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ABSTRACT 

PLANAR GRAPHS: A HISTORICAL PERSPECTIVE 

Rick Alan Hudson 

July 20, 2004 

The field of graph theory has been indubitably influenced by the study of planar graphs. 

This thesis, consisting of five chapters, is a historical account of the origins and 

development of concepts pertaining to planar graphs and their applications. The first 

chapter serves as an introduction to the history of graph theory, including early studies of 

graph theory tools such as paths, circuits, and trees. The second chapter pertains to the 

relationship between polyhedra and planar graphs, specifically the result of Euler 

concerning the number of vertices, edges, and faces of a polyhedron. Counterexamples 

and generalizations of Euler's formula are also discussed. Chapter III describes the 

background in recreational mathematics of the graphs of Ks and K3,3 and their importance 

to the first characterization of planar graphs by Kuratowski. Further characterizations of 

planar graphs by Whitney, Wagner, and MacLane are also addressed. The focus of 

Chapter IV is the history and eventual "proof' of the four-color theorem, although it also 

includes a discussion of generalizations involving coloring maps on surfaces of higher 

genus. The final chapter gives a number of measurements of a graph's closeness to 

planarity, including the concepts of crossing number, thickness, splitting number, and 

coarseness. The chapter concludes with a discussion of two other coloring problems -

Heawood's empire problem and Ringel's earth-moon problem. 
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CHAPTER I 

A BRIEF INTRODUCTION TO THE 
HISTORY OF GRAPH THEORY 

A planar graph is a graph that can be drawn in the plane without any edges 

crossing one another. The history of planar graphs begins with the history of graph theory 

in that many of the early graph representations were planar. Early graphs, formed by a set 

of nodes (or vertices) and a set of edges, can be traced as far back as Ancient Egypt in the 

context of games and Ancient Rome in the form of genealogical family trees (Kruja et al. 

2002, 272-277). However, the true genesis of the field of mathematical graph theory is 

universally attributed to Leonhard Euler, who at the time of his discoveries in 1736, was 

serving as chief mathematician at the Academy at St. Petersburg. 

Konigsburg Bridge Problem 

The problem of the Konigsburg bridges can be traced back to Heinrich Kuhn, a 

mathematics professor at the academic gymnasium in Danzig. The mayor of Danzig was 

Carl Leonhard Gottlieb Ehler, a close friend of Euler. The two men corresponded during 

the time period of 1735 to 1742. Through Ehler's letters, Kuhn was able to communicate 

with Euler, and among their discussions in a letter dated March 9, 1736, was the question 

of the Konigsburg bridges, although it is likely that Euler and Ehler had written about the 

problem previously (Sachs, Stiebitz and Wilson 1988, 134-135). The Prussian city of 
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Konigsburg, known today as Kaliningrad, was situated on the Pregel River in such a way 

that an island in the river near one of its branchings fonned four land masses. The four 

land areas were connected by a total of seven bridges, as shown in Figure 1. The problem 

was to attempt to start in any of the four areas of land and to create a route that crosses 

each bridge exactly once (Biggs, Lloyd and Wilson 1976, 1-8). On March 13, 1736, Euler 

wrote to Giovanni Jacobo Marinoni of Venice, who was serving as Court Astronomer to 

Kaiser Leopold I. In this letter, Euler remarked on the Konigsburg problem, 

"The question is so banal, but seemed to me worthy of attention in that neither 
geometry nor algebra, nor even the art of counting [ars combinatoria] was 
sufficient to solve it. In view of this, it occurred to me to wonder whether it 
belonged to the geometry of position [geometria situs], which Leibniz had once so 
much longed for" (Sachs, Stiebitz, and Wilson 1988, 135-136). 

Figure 1. The Konigsburg Bridges 

By early April, Euler replied to Ehler's previous letter by saying that the 

Konigsburg question "bears little relationship to mathematics ... and its discovery does 

not depend on any mathematical principle" (Sachs, Stiebitz, and Wilson 1988, 136). 

Euler proclaimed his ignorance of the new discipline of the geometry of position that 

Gottfried Wilhelm Leibniz, one of the founders of calculus, had mentioned in his work. 
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In a 1679 letter from Leibniz to Christiaan Huygens, Leibniz had described the need for 

such a geometry of position that has a "new characteristic, completely different from 

algebra, which will have great advantage to represent to the mind exactly and naturally 

though without figures, everything which depends on imagination" (Kruja et al. 2002, 

277-281). Leibniz had been closely connected to the Academy at St. Petersburg, and it 

was through this relationship that Euler likely learned of Leibniz's views. 

Even though the letter to Ehler may make one believe Euler's judgment was that 

the Konigsburg bridge problem had no relationship to mathematics, he did in 1736, 

produce a paper on the problem. In the paper, he described Leibniz's view that there were 

two braches of geometry: the one studied extensively dealing with distances, and a 

second branch that involves the geometry of position (Sachs, Stiebitz, and Wilson 1988, 

136). Euler generalized the Konigsburg bridge problem to any number of land regions 

and bridges, and stated a necessary and sufficient condition for a walk across every 

bridge to take place. The condition was that either no region or only two regions having 

an odd number of bridges allows for the walk to take place. Since the land masses of the 

city of Konigsburg each were attached by an odd number of bridges, due to Euler's 

conclusions, one can deduce that the bridges cannot be traversed in the desired manner 

(Lloyd 1975,411-412). 

One may note that although Euler's work does contain the graph theoretic 

concepts of edges and vertices, he provided no graphical drawings in his paper. The 

article did contain two of Euler's sketches of maps of Konigsburg. Euler's choice not to 

create a graphical depiction may have been influenced by Leibniz's words cited above 

that stated that the geometry of position could be represented "without figures." W.W. 
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Rouse Ball eventually was the first person to represent the Konigsburg bridge problem 

graphically in a book on recreational mathematics in 1892 (Kruja et al. 2002, 277-281). 

One can create a figure similar to Ball's by replacing each land mass with a vertex, and 

then for each bridge, drawing an edge between the two vertices that represent the 

corresponding land masses that that bridge connects. A model of the Konigsburg bridges 

in graph theoretic form, similar to the model presented by Ball, is shown in Figure 2. In 

modem graph theory, a sequence of vertices and edges in which each edge occurs only 

once is called an Eulerian path and the valency, or degree, of a vertex is the number of 

edges incident to the vertex. Thus, Euler's initial findings in graph theory can be 

succinctly stated in the following theorem: "If a connected graph has more than two 

vertices of odd valency, then it cannot contain an Eulerian path" (Biggs, Lloyd, and 

Wilson 1976,10). 

Figure 2. A Graphical Representation of the Konigsburg Bridges 
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It is important to point out that Euler was only able to prove the necessary 

condition correctly. His corresponding proof for sufficiency was deficient (Lloyd 1975, 

411-412). However, he was correct in assuming it, in that almost 140 years later, in 1873, 

a paper was published posthumously by Carl Hierholzer that detailed a proof of the 

sufficiency of Euler's argument. Thus, "if a connected graph has no vertices of odd 

valency, or two such vertices, then it contains an Eulerian path" (Biggs, Lloyd, and 

Wilson 1976, 10-11). It is likely that Hierholzer was unaware of Euler's discussion of the 

Konigsburg bridge problem, because in an editorial note he did not make mention of it. 

However, Hierholzer did disucss Vorstudien zur Topolgie by Johann Benedict Listing. 

Listing's very important work discussed contexts in geometry that rely on position rather 

than measure, such as screws, knots, links, and diagram tracing puzzles. Problems similar 

to that of the Konigsburg bridges were then subsequently analyzed, including Coupy's 

1851 publication, which translated Euler's earlier papers into French and described an 

application involving the bridges across the Siene River. Saalaschiitz reported in 1876 

that a new bridge had been built in Konigsburg allowing an Eulerian walk to take place 

(Wilson 1978, 2). 

The Study of Circuits 

As we will see in subsequent chapters, many of the problems in graph theory were 

inspired by puzzles, mysteries, and brainteasers. While the problem of the Konigsburg 

bridges required a path that crossed each edge only once, a circuit is a path in which all 

the vertices and edges are distinct, except for the last vertex that is the same as the first. A 

circuit that passes through all the vertices of a graph is said to be a Hamiltonian circuit, 
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and graphs that have such a circuit are called Hamiltonian. A very famous puzzle 

involving Hamiltonian circuits is the knight's tour problem. In the game of chess, knights 

are allowed to move two units in one direction parallel to an edge of the board, followed 

by one unit in the perpendicular direction. The problem, which has been known for 

centuries, is to move a knight in such a way that it lands on each of the 64 squares of the 

chessboard once and only once and returns to its starting position (Biggs, Lloyd, and 

Wilson 1976,21-22). This is a Hamiltonian problem, because one can represent each 

square on the board as a vertex, and for each move by a knight, an edge is placed between 

the starting and ending squares (or vertices). In the 1600s, specific solutions of the 

knight's tour problem were known to individuals such as De Montmort and De Moivre. 

However, the general problem was not studied extensively until the 18th century, when 

Euler examined it. Euler concluded that no solution is possible on similar boards that 

have an odd number of squares, and gave the 5 x 5 board as a classic example (Wilson 

1999,507-508). In a 1771 paper, Alexandre-Theopile Vandermonde described a method 

for finding a knight's tour, as well as a discussion of several other topological results 

(Wilson 1978,3). A diagram of Vandermonde's graph of a knight's tour is shown in 

Figure 3. 

The Hamiltonian circuit is named for Sir William Rowan Hamilton, one of the 

greatest mathematicians of his era. One of his most intriguing discoveries is that which he 

termed the "Icosian Calculus." The Icosian Calculus is a non-commutative algebra that 

involves paths on the graphical representation of the regular dodecahedron. He 

announced his discovery in a letter dated October 1856, and later published two papers 

on the subject. Hamilton used the graphical representation to form a game, which he 
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presented at a meeting of the British Association in Dublin in 1857. An interested 

purveyor of games and puzzles purchased the game for 25 pounds, and began marketing 

the game two years later. Unfortunately, the game was not as successful as one would 

have hoped (Wilson 1999, 509). The object of the game was to attempt to find paths and 

circuits on the graph of the dodecahedron, given specific initial conditions. The first 

problem was essentially to find a Hamiltonian circuit on the game board. A second 

version of the Icosian game featured a solid dodecahedron with pegs on each of the 

vertices, and was called "The Traveler's Dodecahedron" or "A Voyage Round the 

World." This game named the vertices for 20 significant places from around the world, 

and the player had to attempt to connect all of the pegs with a thread (Biggs, Lloyd, and 

Wilson 1976,31-35). 

Figure 3. Vandermonde's Solution to the Knight's Tour 
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Although the games' renown caused these types of circuits to be named after 

Hamilton, he was not the first to publish on the subject. Thomas Penyngton Kirkman, an 

English clergyman, had discussed the problem in an 1856 paper on polyhedra. In his 

paper, Kirkman inquired if a circuit always existed in a given polyhedral graph. He made 

a claim for sufficiency, but unfortunately, his claim was false. His main contribution to 

the study of circuits was to identify a general class of graphs with no circuits. He did 

determine that polyhedra with an odd number of vertices and an even number of edges on 

each face do not have such a circuit (Biggs, Lloyd and Wilson 1976,28-30). Unlike the 

Eulerian path problem, there have been no necessary and sufficient conditions found for 

deciding whether a general graph has a Hamiltonian circuit or not, although sufficient 

conditions were discovered by Dirac in 1952 and Ore in 1960 (Wilson 1999,509). 

Trees 

Arthur Cayley introduced the word 'tree' in an 1857 paper to describe a 

connected graph with no cycles. However, the concept of trees had been used at least ten 

years earlier by both von Staudt and Kirchoff (Biggs Lloyd and Wilson 1995, 2176-

2177). Cayley was motivated to research trees by a differential calculus problem. Using 

rooted trees and generating functions, Cayley attempted to determine the number of trees 

with a certain number of edges. His original paper dealt with rooted trees, in which one 

particular vertex is labeled as the root of the graph. Two years later, he advanced his 

study by examining rooted trees in which each of the branches is the same distance from 

the root. It was not until 1875, that Cayley solved the difficult problem of enumerating 
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unrooted trees in a paper presented to the British Association (Biggs, Lloyd, and Wilson 

1976,37-44). 

Cayley's work was expanded by Camille Jordan in 1869, when he submitted a 

paper on connected "assemblages" of lines intersecting at vertices. He opened his paper 

by describing what we know today as isomorphic graphs. Two graphs, G and H, are said 

to be isomorphic if the vertices of H may be relabeled to be equivalent to those of the 

graph of G. In his discussion, Jordan introduced several new concepts relating to trees, 

such as the centroid, bicentroid, centre and bicentre, which significantly simplified 

Cayley's methods (Biggs, Lloyd, and Wilson 1995,2176-2177). In the aforementioned 

1875 paper, Cayley was able to utilize Jordan's work to solve the problem of unrooted 

trees, as well as to discuss some applications to the field of chemisty. 

James Joseph Sylvester and William Kingdon Clifford worked closely with 

Cayley in his work on chemical molecules, especially in the study of invariants. One late 

night at 3 A.M., Sylvester ingeniously thought to represent the invariants by diagrams. In 

1878, Sylvester wrote a note, followed by a paper, in an attempt to link these invariants to 

chemistry. Since a diagram can be drawn to represent every chemical molecule, Sylvester 

conjectured that a connection to his invariant theory must exist (Wilson 1978,4). Clifford 

had used graphical notation to represent the connection, and in his note, Sylvester coined 

the word "graph." This is the first time that the word "graph" is used in mathematical 

literature in its modem sense as dealing with a collection of sets of vertices and edges 

(Biggs, Lloyd, and Wilson 1995,2177). There is uncertainty as to whether Clifford or 

Sylvester was the first to use the word "graph," but it is clear that Sylvester was the first 

to use the word in print. Sylvester's paper originally appeared in the very first volume of 
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the American Journal of Mathematics, which Sylvester founded not long after accepting 

his professorship at Johns Hopkins University. 

Another interesting tree-counting problem involved determining the number of 

ways, tn, that n vertices can uniquely be joined to form a tree. For example, t4 = 16 since 

sixteen unique trees can be drawn using four vertices. This type of problem is often 

referred to as a "labeling tree problem." Although C.W. Borchard and Sylvester made 

progress on the subject, Cayley discovered the first solution in 1889: 

n-2 
tn = n . 

However, much like Euler's "proof' of the Konigsburg bridges result, Cayley's work was 

less than perfect. A more thorough proof appeared in 1918 when Heinz PrUfer, a German 

mathematician, wrote a paper on the question that arose from considering a problem 

involving permutations (Biggs, Lloyd, and Wilson 1976, 51-54). 

