14,802 research outputs found

    Optimally Stabilized PET Image Denoising Using Trilateral Filtering

    Full text link
    Low-resolution and signal-dependent noise distribution in positron emission tomography (PET) images makes denoising process an inevitable step prior to qualitative and quantitative image analysis tasks. Conventional PET denoising methods either over-smooth small-sized structures due to resolution limitation or make incorrect assumptions about the noise characteristics. Therefore, clinically important quantitative information may be corrupted. To address these challenges, we introduced a novel approach to remove signal-dependent noise in the PET images where the noise distribution was considered as Poisson-Gaussian mixed. Meanwhile, the generalized Anscombe's transformation (GAT) was used to stabilize varying nature of the PET noise. Other than noise stabilization, it is also desirable for the noise removal filter to preserve the boundaries of the structures while smoothing the noisy regions. Indeed, it is important to avoid significant loss of quantitative information such as standard uptake value (SUV)-based metrics as well as metabolic lesion volume. To satisfy all these properties, we extended bilateral filtering method into trilateral filtering through multiscaling and optimal Gaussianization process. The proposed method was tested on more than 50 PET-CT images from various patients having different cancers and achieved the superior performance compared to the widely used denoising techniques in the literature.Comment: 8 pages, 3 figures; to appear in the Lecture Notes in Computer Science (MICCAI 2014

    Compact source detection in multi-channel microwave surveys: from SZ clusters to polarized sources

    Get PDF
    In this paper we describe the state-of-the art status of multi-frequency detection techniques for compact sources in microwave astronomy. From the simplest cases where the spectral behaviour is well-known (i.e. thermal SZ clusters) to the more complex cases where there is little a priori information (i.e. polarized radio sources) we will review the main advances and the most recent results in the detection problem.Comment: 13 pages, 4 figures. Accepted for publication in the Special Issue "Astrophysical Foregrounds in Microwave Surveys" of the journal Advances in Astronom

    Stochastic analysis of an error power ratio scheme applied to the affine combination of two LMS adaptive filters

    Get PDF
    The affine combination of two adaptive filters that simultaneously adapt on the same inputs has been actively investigated. In these structures, the filter outputs are linearly combined to yield a performance that is better than that of either filter. Various decision rules can be used to determine the time-varying parameter for combining the filter outputs. A recently proposed scheme based on the ratio of error powers of the two filters has been shown by simulation to achieve nearly optimum performance. The purpose of this paper is to present a first analysis of the statistical behavior of this error power scheme for white Gaussian inputs. Expressions are derived for the mean behavior of the combination parameter and for the adaptive weight mean-square deviation. Monte Carlo simulations show good to excellent agreement with the theoretical predictions

    A Cosmic Watershed: the WVF Void Detection Technique

    Get PDF
    On megaparsec scales the Universe is permeated by an intricate filigree of clusters, filaments, sheets and voids, the Cosmic Web. For the understanding of its dynamical and hierarchical history it is crucial to identify objectively its complex morphological components. One of the most characteristic aspects is that of the dominant underdense Voids, the product of a hierarchical process driven by the collapse of minor voids in addition to the merging of large ones. In this study we present an objective void finder technique which involves a minimum of assumptions about the scale, structure and shape of voids. Our void finding method, the Watershed Void Finder (WVF), is based upon the Watershed Transform, a well-known technique for the segmentation of images. Importantly, the technique has the potential to trace the existing manifestations of a void hierarchy. The basic watershed transform is augmented by a variety of correction procedures to remove spurious structure resulting from sampling noise. This study contains a detailed description of the WVF. We demonstrate how it is able to trace and identify, relatively parameter free, voids and their surrounding (filamentary and planar) boundaries. We test the technique on a set of Kinematic Voronoi models, heuristic spatial models for a cellular distribution of matter. Comparison of the WVF segmentations of low noise and high noise Voronoi models with the quantitatively known spatial characteristics of the intrinsic Voronoi tessellation shows that the size and shape of the voids are succesfully retrieved. WVF manages to even reproduce the full void size distribution function.Comment: 24 pages, 15 figures, MNRAS accepted, for full resolution, see http://www.astro.rug.nl/~weygaert/tim1publication/watershed.pd

    Intelligibility Enhancement of Synthetic Speech: A Review

    Get PDF
    Current method of speech enhancement has been developed with adaptive filtering approach. The adaptive filter utilizes the least mean square algorithm for noise removal, but in LMS algorithm key parameter is step size. When step size is large speed and least mean square error is large and it is that computational cost increases to an undesirable level as the length of the impulse response increases. This paper provide a detail review on existing methodologies on enhancement on synthetic speech

    Estimation from quantized Gaussian measurements: when and how to use dither

    Full text link
    Subtractive dither is a powerful method for removing the signal dependence of quantization noise for coarsely quantized signals. However, estimation from dithered measurements often naively applies the sample mean or midrange, even when the total noise is not well described with a Gaussian or uniform distribution. We show that the generalized Gaussian distribution approximately describes subtractively dithered, quantized samples of a Gaussian signal. Furthermore, a generalized Gaussian fit leads to simple estimators based on order statistics that match the performance of more complicated maximum likelihood estimators requiring iterative solvers. The order statistics-based estimators outperform both the sample mean and midrange for nontrivial sums of Gaussian and uniform noise. Additional analysis of the generalized Gaussian approximation yields rules of thumb for determining when and how to apply dither to quantized measurements. Specifically, we find subtractive dither to be beneficial when the ratio between the Gaussian standard deviation and quantization interval length is roughly less than one-third. When that ratio is also greater than 0.822/K^0.930 for the number of measurements K > 20, estimators we present are more efficient than the midrange.https://arxiv.org/abs/1811.06856Accepted manuscrip

    Filtering techniques for the detection of Sunyaev-Zel'dovich clusters in multifrequency CMB maps

    Get PDF
    The problem of detecting Sunyaev-Zel'dovich (SZ) clusters in multifrequency CMB observations is investigated using a number of filtering techniques. A multifilter approach is introduced, which optimizes the detection of SZ clusters on microwave maps. An alternative method is also investigated, in which maps at different frequencies are combined in an optimal manner so that existing filtering techniques can be applied to the single combined map. The SZ profiles are approximated by the circularly-symmetric template τ(x)=[1+(x/rc)2]λ\tau (x) = [1 +(x/r_c)^2]^{-\lambda}, with λ12\lambda \simeq \tfrac{1}{2} and xxx\equiv |\vec{x}|, where the core radius rcr_c and the overall amplitude of the effect are not fixed a priori, but are determined from the data. The background emission is modelled by a homogeneous and isotropic random field, characterized by a cross-power spectrum Pν1ν2(q)P_{\nu_1 \nu_2}(q) with qqq\equiv |\vec{q}|. The filtering methods are illustrated by application to simulated Planck observations of a 12.8×12.812.8^\circ \times 12.8^\circ patch of sky in 10 frequency channels. Our simulations suggest that the Planck instrument should detect 10000\approx 10000 SZ clusters in 2/3 of the sky. Moreover, we find the catalogue to be complete for fluxes S>170S > 170 mJy at 300 GHz.Comment: 12 pages, 7 figures; Corrected figures. Submitted to MNRA
    corecore