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This paper is concerned with the stabilization problem of uncertain chaotic systems with stochastic disturbances. A novel sliding
function is designed, and then a slidingmode controller is established such that the trajectory of the system converges to the sliding
surface in a finite time. Using a virtual state feedback control technique, sufficient condition for themean square asymptotic stability
and passivity of sliding mode dynamics is derived via linear matrix inequality (LMI). Finally, a simulation example is presented to
show the validity and advantage of the proposed method.

1. Introduction

Chaos control has received a great deal of interest in the
last three decades. Many techniques for chaos control are
used, such as adaptive control [1, 2], backstepping control
[3], fuzzy control [4], and sliding mode control [5–7]. In the
above methods, the chaotic system model has a determin-
istic differential equation; there is no random parameter or
random excitation on the system governing equation. But
the chaotic systemmay be affected by stochastic disturbances
due to environmental noise [8, 9]. Stochastic chaotic systems
appear inmany fields such as chemistry [10], physics and laser
science [11], and economics [12]. So it is necessary to study
such systems.

There have been some meaningful results about chaos
system with stochastic disturbances [13–15]. In [13], the
ergodic theory and stochastic noise are considered. Time-
delay feedback control of the Van der Pol oscillator under
the influence of white noise is investigated in [14]. In [15], an
adaptive control of of chaotic systems with white Gaussian
noise is considered. On the other hand, sliding mode control
is a very effective approach for the robust control systems.
It has many attractive features such as fast response, good

transient response, and insensitivity to variations. Some
related results have been presented [16, 17]. In [16], control
of stochastic chaos via slidingmode control is investigated. In
[17], chaos synchronization of nonlinear gyroswith stochastic
excitation is considered by using sliding mode control. Since
then, from a practical point of view, many systems need to
be passive in order to attenuate noises. So it is necessary
to investigate the passivity of chaotic systems via sliding
mode control. However, there have been few results in this
respect.

Motivated by the above reasons, passivity-sliding mode
control problem of uncertain chaotic systems with stochas-
tic disturbances is considered. Stochastic disturbance is a
standard Wienner process, the derivative of which gener-
ates a continuous time Gaussian white noise. The main
contributions of this paper lie in the following aspects.
(1) A new sliding function is designed; compared with
the existing results [18, 19]. (2) By incorporating the vir-
tual state feedback control into the performance anal-
ysis of the sliding mode dynamics, a sufficient condi-
tion for the mean square asymptotic stability and pas-
sivity of the sliding mode dynamics is easily derived via
LMI.
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2. Problem Formulation

Consider the following chaotic system with stochastic distur-
bances:

𝑑𝑥 (𝑡) = [(𝐴 + Δ𝐴) 𝑥 (𝑡) + 𝐵 (𝑢 (𝑡) + 𝑓 (𝑥) + Δ𝑓 (𝑥))

+ 𝐻V (𝑡)] 𝑑𝑡 + 𝐷𝑥 (𝑡) 𝑑𝑤 (𝑡)

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector, 𝑦(𝑡) ∈ 𝑅𝑙 is the system
output, and 𝑢(𝑡) ∈ 𝑅𝑚×𝑛 is the control input. 𝑓(𝑥) is a
nonlinear real-valued function vector. Δ𝑓(𝑥) represents the
uncertainty. 𝐴, 𝐵, 𝐶, 𝐷, and 𝐻 are matrices with compatible
dimensions, and (𝐴, 𝐵) is controllable. V(𝑡) is an external
bounded disturbance. 𝑤(𝑡) is a one-dimensional Brownian
motion. Δ𝐴(𝑡) is an uncertainty which is assumed to be in
the form of

Δ𝐴 (𝑡) = 𝐷
1
𝐹 (𝑡) 𝐸

1
, (2)

where𝐷
1
and 𝐸

1
are real matrices with appropriate sizes and

𝐹(𝑡) is an unknown time-varying matrix function satisfying

𝐹
𝑇

(𝑡) 𝐹 (𝑡) ≤ 𝐼. (3)

The following assumption is necessary for further study.

Assumption 1. The uncertainty Δ𝑓(𝑥) satisfies

Δ𝑓 (𝑥)
 ≤ 𝜌 ‖𝑥 (𝑡)‖ , (4)

where 𝜌 is a known positive constant.