Konig's 1936 Textbook 

As the old saying goes, "From Konigsburg to Konig's book ... So runs the graphic 

tale" (Konig 1990, 1). In 1936, ironically the 20ath anniversary of Euler's first letter on 

the Konigsburg bridges, Denes Konig of Budapest wrote the first comprehensive book on 

graph theory entitled Theorie der endlichen und unendlichen Graphen or Theory of Finite 

and Infinite Graphs. In his foreward, Konig discussed the two origins of graph theory: 

science and intellectual games, 

"Just like most newer branches of mathematics graph theory has not been created 
as an end in itself but in connection with older parts of mathematics and the 
natural sciences .... Perhaps graph theory owes more to the contact of mankind 
with himself than to the contact of mankind with nature" (Konig 1990,48). 

10 



The study of paths, circuits, and trees furnishes a foundation for the field of graph theory, 

and serves as an introduction to the other properties of planar graphs that will be 

discussed in the following chapters. 
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CHAPTER II 

POLYHEDRA 

The study of planar graphs has its foundations in the study of polyhedra. One of 

the most important developments concerning polyhedra was a formula and its 

generalizations that connect the number of faces, edges, and vertices of a convex 

polyhedron. This elegant and useful equation, first found by Euler, states that 

V-E+F=2, 

where V is the number of vertices, E is the number of edges, and F is the number of faces 

of the polyhedron. A definition of a polyhedron in Euler's time was a solid that is 

bounded by planar faces (Lakatos 1976, 14). As this chapter will describe, modifications 

must be made to this seemingly simple definition in order to allow Euler's formula to be 

valid. 

Early Studies of Polyhedra 

Although polyhedra were most certainly studied by the Ancient Egyptians, today 

we credit the Greeks with discovering various mathematical properties of polyhedra. The 

Greeks were especially intrigued with regular polyhedra, those in which all of the faces 

are congruent regular polygons and all the polyhedral angles are congruent. They 

determined that only five regular convex polyhedra exist - the tetrahedron, cube, 
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octahedron, dodecahedron, and icosahedron. In his Elements, Euclid explains that the 

tetrahedron, cube and dodecahedron were known by the Pythagoreans, while the 

octahedron and icosahedron are attributed to Theaetetus. The five regular figures are 

commonly called the Platonic solids, because Plato described the construction of these 

five figures in his famous treatise Timaeus. Plato's work was based on the cosmology of 

Timaeus of Locri, a Pythagorean, who mystically associated four of the regular polyhedra 

with the four Empedoclean primal "elements" - fire (tetrahedron), air (octahedron), water 

(icosahedron), and earth (cube). The dodecahedron was similarly compared to the 

enveloping universe. All five of the Platonic solids occur in nature in the form of crystals 

or as skeletons of microscopic sea creatures (Eves 1990, 92). 

It is believed by some that Euclid's Elements, written circa 320 B.e.E., was meant 

to serve as an introduction to the study of the five Platonic solids (Biggs, Lloyd, and 

Wilson 1976, 75). However, in his classic text on the history of mathematics, Howard 

Eves (1990, 149) states, 

"The frequently stated remark that Euclid's Elements was really intended to serve 
merely as a drawn-out account of the five regular polyhedra appears to be a 
lopsided evaluation. More likely, it was written as a beginning text in general 
mathematics." 

No matter what Euclid's intentions in writing the Elements were, it is certain that he 

made no reference to the Eulerian formula relating the vertices, edges, and faces of 

polyhedra. In fact, no evidence has been found that the Greeks were aware of this rather 

simple relationship. It is possible that the Greeks had discovered the formula, but that the 

results were lost over time. Another likely explanation is that the Greeks never made this 

connection, because their geometry was primarily concerned with measurement, and 
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consequently they were not interested in this topologically-based formula (Biggs, Lloyd, 

and Wilson 1976, 75). 

Almost 2000 years after Euclid penned the Elements, the co-founder of analytic 

geometry, Rene Descartes, did not notice the formula either. However, while in Paris in 

1675-1676, Leibniz copied a manuscript that Descartes had written circa 1639. It was 

later rediscovered and published in 1860, by Foucher de Careil. In this work, Descartes 

stated the following relationship 

Number of plane angles = 2¢ + 2a - 4, 

where ¢ is the number of faces and ais the number of solid angles (or point-like 

vertices). Later, he also stated that the number of plane angles equals twice the number of 

edges. By combining these two statements, one can easily deduce Euler's Polyhedral 

Formula, although Descartes apparently did not make this connection. Presumably, like 

the Greeks, Descartes was concerned primarily with measurement, congruence, and 

similarity and not topological properties (Lakatos 1976,6). Due to Descartes' near 

discovery, the formula for polyhedra is sometimes called the Euler-Descartes Formula. 

Euler's Polyhedral Formula 

Euler first conjectured his formula connecting the numbers of vertices, edges, and 

faces in a discussion with Christian Goldbach, with whom Euler had communicated for 

several years. The letter, dated November 1750, was written partly in Latin and partly in 

German. Euler's intentions were to determine properties of solid figures analogous to 

properties concerning plane figures that had previously been established. A key 

"invention" of Euler was the concept of vertices and edges. He was the first to notice that 
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the character of a polyhedron could be described not only in terms of its number of faces, 

but also by the number of lines and points on the surface of the polyhedron. He created 

the term 'acies' (edge), instead of using the word 'latus' (side), which referred to the 

boundaries of polygons, rather than polyhedra (Lakatos 1976,6). 

Biggs, Lloyd, and Wilson's (1976, 76-77) classic account of the early history of 

graph theory contains a partial translation of Euler's letter to Goldbach. In his letter, 

Euler stated many conclusions about the properties of polyhedra. For example, using 

basic facts from plane geometry, he noted that the total number of plane sides was equal 

to the total number of plane angles. He also found that the number of edges was equal to 

half the number of plane sides, given that two sides intersect to form one edge. Thus, the 

number of plane sides must always be an even number. Because each face must have at 

least three sides, Euler concluded that the number of plane sides is greater than or equal 

to three times the number of faces. Similarly, the number of plane angles must be greater 

than or equal to three times the number of vertices. While he was able to give 

"satisfactory proof(s)" for the previous statements, there were several other combinatorial 

formulas that he had been unable to prove at the time of his letter. The first of these 

propositions was the famous Euler formula for a polyhedron: 

V-E+F=2. 

He also stated the impossibility of the following claims: 

E+6 > 3F 

E+6 > 3V 

F+4> 2V 

V +4> 2F. 
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An argument that proves the second of the above inequalities appears in Chapter III. The 

other inequalities are easily proved using modem graph theory. In addition, Euler 

believed that no solid could be formed from faces that each had more than five sides or 

whose vertices are formed by six or more plane angles. He also conjectured that the sum 

of the measures of the plane angles is equal to 360(V - 2) degrees, where V is the number 

of vertices, as described above. 

Euler's quest for knowledge on the subject did not end with his letter to Goldbach 

in 1750. Two years later he wrote two papers on the polyhedral formula. In the first 

paper, he described how he had verified it for several families of solids, such as prisms, 

pyramids, etc. In the second paper, Euler described a "proof by dissection." This method 

consisted of "slicing" away tetrahedral parts of a given polyhedron in such a way that the 

value of V - E + F does not change. Finally, he concluded that a single tetrahedron 

remained, for which we know that V - E + F = 4 - 6 + 4 = 2. Albeit a creative method, it 

was not widely accepted, because there was uncertainty that his slicing procedure could 

always be performed, and that the slicing method might not always result in a non­

degenerate polyhedron. Another criticism of Euler's proof was that he failed to specify 

the class of polyhedra for which it holds; others discovered several counterexamples to 

Euler's result. One matter that Euler seemed to overlook in his treatment of polyhedra is 

the property of convexity. A solid figure is said to be convex if any two points of the 

figure can be connected by a line that lies entirely within the figure (Biggs, Lloyd, and 

Wilson 1976, 77-78). Euler failed to recognize that his formula did not hold for all non­

convex polyhedra, such as, for example, a polyhedron with a hole drilled from one face to 

another. 
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The issue of Euler's less than perfect proof was thought to be resolved in 1794 

when Adrien-Marie Legendre presented a proof using metrical properties of spherical 

polygons. The proof was quite different than Euler's, but used ideas similar to those of 

Descartes from 150 years earlier. Legendre, unlike Descartes, had the luxury of knowing 

what he was attempting to solve (Biggs, Lloyd, and Wilson 1976, 78). Legendre appears 

to have been perplexed about what kind of polyhedra Euler's formula satisfies. Although 

he gave a rather general definition of polyhedra, he still gave a proof that does not apply 

to all non-convex polyhedra. However, in a fine print note to his work, he restricted his 

statements to convex polyhedra only (Lakatos 1976, 28). 

In 1809, Louis Poinsot wrote a paper describing four non-convex regular 

polyhedra. In addition to the five Platonic solids, Poinsot inquired whether these were the 

only nine regular polyhedra (Biggs, Lloyd, and Wilson 1976,78). In the fifteenth century, 

Kepler had introduced two "star-shaped" or "stellated" regular polyhedra. Poinsot found 

two other such stellated polyhedra. These four polyhedra are commonly called the small 

stellated dodecahedron, the great stellated dodecahedron, the great dodecahedron, and the 

great icosahedron. Graphical illustrations of these stellated polyhedra and other polyhedra 

can be found in Lyusternik (1966, 157-158). Poinsot also included a discussion of 

Legendre's vague statements about convexity. He believed that Euler's formula held for 

all polyhedra, convex or not, for which a point exists in the interior that can project the 

polyhedron onto a sphere in such a way that the faces of the polyhedron do not overlap 

when projected (Lakatos 1976,65). 

By 1813, Augustin-Louis Cauchy was able to answer Poinsot's question on the 

number of regular polyhedra by utilizing Euler's polyhedral formula in an innovative 
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way. Cauchy found that the only possible regular polyhedra were the five Platonic solids, 

the four non-convex figures found by Poinsot and another non-convex polyhedron, the 

octahedron composed of two intersecting tetrahedra (Lyustemik 1966, 159). While 

Cauchy described a manner of projecting a polyhedron onto a particular plane, Euclid, 

Euler, Legendre and others had only considered polyhedra as solid figures. Figure 4 gives 

a projection of the cube onto the plane that is similar to the projection described by 

Cauchy. The vertices and edges of the cube are related to one another on the plane as they 

are in the 3-dimensional cube. One may notice that the face closest to the point P is 

essentially "lost" on the plane. However, one may consider the unbounded face on the 

exterior of the planar representation as the "lost" face. Cauchy began his paper by 

Figure 4. Cube Projected onto the Plane 
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developing a generalization to Euler's formula by allowing extra vertices and edges 

inside the polyhedron to create a set of n separate polyhedra. Cauchy considered the 

equation 

V-E+F=n+1. 

Euler's formula then is a direct consequence of the above statement when we consider the 

entire polyhedron without extra vertices or edges in the interior, i.e., when n = 1. 

Cauchy's greatest contribution however, was his insight that connected the study of 

Euler's formula to what we know today as the study of planar graphs. Through his 

projection method described above, Cauchy showed that Euler's formula is not only a 

formula about polyhedra, but is also a theorem concerning planar graphs (Biggs, Lloyd, 

and Wilson 1976, 79-83). 

Cauchy's proof of the formula involved a method known as triangulation and 

requires the use of a plane graph, which is a planar graph drawn in such a way that is 

embedded in a plane. Notice that given a plane graph without loops or multiple edges, 

one can add edges between vertices without changing the value of V - E + F , because 

each additional edge also produces exactly one additional face. If by adding vertices in 

such a way that all of the faces are bounded by exactly three edges, the graph is called 

triangulated. Once a graph is triangulated, one can then remove triangles one by one. 

This can be accomplished either by removing a boundary edge or by removing two 

boundary edges and their common vertex. (A boundary edge is an edge that is on the 

infinite face of the graph.) In either case, a face also disappears, so the value of 

V - E + F remains constant. One continues this method of triangle removal until a single 

triangle remains, and we know that V - E + F = 1 for a triangle. Thus, our original graph 
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must also have the property that V - E + F = 1. The technique is invalid if one chooses to 

remove a triangle in the interior. Figure 5 shows a graph undergoing the process of 

triangulation. When removing triangles 1,2,3,4, and 9, a single edge is successively 

deleted from the graph. For triangles 5, 6, 7, 8, 10, and 11, two edges and one vertex are 

deleted from the graph at each stage. After the process of triangulation is complete, we 

are left with one last triangle, labeled 12. Notice that at each step, a triangle is removed 

on the exterior of the bounded region. An excellent representation of the process of 

triangulation and more specific instructions can be found in Lakatos (1976, 7-12). 

While Cauchy was working on the paper described above, Simon-Antoine-Jean 

Lhuilier, a mathematics professor in Geneva, was proposing and studying several 

exceptions to Euler's formula. Although he published a paper on the subject in 1811, he 

also sent a lengthy memoir of his work to the French mathematician, J.D. Gergonne. 

Gergonne had founded his own journal, but Lhuilier's notes were so long that they could 

not be published in its pages. Gergonne took it upon himself to edit Lhuilier's work and 

also added his own commentary. Biggs, Lloyd, and Wilson (1976, 83-88) point out that 

although it was known at the time that only five regular convex polyhedra existed, the 

work of Lhuilier on this subject is notable for three reasons. First, his derivation of 

Euler's formula does not concern notions of congruence or other metrical properties. 

Secondly, Lhuilier noticed that the regular polyhedra can be paired in a manner that 

anticipates the study of duality (see Chapter III). Finally, he established a relationship 

between regular subdivisions of the plane and regular polyhedra with infinitely many 

small faces. Lhuilier determined that both contexts could be explained by triangles joined 

six by six, squares joined four by four or hexagons joined three by three. 
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In addition, Lhuilier gave three "counterexamples" to Euler's formula, and made 

generalizations concerning each of them. However, Gergonne noted that he too had 

recognized the first two of these counterexamples long before reading Lhuilier's memoir. 

First, Lhulier considered polyhedra that contain internal cavities. An example, shown in 

Figure 6, is described by a cube contained within a cube, forming a box-like entity 

(Lakatos 1976, 13). Lhuilier found that for polyhedra that contain n internal closed 

polyhedral surfaces, an equation similar to Euler's formula, 

v - E + F = 2n + 2, 

suffices to describe the relationship between vertices, edges, and faces. 
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Figure 6. Lhuilier's First Counterexample: A Cube with a Cubic Cavity 

The second counterexample occurs when a polyhedron is ring-shaped, i.e., is a 

single surface with an opening passing through it. For instance, a cube with a rectangular 

tunnel drilled through the center is an example of a ring-shaped polyhedron, as shown in 

Figure 7. This type of figure is sometimes referred to as the "picture frame" (Lakatos 

1976, 19-21). As with the case of the cavities, Lhuilier found an equation relating the 

number of vertices, edges, and faces; for a polyhedron pierced with n distinct openings, 

v - E + F = - 2n + 2 . 

