

e(t), (8)

where S(t) ∈ R and δ are real positive constant parameters.
Differentiating (10) with respect to time is as follows:

Ṡ(t) =
(
d

dt
+ δ
)n

e(t). (9)

The rate of convergence of the sliding surface is governed
by the value assigned to parameter δ. Having established

appropriate sliding surfaces, the next step is to design the
control input to drive the error system trajectories onto the
sliding surfaces.

In this study, define a sliding surface as

S(t) = e2(t) + δe1(t). (10)

Equation (10) is designed as the input of fuzzy system.
Differentiating (10) with respect to time is as follows:

Ṡ(t) = ė2(t) + δė1(t). (11)

Substituting (5) into (12), we obtain

Ṡ(t) = (1− α)p
(
x1, x2, y1, y2

)
+ u(t) + δe2(t). (12)

4.2. Sliding Rule-Based Fuzzy Control. A set of the fuzzy
linguistic rules based on expert knowledge are applied to
design the control law of fuzzy logic control. To overcome the
trail-and-error tuning of the membership functions and rule
base, the fuzzy rules are directly defined such that the error
dynamics satisfies stability in the Lyapunov sense. The basic
fuzzy logic system is composed of five function blocks [23]:
(1) a rule base contains a number of fuzzy if-then rules, (2) a
database defines the membership functions of the fuzzy sets
used in the fuzzy rules, (3) a decision-making unit performs
the inference operations on the rules, (4) a fuzzification
interface transforms the crisp inputs into degrees of match
with linguistic value, and (5) a defuzzification interface
transforms the fuzzy results of the inference into a crisp
output.

The fuzzy rule base consists of a collection of fuzzy if-
then rules expressed as the form: if a is A, then b is B, where a
and b denote linguistic variables, and A and B represent
linguistic values that are characterized by membership
functions. All of the fuzzy rules can be used to construct the
fuzzy-associated memory.

In this study, the FLC is designed as follows: the signal
S in (10) is as the antecedent part of the proposed FLC to
design the control input u that will be used in the consequent
part of the proposed FLC,

u = FLC(S), (13)

where the FLC accomplishes the objective to stabilize the
error dynamics (5). The ith if-then rule of the fuzzy rule base
of the FLC is of the following form.

Rule i. If S is X , then

uLi ≡ fi(S), (14)

where X is the input fuzzy sets, uLi is the output which is the
analytical function fi(·) of the input variables (S).

For given input values of the process variables, their
degrees of membership μxi, i = 1, 2, . . . ,n, called rule-
antecedent weights, are calculated. The centroid defuzzifier
evaluates the output of all rules as follows:

u =
∑n

i=1,μ /= 0 μi · uLi
∑n

i=1,μ /= 0 μi
, μi = μX(S). (15)
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Figure 3: The scheme of generalized projective synchronization of chaotic gyroscopes versus disturbances via the sliding rule-based fuzzy
control.

Table 1: Rule table of FLC.

Rule
Antecedent Consequent

S uLi
1 P uL1

2 Z uL2

3 N uL3

Table 1 lists the fuzzy rule base in which the input
variable in the antecedent part of the rules is S, and the
output variable in the consequent is uLi.

Using P, Z, and N as input fuzzy sets represents
“positive,” “zero,” and “negative,” respectively. The Gaussian
membership function is considered. The combination of the
two input variables (S) forms n = 3 heuristic rules in Table 1,
and each rule belongs to one of the three fuzzy sets P, Z, and
N . The rules in Table 1 are read as follows: taking Rule 1 in
Table 1 as an example, “Rule 1: if input 1 S is P, then output
is uL1.”

To solve the control problem presented in (5), define a
Lyapunov function as follows:

V(t) = 1
2
S2(t). (16)

Differentiating (16) with respect to times is as follows:

V̇ = SṠ. (17)

Substituting (12) into (17), then

V̇ = S
[
(1− α)p

(
x1, x2, y1, y2

)
+ u(t) + δe2(t)

]

︸ ︷︷ ︸
A

. (18)

The corresponding requirement of Lyapunov stability is
[24]

V̇ < 0. (19)

If A < 0, then the Lyapunov stability will be satisfied. The
following cases will satisfy all the stability conditions.

Rule 1. If S > 0, then A < 0, so consider the consequent part
of Rule 1,

(1− α)p
(
x1, x2, y1, y2

)
+ u(t) + δe2(t) < 0. (20)

Equation (20) can be simplified as follows:

u(t) < −δe2(t)− (1− α)p
(
x1, x2, y1, y2

)
. (21)

Let us choose the control input as follows such that (21)
is satisfied:

uL1 = −δe2(t)− (1− α)p
(
x1, x2, y1, y2

)− λ, (22)

where λ is a positive constant value.