3. Main Results

For system (1), firstly, a sliding function is designed and a
sliding mode controller is designed to drive the state onto the
sliding surface in a finite time. Secondly, a sufficient condition
is given, which guarantees system (1) on the sliding surface
𝑠(𝑡) = 0 is mean square asymptotically stable and robustly
passive.

3.1. Sliding Mode Controller Design. For system (1), a sliding
function is designed as

𝑠 (𝑡) = 𝐵
𝑇

𝑃 [𝑥 (𝑡) − 𝜂𝑒
−𝜆𝑡

𝑥 (0)] , (5)

where 𝑃 > 0 is a matrix to be chosen later and 𝜆 and 𝜂 are
positive constants.

Usually, the system (1) on the sliding surface 𝑠(𝑡) = 0 is
called the sliding mode dynamics of the system (1).

Remark 2. The sliding function satisfies 𝑠(0) = 0, so the
reaching interval is eliminated. Furthermore, if the parameter
𝜂 = 0, then 𝑠(𝑡) = 𝐵

𝑇𝑃𝑥(𝑡), which is widely used, such as in
[18, 19].

Definition 3. The sliding mode dynamics of system (1) is said
to be robustly passive if there exists a scalar 𝛾 > 0 such that

E{2∫
𝑡
∗

0

V𝑇 (𝑠) 𝑦 (𝑠) 𝑑𝑠} ≥ −𝛾∫
𝑡
∗

0

V𝑇 (𝑠) V (𝑠) 𝑑𝑠,

for any V (𝑡) ∈ 𝐿
2
[0,∞)

(6)

for all 𝑡∗ ≥ 0 under zero initial conditions and for all admis-
sible uncertainties.

To achieve the control objective, the input 𝑢(𝑡) is designed
as follows:

𝑢 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

−(𝐵
𝑇𝑃𝐵)
−1

×[𝐵𝑇𝑃𝐴𝑥 (𝑡) + 𝑓 (𝑥)

+ 𝜆𝜂𝑒
−𝜆𝑡

𝐵
𝑇

𝑃𝑥 (0)

+ (𝛽 +

𝐵𝑇𝑃𝐷

1


⋅
𝐸1𝑥 (𝑡)



+ 𝜌 ‖𝑥 (𝑡)‖ ⋅

𝐵𝑇𝑃𝐵



+ ‖V (𝑡)‖ ⋅

𝐵𝑇𝑃𝐻


) sgn 𝑠 (𝑡)

+


𝐵𝑇𝑃𝐷𝑥 (𝑡)


𝑠 (𝑡)

‖𝑠(𝑡)‖
2

] , E {𝑠 (𝑡)} ̸= 0

0, E {𝑠 (𝑡)}= 0.

(7)

Theorem 4. If the sliding mode controller 𝑢(𝑡) is taken as (7),
then the trajectory of the system (1) converges to the sliding
surface 𝑠(𝑡) = 0 in a finite time.

Proof. Consider a Lyapunov function candidate as follows:

𝑉 (𝑡) = 𝑠
𝑇

(𝑡) 𝑠 (𝑡) . (8)

In fact, we have

̇𝑠 (𝑡) = 𝐵
𝑇

𝑃�̇� − 𝜂𝑒
−𝜆𝑡

𝐵
𝑇

𝑃𝑥 (0)

= 𝐵
𝑇

𝑃 (𝐴 + Δ𝐴) 𝑥 (𝑡) + 𝐵
𝑇

𝑃𝐵 (𝑢 (𝑡) + 𝑓 (𝑥) + Δ𝑓 (𝑥))

+ 𝐵
𝑇

𝑃𝐻V (𝑡) + 𝐵
𝑇

𝑃𝐷𝑥 (𝑡) �̇� (𝑡) + 𝜆𝜂𝑒
−𝜆𝑡

𝐵
𝑇

𝑃𝑥 (0) .