(It is common notation to let TJ = -2n + 2.) For example, when a polyhedron is pierced 

with one distinct opening, the figure is topologically equivalent to a torus, also known as 

an anchor ring. In this case, TJ = -2n + 2 = -2(1) + 2 = O. The implications of this 

counterexample are quite interesting and historically significant, as they initiated 

Listing's subsequent investigation of the subject in the early 1860s, and eventually helped 

lead to the development of topology as a separate branch of mathematics. 
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Figure 7. Lhuilier's Second Counterexample: The Picture Frame 

Finally, Lhuilier's third exception can be exemplified by polyhedra with 

"indentations" in their faces. For example, one could consider a cube with a smaller cube 

indented into the top face of it, as shown in Figure 8. In this case, there are 16 vertices, 24 

edges, and 11 faces for which V - E + F = 3 (Lakatos 1976,34-35). Lhuilier and 

Gergonne were very confident that they had discussed all the possible exceptions to 

Euler's formula. Their certainty in this was so great that Gergonne remarked erroneously, 

" ... the specified exceptions ... seem to be the only ones that can occur..." (Lakatos 1976, 

27). 

1 

/0- - - - - - -

Figure 8. Lhuilier's Third Counterexample: A Smaller Cube Indented on a Cube 
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In editing Lhuilier's paper, Gergonne attempted to describe a way of determining 

which kinds of polyhedra are Eulerian, or in other words, those that make Euler's 

polyhedral formula true. He argued that if one face of a polyhedron was transparent, and 

if a person could look through this face and see all other faces, then the polyhedron is 

Eulerian. Lakatos (1976, 59-60) compared Gergonne's method to the situation where 

when one can take a photograph of the interior, the resulting photograph produces a two­

dimensional figure for which V - E + F = 1. Hence, when we include the transparent face 

in our formulation, Euler's formula follows. Jacob Steiner independently discovered 

Gergonne's method in 1826. 

Almost twenty years after the work of Lhuilier, F.e. Hessel, motivated by the 

work of Steiner, independently rediscovered many of Lhuilier's counterexamples and 

published a paper on the subject in 1832. Shortly after Hessel submitted his manuscript, 

he discovered that Lhuilier had already established many of his findings. It is ironic that 

both Lhuilier and Hessel's discoveries of the cavity or nested cubes counterexample were 

due in part to mineralogical specimens in which a double crystal was present that had a 

clear outer covering, but also had an inner crystal that was not translucent (Lakatos 1976, 

13). Most importantly, Hessel's paper offered a new type of counterexample that had 

eluded Lhuilier and Gergonne. Hessel's new counterexamples are often called 

twintetrahedra, because they are formed by taking two tetrahedra and fusing either an 

edge from each solid together, (cf. Figure 9) or a vertex from each solid together (cf. 

Figure 10) (Lakatos 1976, 15). It is obvious that in these cases involving fused edges and 

vertices, V - E + F = 3 . 
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Figure 9. Hessel's Counterexample: A Fused-Edge Twintetrahedron 

Figure 10. Hessel's Counterexample: A Fused-Vertex Twintetrahedron 

In the fall of 1847, Karl Georg Christian von Staudt, a German mathematician at 

Erlangen, published a book entitled Geometrie der Lage. The book was a compilation of 

many years of the author's work on the study of the geometry of position. Geometrie der 

Lage developed the idea of projective geometry without reference to length or angle 

measure. The text, with no figures or diagrams and minimal use of notation and formulas, 

was not easily readable. Even the distinguished mathematician Felix Klein stated that 

"von Staudt's presentation was completely inaccessible to him" (Mulder 1988, 28). 

However, von Staudt's work turned out to be very influential, as he gave a correct 
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hypothesis for the general case in which Euler's formula holds. Von Staudt's theorem 

states: 

"Let P be a polyhedron with vertex-set V, edge-set E, and set of faces F. If P 
satisfies the following conditions: 
(i) every vertex of P is joint to every other vertex by an edge or by a line 

consisting of edges put together, 
(ii) the surface of P is divided into two parts by any closed line, consisting of 

edges put together, that does not pass more than once through any vertex, 

then we have IVI + IFI = lEI + 2" (Mulder 1988, 29). 

In modem terms, von Staudt was essentially stating that Euler's formula in its general 

form is valid for polyhedra that are simply connected with simply connected faces. 

This definition of suitable polyhedra can account for the exceptions to Euler's 

formula exemplified by such "monsters" as the nested cubes and the picture frame. In the 

late nineteenth century, Jonquieres emerged as one of the greatest advocates of Euler's 

formula. He argued that the nested cubes counterexamples offered by Lhuilier and Hessel 

were not truly polyhedra, but instead represented two distinct polyhedra. Implicitly, 

Jonquieres redefined an Eulerian polyhedron as "a surface consisting of a system of 

polygons." (Lakatos 1976, 14). In the case of the nested cubes, there are two surfaces on 

the polyhedron. In an attempt to account for the picture frame, he added implicitly 

"through any arbitrary point in space, there will be at least one plane whose cross-section 

with the polyhedron will consist of one single polygon" (Lakatos 1976,21). In the case of 

the picture frame, if you choose a point on the interior of the tunnel, this point will have 

no plane that yields a polygonal cross-section of the polyhedron. Obviously, this new 

definition of an Eulerian polyhedron was proposed to account for the earlier 

counterexamples such as the nested cubes and the picture frame. Similarly, Mobius 

offered a definition in 1865 that restricts the twintetrahedra described by Hessel from 
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being considered polyhedra. In his definition, Mobius states that a Eulerian polyhedron is 

a 

"system of polygons arranged in such a way that (1) exactly two polygons meet at 
every edge and (2) it is possible to get from the inside of any polygon to the inside 
of any other polygon by a route which never crosses any edge at a vertex" 
(Lakatos 1976, 15). 

Like Jonquieres, Matthiesen, who authored a paper on polyhedra in 1863, was 

confident that one could retain past definitions of polyhedra that still satisfied Euler's 

formula. He allows that polyhedra may have hidden faces and edges, and if these hidden 

entities are counted, then Euler's formula would also be valid for solids with tunnels and 

cavities. Although Matthiesen was a staunch supporter of this idea, he was not its 

originator, as Hessel previously had discussed this concept in his 1832 paper (Lakatos 

1976, 38-39). 

Crelle, in 1826-27, extended Cauchy's work on triangulation by noticing that this 

method also can be applied to polyhedra with "bent faces," although Crelle did insist that 

only straight edges be used. During the 1860s, several notable mathematicians, including 

Cayley (1861), Listing (1861), and Jordan (1866) independently found that the 

triangulation procedure also can be applied to polyhedra with curved edges (Lakatos 

1976,89). 

Finally, a Frenchman, Jules Henri Poincare, would settle the long debate 

concerning Euler's formula. Poincare used many of the ideas that Listing had set forth in 

his works Vorstudien zur Topologie and Der Census Riiumliche Complexe (The Census of 

Spatial Complexes). In these writings, Listing defined objects that he called "complexes," 

because they had been created from smaller pieces. He examined their properties and in 

his most significant theorem related the numbers of vertices, edges, faces, and 
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subcomplexes (Mulder 1988, 33). In a collection of papers dating from 1895-1904, 

Poincare demonstrated a way of creating these complexes from basic cells, which he 

called O-cells (vertices) and I-cells (edges). Using the work of Gustav Robert Kirchoff in 

the field of physics, Poincare modified Kirchoff's techniques that described electrical 

networks by using matrices in place of linear equations (Wilson 1999,516). 

In 1858, Listing and Mobius independently discovered the one-sided surface 

known today as the "Mobius strip." Its two-fold counterpart, the Klein bottle, was 

described in 1910 in a paper by Heinrich Tietze. In Tietze's discussion of this object, he 

referred to the Klein bottle as a "closed two-fold one-sided surface" (Biggs, Lloyd, and 

Wilson 1976, 124-129). The Klein bottle contains a crosscap, created by removing the 

interior of a disk on the surface of a sphere and then identifying opposite points on the 

boundary (White & Beineke 1978, 17). Surfaces such as the Mobius strip and the Klein 

bottle are called non-orientable, because there exists a closed Jordan curve on each of 

these surfaces such that the rotation direction is not preserved as one goes around the 

curve once (Aigner 1987, 18). In layman's terms, an orientable surface is one that is two­

sided, like a sphere or torus, while a non-orientable surface "has only one side." One can 

consider an orientable surface to be topologically equivalent to a sphere to which a 

certain number of handles have been attached. A handle can be produced by removing 

two disjoint disks from the surface of a sphere and joining the two disks with a truncated 

cylinder. Similarly, a non-orientable surface can be formed by adding a certain number of 

crosscaps to the surface of a sphere. Suppose Sh describes an orientable surface with h 

handles and Nk describes a non-orientable surface with k crosscaps. In a 1923 paper, 

Brahana proved that every surface is topologically equivalent to either Sh for some h ~ 0 
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or Nk for some k > 0 (White and Beineke 1978, 17). If we consider the value of 

v - E + F of a surface S to be Euler's characteristic, e(S), then the Euler-Poincare 

formula can be stated as follows for both orientable and non-orientable surfaces, 

respectively 

e(Sh) = 2-2h h? 0 

e(Nk ) = 2-k k?l 

(Aigner 1987, 20). Poincare's work was considered to be "an instant success" (Wilson 

1999,516) and was later extended by the efforts of Oswald Veblen during a series of 

lectures he delivered to the American Mathematical Society (Biggs, Lloyd and Wilson 

1976, 135-136). 

Although Poincare's work was more topological in nature, it also contained an 

abundance of applications in graph theory. Poincare laid a basis for later work 

determining what kinds of graphs may be embedded on surfaces not homeomorphic to 

the sphere. As Chapter IV will discuss, in 1968, the Heawood conjecture regarding map 

coloring on surfaces was also proved using the Euler-Poincare formula. In general, many 

direct consequences of Euler's polyhedral formula are utilized throughout the field of 

graph theory, and some of these consequences will be discussed in the next chapter 

regarding characterizing planar graphs. 
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CHAPTER III 

CHARACTERIZATION OF PLANAR GRAPHS 

One of the most significant studies in the early history of planar graphs was the 

attempt to characterize which graphs are planar and which are not. As with many graph 

theory problems, the characterization question's roots can be found in recreational 

mathematics, as well as a number of applications to electric circuit boards. Two planarity 

problems, one by Mobius and another by Dudeney, would prove to be especially 

significant in leading up to Kuratowski' s characterization of planar graphs in the late 

1920s. Kuratowski's Theorem would inspire and enlighten many other individuals to 

discover other characterizations of planar graphs. 

Puzzles of Planarity 

One of the earliest questions concerning planarity was presented by Mobius 

during a lecture in about the year 1840, where Mobius presented the following problem: 

"There was once a king with five sons. In his will he stated that after his death the 
sons should divide the kingdom into five regions so that the boundary of each 
region should have a frontier line in common with each of the other four regions. 
Can the terms of the will be satisfied?" (Wilson 1999,516-517). 

This question can be rephrased using the geometric dual of the land regions. The 

geometric dual of a map G, denoted G*, can be formed by replacing each face of G with 

a vertex and connecting vertices if the faces of G share an edge (cf. G and G* in Figure 
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13). Then, the question of Mobius can be posed in a graph theoretic context as the 

problem of asking if each of the five sons has a road connecting his capital city to all his 

other brothers' capital cities in such a way that no two roads intersect. The problem of the 

five princes can be solved if the complete graph of five vertices, denoted K5, as shown in 

Figure 11, is a planar graph. A complete graph on n vertices, denoted by Kn, is a graph 

that has any two vertices in the graph connected with an edge. 

Figure 11. The Complete Graph of Five Vertices, K5 

A graph G is called a maximal planar graph if adding an edge between any two 

nonadjacent vertices of G results in a nonplanar graph. In general, maximal planar graphs 

have faces consisting entirely of triangles, because if a graph has a face with more than 

three bounding edges, then a diagonal can be drawn. Thus, the graph would remain 

planar. Using the consequences of Euler's polyhedral formula, one can prove the 

following theorem: If G is a maximal planar graph with V vertices and E edges where 

V ~ 3 , then E = 3V - 6 . 
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Proof: Since G is a maximal planar graph, then all its faces are bounded by 3 

sides. Consequently, each edge is formed by two faces connecting. Thus, 

2 
3F = 2E , where F is the number of faces of G. This implies F = - E. By Euler's 

3 

polyhedral formula, we know that V - E + F = 2 . Thus by substitution, 

V -.!.. E = 2, and by solving for E, we find E = 3V - 6. 
3 

Q.E.D. 

A direct consequence of the preceding theorem is that for any planar graph, E ~ 3V - 6 , 

which was stated by Euler in 1750 in the aforementioned letter to Goldbach. (Hartsfield 

and Ringel 1994, 152-153). Notice that the graph K5 has 5 vertices and (~J ~ 10 edges. 

Because 10 = E > 3V - 6 = 9, the graph K5 is not planar. Thus, the terms in the will in 

Mobius's problem cannot be satisfied. 

In 1917, another significant puzzle about planarity first appeared in a book 

entitled Amusements in Mathematics by Henry Ernest Dudeney of England: 

"There are some half-dozen puzzles, as old as the hills, that are perpetually 
cropping up, and there is hardly a month in the year that does not bring inquiries 
as to their solution. Occasionally, one of these, that one had thought was a distinct 
volcano, bursts into eruption in a surprising manner. I have received an 
extraordinary number of letters respecting the ancient puzzle that I have called 
'Water, Gas, and Electricity.' It is much older than electric lightning or even gas, 
but the new dress brings it up to date. The puzzle is to lay on water, gas, and 
electricity, from W, G, and E, to each of the three houses A, B, and C, without 
any pipe crossing one another. Take your pencil and draw lines showing how this 
should be done. You will soon find yourself landed in difficulties." (Dudeney 
1958, 73). 

Dudeney's "utilities problem" has been described in a number of equivalent ways, 

such as the bad neighbors problem (also known as the houses and wells problem), the 

Corsican vendetta problem, or the Persian caliph's problem (Kullman 1979,299-300). 
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Although Dudeney claims this puzzle is "as old as the hills," no substantiation of this 

claim has been found, as Dudeney's 1917 book offers the first written record of it being 

posed. American Sam Loyd, Jr. claims that his father "brought out" the problem in 1900, 

but Loyd did not claim that his father originated the problem (Biggs, Lloyd, and Wilson 

1976, 142). Many historians of mathematics, however, believe that the origins date back 

at least to the early 1800s. 

Like the problem of the king and his five sons, it is impossible to draw a planar 

graph to represent the utilities. The utilities problem is one that involves a complete 

bipartite graph. The complete bipartite graph, Km,n, has two sets of vertices, one with m 

vertices and the other with n vertices, where each vertex in the first set is connected to 

every vertex in the second set by an edge. Using an argument similar to that used in 

establishing the theorem above for K5, one can conclude that if G is a planar bipartite 

graph with V vertices and E edges where V 23, then E ~ 2V - 4. The only difference in 

the proof is that instead of using triangles, the region with the fewest possible sides is a 

quadrilateral. Using this argument, one can show that K.u (cf. Figure 12), the graph 

described by the utilities problem, is not planar, in that 9 = E > 2V - 4 = 8 (Hartsfield 

and Ringel 1994, 153). 