Rule 2. If S ∈ zero, then

(1− α)p
(
x1, x2, y1, y2

)
+ u(t) + δe2(t) = −η sgn(S), (23)

where η is a positive constant value. Equation (23) can be
simplified as follows:

u(t) = −η sgn(S)− (1− α)p
(
x1, x2, y1, y2

)− δe2(t). (24)

Let us choose the control input as follows such that (24)
is satisfied:

uL2(t) = −η sgn(S)− (1− α)p
(
x1, x2, y1, y2

)− δe2(t). (25)

Rule 3. If S < 0, then A > 0, so consider the consequent part
of Rule 3,

(1− α)p
(
x1, x2, y1, y2

)
+ u(t) + δe2(t) > 0. (26)

Equation (26) can be simplified as follows:

u(t) > −(1− α)p
(
x1, x2, y1, y2

)− δe2(t). (27)

Let us choose the control input as follows such that (27)
is satisfied:

uL3(t) = −(1− α)p
(
x1, x2, y1, y2

)− δe2(t) + λ, (28)

where λ is a positive constant value.

Therefore, all of the rules in the FLC can lead to Lyapunov
stable subsystems under the same Lyapunov function (16).
Furthermore, the closed-loop rule-based system equation (5)
is asymptotically stable for each derivate of the Lyapunov
function that satisfies V̇ < 0 in Table 1, that is, the error states
guarantee convergence to zero.
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Figure 4: Time responses of the master and slave systems (α = 0.5).
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Figure 5: Synchronization error (α = 0.5).
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Figure 6: The sliding surface and input control (α = 0.5).
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Figure 7: Time responses of the master and slave systems (complete synchronization α = 1).
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Figure 8: Synchronization error (complete synchronization α = 1).

0 5 10
−600

−500

−400

−300

−200

−100

0

100

Sl
id

in
g

su
rf

ac
e

Time (s)

(a)

0 5 10
−500

−400

−300

−200

−100

0

100

C
on

tr
ol

in
pu

t

Time (s)

(b)

Figure 9: The sliding surface and input control (complete synchronization α = 1).
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Figure 10: Time responses of the master and slave systems (antisynchronization α = −1).
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Figure 11: Synchronization error (antisynchronization α = −1).
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Figure 12: The sliding surface and input control (antisynchronization α = −1).

5. Simulation Results

In this section, numerical simulations are given to demon-
strate GPS of the chaotic gyros versus disturbances via the
sliding rule-based fuzzy control. The parameters of nonlinear
chaotic gyroscope systems are specified in Section 2.

The external disturbance d1 is attached between 3 < t < 4
and 7 < t < 8. The initial conditions of the master and slave
systems are defined as follows:

[
x1(0) x2(0)

]
=
[

1 −1
]T

,
[
y1(0) y2(0)

]T =
[
−2 2

]T
.

(29)

Notice that, to reduce the system chattering, the sign
functions are substituted with the saturation functions.

The time responses of the master and the slave system
for GPS with α = 0.5, complete synchronization α = 1, and
antisynchronization α = −1 are shown in Figures 4, 7, and
10, respectively.

Synchronization errors for GPS with α = 0.5, complete
synchronization α = 1, and antisynchronization α = −1
are shown in Figures 5, 8, and 11, respectively. The errors
illustrated in Figures 5, 8, and 11 converge asymptotically to
zero.

In addition, the control input and sliding surface for
GPS with α = 0.5, complete synchronization α = 1, and
antisynchronization α = −1 are shown in Figures 6, 9, and
12, respectively.

The simulation results of GPS via the sliding rule-based
fuzzy control have good performances and confirm that the
master and the slave systems achieve the synchronized states,

when external disturbance occurs. Also, these results demon-
strate that the synchronization error states are regulated to
zero asymptotically. It is observed that the proposed method
is capable to GPS, when disturbances occur.

6. Conclution

In this paper, generalized projective synchronization of
chaotic gyroscope systems with external disturbances via
sliding rule-based fuzzy control has been investigated. Based
on Lyapunov stability theory and fuzzy rules, the nonlinear
controller and some generic sufficient conditions for global
asymptotic synchronization are attained. To achieve GPS, it
is clear that the proposed method is capable for creating a
full-range GPS of all state variables in a proportional way.
It also allows us to arbitrarily adjust the desired scaling by
controlling the slave system. The advantages of this method
can be summarized as follows:

(i) it is a systematic procedure for GPS of chaotic gy-
roscope system;

(ii) the controller is easy to be implemented;

(iii) it is not necessary to calculate the Lyapunov expo-
nents and the eigenvalues of the Jacobian matrix,
which makes it simple and convenient;

(iv) the controller is robust versus external disturbances.

Simulations results have verified the effectiveness of this
method for GPS of chaotic gyroscope systems.
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Since the gyro has been utilized to describe the mode in
navigational, aeronautical, or space engineering, the general-
ized projective synchronization procedure in this study may
have practical applications in the future.
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