(9)

If E{𝑠(𝑡)} ̸= 0, calculating the time derivative of 𝑉(𝑡) along
the trajectory of system (1), then we have

�̇� = 2𝑠
𝑇

(𝑡) ̇𝑠 (𝑡) = 2𝑠
𝑇

(𝑡)

× (𝐵
𝑇

𝑃 (𝐴 + Δ𝐴) 𝑥 (𝑡) + 𝐵
𝑇

𝑃𝐵 (𝑢 (𝑡) + 𝑓 (𝑥) + Δ𝑓 (𝑥))

+𝐵
𝑇

𝑃𝐻V (𝑡) + 𝐵
𝑇

𝑃𝐷𝑥 (𝑡) �̇� (𝑡) + 𝜆𝜂𝑒
−𝜆𝑡

𝐵
𝑇

𝑃𝑥 (0)) .

(10)

Substitute (7) into (10), by which the weak infinitesimal
operatorL𝑉(𝑡) can be given by

L𝑉 (𝑡) ≤ −2𝛽 ‖𝑠 (𝑡)‖ . (11)
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That is,

L𝑉 (𝑡) ≤ −2𝛽√𝑉 (𝑡). (12)

By Itô’s formula, this yields

L ‖𝑠 (𝑡)‖ = L√𝑉 (𝑡) ≤ −𝛽 (13)

and hence

E {‖𝑠 (𝑡)‖} ≤ E {‖𝑠 (0)‖} − 𝛽𝑡 (14)

which impliesE{‖𝑠(𝑡)‖} converges to zero in a finite time.The
proof is completed.

3.2. Stability Analysis of the Sliding Mode Dynamics. The
following theorem gives a sufficient condition to guarantee
the sliding mode dynamics is mean square asymptotically
stable and robustly passive.

Theorem 5. Consider system (1) and a given constant 𝜎 > 0. If
there exist matrices 𝑋 > 0 and 𝑌 and a scalar 𝜛 > 0 such that
the following linear matrix inequality (LMI) is true:

[
[
[

[

Δ 𝐻 + 𝑋𝐶𝑇 𝑋𝐷𝑇 𝑋𝐸𝑇
1

⋆ −𝛾𝐼 0 0

⋆ ⋆ −𝑋 0

⋆ ⋆ ⋆ −𝜛𝐼

]
]
]

]

< 0, (15)

where Δ = 𝐴𝑋 + 𝐵𝑌 + 𝑋𝑇𝐴𝑇 + 𝑌𝑇𝐵𝑇 + 𝜛𝐷
1
𝐷𝑇
1

+ 𝜎𝑋,
then the sliding mode dynamics of system (1) is mean square
asymptotically stable and robustly passive. Furthermore, 𝑃 =

𝑋−1 and 𝐾 = 𝑌𝑋−1.

Proof. Consider the following Lyapunov functional candi-
date:

𝑉 (𝑡) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) . (16)

The time derivative of𝑉(𝑡) along the trajectories of system (1)
is given by

�̇� = 2𝑥
𝑇

𝑃 [(𝐴 + Δ𝐴) 𝑥 (𝑡) + 𝐵 (𝑢 (𝑡) + 𝑓 (𝑥)) + 𝐻V (𝑡)]

+ 2𝑥
𝑇

𝑃𝐷𝑥 (𝑡) �̇� (𝑡) + 𝑥
𝑇

(𝑡) 𝐷
𝑇

𝑃𝐷𝑥 (𝑡) ,

(17)

where𝐾 is an arbitrary matrix.
The weak infinitesimal operatorL𝑉(𝑡) can be given by

L𝑉 (𝑡) = 𝑥
𝑇

(𝑡) [𝑃 (𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)
𝑇

𝑃] 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃Δ𝐴𝑥 (𝑡) + 2𝑥
𝑇

(𝑡) 𝑃𝐻V (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃𝐵 [𝑢 (𝑡) + 𝑓 (𝑥, 𝑡) − 𝐾𝑥 (𝑡)]

+ 𝑥
𝑇

(𝑡) 𝐷
𝑇

𝑃𝐷𝑥 (𝑡) .

(18)

Note that

2𝑥
𝑇

(𝑡) 𝑃Δ𝐴𝑥 (𝑡) ≤ 𝜛𝑥
𝑇

(𝑡) 𝑃𝐷
1
𝐷
𝑇

1
𝑃𝑥 (𝑡)

+
1

𝜛
𝑥
𝑇

(𝑡) 𝐸
𝑇

1
𝐸
1
𝑥 (𝑡) .