Figure 12. The Complete Bipartite Graph K.u 
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In a book published in 1926 and reprinted in 1967, Dudeney (1967, 153-154) 

reflected on the problem of the utilities: 

"I think I receive, on an average, about ten letters a month from unknown 
correspondents respecting this puzzle which I published some years ago under the 
above title [Water, Gas, and Electricity]. They invariably say that someone has 
shown it to them who did not know the answer, and they beg me to relieve their 
minds by telling them whether there is, or is not, any possible solution. As many 
of my readers may have come across the puzzle and be equally perplexed, I will 
try to clear up the mystery for them in a more complete way than I have done in 
Amusements in Mathematics." 

In the "Answers" section of the book, Dudeney explains further that the solution can only 

be found by means of a trick. He admits that if a householder allows one of the utility 

companies to pass a pipe through his house, then the problem can be solved easily. By 

connecting the three utilities to two houses, he argued by elimination that there is no 

position one can place the third house to be able to draw lines to all three utilities without 

utilizing the trick. 

The importance of the graphs of Ks and K.u utilized in solving the problems of 

Mobius and Dudeney will be discussed later in this chapter in detailing the work of 

Kazimierz Kuratowski, as well as many others. The notation of using the letter K to 

describe complete graphs and complete bipartite graphs is attributed to Frank Harary. 

When they met at a conference in Rome in 1973, Kuratowski questioned Harary as to 

why he had chosen to use the letter K to describe these graphs. Harary replied, "Well, the 

Kin Ks stands for Kazimierz and the Kin K3,3 for Kuratowski!" (Harary 1981, 218). 

Kuratowski's Theorem 

Harary's tribute to Kuratowski, described above, is well deserved, as he is widely 

recognized as the first person to correctly characterize planar graphs. Kuratowski, the son 
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of a famous Warsaw lawyer, was born in 1896. His first mathematical paper was 

published in 1918, and he graduated from Warsaw University one year later. In his 1921 

doctoral dissertation and in subsequent works, Kuratowski studied the topology of the 

plane intently (Krasinkiewicz 1981,221-222). Subsequently, as an associate professor at 

the Lwow Poly technical University, Kuratowski developed and published his now 

famous characterization of planar graphs. In 1929, Kuratowski announced (and one year 

later he published) a proof of his famous theorem: "A graph is planar if and only if it does 

not contain a subgraph homeomorphic to either K5 or K.~,.," (Kennedy, Quintas and Syslo 

1985,356). Two graphs are homeomorphic if one can be obtained from the other by a 

sequence of subdivisions of edges. Kuratowski initially announced his results to the 

Polish Mathematical Society on June 21, 1929. In 1930, his paper "Sur Ie probleme des 

coubres gauchesen topologie" or "On the topological problem of non-planar curves" 

containing his proof appeared in Fundamenta Mathematica. At the same time 

Kuratowski was working on this paper, the American mathematicians Orrin Frink and 

Paul A. Smith were independently working on proving the same theorem. An abstract of 

Smith and Frink's work was published in the Bulletin of the American Mathematical 

Society, but, after Kuratowski's proof appeared in Fundamenta Mathematica, their paper 

was rejected by the Transactions of the American Mathematical Society, the journal they 

had hoped to publish it in (Biggs, Lloyd, and Wilson 1976, 147-148). 

Similar to the controversy surrounding the discovery of calculus by Newton and 

Leibniz, in regards to the theorem that is widely known today as Kuratowski's, there are 

some mathematicians who believe credit for being the first to prove it should be given to 

a second individual. In a footnote to his paper, Kuratowski explained that P.S. 
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Aleksandrov had told him that L.S. Pontryagin had proved the result earlier, but had 

never published it. Pontryagin was a second-year student at Moscow State University in 

the winter of 1927-1928 when Aleksandrov attempted to give a proof by Kuratowski of 

the planar characterization that was invalid, because he originally had used only one of 

the two forbidden subgraphs. Pontryagin noticed the error and corrected it, but never 

published his findings, because Aleksandrov wanted him to extend his work further. 

Kuratowski admitted that he had initially thought that only Ks would prevent planarity, 

but only later discovered the need to include Ku as well. It is not certain whether 

Aleksandrov communicated Pontryagin' s findings to Kuratowski or whether Kuratowski 

discovered his error on his own. It is difficult for one to assess now, given that almost all 

of Kuratowski's correspondence was destroyed during World War II. R. Engelking, a 

close associate of Kuratowski, believed that Kuratowski later regretted crediting 

Pontryagin with the theorem because Pontryagin never published his work (Kennedy, 

Quintas, and Syslo 1985,361-363). During the 1960s, a number of authors began to refer 

to the theorem as the Pontryagin-Kuratowski theorem, especially in the Soviet Union. 

The origin of this usage began with A. A. Zykov's Russian translation of a book by C. 

Berge in 1962. Although Pontryagin may have given a proof of the theorem prior to 

Kuratowski, it was certainly Kuratowski who first published the finding, and he continues 

to be the single person credited with first establishing it according to most sources. The 

article by Kennedy, Quintas, and Syslo (1985, 356-368) gives a more thorough account 

of the origins of Kuratowski' s Theorem and the addition of Pontryagin' s name to the 

theorem in the mathematical literature. 
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The importance of Kuratowski's Theorem is not its applications to graph theory, 

but the fact that planar graphs can be characterized by the exclusion of a finite number of 

subgraphs (Thomassen 1981,225). This concept was extended in the late 1970s when 

Glover, Hueke and Wang produced a list of 103 "forbidden subgraphs" of graphs that can 

be embedded in the projective plane. Robertson and Seymour generalized the concept in 

1985 by proving that a finite list of forbidden subgraphs exists for surfaces of any genus, 

although the list may be lengthy (Biggs, Lloyd, and Wilson 1995,2178). Kuratowski's 

theorem also yields a useful characterization for nonplanar graphs: all nonplanar graphs 

must have a subdivision of K5 or Ku. Many proofs of Kuratowski's Theorem can be 

transformed into planarity testing algorithms that are calculable in polynomial time, such 

as the algorithm described by Hopcroft and Tarjan in 1974. However, one of the most 

important aspects of Kuratowski's Theorem is that it can be used to determine other 

criteria for planarity, such as those described by Whitney, Wagner, and Mac Lane 

(Thomassen 1981,225-226). 

Whitney's Duality Theorem 

Prior to Kuratowski' s characterization of planar graphs, Denes Konig 

stated in 1916, that a characterization involving duality might be necessary to further 

progress on proving the four-color conjecture that will be addressed in Chapter IV. One 

may note that in a geometric dual, a one-to-one correspondence exists between the edges 

of G and the edges of G*. Also, if G is a connected graph, then G = (G*)* (Biggs, Lloyd, 

and Wilson 1976, 148-149). 
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Hassler Whitney, a young American who studied physics in Germany, became 

interested in the four-color problem in the late 1920s. He wrote about a dozen papers on 

graph theory between 1930 and 1935. Whitney established an important combinatorial 

relationship between the graphs of geometric duals. He formulated an abstract notion of 

duality, often known as combinatorial duality that is equivalent to the concept of 

geometric duality (Harary 1969, 114-115). Whitney's first account of combinatorial 

duality appeared in 1931, and a more thorough treatment of it was published in 1932. 

Most notably, Whitley offered his characterization of planar graphs: A graph is planar if 

and only if it has a combinatorial dual (Biggs, Lloyd, and Wilson 1976, 148-157). 

Defining V, E, and F as usual and P as the number of components of a graph G, the rank 

or cocycle rank, R = m*(G), is defined by 

R = m * (G) = V - P. 

The nUllity or cycle rank, m(G), is given by 

m( G) = E - R = E - V + P . 

The relative complement, G\H, of a sub graph H of G is created by deleting the edges of 

H in G. One calls G* a combinatorial dual of a graph G if a one-to-one correspondence 

exists between the edges of G and G* in such a way that for any choice Yand y* of 

corresponding subsets of edges, 

m * (G \ Y) = m * (G) - m( < y* » , 

where <y*> is the subgraph of G* with edge set y* (Harary 1969, 114-115). A basic 

example is shown in Figure 13, where m * (G \ Y) = 5 - 2 = 3, m * (G) = 5 -1 = 4, and 

m( < y* » = 4 - 5 + 2 = 1 , and so the equation for combinatorial duality holds. In Figure 
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13, the one-to-one correspondence of the edges of G and G* is shown through the use of 

corresponding subscripts. 

X3 

Y2 ~ Y3 
X2 X4 

)X5 
X1 

Y7 Ys 
X7 Y6 

~ 
Xa 

X6 

~ 
G G* 

o 

<Y*> 

Figure 13. A Graph: G, the Geometric Dual of G: G* , 

a Relative Component of G: GVl, and the Subgraph of G* with Edge Set Y*: <Y*> 

Although Whitney gave an independent proof of his characterization theorem, at 

the end of his 1932 paper, he stated Kuratowski's Theorem and noted that neither K5 nor 

Ku had a combinatorial dual. It follows that any graph that has a Whitney dual must be 

nonplanar. One year later, in 1933, Whitney established the converse result and thus gave 

a new proof of Kuratowski 's theorem (Biggs, Lloyd, and Wilson 1976, 157). 
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The Work of Wagner 

K. Wagner found yet another characterization of planar graphs that sometimes 

appears in textbooks as a corollary to the theorems of Kuratowski and Whitney. Before 

discussing Wagner's theorem, it is necessary to establish some additional terminology. 

An edge contraction (cf. Figure 14) of a graph G can be obtained by deleting two 

adjacent vertices, u and v, and adding a new point, w, that is adjacent to those vertices 

that were adjacent to either u or v. A graph G is said to be contractible from a graph H if 

it can be obtained from H through a sequence of edge contractions. A minor of a graph is 

a subgraph of a contraction. In 1937, Wagner found the following important 

characterization of planar graphs: "A graph is planar if and only if it does not have a 

subgraph contractible to K5 or K1,3." (Harary 1969, 112-113). Wagner's theorem was later 

discovered independently by Harary and Tutte and described by them in a 1965 article. 

u v 
w 

9 9 

b b 

Figure 14. An Example of an Edge Contraction 

Wagner's characterization of planar graphs was not his first contribution to the 

study of planar graphs. In 1936, he established that any planar graph G can be drawn in 

the plane where all the edges of G are straight lines. This important theorem is often 
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credited to Fary who independently proved it (Hartsfield and Ringel 1994, 168-170). 

However, Fary's proof was not published until 1948, while Wagner's proof appeared in 

1936. 

Mac Lane 's Characterization 

S. MacLane offered another criterion for planar graphs in 1937. There are a 

number of ways that MacLane's characterization of planar graphs may be described. 

Succinctly, the theorem can be stated as "A non-separable graph is planar if and only if it 

has a set of circuits with the property that each edge of the graph lies in exactly two of the 

circuits" (Biggs, Lloyd, and Wilson 1976,210). A graph is called non-separable if it is 

connected and cannot be disconnected by removing a single vertex. When such a vertex 

exists, it is called a cut vertex. For a more detailed version of MacLane's theorem 

involving the notion of a cycle basis, consult Harary (1960, 127-128) and Aigner (1986, 

66-67). 

Although the four characterizations listed above are certainly not the only 

characterizations of planar graphs. For example, in 1989, Walter Schnyder gave a 

characterization of planar graphs involving order dimension of posets (See Schnyder 

1989,232-343). Many of the origins and applications of the characterizations described 

in this chapter are related to the study of the four-color conjecture and other map coloring 

problems, the topic of Chapter IV. The geometric dual is particularly useful, where, as in 

the problem of the fi ve princes, maps can be transformed into graphs. 
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CHAPTER IV 

COLORING MAPS AND SURFACES 

The four-color problem is arguably the most influential question in the 

development of graph theory. Aigner (1986, vi-vii) believed that "the 4-color problem 

almost alone permitted an entire discipline, graph theory, to arise as rarely occurs to this 

extent." Many mathematicians of the nineteenth and twentieth centuries have sought to 

prove the conjecture. Perhaps part of the interest in the problem is its simplicity, because 

the concept can be understood by almost anyone. However, it is notoriously difficult to 

solve. The four-color "theorem" is known today as the following: "The countries (faces) 

of any map can be colored with four colors in such a way that neighboring countries are 

differently colored" (Wilson and Watkins 1990,228). Equivalently, by the use of duality, 

the problem can be stated in a graph theoretic terminology as "the vertices of any 

connected planar graph can be colored with four colors in such a way that adjacent 

vertices are differently colored" (Wilson and Watkins 1990,229). The four-color 

conjecture remained unproved for over 120 years, and its "proof' required the use of 

computer analysis, creating controversy among mathematicians. Generalizations of the 

four-color theorem also emerged for graphs on surfaces of higher genus. As this chapter 

will demonstrate, the four-color theorem and its generalizations have an interesting and 

unique history. 
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Origins of the Four-Color Theorem 

At least two common myths that can be traced back to W.W.R. Ball's 1892 

edition of Mathematical Recreations and Essays surround the origins of the four-color 

problem. Some individuals have attributed the problem's origins to the five princes 

problem of Mobius. However, the problem of the five princes and its proof simply show 

that five countries cannot have pairwise borders. Mobius demonstrated the impossibility, 

but did not generalize the concept to maps with more than five countries. No publication 

of Mobius exists on the problem, and it is unlikely that Francis Guthrie had heard of 

Mobius' work when he made his now famous conjecture (Holton and Purcell 1979, 11). 

A second common myth is that cartographers had known of the four-color property for 

many years. Kenneth May (1965, 346) studied a number of atlases in the Library of 

Congress to conclude that this myth is false. In his research, he found "no tendency to 

minimize the number of colors used." In fact, he found that the use of four colors was 

rare, and moreover that most of the maps that were colored with four colors only required 

three. Although problems relating to map coloring can be found in some books on the 

history of cartography, none of them mention the four-color property. The result would 

probably not interest mapmakers because even prior to the development of printing, it 

was easy to use many colors. Furthermore, since the invention of printing, colors may be 

applied one on top of another to create many additional colors, and hatching and shading 

may also be used to differentiate regions of maps. It is widely believed today that the 

four-color problem cannot be directly attributed to Mobius or to cartographers. 

The first written record of the four-color problem can be found in a letter from 

Augustus De Morgan to Sir William Rowan Hamilton in October 1852. In the letter, De 
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Morgan, a professor at University College in London, explained that one of his students 

had suggested that "if a figure be anyhow divided and the compartments differently 

colored so that the figures with any portion of common boundary line are differently 

colored, four colours may be wanted, but not more ... " (Holton and Purcell 1979, 11). De 

Morgan attempted to draw a map that needed five colors, but was unsuccessful. 

Uncertain of the veracity of the statement, De Morgan inquired of Hamilton if he could 

provide an explanation. Hamilton, obviously not interested, replied, "I am not likely to 

attempt your 'quaternion of colors' very soon" (Biggs, Lloyd, and Wilson 1976,92). 

The student referred to in De Morgan's letter was Frederick Guthrie. He had 

learned of the problem from his brother Francis Guthrie, who later served as a professor 

of mathematics at the South African University in Cape Town. Although both brothers 

had studied under De Morgan, Francis had stopped attending classes; thus it was 

Frederick who proposed the four-color problem to De Morgan. The conjecture was 

discovered by Francis while coloring a map of the counties of England. He easily showed 

that the use of four colors was necessary, but was unable to produce a valid proof for 

sufficiency (Holton and Purcell 1979, 11). 

