5,927 research outputs found

    Light subgraphs in graphs with average degree at most four

    Full text link
    A graph HH is said to be {\em light} in a family G\mathfrak{G} of graphs if at least one member of G\mathfrak{G} contains a copy of HH and there exists an integer λ(H,G)\lambda(H, \mathfrak{G}) such that each member GG of G\mathfrak{G} with a copy of HH also has a copy KK of HH such that degG(v)λ(H,G)\deg_{G}(v) \leq \lambda(H, \mathfrak{G}) for all vV(K)v \in V(K). In this paper, we study the light graphs in the class of graphs with small average degree, including the plane graphs with some restrictions on girth.Comment: 12 pages, 18 figure

    An exact general remeshing scheme applied to physically conservative voxelization

    Full text link
    We present an exact general remeshing scheme to compute analytic integrals of polynomial functions over the intersections between convex polyhedral cells of old and new meshes. In physics applications this allows one to ensure global mass, momentum, and energy conservation while applying higher-order polynomial interpolation. We elaborate on applications of our algorithm arising in the analysis of cosmological N-body data, computer graphics, and continuum mechanics problems. We focus on the particular case of remeshing tetrahedral cells onto a Cartesian grid such that the volume integral of the polynomial density function given on the input mesh is guaranteed to equal the corresponding integral over the output mesh. We refer to this as "physically conservative voxelization". At the core of our method is an algorithm for intersecting two convex polyhedra by successively clipping one against the faces of the other. This algorithm is an implementation of the ideas presented abstractly by Sugihara (1994), who suggests using the planar graph representations of convex polyhedra to ensure topological consistency of the output. This makes our implementation robust to geometric degeneracy in the input. We employ a simplicial decomposition to calculate moment integrals up to quadratic order over the resulting intersection domain. We also address practical issues arising in a software implementation, including numerical stability in geometric calculations, management of cancellation errors, and extension to two dimensions. In a comparison to recent work, we show substantial performance gains. We provide a C implementation intended to be a fast, accurate, and robust tool for geometric calculations on polyhedral mesh elements.Comment: Code implementation available at https://github.com/devonmpowell/r3

    The four color theorem: from graph theory to proof assistants.

    Get PDF
    openLa tesi inizialmente descrive i fondamenti della teoria dei grafi con le principali nozioni per affrontare il teorema dei sei, cinque e infine dei quattro colori. Quest'ultimo viene descritto dal punto di vista storico e viene fornita una traccia della dimostrazione, per poi indagare gli aspetti legati all'utilizzo di proof assistant.First, it describes the basic notions of graph theory in order to face the six, five and finally the four color theorem. This last problem is treated from an historical point of view and the main steps of the proof are given. Finally, some aspects linked to proof assistants are examine

    Hierarchical Partial Planarity

    Full text link
    In this paper we consider graphs whose edges are associated with a degree of {\em importance}, which may depend on the type of connections they represent or on how recently they appeared in the scene, in a streaming setting. The goal is to construct layouts of these graphs in which the readability of an edge is proportional to its importance, that is, more important edges have fewer crossings. We formalize this problem and study the case in which there exist three different degrees of importance. We give a polynomial-time testing algorithm when the graph induced by the two most important sets of edges is biconnected. We also discuss interesting relationships with other constrained-planarity problems.Comment: Conference version appeared in WG201

    Edge Routing with Ordered Bundles

    Full text link
    Edge bundling reduces the visual clutter in a drawing of a graph by uniting the edges into bundles. We propose a method of edge bundling drawing each edge of a bundle separately as in metro-maps and call our method ordered bundles. To produce aesthetically looking edge routes it minimizes a cost function on the edges. The cost function depends on the ink, required to draw the edges, the edge lengths, widths and separations. The cost also penalizes for too many edges passing through narrow channels by using the constrained Delaunay triangulation. The method avoids unnecessary edge-node and edge-edge crossings. To draw edges with the minimal number of crossings and separately within the same bundle we develop an efficient algorithm solving a variant of the metro-line crossing minimization problem. In general, the method creates clear and smooth edge routes giving an overview of the global graph structure, while still drawing each edge separately and thus enabling local analysis

    Reducible Configurations and So On: The Final Years of the Four Color Theorem

    Get PDF
    The Four Color Theorem is in a set of mathematical questions that are very simple to state but amazingly complex to answer. It goes as follows, "given any map, are any more than 4 colors required to color the map in such a way that no two areas which share a border also share a color?"(2). It was thought to be proven by Alfred Kempe for nearly a decade using a unique but unsuccessful process later referred to as Kempe chains. It wasn't until 1913, with George Birkhoff's treatment of reducibility, was true progress from the "proof" of Kempe to be made. From here, Heinrich Heesch explored reducibility with an improvement on the established A, B, and C-reducibilities, finding something algorithmically sound in D-reducibility and his subsequent discharging methods. Then Karl Durre introduced the first, somewhat rudimentary, computer program of D-reducibility. From here the extensive use of the super computers of the era helped seal the fate of the long unfinished theorem, with Wolfgang Haken and Kenneth Appel at the helm. We seek to examine the history of this theorem from the proof of Kempe to the utilization of reducible configurations and discharging methods of Durre and Heesch and into the eventual proof of the theorem itself

    Planar graphs : a historical perspective.

    Get PDF
    The field of graph theory has been indubitably influenced by the study of planar graphs. This thesis, consisting of five chapters, is a historical account of the origins and development of concepts pertaining to planar graphs and their applications. The first chapter serves as an introduction to the history of graph theory, including early studies of graph theory tools such as paths, circuits, and trees. The second chapter pertains to the relationship between polyhedra and planar graphs, specifically the result of Euler concerning the number of vertices, edges, and faces of a polyhedron. Counterexamples and generalizations of Euler\u27s formula are also discussed. Chapter III describes the background in recreational mathematics of the graphs of K5 and K3,3 and their importance to the first characterization of planar graphs by Kuratowski. Further characterizations of planar graphs by Whitney, Wagner, and MacLane are also addressed. The focus of Chapter IV is the history and eventual proof of the four-color theorem, although it also includes a discussion of generalizations involving coloring maps on surfaces of higher genus. The final chapter gives a number of measurements of a graph\u27s closeness to planarity, including the concepts of crossing number, thickness, splitting number, and coarseness. The chapter conclused with a discussion of two other coloring problems - Heawood\u27s empire problem and Ringel\u27s earth-moon problem
    corecore