(19)

On the sliding surface 𝑠(𝑡) = 0, from (5), we have

2𝑥
𝑇

(𝑡) 𝑃𝐵 = 2𝜂𝑒
−𝜆𝑡

𝑥
𝑇

(0) 𝑃𝐵. (20)

Under the zero-initial conditions, we have

2𝑥
𝑇

(𝑡) 𝑃𝐵 = 2𝜂𝑒
−𝜆𝑡

𝑥
𝑇

(0) 𝑃𝐵 = 0. (21)

From (18) and (19), we have

L𝑉 (𝑡) − 2V𝑇 (𝑡) 𝑦 (𝑡) − 𝛾V𝑇 (𝑡) V (𝑡)

≤ [
𝑥 (𝑡)

V (𝑡)]
𝑇

[
Δ 𝑃𝐻 + 𝐶𝑇

∗ −𝛾𝐼
] [

𝑥 (𝑡)

V (𝑡)] ,

(22)

whereΔ = 𝑃(𝐴+𝐵𝐾)+(𝐴+𝐵𝐾)
𝑇

𝑃+𝜛𝑃𝐷
1
𝐷𝑇
1
𝑃+(1/𝜛)𝐸𝑇

1
𝐸
1
+

𝐷𝑇𝑃𝐷.
Before and aftermultiplyingmatrix (15) by diag{𝑃, 𝐼, 𝑃, 𝐼},

and using 𝑃 = 𝑋−1 and𝑌 = 𝐾𝑋, by Shur complement, we get

[
Δ + 𝜎𝑃 𝑃𝐻 + 𝐶𝑇

∗ −𝛾𝐼
] < 0. (23)

From (22) and (23), we have

L𝑉 (𝑡) − 2V𝑇 (𝑡) 𝑦 (𝑡) − 𝛾V𝑇 (𝑡) V (𝑡) < −𝜎𝑉 (𝑡) < 0. (24)

Integrating (24) from 0 to 𝑡 and noting that 𝑥(0) = 0, we
obtain

0 ≤ E {𝑉 (𝑡)} < E{∫
𝑡

0

[−𝛾V𝑇 (𝑡) V (𝑡) − 2𝑦
𝑇

(𝑡) 𝑦 (𝑡)] 𝑑𝑡} .

(25)

We easily get

E{2∫
𝑡

0

V𝑇 (𝑡) 𝑦 (𝑡) 𝑑𝑡} < 𝛾E{∫
𝑡

0

V𝑇 (𝑡) V (𝑡) 𝑑𝑡} . (26)

Thus system (1) on the sliding surface 𝑠(𝑡) = 0 is robustly
passive.

In fact, when V(𝑡) = 0, on the sliding surface 𝑠(𝑡) = 0, we
can have

L𝑉 (𝑡) = 𝑥
𝑇

(𝑡) [𝑃 (𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)
𝑇

𝑃] 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃Δ𝐴𝑥 (𝑡) + 2𝜂𝑒
−𝜆𝑡

𝑥
𝑇

(0) 𝑃𝐵

× [𝑢 (𝑡) + 𝑓 (𝑥, 𝑡) − 𝐾𝑥 (𝑡)] + 𝑥
𝑇

(𝑡) 𝐷
𝑇

𝑃𝐷𝑥 (𝑡) .

(27)

Since E{𝑥(𝑡)} is bounded, then E{𝑢(𝑡)} is bounded from (7).
So the termE{2𝑥𝑇(0)𝑃𝐵[𝑢(𝑡)−𝐾𝑥+𝑓(𝑥)]} is bounded, where
E{⋅} is an expect operator. Assume that its boundedness is 𝛿.

Noting that (15) implies Δ < −𝜎𝑃, from (27), we have

E {L𝑉 (𝑡)} ≤ −𝜎E {𝑉 (𝑡)} + 𝛿𝑒
−𝜆𝑡

. (28)

Solving (28), we obtain

E {𝑉 (𝑡)} < 𝑒
−𝜎𝑡

E {𝑉 (0)} + 𝛿𝑒
−𝜎𝑡

∫
𝑡

0

𝑒
(𝜎−𝜆)𝜏

𝑑𝜏

=
{

{

{

𝑒
−𝜎𝑡E {𝑉 (0)} + 𝛿𝑒−𝜎𝑡𝑡, 𝜎 = 𝜆,

𝑒−𝜎𝑡E {𝑉 (0)} + 𝛿
𝑒−𝜆𝑡 − 𝑒−𝜎𝑡

𝜎 − 𝜆
, 𝜎 ̸= 𝜆.