Besides a few letters written by De Morgan during the 1850s, there would be little 

written on the four-color problem over the next twenty years. One person De Morgan 

corresponded with was William Whewell. A review of a book by Whew ell appeared in 

the April 14, 1860, edition of Athena:um and included an anonymous reference to the 

four-color problem. It is likely that Charles Sanders Pierce, an American logician and 

philosopher, read the review and was inspired to begin studying the problem (Fritsch and 

Fritsch 1998, 11-20). He attempted to prove the four-color conjecture to the members of 
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the mathematical society at Harvard during the 1860s, but did not publish the work. In a 

paper dated 1869, Pierce connected the map-coloring problem to his "logic of relatives" 

(Biggs, Lloyd, and Wilson 1976,92). 

The problem was reintroduced to the mathematical world during the summer of 

1878, when Arthur Cayley asked the London Mathematical Society whether the problem 

had been solved. The following year, Cayley wrote a short analysis of the problem in the 

Proceedings of the Royal Geographic Society (Fritsch and Fritsch 1998, 13). In his paper, 

Cayley questioned whether a sufficient, finite number existed for all maps, and suggested 

that there might be maps that require an extremely large number of colors (Biggs, Lloyd, 

and Wilson 1976,93). 

The First "Proof' 

After Cayley had revived interest in the map-coloring problem, one of his 

students, Sir Alfred Bray Kempe, discovered a unique, although flawed, "proof' of the 

four-color theorem. Kempe, a London barrister, announced his findings without proof in 

the British journal, Nature. His first published "proof' of the theorem appeared in the 

newly founded American Journal of Mathematics in 1879 (Mitchem 1981, 110). William 

Edward Story, an associate editor of the journal attached a few addenda to Kempe's 

article detailing some special cases that Kempe had not mentioned. Story then presented 

the paper with the addenda to the Scientific Association at Johns Hopkins University in 

November 1879. Among those present at the meeting was C.S. Pierce who was then a 

visiting faculty member at Johns Hopkins. Pierce addressed the four-color problem at the 

next meeting of the association in December. He explained his previous work on the 
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four-color problem, and stated that he believed Kempe's proof could be improved by 

using rules of logic. However, he did not refute Kempe's arguments, and so in 1879, the 

four-color theorem was thought to be proved (Fritsch and Fritsch 1998, 15-16). 

) 
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D 

Figure 15. Using a Patch to Reduce a Map 
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Although Kempe's work contained a crucial flaw that will be discussed later, 

many concepts that he introduced would serve as integral contributions to further work 

on the four-color problem and its eventual solution. One of the significant ideas 

contributed by Kempe was the process of reducing and developing maps. One reduces a 

map by placing a patch (shown in Figure 15 by at dotted line) around a single region, and 

then joining the boundaries of the neighboring regions (in Figure 15 - regions A, B, C, 

and D) in such a way that the neighboring regions meet at a point in the interior of the 

patch. By consecutively patching one region after another, the map can eventually be 

reduced to one single region with no boundary lines or points of intersection. The 

opposite of reducing is developing, which can be demonstrated by removing the patches 

in reverse order. In this way, the original map can be developed one region at a time by 

removing successive patches. Kempe's basic goal was to try to show through 

mathematical induction that if a map can be colored with four colors at any step in the 

process of development, then it can be colored with four colors at the next step. His basis 

was trivial, since a map with a single region is not only four-colorable, but also one-
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colorable. If the patch that is to be removed borders less than four regions, then it is 

obvious that the map developed by removing the patch can be four-colored as well. Thus, 

Kempe restricted his cases to those patches with more than three neighboring regions. 

Using an unnecessarily long proof, Kempe showed that every map contains a country 

with less than six neighbors, so he restricted his cases further to those which had patches 

with only four or five neighbors (MacKenzie 1999, 18-19). 

I 
I 
I 
I RED 

:A 
I 

B YELLOW 

???? 

I 
I 
I 
I 

GREEN I 

C I 
I 
I i / BLUE D 

~-----~------- I 

Figure 16. Kempe's Chain Argument 

Kempe's argument considered a map in which all but one of the regions had been 

colored with four colors. Figure 16 shows a part of the plane containing the uncolored 

region of the map and its neighboring regions. One may assume that the uncolored region 

borders a region labeled with each of the four colors, because otherwise one could color 

the uncolored region with an unused color. One may begin by considering only the red 

and green regions of the entire map. Obviously, one of two cases must occur. In the first 

case, regions A and C are connected by means of a red-green chain of regions, or in the 

second case regions A and C are not connected through a link of red-green chains. The 
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latter case is easier to remedy, given that one may interchange the red and green regions 

that are connected to region A. Thus, A would be colored green and the uncolored region 

could be colored red. When a red-green chain of regions does connect A and C, 

interchanging the two colors would be unproducti ve, because the uncolored region would 

still be adjacent to both a red region and a green region. Therefore, further methods must 

be applied. Using the fact that our map is on a plane, we know that if there is a red-green 

chain connecting region A to region C, then there cannot be a blue-yellow chain 

connecting region B to region D. Thus, we can interchange the regions of the blue-yellow 

chain that includes region B. Now, the uncolored region may be colored yellow, because 

both regions Band D are blue. This kind of argument is known in modem graph theory 

as "the method of Kempe-chains" (Biggs, Lloyd, and Wilson 1976,94-95). Kempe 

demonstrated a similar, but more complicated method for a patch that had five neighbors, 

and unfortunately it was this argument that would later be proved to be faulty. 

Following Kempe's "proof' of the four-color conjecture, a number of other 

individuals presented supposed "proofs" of the "theorem." One notable "proof' was 

written by the British physicist Peter Guthrie Tait in 1880. Tail's explanation, which 

appeared in the Proceedings of the Royal Society of Edinburgh, was basically nothing but 

a reformulation of the problem. Lewis Carroll, the famous author, devised a game 

involving four-coloring maps. Subsequently, a headmaster at a boys' school in England 

assigned the four-color problem to his class in 1886 with the stipulation that "no solution 

may exceed one page, 30 lines of manuscript, and one page of diagrams." Today, of 

course, this task is known to be insurmountable, since the widely known proof of Appel 

and Haken requires over 100 pages and still involves hundreds of hours of computer 
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time. An 1889 article in the Journal of Education contained yet another "proof' of the 

four-color theorem by Frederick Temple, the Bishop of London, who later was appointed 

Archbishop of Canterbury (Mitchem 1981, 110). Although many individuals thought that 

their proofs were infallible, none of them would stand up to strict scrutiny, including the 

infamous "proof' of Kempe (MacKenzie 1999,22). 

Heawood Discovers Kempe's Mistake 

For over ten years, Kempe's "proof' was thought to be valid. Impressed with his 

"proof," Cayley and other mathematicians proposed that Kempe be elected a Fellow of 

the Royal Society, and Kempe later held the positions of vice president and treasurer of 

the Society. In 1890, the thoughts concerning Kempe's "proof' shifted when Percy John 

Heawood, a lecturer at Durham College, revealed a fallacy in Kempe's chain argument. 

Kempe had incorrectly analyzed a particular case where five regions surrounded an 

uncolored region. One may consider the part of the map shown in Figure 17, and suppose 

that a blue-yellow chain of regions connects region B to region E. Further, suppose that a 

green-blue chain of regions connects region C to region E. Then, the existence of these 

two chains implies that regions A and C belong to different red-green regions and regions 

Band D belong to different red-yellow regions. Using Kempe's chain method, one would 

interchange the colors of region A's red-green region and interchange region D's red­

yellow region. Thus, there would be no region colored red that is adjacent to the 

uncolored region. However, the possibility exists that a green region of A's red-green 

region and a yellow region of D's red-yellow region are adjacent to one another. Thus by 

interchanging both regions' colors, two adjacent regions would be colored red, 

49 



contradicting the requirement that all adjacent regions be colored differently. Heawood 

stated that one of the region's colors could always be interchanged, but the first 

transposition prevented the second transposition from being effective. Kempe himself 

reported Heawood's findings to the London Mathematical Society, and stated that his 

own efforts to rectify the original proof had failed (Biggs, Lloyd, and Wilson 1976, 105-

108). 

/ 

/ 

/ 

( A - Red 
~ 
\ 

-- - - --------- --- -.......... 
~ B - Yellow 
~ 

C - Green '\ 

???? 
• • • • 

E - Blue D - Red / 

---- -- ~ ---- .,.---
/ .----

Figure 17. Refutation of Kempe's Chain Argument 
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It might seem that Heawood's study of the four-color conjecture was more 

destructive than constructive, but in addition to finding Kempe's flaw, Heawood also 

made a number of important contributions. One positive outcome demonstrated by 

Heawood was that five colors are sufficient for any planar map. Furthermore, he 

investigated the minimum number of colors needed to color maps on other 3-dimensional 

surfaces, such as the sphere, torus, and surfaces of genus 3 (Fritsch and Fritsch 1998,22-

24). Another notable discovery of Heawood involves the number of edges of each face in 

a planar graph. Using Euler's polyhedral formula (which Heawood mistakenly credited to 
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Cauchy), Heawood showed that the average number of edges of a face is less than six. 

Although Kempe had previously used this result, a simplification of his proof appeared in 

Heawood's paper (Coxeter 1959, 287). Although Heawood did give a counterexample of 

Kempe's supposed "proof," he was unable to provide a proof that four colors suffice to 

color a map. However, Heawood was "hooked" on the problem, and strove to find a 

solution until almost the time of his death in 1955. 

The Four-Color Conjecture in the Early Twentieth Century 

Following Heawood's counterexample to Kempe's argument, researchers 

typically employed one of four strategies when trying to prove the four-color conjecture. 

The first strategy, which was soon abandoned, was to use the key elements of Kempe's 

argument, but devise a new way of dealing with the case of the region with five 

neighbors. Another approach was to try to reformulate Kempe's strategy, but create a 

more complicated, yet successful, way of using it. Thirdly, some mathematicians 

believed that Kempe's ideas should be abandoned altogether; they believed that a new 

method should be sought for proving that four colors suffice. A final approach was to 

assume that the four-color theorem was false, and to focus research efforts on looking for 

maps that could not be four-colored (MacKenzie 1999,22). One researcher on the 

subject, Harvard professor George Birkhoff, listed the possible alternative strategies that 

could be undertaken to solve the four-color problem in 1913. Although he did not list the 

first of the strategies noted above, he did seriously consider the last. Birkhoff was not the 

only person to believe that the four-color conjecture might be false. Edward R. Moore of 

the University of Wisconsin made several attempts to describe maps that were not four-

51 



colorable, and some of his maps played a role in the eventual proof. By far, the second 

and third options were the two approaches on which the majority of researchers based 

their endeavors (MacKenzie 1999,22). 

Before continuing, it is important to define some terminology that is important to 

the development of the four-color problem. A normal map is a map in which no more 

than three regions meet at any given point and in which no region completely surrounds 

another region. If a map has either of these qualities, simple steps may be taken to 

transform the map into a normal map that requires the same number of colors as the 

original map. Thus, the four-color problem can be thought of as trying to prove that a 

normal map that requires five or more colors does not exist. One essential idea in the 

eventual proof of the four-color conjecture is the concept of an unavoidable set of 

configurations, or a set of possibilities that must occur in every normal map. For 

example, Kempe showed that in every planar map, there is at least one face that has less 

than six neighbors. Thus, a set of unavoidable configurations is a region with two 

neighbors, a region with three neighbors, a region with four neighbors, and a region with 

five neighbors. A configuration is said to be reducible if there is a way to show that by 

examining the configuration and the possible ways in which chains of countries can be 

aligned, then the configuration cannot occur in a minimal five-colored map. While 

Kempe essentially found an unavoidable set of configurations, it was in the reduction step 

that Kempe made his blunder, because he could not reduce the region with five 

neighbors. Soon after Heawood disproved Kempe's argument, it became apparent that a 

reducible, unavoidable set of configurations would be extremely complicated and quite 

large (MacKenzie 1999, 23-25). 
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Figure 18. Birkhoffs Diamond 

In the early twentieth century, it was quite a substantial task to prove that even 

one configuration was reducible. In 1913, Birkhoff reexamined Kempe's flawed 

arguments and constructed a basis for much of the future research on the four-color 

problem. One of Birkhoff's most important results was that by "systematizing the notion 

of 'reducibility,'" the configuration shown in Figure 18, known today as Birkhoff's 

diamond, was shown to be reducible (MacKenzie 1999,26-27). In dual form, a ring is a 

simple closed path of vertices, and a configuration consists of the vertices surrounded by 

the ring. One can measure the size of a configuration by its ring size, which is the 

number of countries in the ring that surrounds a configuration. In the case of Birkhoffs 

diamond, the ring size is obviously six, because the six regions labeled "alpha" form the 

outer ring of the configuration. Birkhoff's goal was to try to determine the smallest 
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irreducible map (Holton and Purcell 1979, 13). Birkhoff immediately concluded that 

every map with 13 regions is four-colorable. Throughout the years, a number of proofs 

involving reducibility increased what became known as the Birkhoff number, or the 

lower bound on the number of regions in a minimal five-colorable map. For example, 

Philip Franklin increased the number to 26 in 1922. 

The concept of reducibility was further investigated by a number of other 

mathematicians. Alfred Errera of Belgium proved in 1925, that every irreducible map 

must contain at least 13 pentagons (Biggs, Lloyd, and Wilson 1976, 180). Reynolds 

increased the Birkhoff number to 27 in 1926. Every few years, the estimate for the 

Birkhoff number increased, as Franklin extended it to 32 in 1938, Winn to 36 in 1940, 

Ore and Stemple (1970, 65-66) to 40 in 1968, Stromquist to 52 in 1975, and Jean Mayer 

to 96 in 1975. 

One of the most significant participants in the investigation of the four-color 

problem in the twentieth century, especially in the study of reducible configurations, was 

the German mathematician Heinrich Heesch. While studying at Gottingen in the early 

1930s, Heesch solved the very challenging regular parquet problem, which had been 

proposed by David Hilbert in 1900. Heesch's friend at Gottingen, Ernst Witt, believed 

that he had proved the four-color conjecture, and Heesch accompanied him when he went 

to share his solution with Richard Courant during a train ride from Gottingen to Berlin. 

Courant was not completely convinced of Witt's argument, and during their journey back 

to Gottingen, Heesch discovered an error in Witt's proof (MacKenzie 1999,25). This 

experience involving the four-color problem initiated a long search for a proof that would 

dominate much of Heesch's future research. Heesch was a strong advocate that the four-
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color conjecture could be proven by finding a large set of unavoidable, reducible 

configurations, and he was the first mathematician since Kempe to publicly state such a 

belief (Appel and Haken 1989,5-6). He presented some of his findings at lectures at the 

University of Hamburg and the University of Kiel in the late 1940s. Present at the Kiel 

seminars was the young Wolfgang Haken, who later recalled that Heesch estimated "that 

an unavoidable set of reducible configurations might have 10,000 members" (MacKenzie 

1999,25-26). 

The arrival of computer technology transformed the difficult task of producing an 

unavoidable, reducible set of configurations into one that could be "technically possible" 

(Appel and Haken, 1989,6). By considering the dual of a map, Heesch determined that at 

least one of the methods of reduction, which he called D-reduction, could be realized 

through the use of computers. Recall that Heesch's goal was to try to show that a 

configuration of a triangulation is reducible, that is it cannot be contained in any 

minimum counterexample to the four-color conjecture. Take for example, a triangulated 

graph T containing the Birkhoff Diamond shown in part in Figure 19. A "naive" method 

of determining whether a configuration is reducible can be executed by attempting to 

four-color a configuration by assigning one of four colors to each vertex. For example, 

suppose the vertices of the outer ring of the Birkhoff diamond, labeled U\, U2, U3, U4, Us, 

and U6 in Figure 19, were assigned the colors c\, C2, C3, C4, C3, and C2, respectively. Notice 

that this is only one possible coloring of the outer ring. One is unaware of what the 

triangulation looks like outside of the ring, so one must consider all possible colorings of 

the ring. If every coloring of the ring can be extended in order to four-color T, then the 

configuration is reducible. In the example described above, the vertices of the 
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configuration, denoted Vj, V2, V3, and V4, may be colored with G3, G4, G2, and Gj 

respectively. Thus, in this case, one is able naively four-color T. 

The naive method may seem rather easy, but it cannot always produce a four­

coloring of T. Sometimes, one must utilize the method of Kempe chains that was 

discussed earlier in this chapter. Suppose the vertices of the outer ring in Figure 19, were 

assigned the colors G2, Gj, G3, Gj, G3, and Gj, respectively. The vertices V2 and V4 of the 

configuration must be colored either G2 or G4, because they are both adjacent to vertices 

colored Gj and G3. In addition, V2 and V4 are also adjacent to one another, so they cannot be 

colored the same color either. Without loss of generality, let V2 be colored G2 and V4 be 

colored G4. Now, V3 is adjacent to vertices colored with all four colors. Thus, the 

triangulation cannot be naively colored, so one must apply the method of Kempe chains 

to show reducibility. Let T' be the triangulation T with the inner configuration (the 

Birkhoff Diamond) removed. Consider Hcl ('4, which is the subgraph of T' that is induced 

by the colors Gj and G4. One of the following four cases must occur: (1) U4 is in different 

components of H cl ('4 than both U2 and U6; (2) U4 is in the same component of R·jc4 as U2, 

but in a different component than U6; (3) U4 is in the same component of H cl ('4 as U6, but in 

a different component than U2; or (4) U4 is in a same component of H cJc4 as U2 and U6. In 

the first case, the colors of the component containing U4 can be interchanged, and the 

four-coloring of T can be extended by respectively coloring the configuration's vertices 

G3, G2, G1, and G4. The second case may be handled similarly by interchanging the colors of 

the component of H c1c4 containing U6, and the third case can be demonstrated by 

interchanging the colors of the component of H cJc4 containing U2. In the final case, U2, U4, 

and U6 are in the same component of Hclc4, and thus U3 cannot be in the same component 
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of H,2c3 as u\ or Us. Therefore, the colors of the component of H c2,3 containing U3 can be 

interchanged, and the coloring can be extended to the vertices of the configuration by 

coloring them C4, C3, C4, and C2 respectively. A configuration is said to be D-reducible if 

it can be reduced by either the naive method or by utilizing Kempe's chain method 

(Holton and Sheehan 1993,62-63). One can see that this process of D-reducibility 

becomes more difficult as the ring size of a configuration increases, thus requiring the 

need for computers in order to analyze the many cases involved. 

U1 ---------- " Vi ------ ------
\ 

\ 

" \ 

Figure 19. A Triangulation of the Birkhoff Diamond 

Karl Dtirre, one of Heesch's students, developed a computer program to decide if 

configurations were D-reducible. While Dtirre's program was successful in determining 

which configurations were D-reducible, it did not show that a specific configuration is 

reducible in general. For configurations that failed to be D-reducible, Heesch could often 

combine information from the program that could be augmented by additional 
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calculations to prove reducibility through a technique called C-reduction (Appel and 

Haken 1989,6). C-reduction is began by first removing from T the configuration C that 

one is attempting to show reducible. Then, one can identify (see Chapter V for a full 

discussion of identifying vertices) certain non-adjacent vertices of the ring and add new 

edges to produce a new triangulation, T. Any coloring of T will also produce a coloring 

of T \ C . If one can extend this coloring to the configuration C, then the configuration is 

reducible. The Birkhoff Diamond shown in Figures 18 and 19 can be shown to be C­

reducible. C-reduction can be performed much faster than D-reduction, because the 

identification of the vertices reduces the number of possible colorings (Holton and 

Sheehan 1993,63-65). 

Dlirre's D-reduction program was written in Algol 60 for the CDC 1604A 

computer at Hanover. In November 1965, the program established the reducibility of the 

Birkhoff Diamond, and then it was used to examine evermore-complex configurations. 

While the program's results led to powerful conclusions, the 1604A machine had a few 

significant limitations. For example, computing time rose approximately four-fold as an 

additional vertex was added to the outer ring. Thus, a 12-ring configuration could be 

expected to take about six hours to analyze, but a 13-ring configuration could take 

anywhere from 16 to 61 hours (MacKenzie 1999,27-28). 

Heesch attempted to circumvent the CDC 1604's computing time limitations by 

locating a more powerful computer. Originally, Heesch sought to use the supercomputer 

ILLIAC IV, which was being constructed at the University of Illinois, but the machine 

was not yet functional. John Pasta at the University of Illinois referred Heesch to the 

United States Atomic Energy Commission's Brookhaven Laboratory, where Yoshio 
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Shimamoto was serving as chair of the applied mathematics department. The Brookhaven 

Laboratory possessed a Control Data 6600, recognized as the fastest computer of its day. 

Shimamoto was interested with the four-color problem himself and made arrangements 

for Heesch and Dtirre to have access to the computer during the years 1968 and 1969. 

Dtirre had to adapt his Angol D-reducibility program to be implemented in the Fortran 

computer language. The Brookhaven computer offered a considerable increase in 

computing power. 14-ring configurations could not be analyzed using the 1604A at 

Hanover, but the enhanced power of the Brookhaven 6600 allowed Dtirre and Heesch the 

opportunity to study such configurations (MacKenzie 1999,25-29). 

Heesch returned to Brookhaven in August 1971, to study the C-reducibility of 

some of the configurations which Dtirre's program had determined not to be D-reducible. 

Wolfgang Haken also visited the laboratory the following month. While attending a 

meeting of Brookhaven department chairs on the morning of September 30, Shimamoto 

began to "play" with some of the essential configurations and eventually created Figure 

20, which has come to be known as Shimamoto's horseshoe. Shimamoto's construction 

and supplemental work showed that if this horseshoe configuration was D-reducible, then 

the four-color conjecture would be true. Shimamoto shared his findings with Heesch and 

Haken, who told Shimamoto that the configuration had already been checked, and that it 

had been found to be D-reducible. 

Excitement rose among the researchers, and it was decided that the horseshoe 

should be rechecked for D-reducibility. Dtirre, himself, returned to Brookhaven, and after 

26 hours of computing time, the researchers discovered that the results of the original 

program had been incorrect. Shimamoto' s horseshoe had not yet been shown to be 

59 



reducible. These findings were disappointing to a number of interested graph theorists, as 

well as to Shimamoto who had developed the horseshoe. Even though the same program 

had run the two tests, it is believed that the installation of a new computer system during 

the first test may have produced instability in the system thereby causing the inaccurate 

result. Another notable outcome of this episode is the origin of widespread skepticism 

concerning computer generated mathematical results. The skepticism would eventually 

cause many to doubt the logical validity of the eventual results of Appel and Haken 

during the mid-1970s (MacKenzie 199925-31). 

Figure 20. Shimamoto's Horseshoe 

Appel and Haken "Prove" the Four-Color Theorem 

In the early 1970s, a number of mathematicians, including Heesch, Frank Allaire, 

Edward Swart, and Frank Berhardt, were independently attempting to determine an 
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unavoidable set of reducible configurations. Haken had originally collaborated with 

Heesch in an effort to find such a set of configurations. Haken had invited Heesch to give 

a lecture at the University of Illinois, and then worked with him in the fall of 1971 at 

Brookhaven to find discharging procedures. When the work of Shimamoto seemed to 

settle the four-color question, their collaboration was suspended. Haken seemed to lose 

hope that such a set could be found using the computers that were then available. Lack of 

computing time and money to acquire such time also affected Heesch's efforts in 

Germany. One of Haken's students, Thomas W. Osgood, was working on a thesis about 

the four-color problem. Kenneth Appel, a mathematical logician, was also serving on 

Osgood's thesis committee and asked Haken to make a presentation on the four-color 

problem to the logic seminar at the University of Illinois in order to better understand 

Osgood's work. Appel, who was experienced in computer programming, was interested 

in Haken's presentation. Although Haken had proclaimed that he was ready to quit his 

work on the four-color problem for the present time, Appel encouraged him by saying, "I 

don't know anything involving computers that can't be done; some things just take longer 

than others. Why don't we take a shot at it?" (MacKenzie 1999,34). In 1972, the 

collaboration of Appel and Haken began with an attempt to study discharging procedures 

to determine which configurations were reducible and which were not. After almost three 

years of work, the duo determined that no configurations were necessary with ring size 

greater than 14, and the computer power they needed to carry out discharging procedures 

on such a set of configurations was finally available. A University of Illinois computer 

science graduate student, John Koch, joined Appel and Haken in their work in 1974. 

Within a year, Koch had developed a program to check D-reducibility through 
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configurations with ring size 11. Koch later modified his work to allow for checking ring 

sizes of 12, 13, and 14 (Appel and Haken 1989, 8-9). 

Finally, by June of 1976, Appel and Haken had had compiled an unavoidable set 

consisting of 1,936 reducible configurations, thus "proving" the four-color theorem. The 

number of configurations was later reduced to 1,482 and later to 1,405. The construction 

of such a set involved 1,200 hours of time on 3 separate computers, and required the 

analysis of 487 discharging rules by hand, without the use of technology. Appel and 

Haken's wives and children were also directly involved in the reducing process, checking 

one another's work and pointing out errors. Appel's daughter, Laurel, located 

approximately 800 mistakes, of which she was able to correct 650 by herself. In early 

July, about 50 errors remained, and Appel spent the weekend of the Fourth of July 

reducing that number to 12. Haken replaced those configurations with about 20 others, 

and two of them failed, but he later reworked them as well. As Haken would later admit, 

it took one month to find approximately 800 mistakes, and only about five days to repair 

them (MacKenzie 1999,39). The Appel and Haken paper was first published in the 

Illinois Journal of Mathematics in two parts that when combined total almost 140 pages. 

In addition, 400 pages of microfiche contained diagrams and verifications of claims made 

by 24 lemmas in the main text (Appel and Haken 1986, 10). The articles and microfiche 

were printed by the American Mathematical Society in the form of a 741-page book in 

the 1980s (See Appel and Haken 1989). 

In their proof, Appel and Haken considered planar triangulations, and used many 

ideas that Kempe had introduced, such as the notion that vertices of less than degree 6 

must be contained in planar triangulations. They also used Kempe's mathematical 
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induction argument by assuming that "every planar triangulation with fewer than N 

vertices can be properly four-colored" (Appel and Haken 1986, 11) and then attempting 

to show that every planar triangulation with N vertices can be four-colored. Using the 

work of Birkhoff and Heesch, Appel and Haken also utilized the process of reducing 

configurations. In drawing their configurations, Appel and Haken used the notation based 

on the degree of each vertex that Heesch had first introduced in 1969. The majority of 

Appel and Haken's case analysis was performed by computer and cannot be checked 

manually. Using a method originally stated by Heesch, Appel and Haken tested 

configurations for reducibility obstacles. Heesch's rule states, 

"Given a configuration ... proceed as follows: 
0) Whenever (either initially or after a previous step of the procedure) a vertex of 

any degree d is connected to fewer than d - 3 other vertices of the 
configuration it may be removed (along with all incident edges) to form a 
smaller configuration. Such a vertex is connected to at least four other vertices 
of the ring around the configuration and thus is called a '~4Iegger vertex.' 

(2) Whenever a pair of vertices of degree 5 both of which are connected to a third 
vertex and to one another but to no further vertices (a 'hanging pair') appears 
then both vertices may be removed to form a smaller configuration 

(3) Whenever a cut-vertex (i.e. a vertex whose removal disconnects the 
configuration) of degree d is connected to fewer than d - 2 other vertices of 
the configuration (a '~3-legger cut-vertex ') then it may be removed to form a 
pair of smaller configurations" (Appel and Haken 1986, 12). 

A configuration fails the above test if after repeating these steps, the resulting 

configuration is empty or is already known to be irreducible. A configuration that fails is 

almost certainly not reducible, but configurations that pass this test mayor may not be 

able to be reduced. Another important strategy used by Appel and Haken is called the m-

and-n rule: 

"for given ring-size n the likelihood of reducibility increases rapidly with the 
number m of vertices inside the ring .... In particular, if any configuration 
satisfies 
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3n 
m >--6 (#) 

2 
then it contains an obstacle-free sub-configuration that also satisfies (#), ... and is 
almost certainly reducible" (Appel and Haken 1986, 13). 

The researchers claimed that they spent about ninety percent of their time on the proof 

developing methods to produce unavoidable sets of likely-to-be-reducible configurations. 

A Iikely-to-be-reducible configuration was defined by Appel and Haken to be one that 

is not known to be irreducible, obstacle free, and satisfies the inequality m ~ n - 5 where 

n is the ring-size and m is the number of vertices in the configuration (Appel and Haken 

1986, 13). In his quest to find an unavoidable set of reducible configurations, Heesch had 

devised a technique that Haken later called a "discharging procedure," due to its 

relationship to electrical networks. Each vertex was given a "charge." During the process 

of discharging, charges are distributed from degree 5 vertices that are positively charged 

to vertices of other degrees. After the discharging of the vertices occurs, some positively 

charged vertices remain, and it is these vertices that "infer the existence of an 

unavoidable set of configurations" (Fritsch and Fritsch 1998,223-224). Appel and Haken 

utilized a number of different discharging procedures to arrive at their unavoidable set. 

However, they admit that thousands of different proofs may exist of the four-color 

theorem, since "any particular proof is only selected by a series of choices among the 

many proofs extant" (Appel and Haken 1986, 13). 

Appel and Haken's work was greeted by a number of diverse reactions. The 

University of Illinois postage meter proclaimed their findings by printing "Four Colors 

Suffice" in the postmark on metered mail. Many in the mathematical community 

championed their significant and difficult work. However, the research also received 

much criticism from those filled with disdain for the heavy reliance of Appel and Haken 
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on computer analysis. One early announcement of the proof was made at a summer 

meeting of the American Mathematical Society and Mathematical Association of 

America at the University of Toronto. Haken presented the lecture, and at the end of his 

presentation, rather than the room erupting into cheers, he was met with "polite 

applause." At the time, Armin Haken was a graduate student at the University of 

California at Berkley and later remarked 

"[A]t the end of his talk the audience split into two groups, roughly at the age 40. 
The people over 40 could not be convinced that a proof by computer could be 
correct, and the people under 40 could not be convinced that a proof that took 700 
pages of hand calculations could be correct" (MacKenzie 1999,41). 