(29)
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We easily get

lim
𝑡→∞

E {𝑉 (𝑡)} = 0. (30)

From the above, we get

lim
𝑡→∞

E {𝑥 (𝑡)} = 0. (31)

This implies that system (1) with V(𝑡) = 0 is mean square
asymptotically stable on the sliding surface 𝑠(𝑡) = 0.Theproof
is completed.

Remark 6. From (28), the boundedness of the chaotic system
state is used; because the state of chaotic system with
stochastic disturbances is indeterminate, the expectation is
used to define the boundedness of the state.

4. Example

In this section, we use Genesio’s chaotic system to show the
effectiveness of the method. Genesio’s system with stochastic
disturbance is as follows:

�̇�
1
(𝑡) = 𝑥

2
(𝑡) + 0.1𝑥

1
(𝑡) �̇� (𝑡) ,

�̇�
2
(𝑡) = 𝑥

3
(𝑡) + 0.1𝑥

3
(𝑡) �̇� (𝑡) ,

�̇�
3
(𝑡) = − 6𝑥

1
(𝑡) − 2.92𝑥

2
(𝑡) − 1.2𝑥

3
(𝑡) + 𝑥

2

1
(𝑡)

+ 0.1 sin (𝑥
1
(𝑡)) + 0.001 sin (𝑡) + 𝑢 (𝑡) ,

𝑦 (𝑡) = 𝑥
3
(𝑡) ,

(32)

where

𝐴 = [

[

0 1 0

0 0 1

−6 −2.92 −1.2

]

]

, 𝐵 = [

[

0

0

1

]

]

, 𝐻 = [

[

0

0

0.001

]

]

,

𝐶 = [0 0 1] , 𝐷 = [

[

0.1 0 0

0 0 0.1

0 0 0

]

]

, 𝐷
1
= [

[

0.1 0 0

0 0 0

0 0 0

]

]

,

𝐸
1
= 0.1, 𝐹 (𝑡) = sin 𝑡, 𝑓 (𝑥) = 𝑥

2

1
(𝑡) ,

Δ𝑓 (𝑥) = 0.1 cos (𝑥
1
(𝑡)) , V (𝑡) = sin (𝑡) .

(33)

Let 𝜎 = 0.5 and 𝛾 = 0.2; solving LMI (15) yields

𝑋 = [

[

1.0290 −0.3534 0.0052

−0.3534 0.2286 −0.1346

0.0052 −0.1346 0.4802

]

]

. (34)

Then we have

𝑃 = 𝑋
−1

= [

[

2.6316 4.8524 1.3317

4.8524 14.1869 3.9244

1.3317 3.9244 3.1684

]

]

. (35)

The initial value is 𝑥(0) = [−1 0 1]
𝑇.

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

t (s)

x1

x2

x3

Figure 1: State 𝑥(𝑡) of the closed-loop system.

0 5 10 15 20
−7
−6
−5
−4
−3
−2
−1
0
1
2
3

t (s)

Figure 2: The control input 𝑢(𝑡).

From Assumption 1, we have 𝜌 = 0.1. The parameters of
controller (7) are 𝜂 = 1 and𝛽 = 0.0001.The simulation results
are as shown in Figures 1, 2, 3, and 4.

Figures 1, 2, and 3 show the time responses of the
state, control input, and sliding function, respectively. It is
concluded that the proposed method is effective. In view of
Figure 3 and Figure 4, it is obvious that the sliding function
designed in this paper eliminates the reaching interval and
reduces the chattering.

5. Conclusion

In this paper, the stabilization problem of uncertain chaotic
systems with stochastic disturbances is investigated. A new
sliding function is proposed, which not only makes the
reaching interval eliminated, but also reduces the difficulty
of systems analysis and design. A sliding mode controller is
designed to make the state of system reach the sliding surface
in a finite time. Finally, the simulation shows the effectiveness
of the proposed method.
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