The controversy over the proof by computer continues today, although most individuals 

in the mathematical community now accept Appel and Haken's computer analysis proof 

as acceptable. Furthermore, since the time of their publication, several others have 

provided additional independent proofs of the four-color theorem. In 1977, Frank Allaire 

described another proof using different discharging procedures. A third proof by Neil 

Robertson and Daniel P. Sanders of Ohio State University, Paul Seymour of Princeton, 

and Robin Thomas of the Georgia Institute of Technology was published in 1993. Their 

efforts, using a discharging procedure developed by Jean Mayer, found a much smaller 

unavoidable set of 633 reducible configurations. However, their proof was still heavily 

reliant upon computer analysis. 

The beginning and ending of the four-color problem introduced many important 

influences on the field of mathematics. Its origins were a driving force in establishing 

graph theory as an independent branch of mathematical study. Its final proof initiated an 

era during which mathematics employs not only the human mind, but also the use of 

technological devices. As the first significant proof to be established using a computer, 
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Appel and Haken's proof of the four-color theorem will likely forever be remembered as 

being a groundbreaking event in the history of mathematics. 

Generalizations of the Four-Color Theorem 

As Kempe first suggested in his 1879 paper on the four-color theorem, more than 

four colors are needed in order to color maps on certain surfaces besides the plane or 

sphere. In fact, Kempe gave an example of a map on a torus in which six colors are 

necessary. In the context of this chapter, a surface is considered to be a closed orientable 

2-manifold, which one could think of as a sphere with a certain number of handles 

attached as described in Chapter II. Sk is commonly used to denote a sphere of with k 

handles, and we say that this surface has genus k. Heawood and later writers hoped that 

by studying the more general problem, they could be enlightened on the coloring problem 

for the sphere or plane (Biggs, Lloyd, and Wilson 1976, 109-110). Ironically, the general 

version was settled by Ringel and Youngs in 1968 - eight years prior to Appel and 

Haken's proof of the four-color theorem (White 1980,20). 

The chromatic number of a map M, denoted Z(M), is the smallest number of 

colors which suffices for coloring the faces of M. The chromatic number of a specific 

surface, Sk, is the maximum Z(M) of all maps drawn on Sk. In his 1890 paper on map 

coloring, Heawood attempted to prove some properties regarding maps on surfaces 

besides the sphere or plane. One very important feature of Heawood's work was the 

following equation that describes the chromatic number of Sk: 
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for some positive integer k. The right-hand side of the equation is sometimes 

denoted H(S k)' and the equation itself is often referred to as the Heawood conjecture. By 

including the four-color theorem, one can see that Heawood's map coloring theorem is 

true for all nonnegative integers k. Heawood was able to successfully show that 

X(Sk) ~ H(Sk) for all positive integers k, and although he claimed that X(Sk) ~ H(Sk) 

was also true, his proof was insufficient. A map on a torus requiring seven colors was 

given by Heawood, which supports his map-coloring theorem, since 

X(S1) = H (S1) = 7 (White 1980,20). One year later, Lothar Heffter noticed the missing 

part of Heawood's proof and showed further that equality is true for k ~ 6. Heffter's 

method involved the use of neighboring regions to find the minimum value of k that 

allows n regions to be drawn on the surface of genus k. The genus of a specific surface S 

can be denoted g(S). By considering the neighboring regions in their dual form, Heffter 

considered the equivalent problem of finding the minimum value k that allows the 

compete graph Kn to be embedded on the surface of Sk (Biggs, Lloyd, and Wilson 1990, 

96-97). Using this dual form and applying Euler's polyhedral formula, Heffter was able 

to establish that 

(K » I(n-3)(n-4)1 f >3 g n - or n - . 
12 

Further, he conjectured the equality of the statement for all natural numbers, and this 

equation later became known as the complete graph conjecture. 

The map coloring problem for non-orientable surfaces was discussed by Heinrich 

Tietze in 1910. For a non-orientable surface, Nk, with genus k, Tietze proved that for 

k ~ 1, 
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He was able to show equality for k = 1, but only that 6:::; X(N2 ):::; H(N2 ):::; 7. Franklin 

settled the case of a non-orientable surface of genus 2 in 1934 when he showed 

X(N2 ) = 6, but this is the single exception to the general rule. Equality in Tietze's 

statement was later proved for k = 3, 4, and 6 by Kango in 1935, for k = 7 by Bose in 

1939, and for k = 5 by Coxeter in 1943 (Biggs, Lloyd, and Wilson 1990,97). 

In 1952, Gerhard Ringel settled the complete graph conjecture for orientable 

surfaces of genus 13. This was a "prelude" to research by many mathematicians during 

the 1950s and 1960s (Biggs, Lloyd, and Wilson 1990,98). It was determined that the 

complete graph theorem could essentially be separated into 12 different cases, numbered 

o through 11, where case k corresponds to n = k(mod 12) . Ringel settled case 5 as a by­

product to a result that he had found concerning non-orientable surfaces. By 1961, Ringel 

had resolved cases 7, 10, and 3. Cases 3,4, and 7 were independently settled by Gustin, 

although his original treatment of case 4 contained a misprint. In 1963, Terry, Welsh, and 

Youngs proved case 0, and soon cases 1 and 9 were settled by Gustin and Youngs during 

the period 1963-1965. Youngs completed case 6 in 1966 and cases 2, 8, and 11 were 

finally finished by Ringel and Youngs during 1967. Although all the key cases had been 

analyzed, the work was not yet finished, as the proofs did not hold for a certain number 

of small values. Jean Mayer worked on all odd values up to 23, and by early 1968, only 

four values remained. Guy, Mayer, and Ringel and Youngs produced proofs for these 

four values during February 1968, thus proving Heawood's original conjecture. The 

orientable case may be combined with a statement of the non-orientable case yielding 
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what is known today as the Map Color Theorem: Let S be the orientable surface Sk of 

genus k (k ~ 1) or the non-orientable surface Nk of genus k (k t= 2). Then the chromatic 

number XeS) is given by 

l7 + ~49- 241]J 
xeS) = 2 ' 

where 1] = 2 - 2k or 2 - k , is the Euler characteristic of S. The one exception to the non-

orientable case, found by Franklin, is the Klein bottle, N2, for which X(N 2) = 6, not 7 

(Biggs, Lloyd, and Wilson 1990,98-99). Heawood's conjecture, the Map Color Theorem, 

and many other properties of graphs can be proved using a modem tool of graph theory 

known as rotation schemes. Rotation schemes, introduced by Heffter, Edmonds, and 

Ringel, is a common method to think of embeddings combinatorially. For more 

information on rotation schemes and their uses, consult Hartsfield and Ringel (1994, 208-

240). 

One of the most important open questions in graph theory today is another 

generalization of the four-color theorem, known as Hadwiger's Conjecture. In 1943, H. 

Hadwiger hypothesized the following: Every connected t-colorable graph is contractible 

to Kt. An equivalent statement is that for every t ~ 0, every loopless graph with no Kt 

minor is (t -1) -colorable. Hadwiger's conjecture is obviously true when t ~ 3, and 

Hadwiger showed that it holds true when t = 4. About a decade later, Dirac, oblivious of 

Hadwiger's results, independently showed this case was true. Wagner had shown in 

1937, prior to the formulation of Hadwiger's conjecture, that in the case when t = 5, the 

conjecture is equivalent to the four-color theorem. Thus, Appel and Haken showed the 

proof of this case in their 1976 proof of the four-color theorem (Kotlov 2002, 241-242). 
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In 1993, Robertson, Seymour, and Thomas (1993, 279-361) showed that the conjecture is 

true when t = 6. Further values of the conjecture remain unverified, although proving the 

conjecture is one of the most significant unanswered questions in graph theory. 

Map coloring problems have formed an essential part of graph theory almost since 

its genesis. The four-color conjecture, Heawood's conjecture, and similar problems have 

been a driving force in the study of planar graphs and their properties. As the next chapter 

will demonstrate, the coloring problems of this chapter can be generalized and extended 

to describe coloring problems involving graphs that are not planar, but where a graph's 

closeness to planarity can be measured. 
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CHAPTER V 

MEASURING CLOSENESS TO PLANARITY 

As the past chapters have discussed, many valuable results concerning planar 

graphs have been discovered. There are also many properties of nonplanar graphs that 

involve the notion of planarity, such as the minimum number of edge crossings in a graph 

or the minimum number of planar graphs into which a specific graph can be decomposed. 

Because many of these concepts were not given attention until the mid-twentieth century, 

their history is shorter than that of the characterizations of planar graphs or map coloring 

problems. 

Crossing Number 

The crossing number of a graph G, denoted v(G), is the smallest number k such 

that G can be drawn in the plane with no less than k edge crossings (Liebers 2001, 39). It 

is obvious that the crossing number of a planar graph is zero, because such graphs can be 

drawn in the plane with no edge crossings. Furthermore, v( K 3.3) = 1 and v( K 5) = 1 , 

because these two graphs cannot be drawn in the plane without edge crossings, but the 

minimum number of edge crossings necessary is only one. For these basic examples, 

determining the crossing number of the graph seems intuitive, but determining the 

crossing number of a nonplanar graph is generally a difficult task (Beineke 1989,210). 

71 



Much of the significant research on crossing numbers has focused on determining a 

general crossing number for the graphs of Kn and Km,n' 

One of the earliest problems concerning crossing numbers was suggested by Paul 

Tunin and was originally thought to have been solved by Zarankiewicz in 1954. Tunin 

was a member of a labor combattation in 1944, and as Tunin later wrote, "had the 

extreme luck ... to work in a brick factory in Budapest" (Guy 1969,63). At the brick 

factory, Tunin and his fellow workers had to transport bricks from the ovens where they 

were required to empty storage facilities via small vehicles that ran on rails. At certain 

times, any of a number of storerooms might be available, so it was necessary that each 

oven be connected to each storage facility by rail. The relevant problem, known today as 

Tunin's brick factory problem, was described by Zarankiewicz (1954, 137) as follows: 

"In a brickworks the bricks are made in burning-ovens. When they are burnt out, 
they are carried away to storerooms by workers on small trucks rolling on rails. 
The trucks move easily and fast except when they pass a crossing of the rails. 
Here the trucks are usually derailed a great loss of time and bricks occurs and the 
traffic is hindered on all rails crossing that point. This loss will be reduced to 
minimum when the number of intersections of the rails is as small as possible and 
no three rails intersect each other at an inner point." [sic] 

It is clear that Tunin's brick factory problem is equivalent to finding the crossing number 

for a complete bipartite graph, Km,n where m represents the number of ovens and n 

represents the number of storage facilities. 

Tunin originally mentioned the problem in lectures at Warsaw and Wroclaw in 

October of 1952. Zarankiewicz was at the former lecture, and UrbanIk was at the latter. 

They each independently submitted proposed solutions to TUf<in's brick factory problem 

in 1953 (Guy 1969,64). Zarankiewicz's (1954, 137-145) solution was the first to appear 
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in print the next year and concluded the following three statements about the crossing 

numbers of complete bipartite graphs: 

At the end of his paper, Zarankiewicz admitted that another formula had been noticed by 

Renyi and Tunln and proved by Urbanik. The following formula, similar to Urbanik's, is 

equivalent to the Zarankiewicz's three equations shown above: 

The result was originally known as Zarankiewicz's theorem, but in 1965 and 1966, 

Kainen and Ringel noticed an error in Zarankiewicz's work. Thus, today, this equation is 

often known as Zarankiewicz's conjecture. An attempt to repair the proof was made by 

Kainen, but his efforts did not resolve the issue (Guy 1969,64). It was established, 

however, that the crossing number of Km,n is less than or equal to the right hand side of 

the equation, and Zarankiewicz managed to prove that equality did hold for 

min(m,n) = 3. 

In 1969, Kleitman (1971, 315-323) proved that Zarankiewicz's conjecture holds 

for the graph Km,n when min(m,n) = 6 . In 1993, Woodall extended this work by proving 

Zarankiewicz's Theorem for m ~ 8, n ~ 10. Furthermore, Kleitman gave the following 

lower bound for the crossing number of a complete bipartite graph: 

1 lnJln -IJ v(K )~-m(m-l) - - . 
m,n 5 2 2 

73 



Only slight improvements have been made to this lower bound (See Nahas 2003, 1-6). 

Like the graph of Km,n, the investigation of the crossing number of Kn, the 

complete graph on n vertices, has also yielded significant results. In 1960, Richard Guy 

published the following upper bound for the crossing number of Kn: 

or equivalently, 

1
1 2 2 -(n-1) (n-3) if nisodd 

v(K )::; 64 
n 1 

-n(n - 4)(n - 2)2 if n is even 
64 

Harary and Hill (1963,335) claim that this result had been discovered independently 

several times prior to Guy's publication in 1960. Equality of these statements was 

conjectured by Guy, but his hypothesis is still not proved. Although Guy (1972, 111-118) 

was able to prove equality for n ::; 10, in the words of Hartsfield and Ringel (1994, 185), 

Guy's "proofs for 7::; n ::; 10 are very uncomfortable." 

A general lower bound has been determined for the crossing number of a general 

graph G with n vertices and m edges whenever m 2 7.5n. The result that follows was 

originally found without the second term on the right side by Ajtai, Chvatal, Newborn, 

and Szemeredi in 1982 and discovered independently by Leighton one year later. The 

second term is an improvement made by Pach and T6th in 1997: 

m 3 

v(G) 2 2 - 0.9n 
33.75· n 

(Liebers 2001,40). 
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A concept similar to the crossing number is the rectilinear crossing number of a 

graph G, denoted v(G) , or the minimum number of crossings when G is drawn in the 

plane in which every edge is represented by a straight line segment. The concept was 

originally introduced in 1963 by Harary and Hill (1963, 333-338). Recall from Chapter 

III that Fary and Wagner independently showed that every planar graph could be drawn 

in the plane so that every edge is a straight line segment. The rectilinear crossing number 

is a natural extension of this notion. It is obvious that v(G) ~ v(G) because the minimum 

number of crossings in general must be smaller than the minimum number of crossings in 

a straight edge graph. Guy (1972,112-118) showed that v(Kn) = v(Kn) holds for 

n ~ 7 and n = 9, however in the case of n = 8, v(Kg) = 18, but v(K8 ) = 19 . 

Thickness 

The crossing number of a graph offers one way to determine "how close" a graph 

is to being planar, but several other alternative measurements exist. The thickness of a 

graph G, denoted O(G) , is the minimum number of planar subgraphs of G whose union 

is G. Determining the thickness of an arbitrary graph is also notoriously difficult (White 

and Beineke 1978,43). In fact, in 1983, Mansfeld found that determining a graph's 

thickness is an NP-incomplete problem (Liebers 2001, 34··35). The study of thickness 

originated in a conjecture proposed by John L. Selfridge while working with networks to 

be used as printed circuits (Harary 1962, 301). In 1961, Frank Harary (1961, 542) 

submitted the following research problem to the Bulletin of the American Mathematical 

Society: 

75 



"Prove or disprove the following conjecture suggested by J. Selfridge .... For any 

graph G with 9 points, G or its complementary graph G is nonplanar. 
Experimental evidence appears to support this conjecture, which in turn would 
imply the validity of the conclusion for any graph with at least 9 points. A simple 
argument using Euler's polyhedron formula serves to prove that if G is a graph 
with p points and q lines for which q > 3 P - 6, then G is nonplanar. This proves 

the conclusion of the conjecture for all graphs with at least 11 points. For graphs 
G with 9 or 10 points, it is still open." 

In terms of thickness, the problem of Selfridge asks for which values of n is B(K n) > 2 

when n ~ 9. The following year, Harary (1962, 301-303) published a proof of his 

statement about graphs with at least 11 points. The more general question posed by 

Selfridge was proved independently three times during 1962. Battle, Harary, and Komada 

(1962,569-571) utilized Kuratowki 's theorem and graph partitioning to prove Selfridge's 

conjecture. A similar proof was given by John R. Ball of the Carnegie Institute of 

Technology. A third, independent proof of Selfridge's problem was given by W.T. Tutte, 

who chose to employ a "brutal method" of constructing every triangulation of the sphere 

having 9 vertices. After only two days of work, Tutte verified that each of the 

triangulations' complements was nonplanar (Harary 1962,303). 

In another paper in 1963, Tutte introduced the word "thickness" in the sense of 

the current mathematical usage of that term, and established several basic results 

concerning the thickness of a graph (Beineke 1988,128). Among his observations, Tutte 

found that if a graph G has thickness B(G) = t, then every subgraph of G has a thickness 

that is less than or equal to t. Furthermore, if a sub graph G' of a graph G is created by 

removing only one edge or only one vertex from G, then either B(G') = tor B(G') = t-l 

(Liebers 2001, 36). 
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As in the study of the crossing number of a graph, in tackling the question of 

thickness, researchers have given heavy consideration to specific classes of graphs, such 

as the complete graphs and complete bipartite graphs. Beineke and Harary laid the 

foundations for the search for the determination of the thickness of a complete graph, Kn. 

In 1965, they proved that the following result holds for n '* 4mod6: 

{ In+7J ifn~1,n,*9,n,*10 
O(Kn ) ~ 6 . 

3 if n = 9,n = 10 

Beineke and Harary employed a method that required decomposing a graph into n 

triangular regions. A number of results for the case n = 4 mod 6 were proven on a case-

by-case basis, such as for n = 16,22,28,34,40, and 46. The upper bound was finally 

established for all n ~ 1 in 1976 by Alekseev and Gonchakov and independently by 

Vasak. All of the proofs use Beineke and Harary's decomposition method, except when 

n = 16. Many mathematicians had attempted to decompose K]6 into three planar graphs, 

but all were unsuccessful. Many had concluded that perhaps O(K]6) = 4, until Jean 

Mayer proved that O(K]6) = 3 in 1972 (White and Beineke 1978,43-44). 

Unfortunately, the issue of the thickness of complete bipartite graphs, Km,n> has 

not been completely resolved, although several results have been found on the subject. In 

1964, Beineke, Harary, and Moon determined hypotheses under which the following 

result holds: 

O(K ) = I m ·n 1 
m,n I 2(m + n - 2) . 
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While it does seem to work for most cases, it does not always hold when m and n are both 

odd, m::;; n, and there exists an integer k such that n = l2k(m - 2)J. The issue of 
m-2k 

thickness has also been resolved for the family of graphs known as the hypercubes, and 

was shown by Kleinert in 1967 to be: 

8(QJ = I n;11 
(Liebers 2001, 37). 

Splitting Number 

Consider the planar graph on the left in Figure 21 with two vertices labeled "5." 

The graph on the right demonstrates what the graph would look like if one were to "glue 

together" the two vertices labeled "5" to create the graph K5. To generalize, suppose G is 

a graph and u and v are two vertices of G. If a new graph, G' can be constructed by 

replacing vertices u and v with a new vertex, W, in such a way that any vertex that was 

adjacent to either u or v in G is also adjacent to W in G', then this process is known as 

identifying two vertices. Conversely, the reverse procedure to identifying two vertices is 

the process of splitting a vertex (Hartsfield and Ringel 1994, 193-194). One may split a 

vertex by replacing a single vertex W of G with two separate vertices, u and v, such that 

whenever u is adjacent to some of the vertices to which w was originally adjacent, it 

follows that v is adjacent to the remaining vertices originally adjacent to w. The processes 

of identifying two vertices and splitting a vertex allow for another measurement of a 

graph's closeness to planarity, called the splitting number. The splitting number of a 

graph G, denoted a(G), is the smallest number k such that G can be obtained from a 
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planar graph by performing k vertex identifications of two vertices. Equivalently, the 

splitting number can be thought of as the minimum number of vertex splittings that are 

required to be performed on a graph G in order to produce a planar graph (Hartsfield and 

Ringel 1994, 194). Clearly, a(G) = 0 if and only if G is a planar graph. 

Figure 21. Identifying Two Vertices 

The origins of the splitting number can be traced to the 1980s work of Nora 

Hartsfield, Brad Jackson, and Gerhard Ringel on determining lower bounds for the 

splitting number and the procedure of splitting vertices of complete graphs and complete 

bipartite graphs in order to embed such graphs on a particular surface (Liebers 2001,25). 

It is extrememly difficult to determine the splitting number of a graph. During the late 

1990s and early 2000s, Luerbio Faria, Celina Miraglia Herrera de Figueiredo and 

Candido Ferreira Xavier de Mendon<;a Neto showed that finding the splitting number of a 

given graph is NP-incomplete (Liebers 2001, 27). 

As is the case with other measurements of closeness to planarity, results have 

been found for specific families of graphs. The first class of graphs for which the splitting 
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number was determined is the family of complete bipartite graphs. In 1984, Jackson and 

Ringel gave the following equation for this splitting number: 

a(K ) == r (m - 2)(n - 2) "1. 
m,n I 2 

One year later, Hartsfield, Jackson, and Ringel found the following result for the family 

of complete graphs: 

a(Kn) == I (n - 3~n - 4) 1. 

(Hartsfield and Ringel 1994, 193-196). 

Coarseness 

One might say that the discovery of the concept of the coarseness of a graph was a 

propitious mistake of Paul Erdos, one of the greatest mathematical minds of the twentieth 

century. Erdos attempted to define the thickness of a graph by speaking of the maximum 

number of edge-disjoint nonplanar subgraphs contained in a given graph. This of course, 

is not the definition of thickness, but of the coarseness of a graph G, denoted ~(G) 

(Harary 1969, 121). Thickness and coarseness are similar concepts, since both involve 

the decomposition of graphs, but the former is the minimum number of planar graphs, 

while the latter is the maximum number of nonplanar graphs. 

Equations involving the coarseness of a graph are not as compact as those of the 

other measurements in this chapter. Erdos originally conjectured that (;J was a lower 

bound for the coarseness of Kn whenever n is a multiple of 3. Beineke and Chartrand 
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improved Erdos' lower bounds for n ~ 30 (Guy 1967,38). Subsequently, in 1968, Guy 

and Beineke (1968,888-894) proved the following result: 

if n = 3p ~ 15 

if n = 3p ~ 30 

[nJ l14n + IJ ;(K3p+Z ) = 2 + 15 . 

Since the statements above do not give the explicit coarseness of every complete graph, 

Table 1 gives a list of the conjectured coarseness for a complete graph on n vertices as 

hypothesized by Guy and Beineke (1968, 894). 

Table 1 

Conjectured Values of Coarseness 

N 13 18 21 24 27 9n+7 

;(Kn) 7 15 21 28 36 9n 2 +13n+ 2 

2 

Analagous to the statements above about the complete graph, the computations of 

coarseness of a complete bipartite graph are also complex, because they involve several 

cases and the cases are often incomplete. The following results concerning the coarseness 

of a complete bipartite graph are due to Beineke and Guy: 
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(Harary 1969,121-122). 

::;;rs+mm -- --· (lr+sJ l2SJ l8r+16S+2J) 
3 ' 3' 39 

~rs+maX(lS;2 J,min(l~J,l2: J)) forr~2,s~7 

~ rs + min(l r ~ 2s J,l2r 3+ s J,l16r + ;:s+ 4 JJ 

~ rs+l~H~HiJ torl~r~s 

Heawood's Empire Problem 

Many of the methods of measuring a graph's closeness to planarity described in 

this chapter can be directly applied to specific problems. In Heawood's 1890 paper that 

refuted Kempe's argument and explored the notion of coloring maps on surfaces of 

higher genus, another problem was discussed concerning empires. The four-color 

problem, described in Chapter IV, required that each "country" be a connected region. 

However, in reality that is often not the case; for example Alaska is not connected to the 

mainland of the United States and the Kaliningrad Oblast (formerly Konigsburg) of 

Euler's bridges problem is separated from mainland Russia. At the time Heawood 

proposed his problem, a number of European nations had colonies throughout the world, 

many of which continue to exist today. Heawood asked how many colors would be 
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needed to color maps of empires such that each colony was colored the same as the 

mother country, and empires sharing borders would recei ve different colors. Heawood 

was able to prove that if every empire consisted of M connected regions, then every map 

could be colored with 6M colors. Jackson and Ringel later gave the name M-pire to an 

empire of M connected regions. Obviously, Heawood's upper bound is not always the 

best, since a I-pire can be colored with four colors due to the four-color theorem. 

However, Heawood gave an example of a 2-pire in which every set of 12 empires share a 

common border, so 12 colors are needed (Hutchinson 1993,212-215). Heawood regretted 

not being able to present a symmetric map of his twelve mutually adjacent 2-pires, but 

almost 80 years later, Scott Kim provided such a figure, as shown in Figure 22 

(Hartsfield and Ringel 1994, 198). 

2 

~ 12 /' 
3 1 

9 11 

10 

12 
8 7 6 5 r---- 6 8 5 7 

4 

2 

1 3 
9 11 

/ 4 ~ 
10 

Figure 22. Kim's Symmetric Map of 12 Mutually Adjacent 2-pires 

While Heawood was certain that every M-pire was 6M-colorable, he was not able 

to show that this was always the best coloring. By the early 1980s, Herbert Taylor had 
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created maps of 3-pires requiring 18 colors and 4-pires requiring 24 colors. In 1983, 

Jackson and Ringel used one of Taylor's maps in their proof of the M-pire theorem 

(Hartsfield and Ringel 1994,200-201). The M-pire theorem can be stated as follows: 

"For every M > 1 there is an M-pire graph that requires 6M colors. In fact, the graph 

consisting of 6M mutually adjacent vertices is an M-pire graph" (Hutchinson 1993,215). 

Jackson and Ringel proved this theorem using techniques that had been developed by 

Ringel and Youngs in their proof of Heawood's conjecture on coloring maps on surfaces 

of higher genus that was discussed in Chapter IV. 

There is an interesting connection between the M-pire problem and the method of 

identifying and splitting vertices. For example, the map shown in Figure 22 can serve as a 

proof that the splitting number of KI2 is 12. One may notice that the dual of the given 

map is merely a planar splitting of K12 , and by identifying vertices labeled the same, the 

map will result in the graph of KI2 (Hartsfield and Ringel 1994,202). 

Ringel's Earth-Moon Problem 

In 1949, Ringel introduced a variation to Heawood's problem about empires. The 

problem is often referred to as the earth-moon problem because Ringel presented a 

scenario in which each country on earth had a colony on the moon with similar 

stipulations as those in the empire problem concerning common borders. Ringel wanted 

to know what is the smallest number of colors, k2, necessary to color every earth-moon 

map. It is essentially a problem concerning graphs that have thickness of at most 2, 

sometimes called biplanar graphs. One may infer from the empire problem that k2 ::; 12. 

Furthermore, the thickness of K9 is 3, so there is no map of mutually exclusive 2-pires on 
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the earth and moon. Thus, immediately, one can conclude that 8 ~ k2 ~ 12. For several 

years that is all that was known on the subject. Finally, Sulanke created an earth-moon 

map consisting of 11 earth-moon 2-pires. After vertices are identified, the resulting graph 

is the complete graph on 11 vertices minus a single cycle of 5 vertices. Of course the six 

mutually connected vertices must each be colored a different color, and the five vertices 

of the missing cycle may be colored using three colors. Thus, Sulanke's map requires 

nine colors, so we may conclude 9 ~ k2 ~ 12; however, the general problem remains 

open (Hartsfield and Ringel 1994,203-205). 

The earth-moon problem may be generalized to a problem involving any number 

of spheres. It has been shown that for the problem involving three spheres, k3 = 16, 17, or 

18, and for four spheres, k4 = 22,23, or 24. Using properties of the thickness of a 

complete graph, the concepts can be generalized to show that for a problem involving m 

spheres, kill = 6m - 2, 6m - 1, or 6m (Hartsfield and Ringel 1994,203-204). Applications 

of the earth-moon problem and of thickness in general include devising procedures to test 

for errors in printed circuit boards. For example, it might be the goal of an engineer to 

print electronic circuits in layers in such a way that each layer does not have edge 

crossings (Beineke 1997,4). 

The study of planar graphs has had a significant impact on the field of graph 

theory and in the overall field of mathematics. In the history of mathematical ideas, 

planar graphs have played a relatively short, but rich, role. As this paper has discussed, 

many of the origins of graph theoretic ideas are based in the puzzles of recreational 

mathematics, such as the problems of the Konigsburg bridges, the utilities, and the brick 

factory of Tunin. A driving force in the development of many ideas concerning planar 

85 



graphs has been the four-color theorem and other coloring problems. One could argue 

that if the four-color theorem had never been conjectured, graph theory would not have 

the prominence that it has today. The effects of coloring problems extend into many other 

topics in graph theory. Even coloring problems involving the thickness and splitting 

number of a graph have been introduced, although these tools may not initially seem to 

be applicable to problems of map coloring. This thesis has not attempted to address 

every known result involving planar graphs, but has rather concentrated on the areas of 

research that have led to the most significant contributions to our knowledge of planar 

graphs. Many other conclusions, algorithms, and applications have been found regarding 

planar graphs; for example, in 1990 Schnyder (1990, 138-148) and de Fraysseix, Pach, 

and Pollack (1990, 41-51) independently proved results on drawing n-vertex triangulated 

planar graphs as crossing-free straight-line grid drawings. Problems, both solved and 

unsolved, regarding drawing planar graphs are numerous, and have many important 

applications. It is likely that the study of planar graphs and their generalizations will not 

end soon because many questions, such as those involving coarseness of a graph, 

Hadwiger's conjecture, and the earth-moon problem, remain unanswered. This history 

provides only a brief glimpse at the origins and early development of concepts relating to 

planar graphs, as many of the most significant results may appear in the future. 
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